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1044 Francis X Connolly and James F Davis

1 Introduction and statement of results

In this paper we complete the computation of the Wall surgery obstruction
groups for the infinite dihedral group, the L—theory of the polynomial ring
Z[t], the L-theory of the Laurent polynomial ring L, (Z[t,t']), with either the
trivial involution or the involution t — —t, and the Cappell unitary nilpotent
groups for the ring Z. The problem of computing these groups is thirty years
old. We take an historical approach in this introduction which sets the stage and
indicates the interrelation between the various groups, but has the drawback of
postponing the discussion of the main results of this paper. The main results
are 1.10, 1.9, 1.7 and 1.8.

Our algebraic computations are motivated by the following geometric question:
is a homotopy equivalence

[i M — Xa#Xo

from a closed n—manifold to a connected sum of two others splittable? That is
to say, is M expressible as a connected sum M = M;#M> so that f homotopic
to a map of the form

f1#tfar Mai#EMy — X4 Xo

where each f;: M; — X; is a homotopy equivalence? In particular, is M itself
a connected sum?

Let’s restrict now to the case where both X; are connected and have cyclic
fundamental group of order two. Cappell [5, 8] defined an element s(f) in a 4-
periodic abelian group UNil, 1 (Z;Z*,Z*). The +’s depend on the orientabil-
ity of X; and X» and are often omitted if both are orientable. If s(f) # 0,
then f is not splittable. If s(f) = 0 and n > 4, then f is splittable topolog-
ically; if s(f) = 0 and n > 5, then f splits smoothly. (In the smooth case
one allows connected sum along a homotopy sphere.) Fixing X; and X and
given s € UNil,;1(Z; Z*, Z%), there is a realization result: there is a homotopy
equivalence f: M — X1#Xs with s(f) = s, with M a topological manifold
when n > 4, a smooth manifold when n > 5. A particularly interesting exam-
ple is to take X; = Xy = RP* and 0 # s € UNil5(Z;Z~,Z"); then realization
gives a nonsplittable homotopy equivalence M — RP*#RP*. The geometric
properties of M seem both unexplored and of some interest.

The unitary nilpotent groups UNil, (R; A, Ay) are defined for a ring R with
involution and R—bimodules A1, A with involution. We won’t need the defini-
tions of these groups, only their relation to L—groups discussed below and the
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The surgery obstruction groups of the infinite dihedral group 1045

isomorphisms
UNlln(R, AQ, Al) = UNlln(R, Al, Ag) = UN11n+2(R, Al_’ AQ_)
Here A; is the bimodule A;, but with the involution a — —a.

Associated to a ring with involution are the algebraic L—groups L,(R). They
are 4-periodic. The definition of Ly(R) (and La(R)) are reviewed in Section 2;
they are Witt groups of (skew)-quadratic forms. Log41(R) is the abelianization
of the stable automorphism group of the (—1)¥~hyperbolic form (any form
admitting a Lagrangian).!

Fix a group G and a homomorphism w: G — {£1}. There is an induced
involution Y agg — Y agw(g)g~'on ZG. The associated groups L, (ZG,w)
are key ingredients in the classification of closed, oriented manifolds with fun-
damental group G and orientation character w.

Parallel to the work of Stallings [26] and Waldhausen [27] in algebraic K-
theory, Cappell [7, 9] studied the L—groups of amalgamated free products and
showed that if H is a subgroup of groups G and Gs, then UNil, (ZH;Z[G1 —
H],Z|Gy—H]) is a summand of L, (Z[G1*m G2]), and that the L—group modulo
the UNil-term fits into a Mayer—Vietoris exact sequence. Farrell [12] showed
that the UNil-term has exponent at most four. However he was unable to
find an element o € UNil,(R; A, B) for which 2a # 0. Cappell proved that
the UNil-term vanishes provided that the inclusions H — G; are square root
closed, ie, g € G; and ¢ € H implies g € H.

The infinite dihedral group is
Do =Zy T = {ag,az | a3 =e=a3) = (g,t | t? = e, tgt™ =g71).

Let w: Dy — {£1} be a homomorphism. The L-groups L, (Z][D], w) and
the corresponding UNil-groups UNil,, (Z; Z*(@)  7%(@2)) seem particularly fun-
damental. First the infinite dihedral group is the simplest group which is not
square root closed. Second, due to the isomorphism conjecture of Farrell-Jones
[13] (generalizing the Borel-Novikov conjectures of manifold theory), attention
has been recently focused on the infinite dihedral group. The isomorphism
conjecture roughly states that L, (ZI') depends on the K— and L-theory of
virtually cyclic subgroups and homological data depending on I'. A group G is

'These are the so-called L —groups measuring the obstruction to doing surgery up
to homotopy equivalence. They are defined as in Wall [29, Chapters 6 and 7], except
one deletes the requirement that the torsions are trivial. A definition of these groups
is given in [16] where they were denoted V,,(R). Ranicki [20] later gave a definition of
L, (R) as cobordism classes of n—dimensional quadratic Poincaré complexes over R.
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1046 Francis X Connolly and James F Davis

virtually cyclic if either G is finite, or G surjects onto Z with finite kernel, or
G surjects onto Dy, with finite kernel. The L—theory in the first two cases has
been examined in detail [14, 25, 17, 18]. Therefore L, (D) is the next obvious
case to consider.

In this paper we are writing a conclusion to the long tale of the computa-
tion of UNil,(Z;Z*,Z%). Cappell showed UNily(Z;Z,Z) was infinitely gen-
erated [6] and announced that UNilg(Z;Z,Z) = 0 [7]. Connolly-Kozniewski
[10] obtained an isomorphism UNily(Z;Z,7Z) = (Z2)*™ and also showed that
UNily(Z;Z,Z) = 0. Connolly-Ranicki [11] showed UNil;(Z;Z,Z) = 0 and com-
puted UNil3(Z;Z,7Z) up to extension, and thereby showed that it was infinitely
generated. Andrew Ranicki outlined the construction and detection of an ele-
ment of UNils(Z;Z,Z) of exponent 4 in a letter [22] to the first author. After
a preliminary version of this paper was circulated, Banagl-Ranicki [3] gave
an independent complete computation of UNils(Z;Z,Z) using generalized Arf
invariants.

In this paper we give complete computations for all n as well as doing the
non-oriented case.

But before we discuss our computations we pause and explain how computations
of the unitary nilpotent group give explicit computations of the L—theory of
the infinite dihedral group. We rely on the Mayer—Vietoris exact sequence (see
Cappell [7]):

L, (Z[Ds),w)
UNil, (Z; Z¢1, Z#2)
where w; = w,) and & = w(a;) = +1. We assume g3 > &1 and write
L, (Z|G],w) for the cokernel of the natural map L,(Z) — L,(Z[G],w). The

above sequence, and the calculational results in Wall [29, Chapter 13A], quickly
lead us to the following equations.

— Ly (Z) — -

L, (Z[Dso),w) = Ly(Z[Zo),w1) @ Ly (Z[Za],w2) ® UNil ,(Z; Z°*, Z°%)
unless n =1 mod 4, and wj,wo are both nontrivial; in this case, we get:
L1(Z[Ds),w) = UNil1(Z;Z™,Z7) & Lo(Z).
For the values of L, (Z[Zs], w) see Wall [29, Chapter 13A].

There is another relation between the unitary nilpotent groups and L—groups
which will be crucial to our computations. Let R[t*] denote the polynomial
ring R[t] with + involution > r;it' — > 7;t' or the — involution Y rit®
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S (—1)75tt. Let eo: R[t] — R be the map of rings given by eo(f(t)) = £(0);
it is a split surjection with the splitting so: R — R[t] given by constant poly-
nomials. Define

N*L,(R) = ker(ep: Ln(R[tT]) = L,(R)).
Then L,(R[t*]) = L,(R) ® N*L,(R). Note that L,(Z) = Z,0,Z3,0 for n =
0,1,2,3 (mod 4) so our computation of N*L,(Z) given below also computes
L (Z[t7)).
Theorem 1.1 (Connolly—Ranicki) There is an isomorphism, natural in R,
r: UNil,(R; R, R) — NTL,(R).
Connolly-Ranicki [11, Theorem A] prove this in the + case; we remark here that

their formula [11, Definition 2.13] for r and their proof that r is an isomorphism
apply equally well in the — case. Note that this implies a 2—fold periodicity

N~L,(R) = UNil,(R; R~,R) = UNil,42(R; R, R™) = N~ L, 2(R).

These N L-groups are analogous to Bass’ nilpotent K-groups NK;(R) =
ker(e: K;(R[t] — K;(R)) occurring in the fundamental theorem of algebraic
K —theory [2].

The following theorem, which is an easy consequence of Theorem 4.6, provides
the calculation of N¥ Loy (7).

Theorem 1.2 There are isomorphisms of abelian groups:

1
2
3
4

E0x: (Z[t]) =, Lo(Z). Thus NLo(Z) = 0.
P 420/ {p? — p: p € tZaft]} =5 NLo(2).
L L[]/ {p? — p i p € PLlt?]} = N~ Ly(Z).

~

(
(
(
( L {p? — p i p € PLof?]} S N Lo(Z).

)
) P
) P Z[t]
) @

The maps P2Z 1] and QOZ[)H are defined in Section 4. The inverse maps in
(2), (3), and (4) are all essentially given by the Arf invariant of the function
field Zs(t). Also in Section 4, we compute Lo(Za[t]) = Lo(Z2[t]) and show it is
isomorphic to La(Z]t]).

But why do these polynomials p(t) appear in the computation of the L—groups?
None of the groups above are Z[t]-modules, but the above isomorphisms seem
to be more than isomorphisms of abelian groups. We explain that now.
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1048 Francis X Connolly and James F Davis

For each integer ¢ > 0, and each ring R, we have a ring endomorphism:
Vi: R[t] — R][t] Vi(p(t)) = p(t).
Note g o V; = gg. The resulting monoid of endomorphisms of L, (Z[t]),
M={Vi,W,V5,... 1 ViV =V

therefore makes L, (Z[t]) and NL,(Z) modules over the Verschiebung Algebra,

YV =7Z[M],
a polynomial ring on {V}, : p is a prime}: V = Z[V5, V3, V5,...] . The subalge-
bra indexed by the odd primes, V,q := Z[V3, V5, V7, Vi1,...] acts similarly on

N~L,(Z). (Note that for i > 0 even, V;: Z[t™] — Z[t™] is not a map of rings
with involution.) The map in Theorem 1.2(2) is a map of V-modules and the
maps in Theorem 1.2(3) and 1.2(4) are maps of V,q—modules. We have the
following reformulation of Theorem 1.2:

Theorem 1.3

NLgy(Zs) & NLy(Z) = V/(2, Vs — 1)
NTLy(Z) = N7 Lo(Z) = Voa/(2)
NLo(Z) =0

To attack the odd-dimensional L— and UNil-groups, we use the classical tech-
nique of quadratic linking forms. Given a ring with involution R and a central
multiplicative subset S = S of non-zero divisors, one can define Loy (R, S)
to be the Witt group of (—1)¥-quadratic linking forms on finitely generated
S—torsion R—modules of length one (see [21]). Furthermore, one can identify
Lo (R,S) with the relative L—group Loy(R — S™'R). There is an analogous
theory for Log.1.

For a ring with involution R where 2 is not a divisor of zero, define (2) = {2¢ :
i>0} C R and

N*EL,(R, (2)) = kereg: Ln(R[tY]), (2)) — Ln(R, (2)).

Proposition 1.4 For any Dedekind domain with involution R where 2 is not
a divisor of zero,

N*L,(R,(2)) = N*L,_1(R).
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Proof By comparing the long exact sequence of the ring map
R[] — R[1/2][*]
with that of R — R[1/2], one obtains a localization exact sequence
— N*L,(R[1/2]) = N*L,(R,(2)) = N*L, 1(R) — N*L,_1(R[1/2])---

Since 2 is a unit, N*Ly(R[1/2]) = N*L*(R[1/2]). Connolly-Ranicki show that
for a Dedekind domain A with involution, N¥*L¥(A) = 0 (see [11, Proposition
2.11, Proposition 2.19, and the discussion after Proposition 2.19]). O

These Witt groups of quadratic linking forms are the main object of study in
our paper. They occur so often that introduce new notation for them.

L(Z[t*],(2)) = Lo(Z[t*], (2))
L(Z[tF), (2)) = NFLo(Z, (2))
L(Z,(2)) = Lo(Z, (2)) = Z2 & Zs (see [24, Theorem 5.2.2])

We also use the notation L£(Z[tT],2") to denote the Witt group of quadratic
linking forms on length one Z[t]-modules of exponent 2" (see Section 2.) To
study these groups we use the method of characteristic elements.

A key technical result for us in the following devissage result (see Section 5).
Theorem 1.5 L(Z[t¥],2) = L(Z[tF], (2)).

We next present some examples of quadratic linking forms on Z[t]-modules
with exponent 2.

Definition 1.6 For polynomials p, g € Z[t], define the quadratic linking form

e (D)

By this notation we mean that if {e1,es} is the standard basis of Zs[t]? over

Zst], then the 2 x 2 matrix is (b(e;,e;)) and the column vector is (g(e;)). If
p(0) € 4Z, or g(0) € 2Z, then [N, 4] is an element of L£(Z[t],(2)).

We wish compute these Witt groups as modules over the Verschiebung Algebra.
To this end, note tZs[t] is a V-module in the obvious way: V,(p(t)) = p(t").
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But, as a less obvious module, [tZs[t]] shall denote the abelian group tZslt],
equipped with the following V-module structure:

Vang1(p(t) = p(t*"*1); (2)
Van(p(t)) = 0,
for all n >0, and all p € tZs[t].

We are now is a position to state our main theorem. (See Section 6 for the
proof.)

Theorem 1.7 (1) There is an isomorphism of V-modules,

. - tZ4]t]
R N O VAN YT

given by ji[tp] = [Nip1] and ja[tp] = [N1tp] — [Nip).
(2) There is an isomorphism of V,q—modules,

g PLolt?) — LIZ[T), 20 5(E2p(t) = Wizpuey -

® [1Z:[1] — L(Z[1], (2))

Corollary 1.8
LEZ, )= PV b LEE](2) = @Vod "G

where b_1 = [Ny 1] and by = [N| k] =[N, r_y] forall k >0, and ¢; = N,

: t, 12,1
for all 5 > 1. The annihilator ideals of these elements are:

Ann(b_y1) = (4,2V5 — 2); Ann(by) = (2, Va) for k > 0; Anny,,(cj) = (2).

Proof Note that tZ[t] is a free rank one V—module. In (2‘/#)[?24[7?} ,a V-

generator is ¢, with annihilator ideal (4,2V5 —2). Also [tZs[t]] is a free module
over V/(2,Va), with basis {t2° : k = 0,1,2,...}. Finally the set {t? : j =
1,2,3,... }isa Voq/2V,q basis for t2Z[t?]. The result now follows from Theorem
1.7. D

As a consequence of our computation we have the following corollary (cf [22]).
Corollary 1.9 There is an element o € UNil3(Z;7Z,7Z) of order 4.

We give a separate, elementary proof of this using Gauss sums in Section 3.

The heart of our paper is the following set of calculations which we summarize
as follows:
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Theorem 1.10
UNily(Z;Z~,Z) = UNil9(Z; 2™, Z) = Voq/(2) (Theorem 4.6)

UNily (2;Z",Z) = UNil 3(Z; 27, Z) 2 @) Voa/(2) ~ (Corollary 1.8)
=1

UNilo(Z; Z,Z) =0  (Theorem 4.6)
UNily(Z; Z,Z) =0  (Proposition 6.3)
UNily(Z; Z,Z) = V/(2,Voa —1)  (Theorem 4.6)

UNil(Z; Z,Z) = V/(4,2V, —2) © P V/(2,Va)  (Corollary 1.8)
=0

Finally, let Z[t,t~!]* be the Laurent polynomial ring Z[t,t+~!] with the invo-
lution ¢ — +t. The following formulas and the results of this paper compute
LH(Z[t7 t_l]i) :

Lo(Z[t,t7Y]) = L, (Z)* ® NL,(Z)?
L (212, til]i) = Ln(Z) ® Lpt2(Z) & NﬁLn(Z)Q

The first formula is proved by Ranicki in [19] in the oriented case, and the
second can be proven with similar techniques.

2 Definitions

Here we present a unified framework including both the Witt group of quadratic
linking forms over a ring R, and the surgery obstruction groups Lo (R).

Let R be a ring. An R-module M has length one if there is a short exact
sequence 0 — Fy — Fy — M — 0, where Fy and F; are finitely generated
free R—modules. A submodule L of a length one module M has colength one
if M/L has length one. This implies L has length one.

A ring with involution is a ring R with a function —: R — R satisfying 1 =1,
r=r,7r+s=r+s,and 78 =57 for all r,s € R. An R-bimodule with
involution is an R—bimodule A with Z-automorphism —: A — A of order 2
satisfying ras =sa 7 forall ;s € R, a € A.

Let (R, A) be a ring R with involution, together with some R-bimodule with
involution. If M is a left R—module, then M”" := Homp (M, A) is also a left
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R-module if we set (re)(m) = p(m)r. A symmetric form over (R,A) is an
R-module M and a function A: M x M — A satisfying:

Az, y) = My, @)
Mz,y+9) = Mz,y) + Az, y)
Az, ry) = rA(z,y)
forall r € R, x,y,y € M. If the R—map
AdX: M — M”" = Hompg(M, A) x— (y— Nz,y))

is an isomorphism, then (M, \) is nonsingular.
A (nonsingular) quadratic form over (R, A) is a (nonsingular) symmetric form
(M, ) over (R,A) and a function pu: M — A/{a —a:a € A} so that

Az, ) = {1+ *}p(z)

A, y)] = plz +y) — p(@) — ply)
w(rz) = ru(@)r

forall r € R, z,y € M. Here [|: A — A/{a—a:a € A},a > [a] is the
quotient map and {1+ x}: A/{a —@:a € A} — A is given by [a] — a +@.

A skew-quadratic (or (—1)—quadratic) form over (R, A) is a quadratic form over
(R,A™). Here A~ is the bimodule A, but with the involution: a +— —a.

Definition 2.1 Suppose R is a ring with involution, A is an R—bimodule with
involution, and M is a class of left R—modules. We assume (R, A, M) satisfies
the following properties:

(1) If M € M, then M" € M, and the double duality map M Lop s
an isomorphism.

(2) The direct sum of two modules in M is in M. {0} is in M.
(3) If 0 — My — My — M3 — 0 is exact and My, M3 are in M, then M is

also in M, and 0 — M% — M4§ — M{* — 0 is also exact.

A (R, A,M)—form is a nonsingular quadratic form m = (M, A, u) over (R, A),
such that M € M.

Next we give the examples we care about. It is clear that the first example
below satisfies the conditions of 2.1. Proposition A.1 proves that the second
example also satisfies the conditions.

e (R,R,F). Here R is a ring with involution; A = R; F is the class of all
finitely generated stably free R—modules. We will also use (R, R™,F).
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e (R,QR/R,Msn). Here R is a ring with involution which is torsion free
as an abelian group and A = QR/R, where QR denotes the localization
of R obtained by inverting the positive integers in R; Mon is the class
of all length one R—modules M for which 2"M = 0.

We will also use (R,QR/R,M(2)), where M(2) := U,>0 Man.

A subLagrangian for a (R, A,M)—form m = (M, \, ) is a submodule L C M
such that M/L € M, u(L) =0, and L C L+, where

Lt :={zxeM: Nz L)=0}.
If L =L+, wesay L is a Lagrangian for m, and that m admits a Lagrangian.
Define an equivalence relation on the collection of (R, A, M)—forms by:
m~m' if modme=m dmy

~

where mo and m(, are (R, A, M)—forms which admit Lagrangians. (Here &
means “is isometric to”.)

Definition 2.2 The quadratic Witt group QW (R, A,M) is the abelian group
of equivalence classes of (R, A, M)—forms. Addition is orthogonal direct sum.

The negative of [M,\, p] is [M,—\, —pu], since their sum admits the diagonal
Lagrangian {(z,z): 2 € M}.

The SubLagrangian Construction Given a (R, A,M)-form m = (M, \, 1)
and a subLagrangian S for m, we define an induced quadratic form

ms = (81/S,bs,pus): bs([a] [y]) = b(z.y):  ns((e]) = p(x).
Lemma A.2 shows that mg is again a (R, A,M)—form and [m| = [mg| €
QW (R, A,M).

The Wall surgery obstruction groups of R (in even dimensions) are:
Lo(R) = QW(R,R,F)  Ly(R) = QW(R,R",F),
where F is the class of finitely generated, stably free R—modules.

We are going to define the Witt groups of quadratic linking forms L(R,2™) and
L(R,(2)), so that,

L(R,(2)) = QW(R,QR/R,M(2))

But for historical reasons (see for example [28]), we will first change coordinates,
and do all of our work in the classical regime of quadratic linking forms.
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Definition 2.3 Assume R is a ring with involution which is torsion free as an
abelian group.

A quadratic linking form over R is a triple (M,b,q) such that M € Man for
some n, (M,b) is a nonsingular symmetric form over (R, QR/R), and ¢q: M —
QR/(1 + *)R is a function satisfying:
[g(z)] = b(z,z) € QR/R,
gz +y) —q(x) —q(y) = {1+ #}b(z,y) € QR/(1 + %) R,
q(rz) = rq(z)r.

Here
QR/R_ (1+#)QR

(1-%)QR/R (1+ )R
is the isomorphism: [z] — (z +Z) mod (1 + %)R.

{1+ *}:

Note 2"+!g(x) = 0, whenever 2°b(z,z) = 0. Also g(M) C (22

In other words, a quadratic linking form (M,b,q) is any triple which can be
written in the form (M,b,{1 + *}u), where (M,b, ) is a (R,QR/R,M(2))—

form.

Let A(R,2") denote the set of isometry classes of quadratic linking forms with
exponent 2". The rule

(M, X, ) = (M, A {1+ 1 p) 3)

gives a one to one correspondence between the set of isometry classes of
(R,QR/R,Mgn)—forms and A(R,2").

A Lagrangian for a quadratic linking form (M,b,{1 + x}u) is defined to be a
Lagrangian for the (R,QR/R,M(2))—form (M,b,pu).

Two elements m, m’ € A(R,2") are equivalent if m @& my = m’ @ my, where myg
and my, are elements of A(R,2") which admit Lagrangians.

Set: L(R,2") = A(R,2")/ ~,
an abelian group under orthogonal direct sum. (3) induces an isomorphism

Similarly, the above equivalence relation on each of the A(R,2")’s defines an
equivalence relation on their union,

A(R, (2)) = UpZ AR, 27),
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and the abelian group of equivalence classes,
L(R,(2)) == A(R,(2))/ ~
is canonically isomorphic to QW (R,QR/R,M(2)) by the rule (3).

One could define a corresponding group of skew-quadratic linking forms, but
we do not do so here, because we show in Proposition 6.3 that when R = Z,
any such form admits a Lagrangian.

3 The proof of Corollary 1.9

In this section we give a short proof, independent of the rest of this paper, of
the fact that £(Z[t],2) = UNils(Z;Z,Z) = L3(Z[t]) has an element of order 4.
We first review the isomorphism [24, 5.2.2].

Rk @ GS: L(Z,(2)) = 7o @ Zs.
The rank homomorphism is

0 if |[M|=2%

Rk[M7 ba Q] = {1 if |M| — 22k+1'

The Gauss sum homomorphism is
GS[M, b, q] = [k] € Zs
where

1 . .
emq(ac) _ 627rzk:'
i 2

‘ zeM
Now let a = |Zs[t]? /2 0 1/2 € L(Z][t],(2)). Note that go(«)
o o12)\e—1)2 ’
has the diagonal Lagrangian L = {(0,0), (1,1)}, so a € L(Z[t], (2)). Consider
now the ring map

er: Z[t] = Z, f(t)— f(1).
Then:  (Rk® GS)ei(a) =082 € Zy @ Zs,

so « € L(Z[t], (2)) is an element of order at least 4. One can show 4 = 0 by
quoting Farrell’s Exponent Four Theorem [12] or by showing directly that 4«
has a Lagrangian.
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4 Computation of UNily,(Z;Z,7Z), UNily,(Z;Z~,7Z), and
L(Z[t7],2)

According to Theorem 1.1,
Ln(Z[tY]) = Lo(Z) ® N*L,(Z) = L,(Z) ® UNil,(Z; Z*, 7).

In this section we compute Lo, (Z[t*]), and therefore UNily,(Z;Z*, 7). We
also compute the group £%V(Z[t*],2) of quadratic linking forms of exponent 2
with even type, as defined below.

Throughout this section, R denotes a ring with involution.
Definition 4.1 Fix an integer n > 0. Assume R is torsion free as an abelian
group. Let A®V(R,2") be the collection of all quadratic linking forms m =

(M, b, q) for which 2" M =0 and 2"¢(z) =0 for all x € M. Quadratic linking
forms in A®V(R,2") are called forms of exponent 2" with even type.

We define an equivalence relation on A®V(R,2™) by:
m~m' & modmy=m omy

for some mg, mf in A®V(R,2") admitting Lagrangians. The abelian group of
equivalence classes of forms of exponent 2" with even type is:

LY(R,2™) = AY(R,2")) ~
Forgetful maps define homomorphisms,
L(R, 271 I22L £ov(R, 2™) 5 £(R,27) ™ L(R, (2)).
The map ¢y, © jp—1 is mentioned in Theorem 5.1 below.
There is a natural map
ax: Lo(R/2R) — LT (R, 2), [M, A\, 1] — [M,aco X, 3o p

where
R/2R % QR/R, [z] — [z/2]
R/2R

8 _
(A= (R2R) QR/(1+#)R, [yl [(y +7)/2].

Proposition 4.2 «a.: Lo(Zs]t]) — LV (Z][t],2) is an isomorphism.

Proof 7Zs[t] % »(Q[t]/Z[t]) and Zs[t] LN 2(Qlt]/2Z[t]) = Zo[t] are isomor-
phisms. Here 94 = {a € A:2a = 0} for an abelian group A. D
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We view "
~ {reR:T=(-1)""'x}
H,(Zs: R) = ~ .
A P S ET )
as a R/2R-module by the rule [a] o [z] := [aza].

We will need the following three classes of quadratic forms. For each p,g €
H,,(Z2; R) (or even p,g € R representing classes in Hy(Zs; R)), define [P, 4] €
Loy, (R) by the nonsingular (—1)"—quadratic form:

(e §).0)

The notational conventions here are similar to those described after Definition
1.6. The symmetric form A is determined by the matrix (A(e;,e;)) and the
quadratic refinement p is specified by the vector (u(e;)).

Next assume p,g € R are in ker(1 —*). Assume R is torsion free as an abelian
group. Define [P, 4] € L(R,2) and [N, 4] € L(R,2) by the quadratic linking

forms:
Ppg = ((3/23)2, (192 162) | @)
Npg = <(R/2R)27 (ffi 162) ’ @2))

Note that N, g = Pp 4 and that [P, 4] maps to [Py 4] under the composite
Lo(R) — La(R/2R) = Lo(R/2R) % L(R, 2).

Lemma 4.3 (Formal Properties of P, 4, Pp 4, and N, )

Pog=Pypi Ppg=TPyp (= means “is isometric to”).

[Porg ® Progl = [Por+pa,gli Worg ® Nps gl = Wopi4pa,g]-

2Npgl = [Pogli  2[Ppgl =0; 2[B,4] =0.

[Pogpgl = [Ppgls  [Pogp.gl = [Pp.gl-

WNape, o] = [Np, wgali  [Papa, gl = [Fp,aga]  for z € R.

[Pyl = [Ppg.1), if R=17Zs[t], or if R =Z[t] or Z[t~] and n is odd.
Vie(Wogl) = Ny o)) in L(R[EF], 2).

[Np,ngh] - [Np,g] - [Np,h] = [ppgﬁ,h]-
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Proof (1) Replace the standard basis {ej,ea} by {ea,(—1)"e1}.

(2) Let {e1,e2},{es,es} be the standard bases for P, 4, and P,, ,. A subLa-
grangian for m = P, 4 ® P,, 4 is S = (e2 +e4). Then {[e; + e3], [e2]} is a basis
for S+/S. The subLagrangian construction satisfies mg = Py +p,, ¢4 proving
the result. The proof for Ny, 4 & N, 4 is the same.

(3) is immediate from (2) and the definitions, since 2[p/2] = [p] in Hi(Z2; R).
(4) By (2) and (3) it suffices to note that (e;+pez) is a Lagrangian for Ppgpip.g-

(5) A Lagrangian for Nzpz g ® N_p oz is (e1 + Tes, xez + e4). The proof of
the second part is similar.

(6) We first consider the cases of R = Z[t] with n odd and R = Zs[t]. By
(1) and (2), it is suffices to consider the cases p = t¥, g = t!, for some k,I > 0.
From (5) above, [P y+2m] = [P+2m 4], so we may assume [ is 0 or 1. The
case | = 0 is immediate, so we assume [ = 1 and proceed by induction on k.
If k is even, the result follows from (5) and (1). If & = 2¢ — 1 is odd, then
[Ppi-14] = [Pi-1,] = [Py 1] = [Ppi4]; the first equality comes from replacing
the standard basis {e1,ea} by {e1 +t"les, es}, the second equality from the
induction hypothesis, and the third from (4).

The proof in the case R = Z[t”] and n odd is similar; it involves replacing ¢
by t? everywhere in the above paragraph.

(7) This is immediate from the definitions.

(8) Let m = Npgin ®N_p g @ N_p . A subLagrangian for m is S = (e; +
es,e2 + e4 + €g). An arbitrary element Z?:l aje; € (R/2R)5 is in St if and
only if: aip +as +asp+ ay = 0 = ay + az + as. Therefore, z € S+ if
and only if x = aj(e; + e3) + az(ea + e4) + as(es + pes + e5) + ageg. Hence
S+/S = (le3 + pes + es],[es]). Thus [m] = [mg] = [(Ppgp,h) - O
Definition 4.4 Let R be a ring with involution. Define maps

(1) Py=Pf: H\(Zy;R) = La(R),  [p] = [Ppal,

(2) Qo=qQp" " PH\(Zo; RItT)) = NLG(R),  [£%p] = [Pop)-
Note that eo«[Pip:] = [Poo] = 0, so Qo takes its values in N™Ly(R) C
Lo(R[t™]). Both P» and @y are homomorphisms by Lemma 4.3(2).

Lemma 4.5 Let R be a commutative ring with trivial involution.

(1) If p € R[t¥] satisties p = p, then PR ([p?2] — [p]) = 0.
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(2) If p € R[t™] satisfies p = p, then QI ([(t2p)?] — [2p]) = 0.

(3) PQRM is a map of V-modules. PQR[F] and QOR[F} are maps of V,q—
modules. (The Verschiebung algebras V and V,q were defined in the
introduction.)

Proof Parts (1) and (2) follow from Lemma 4.3(4). The assertions concerning
P, in Part (3) are clear. Finally, note

V2k+1Q0[t2p(t2)] = [Pt2k+1p(t4k+2)7t2k+1]
= [Pt4k+1p(t4k+2)7t] by Lemma 4.3(5)

= QoVar+1[t*p(t?))]. O

We now specialize to R = Z and Zy. We will abuse notation (somewhat) in
the statement of the theorem below by maintaining the names P, and ) for
a factorization through a quotient.

Theorem 4.6 (1) eo.: Lo(Z[t]) =N Ly(Z).
@) P H\(Zy: R[Y])/(Va — 1)Hy(Za; R[t]) = La(R[Y]), if R=17 or Zs.

@) PV B (Zo ZI ) A0 —p o p € Bi(Zo; Z[E7))} 2 Lo(Z[E7)).
@) QM) 2H,(Zo; Zt ) {p? — p : p € 2H1(Zo; ZItT))} > N~ La(Z[t7)).

The isomorphism in (1) is of abelian groups, in (2) of V-modules, and in (3)
and (4) of Voq—modules.

To prove this, we will need the following lemma, which is similar to [23, Propo-
sition 41.3(v)] and [11, Proposition 2.11(ii)].

Lemma 4.7 Let R be a principal ideal domain with involution. Any & €
ker(gox: Lon(R[tT]) — Lan(R)) can be represented by a (—1)" —quadratic form
(M[t], \, p) for which there is a free R-summand L C M, such that L[t] = L[t]*
(a “symmetric Lagrangian”).

Proof By Higman Linearization ([10, Lemma 3.6ab], also [21, Proposition
5.1.3]), extended to the case t — —t, one can represent & by a form (M][t], A, u)
= (MJt], \o + tA1,po + tp1). Here M is a finitely generated free R-module;
M[t] = R[t|®r M ; and \o(z,y), M1 (z,y) are R—valued. A similar interpretation
holds for pg + tuy .
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It follows that (M, Ao, o) is a (—1)"—quadratic form and (M, A1, p1) is an
g(—1)"—quadratic form where ¢ + et. Since A9 and Ao + tA\; are nonsingular,
the R-map v = (Ad)\g) ' o Ad)\;: M — M is nilpotent and satisfies:

AM(z,y) = Ao(ve,y) = eXo(z,vy), forall z,y € M.

Choose k > 0 so that v*T1 =0, but v* # 0. First assume v > 0. Let
V(M) = {x € M : ax € v*(M) for some a € R — 0}.

This is a summand of M. Pick a basis element e; € v¥M. Then v(e;) = 0,
and )\0(61, 61) =0.

Set m = (M, \y), S; = Rej. Then S; is a subLagrangian for m and v induces
a nilpotent map vg, : Si/S1 — Si-/S1. Repeat this step on the subLagrangian
construction mg, = (S{/S1,(\o)s, ), getting ea, etc., until one obtains a basis
{e1,€9,...,en} for a summand S of M satisfying:

Scst, wvshcs.

The Witt class of mg = (S*/S, (A\o)s) is zero because & € ker(go«). So by
adding a hyperbolic form, if necessary, to the original (M[t],\, ), we may
as well assume mg is hyperbolic. We can therefore find additional elements,
emits- - e € ST, whose images in S /S form a basis for a Lagrangian of
mg. It follows that L =< eq,...,e; > is a summand of M satisfying:

Lt = L (relative to \g); v(L) C L.
Therefore L[t] = L[t]* (relative to \). D

Proof of Theorem 4.6 Let R = Z or Zs. Let n = 0 or 1. Let £ €
N*Lon(R) = ker(epe: Lon(R[tT] — Lan(R)). By Lemma 4.7, we may write
& = [M]t], A\, u], where M is a free R—module containing a free summand L for

which L[t] = L[t]*. Since X is an even form, any R-basis {ej,..., ey} for L
extends to an R[t|-symplectic basis {e1,...,ex, f1,..., fr} for (M][t],\). So
k
§=_ [Pp.q] where p; = p(e;), ¢i = p(f:)-
i=1

We use this expression for ¢ repeatedly below.

+ —

Our first step is to show that the maps P2R 1 and QOZ[t I of Theorem 4.6 are
+ +

surjective. We start with P2R ] Note that P2R i ][1] = [P1,1] generates the

image of Lo(R), so we just need to show that every & € N*¥Ly(R) is in the
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image of P,. By the first paragraph of this proof and parts (6) and (2) of
Lemma 4.3,

e

k
£= Z pisai] Z Pigi,1 sz%
=1

=1

To see QOZ[)F] is surjective, consider € = S°F | [P, ..] € N™Lo(Z) as before.
Note p;, ¢; € Ho(Zo; Z[t™]) = tZs[t?]. Therefore, write p; = r;t7; (mod 2Z[t™))
and ¢; = s;t5; (mod 2Z[t~]) where r;,s; € Z[t™]. Then, with the help of
Lemma 4.3(5), one sees

k k

k
Z[t— _ _
§= Z i) = D [ Pritmsits) = Y [Poyratrisit) = o ](Z Sirit'Tisi).
=1

1=1 1=1 i=1

Now we need to prove injectivity of the four maps. We start with gg.. By
the first paragraph of the proof, every £ € ker(ep.: Lo(Z[t] — Lo(Z)) can be
represented by a quadratic form (M[t], A, ) where M[t] has a free summand
L[t] so that for all x € L[t], one has A(z,z) = 0. But 2u(x) = Xz, z) € Z]t],
so pulpg = 0. Thus L[t] is a Lagrangian and so £ = 0. Hence eo. is injective.

For a field F' of characteristic 2, there is a well-defined epimorphism called the
Arf invariant (see [1], [24])

Arf: Loy(F) — F/{z? +x:2 € F}, [M,\ pu]— Z:,ueZ

where {ej,...e, f1,... fr} is a symplectic basis for (M, )\). Applying this to
the function field Zo(t) and then restricting to the subring Zs[t], one obtains
an epimorphism

arf: Lon(Zslt]) — Zo[t]/{x? +x : x € Zot]}.
(Note, there is a subtle point here — one needs that Zs[t]/{x? +z : z € Zs[t]} —

Zo(t)/{x* + x : © € Zsy(t)} is injective. This can be shown using the fact that
Zs|t] is a PID and hence integrally closed.)

We now return to the proof of injectivity of P2R 1 where R = Z or Zs. Let
r: La(R[t]) — La(Z2[t]) be mod 2 reduction or the identity map. Then P2R [
R[t]

is injective since arfo ro P, is the identity map.

To show that P2Z 7 4 injective we consider mod 2 reduction r: Lo(Z[t™]) —
Ly(Z2[t]). We will show

arforo PQZW]  Zo[t]){x? — x: x € Za[t?]} — Zao[t?]/{a? — x: 2 € Zolt]}
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is injective. Suppose (arfo r o PQZ[t_])[p] = [p] = 0 for some p € Zy[t?]. This
last equality means p = 2 — x for some = € Zy[t?]. Since 2% and 2% — z are
both in Zs[t?], we see & € Zs[t?] and thus [p] = 0 € Zs[t?]/{x? —z : x € Zs[t?]}.

Hence P2Z 1 s injective.

To show that Q%[r] is injective we consider mod 2 reduction r: Lo(Z[t™]) —
Ly(Z2[t]). We will show

arfo ro Q) 27,2 /{2 — v @ € £2Zo[12]} — Zo[t]/{a? — 7 1 € Zoft]}

is injective. Suppose (arf o TOQ%[t_})[tQP] = [t?p] = 0 for some p € Zy[t?]. This
last equality means t?p = 22 — x for some x € Zs[t?]. Since 22 and 22 — x are
both in Zs[t?], we see x € Zs[t?]. Set x = c+y where ¢ € Zy and y € t?Zs[t?].
Clearly 32> —y = (22 —2) + (¢ —¢) = 22 — x = t?p. Thus [t?p] = 0 in the
]

. Z] .
domain. Hence QO[ is injective. O

We can now calculate £ (Z[t*],2).

Theorem 4.8 (1) There is an isomorphism of V-modules,

tZs]t] r

(‘/2 B 1)tZ2[t] [’eV(Z[t]?2);

= . (s ) ()

V(2. Vy — 1) =

@  E@ir]2) -o.
Proof (1) By Proposition 4.2, a.: Lo(Zo[t]) — L¥(Z[t],2) is an isomor-
phism. Then (ay)~! o P is the isomorphism of Theorem 4.6(2).

(2) Let m = (M,b,q) be a quadratic linking form of exponent 2 with even
type over Z[t~]. Then M admits a symplectic basis over Zs[t]. This means m
is an orthogonal sum of terms of the form P, , , where p,g € Z[t?]. By parts
(2) and (4) of Lemma 4.3, [m] is a sum of terms of the form [Pun+2 4].

But [Pun+2;] = 0 in L(Z[t7],2), because (e + t2"+1f) is a Lagrangian for
Phrant2 1. To see this, we compute:

Q(el +t2n+162) — t4n+2 +t4n+2 + {1 4 *}(t2n+1/2) — {1 + *}(t2n+1/2) =0.
This proves £ (Z[t™],2) = 0. D
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5 Characteristic elements and the proof of Theorem
1.5

In this section we write R for Z[t], Z[t™], or Z. For any R-module M and
any k € N we write
M ={x e M : kx =0}

Let N be a submodule of a length one R—module M of exponent 2", for some
n. The closure of N in M is:

N ={x € M :pzx e N for some p € R~ 2R}.
By Corollary A.5 of the Appendix, N is the unique smallest colength one
submodule of M which contains N. We will use this concept below.

The goal of this section is to prove:

Theorem 5.1 Let R = Z[t*] or Z. There is a short exact sequence:
0= L(R,2) — L(R,(2)) 2 Zy — 0

Moreover, L(R,2") — L(R,2""!) is an isomorphism if n > 2.
We will then prove Theorem 1.5 as a corollary of Theorem 5.1.

Construction of Characteristic Elements v,,vy; Fix an integer n > 1

and a quadratic linking form m = (M, b, q) for which 2"M = 0. We construct

elements v(()n) (m),vyl) (m) € oM. They depend on M, b, and n.

Recall that Hi(Zy; R) is an R/2R-module via [a] o [z] = [aza]. Consider the
R-linear map

b1 M — Hi(Zx;R),  olx) = {1+ %}2" 'b(z,2) = 2q(x) € Fy(Zo: R).

Here {1 +}: AR/R — Hy(Zs; R) is given by [z] v [z + Z] € H1(Zo; R). Tt is
bijective if R = Z][t] or Z.

The map ¢ measures the failure of m to be of even type.

As an R/2R-module, Hi(Zy; R) is free on the basis {[1],[t]} if R = Z[t] and
on the basis {[1]} if R =Z[t™] or Z. Therefore, if R = Z[t], there are R-maps
®0,01: M — R/2R, uniquely specified by the rule

¢(x) = go(x) o [1] + ¢u(x) o [t].
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If R=Z[t"] or Z, we get a single map ¢o: M — R/2R, uniquely specified by

¢(z) = ¢o(x) o [1].
We define ¢; to be 0 in these cases.

The map Adb: M — M” restricts to an isomorphism
~ 1
2M — Q(M/\) = HOIHR(M, iR/R)

We will change the target using the isomorphism {2}: 1R/R = R/2R sending
z+ R to 2x + 2R.

Therefore there are elements v; = vgn) (m) € 9M , defined by
v = (Adb) ' ({2} 0 4y).
In other words
{2}b(vi, z) = ¢i(x) for all x € M.

If R=Z[t"] or Z, then v; =0.

We conclude that vy, v1 € oM are characterized by the fact that for all z € M:
{2527 b, ) = ({2}b(v0,2))? + ({2}b(v1,2))% € Lalt], if R=Z[t),  (4)
(212" b(x, z) = ({2}b(vy, 2))* € Zo[t?], if R=Z[t7], (5)
{2}2" 1b(z, ) = ({2}b(vo, z))? = {2}b(vo, ) € Zy, if R=Z. (6)

Proposition 5.2 The construction above satisfies the following properties:

(1) If m=m' ®m” (orthogonal direct sum), then

vi(n) (m'em”) = o™ (m') & UZ(") (m").

(2) Suppose L C M and 2"~ 'b(x,z) =0, for all z € L. Then UZ(") (m) € L*.
(n)(m) € L, and q(v(n)(m)) =0 for

So if L is a Lagrangian for m, then v, ;

each 1.
(3) o™ (m) e 2r=tM, for i =0,1.

1

Proof (1) This is obvious from the definitions.

(2) This is clear from (4), (5), and (6), because ¢(L) = 0.

(3) In general, (2"M)!t = ,« M. This implies (o M)+ = (28M)H = (2kM),
by Proposition A.6 in the Appendix. So we must only show that v; € (gn-1 M)+,
for i = 0,1. But this is clear from (2) above, if we set L = gn-1 M. O
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There is one crucial case in which we can slightly strengthen Proposition 5.2(3),
which we describe now. A quadratic linking form (M, b, q) is irreducible if for
all z # 0 in M, we have ¢(x) # 0.

Lemma 5.3 Let m = (M,b,q) be an irreducible quadratic linking form over
R, with 4AM = 0. Then v\ (m) € 2M , for each i.

Proof We assume R = Z[t*]; in the R = Z case there is nothing to prove by
Proposition 5.2(3). For any p € Z[t] \ 2Z]t], let M(p) denote the Z[t]-module
generated by two elements ¢, 7, subject only to the two relations:

27 =0, 2¢ = pr.
Note that M (p) can also be viewed as the submodule ([p], [2]) of Z4[t]. Hence
by Corollary A.4 M(p) has length one.

Its dual, M (p)" = Hompg(M,QR/R), is generated by two homomorphisms ®, T
defined by:

Note M(p) = M(p)".

Since 4M = 0, multiplication by 2 gives a monomorphism x2: M/oM — oM
of finitely generated torsion-free modules over the principal ideal domain Zs[t].
By the structure theorem for such modules, we can find bases {71, 72,...,7}
for oM, and {[¢1],[d2],...,[¢k]} for M /oM over Zs[t], (where ¢; € M,i =
1,...,k), so that 2¢; = p;7; for some p; € Z[t] \ 2Z[t], whose class [p;] € Za|t]
divides [pijt+1], for 0 < i < k. Note that 0 < k <.

It follows that M = M(p1) © M(ps) @ ... M(py) ® N, where N = Zy[t]'=*
is the submodule with basis {7x41,...,71}. Therefore, M”" is spanned by
Dy,..., P, T1,..., T}, and N is spanned by Ty 1,...,T;.

Now rankzg[ﬂ(ffl(zg; R)) =1 or 2. Since m is irreducible,

4q: M/9M — Hy(Z2; R)

is an Zs[t]-linear monomorphism. So k <2 if R=Z[t]; k <1if R=Z[t7].
The rest of the proof breaks into cases depending on the value of k.

Case One Assume k = 0. By Proposition 5.2(3), vi@) (m) € 2M, but 2M =
2M since 2M = 0.

Case Two Assume k = 1. We have M = M (p1) & N. Because b is nonsin-
gular, (Adb)(¢1) = @1 (mod o(M")), noting that M/oM and M"/o(M") are
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both free and rank 1 over Zs[t] with bases ¢1 and ®;. Therefore, 2b(¢1, ¢1) =
BL. We have:
p1 = {2}2b(¢1, ¢1) = 4q($1) = q(p1m1) = (p1)*a(11) € Zo[t].

So p1g(t1) = 1 in Zy[t]. In particular, [p1] = 1 € Zs[t], and so 2M = 2M since
M = Z4[t] ® Zs[t)’. So again Proposition 5.2(3) proves the result.

Case Three Assume k= 2. Hence R=Z[t] and M = M(p1) & M(p2) & N.
Claim [p\] = [p2] € Zolt].

Proof of Claim Write [py] = [p17] where r € Z[t]. Then let A: 2M =2 2MA
be the restriction of the isomorphism Adb: M — M”". Let (: g) € GLy(Zolt])

be the matrix of A relative to the bases {71, 72} and {T},T5} for 2M and 2M"
respectively. We then have

%’Y = p1VTa(p2) = prA(11)(¢2) = p1b(T1, P2) = p1b(¢2, T1) =
b(2¢2, ¢1) = p2A(72)(¢1) = p1rfBTi(¢1) = %’fﬁ € %Z[t]/Z[t].

Therefore v = r3. The matrix ( TOZ% g ) is therefore nonsingular, o = 1 + 32,

and consequently § is relatively prime to [r].

On the other hand,

pird = a6 = pa{2)3 = {2}b(pams,b2) = 4a(6) = a(pams) = ir*a() € Zol].

Therefore 6 = pyrg(m2), and so [r] obviously divides ¢. This implies [r] =1 €
Zs|t], proving the claim. O

Returning to the proof of Case Three, we write M = M(p) & M(p) & N. Note
that 4q(¢;) = p?q(7;),i = 1,2. Therefore 4q(M) C p o Hi(Z2;Z[t]), and so
{2}b(vi, M) C pZs|t], which tells us v; € pM. But, by construction of M we

see pM N2M = 2M , so by Proposition 5.2(3) again, v; € 2M, for i = 0,1.
This completes the proof. O

Remark 5.4 A study of the above proof shows that M (p) has the following
two cool properties. Each length one Z[t]-module of exponent four is isomorphic
to a direct sum M (p1) @ ... M(py) ® Zs[t). If [p] # 0,1, then M(p) admits a
nonsingular bilinear linking form, but no quadratic linking form.
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Our proof of Theorem 5.1 is largely accomplished by the following definition
and the next two lemmas.

Definition 5.5 (of Q,Q\" : L(R,2") — H\(Zs; R))

Let m = (M,b,q) be a quadratic linking form over R with 2"M = 0. By
Proposition 5.2(3), the characteristic elements satisfy v; = UZ(") (m) € 27—\ .
Therefore if n # 1, b(v;,v;) = 0 for each i, so that q(v;) € H\(Zy; R). (Recall
H1(Zo; R) is Zs[t] or Zs[t?] or Zy.) We set

Q" (m) = q(vi) € H1<ZQ,R>, ifn > 1,
QM (m) = q(v) € {x €ER:z=2}/(1+%R, ifn=1.
Then an) is additive, and QZ(.n (m) =0 if m admits a Lagrangian, by Propo-
sition 5.2(2). So each QE") is a well-defined homomorphism on £(R,2").
Obviously, if R =7 or Z[t™], an) =0 for all n. We define
£5(R,2") = ker Q" Nnker Q™  L(R,2"). (7)

If m is a quadratic linking form of exponent 2" with even type, v(()n) (m) =

(n)

vy '(m) = 0. Hence
i (LY(R,2™)) C L5(R,2"). (8)
Lemma 5.6 (1) Foralln >3, L°(R,2")=L(R,2").
(2) Furthermore Q(12) = 0, and there Is a short exact sequence:

(2)
0 — L5(R,4) — L(R,4) 2 74 — 0.

(3) Finally, for each i, Q\"(L(R,2)) C Hy(Zs; R).
Proof (1) First suppose n > 3, and [m]| = [M,b,q] € L(R,2"). We show for
each i, that ¢(v (n)( )) = 0. This will prove £5(R,2") = L(R,2").

By Proposition 5.2(3), Z(n)( ) € 2n~IM. Therefore pv (m) € 2v M, for
some p € R such that [p] # 0 in R/2R. Therefore p q( (m)) € (2” 1M)
22n=2¢(M) = 0, because 2n — 2 > n + 1. This implies ¢(v, (n )(m))

(2) Next we prove Q1 =0 and im (QO ) C Zs.
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Let m = (M,b,q) be a quadratic linking form with 4M = 0. Let v; = vZ@) (m).
We must show that ¢(v1) =0, and g(vg) = 0 or 1. If we choose, we may replace
m by mg = (S*+/S,bs,qs), where S is any subLagrangian of m. Moreover,
S = (z) is a subLagrangian, for any z € M for which ¢(z) = 0, by Corollary
A5 of the Appendix. This means we may as well assume that m is irreducible.
Therefore, by Lemma 5.3, we may write vy = 2y, v = 2y1, for some yo,y1 -
Define bij = {Q}b(vi,yj) = bjl' € R/QR. Note

bii = {2}2b(yi, yi) = 4q(yi) = q(vs).
From (4) we see
bis = {2}2b(y, yi) = bp; + bit.

(When R = Z[t™] or Z, these equations simplify to: bgy = b3,, which immedi-
ately gives Q(()2) (m)=0 or 1, Q?) =0).
But, in the ring R/2R = Zs]t], the equations

boo = bjo + biot

by = b, + b3yt
have only two solutions: 0 = by; = big; bgp = 0 or 1. For no polynomial of

the form p? —p € Zs|[t] is an odd degree polynomial if deg(p) > 0. So Q(()2) (m) €
0,1}, QP (m) =0, and £5(R,4) = ker(QP) Nker(Q'?) = ker(Q(?).

To finish the proof of (2), we note that Q(()Q)([m]) = 1 when

M = Zy[t*], b(x,y) = Z—y, q(x) = % for all z,y € M.
In this case vy = 2. Consequently, Q(()2) (m) = ¢(2) = 1. This proves (2).
(3) This is similar to the argument for (2). Let [m] € L(R,2), and assume
e0«([m]) = 0. To show Q}(m) € H\(Zs; R), we only have to show 2q(v§1)(m)) =
0 for each i. Set v; = vgl)(m). This time set a;; = {1 + *}b(v;,v;), so that
2q(vi) = ai;. Again from (4), (5), (6) we get

app = a(2)0 + a%ot

ajlp = CL%O + a%lt.
This yields again that 2¢(vi) = a11 = 0,2¢q(v9) = apo = 0 or 1, and ajg =
b(vi,v2) = 0. But if 2¢(vg) were equal to 1, we would recall gp.([m]) = 0
in £(2,2), and conclude 1 = e(1) = eo(Q{" (Im]) = Q" (co:[m]) = QS (0),
which is impossible. This proves le)(Z(R, 2)) C Hy(Zy; R). O
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Lemma 5.7 (1) For n >1, £L%(R,2") % L5(R,2") is an isomorphism.

(2) Forn>2, L(R,2"1 ELN LY(R,2™) is an isomorphism.

Proof Throughout this proof we use without comment Corollary A.5 which
states that a submodule N of a length one module M has colength one if and
only if N = N. For example, a subLagrangian S satisfies S = S.

(1) We construct an inverse G,,: L5(R,2") — L% (R,2") to ¢y, for each n > 1.
Let [m] = [M,b,q] € L5(R,2™). Set v; = vgn)(m). By definition of £f(R,2")
and by Proposition 5.2(3),

T(m) = (vo, v1)

is a subLagrangian. (If n = 1 and R = Z[t], we must also use the conclusion
b(v1,v9) = 0 from the proof of Lemma 5.6). By the definition of v;, we see
27q(x) = 0 for all z € T(m)*, and so M) is of exponent 2" with even type.
We define
g(m) = [mpun] € LT(R,27).

Note g(m @& m') = g(m) + g(m’). Moreover if m = (M, b, q) has a Lagrangian
L, then by Proposition 5.2(2), T'(m) C L, and so L/T(m) is a Lagrangian for
mp@n). Therefore g(m) = 0. Therefore g induces a well defined homomor-
phism,

Gn: L5(R,2") — LV(R,2"), Gn([m]) = [mpm)]-
Since m and mp(,,) share the same Witt class in £°(R,2"), t,G,, = Id. When
[m] € LY(R,2"), note T'(m) = 0, m = mp(y), and so Gut, = Id. Therefore
G, is the inverse of ¢y, .

(2) Suppose n > 2. We construct an inverse F,: £%V(R,2") — L(R,2" 1) to
Jn—1. Let m = (M,b,q) € A*(R,2"). Then

S(m) = 27101

is a subLagrangian. Its subLagrangian construction mg,,) has exponent on—1
because 2" ~1(S(m)*t) c 2"~ M C S(m). We therefore define a homomorphism

frA™(R,2Y) — L(R,2"7Y); f(m) = [mggm)].

Claim A Let S be any subLagrangian of m € A®(R,2") such that
gt ¢ S c S(m). (9)
Then f(m) = [mg]. (The first inclusion ensures that mg € A(R,2"71)).
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Proof of Claim A A Lagrangian for
(S+/8,bs,qs) ® (S(m)™=/S(m), =bs(m), —qs(m))

is

A={z]®[z]:zeS(m)*}.
The second inclusion of (9) ensures that A C S+/S@S(m)*/S(m). This proves
Claim A. O

Claim B If m € A®V(R,2") and m has a Lagrangian, then f(m) =0.

Proof of Claim B Suppose m = (M,b,q) is a quadratic linking form, and
2"M =0, 2"q =0 and L is a Lagrangian for m. We must prove f(m) = 0.

Let S = LN S(m), where S(m) =27~1M. Obviously S C S(m), and L/S is
a Lagrangian for mg. Therefore, by Claim A, we can show f(m) = [mg] =0
by showing 2715+ c S, which we now do.

By Proposition A.6, 20— 1M = (2"~ M)+ = (4n1 M)+ So,
St =(Ln2nIM)t = (Lt n2n-TM)t = (L N (gua M) E
= (L+ g M) =T 1 M.
Therefore, 2"~ 18+ =2 YT +,. M) c2r-1L c LN2"-1M = S.

This proves 2" 1S+ S, and therefore proves Claim B. O

By Claim B, f induces a homomorphism:
Fu.: LY(R,2") — L(R, 2" Y); Fo([m]) = [mg(m)]-

Since m and mg,,) share the same Witt class in L (R,2"), we see j, 15, =
Id. If [m] € L(R,2""), then S(m) = 0 and m = mg(y). So Fuj,—1 = Id.
This shows F}, is inverse to j,_1. D

Proof of Theorem 5.1 By the definition and Lemmas 5.7, 5.6(1), L(R, (2))
is the direct limit of the maps ¢, 1107, : L£(R,2") — L(R,2""!), and these maps
are isomorphisms for n > 2. So i,: L(R,2") — L(R,(2)) is an isomorphism if
n > 2. Define

Q: L(R,(2)) = Zy by: Qoiy=QP: L(R,4) — Zy.
From Lemmas 5.7 and 5.6, the following sequence is exact

0= L£(R,2) % L(R,(2) % Zy — 0. O
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Proof of Theorem 1.5 Let R = Z[t] or Z[t”]. From Theorem 5.1 we get a
commutative diagram with exact rows, whose vertical maps are induced by the
augmentation £qg:

Q

0 —— L(R,2) —2— L(R,(2)) Zs 0

I

Q

0 —— L(Z,2) —— L(Z,(2)) Zs 0
Since L(R, 2) = kereg and L(R, (2)) = ker 8(()2), a simple diagram chase yields
i1: L(R,2) 2 L(R,(2)). O

6 Proof of Theorem 1.7

In this section we prove Theorem 1.7 by computing £(Z[t*],2), the reduced
Witt group of quadratic linking forms over Z[t*] of exponent 2.

We begin with a piece of notation: For p(t) € Zs[t], define poq(t), pev(t) € Zs]t]
by the equation

P = Py +tpogq = Pev(t?) + tpoa(t?) € Zslt].

Definition 6.1 Let [m] € £(Z[t],2). Set v; = v\ ([m]). Define
B = (By,By): L(Z[tY],2) — tZst] X tZs]t]

Bi([m]) = q(vo) + tq(v1);

Bs([m]) = (¢ (q(v1)oa))* +t (a(v0)oa)*.
Note B is a homomorphism. By (7), £5(Z[t],2) =ker (B). (Indeed, if By([m])=
0, then q(v;) = (q(vi)ev)? for i = 0,1. If, in addition, By ([m]) = 0, then q(vo)
and ¢(v1) are zero.) By Lemma 5.6, B takes values in H;(Zg; R)x Hi(Z2; R)t =
Zs[t] X tZs[t]. But since g0 QM) = QW ogy,, and eg.([m]) = 0, B takes values
in tZQ [t] X tZQ[t] .

The following example shows that £(Z[],2) LN tZo[t] x tZs[t] is an epimor-
phism.

Example 6.2 Let p,g € Z[t]. For the quadratic linking form
_ 2 (p/2 1/2\ (p/2
Np79 - <Z2 [t] ) <1/2 0 ) g
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we have vy = (0, pey) and vy = (0,poq) by equation (4). Hence,
q(v0) = P9, a(v1) = Pagg- (12)
B(Npgl) = (p9: (goa)*tp).  In particular,
(Wt al) = (tp, 0); (13)
B([Nip] = Wipl) = (0, 1p). (14)

Proof of Theorem 1.7

(1) The above discussion, together with Lemma 5.7(1) and Theorem 4.8(1)
(where P is defined), show that the following sequence is exact:

L1 07)
—_

0 — tZst]/ (Vo — Dt Zs[t] L(Z[t],2) 25 tZo]t] x tZst] — 0.

In particular, £(Z[t],2) is generated by those elements [Np.q], for which either
p or g is divisible by t (cf Lemma 4.3(3)). By Lemma 4.3, parts (2), (3), and
(4), the map

Jue tZa[t)/(2Ve — 2iZalt] — L(Z[1],2);  Gultp] = Nip,]

is a well-defined homomorphism of abelian groups. It satisfies j1[2tp] = ¢1P[tp].
It is clearly a V-map. By Example 6.2,

Bujiltp] = [tp];  Bajultp] = 0.
Therefore the following sequence is exact.

0 — tZa[t]/(2Va — tZa[t] 25 L(Z[1],2) 22 tZ,]t] — 0 (15)

We next claim that the map By: L(Z[t],2) — [tZ[t]] is a V—map, where [tZs]t]]
is the V—module defined by (2). In fact,

Vont1Ba([Npg]) = tp(t*" ) (1" goa (t7"11))? =
Ba(INpent1y g2n+1)]) = BaVans1([Npgl);
VaBa([Npgl) = 0 = Ba([Npu2 g(e2)]) = BaVa([Npgl)-

proving the claim. Therefore (15) becomes an exact sequence of V-modules. A
right splitting for it is the map

jo: [tZolt] — L(Z[H),2);  joltp] = Nie] — Niy).

Note jo[tp + t2q] = [N1.tp] — Nip] = j2[tp], so j2 is well defined. Similarly, jo
is a homomorphism because

J2[tp] + jaltq] — ja[tp + tq] = [Piptq] — [Pr2pql =0,
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by Lemmas 4.3(8) and 4.3(6). It is a splitting by equation (14). It is a V-map
by Lemma 4.3(7) and the following calculation:
Va(j2(tp)) = [N142p2] — [Ni2 2] = 0 by Lemma 4.3(5).
j2Va(tp) = 0, for all tp € [tZ>]t]] by (2).
Van+1(j2(tp)) = N1, e2ntipentny] — [Nentt pantny]
5 [N17t2n+1p(t2n+1)] - [‘/\/-t, t2np(t2n+l)] by Lemma 43(5)
= j2Van+1(tp) by (2).
Therefore, we get an isomorphism of V-modules, proving Theorem 1.7(1),

. . tZ4[t
J1+J2: ( 4l

m &) [tZQ[t” - E(Z[t]v <2>)

(2) If [m] € L(Z[t"],2), then q(v(()l)(m)) € t*Zs[t?], since z-:oq(v(()l)(m)) =
0 and q(vél)(m)) € Hy(Zy;Z[t7)) = Z[t?], by Lemma 5.6(3). The map
(()1): L(Z[t™],2) — t2Z[t?] is a homomorphism by Lemma 4.3(2). The map
Q(()l) is injective by Theorem 4.8(2) and Lemma 5.7(1). In fact Q(()l) is an iso-
morphism because Qél)([-/\/;f2p(t2),1]) = t?p(t?), by equation (12). The inverse
isomorphism to Qél) is the V,q—map:
jr CLol’]) = LEZIT),2): J((E)) = Nizpga)al. D
The reader may note that UNil(Z;Z,Z) has not been discussed here. In fact

it is already known to be zero. See [7], or [10], or [11]. But for the reader’s
convenience we include a short proof.

Proposition 6.3 UNily(Z;Z,Z) = 0.

Proof By Theorem 1.1 and Proposition 1.4, UNily(Z;Z,7Z) = NL(Z) =
NLy(Z,(2)), which can be identified with a subgroup of

L7(2]t], (2)) = QW(Z[t], (Q[e]/Z[t]) ™, M(2)),
the Grothendieck group of skew quadratic linking forms over Z[t|]-modules M
with 2" M = 0 for some n.

We will show £7(Z][t],(2)) = 0. Let R = Z[t]. For any (R, (QR/R)™,M(2))-

form, say m = (M, \, ), we see u: M — (17(3%?/1%) = 2(%]}%//12) = 0. So

w(x) =0, and A(z,z) =0 for all x € M. If 2"M = 0,n > 2, this implies that
S = 2n—1)\ is a subLagrangian for m, and mg has exponent 2"~!. And if
2M = 0, it implies that for any  #0 in M, S = @ is a subLagrangian for
m, with rankpsr(ms) < rankp/sr(m) — 1. Of course this means [m] = 0, as
desired. |
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A Appendix: On length and colength and the sub-
Lagrangian construction

Here we prove several properties used in the text about the colength of an R—
submodule. Length and colength were defined in Section 2. We also prove that
the subLagrangian construction produces a nonsingular form in the same Witt
class.

Proposition A.1 Let R be a ring with involution which is torsion free as
an abelian group. Then for any n, (R,QR/R,Man) satisfies the conditions
of Definition 2.1, where Mon is the class of length one R—modules M with
2"M = 0.

Proof 2.1(2) is obvious.

The first part of 2.1(3) is a standard fact from homological algebra. The proof
of the second part of 2.1(3) amounts to showing that Exth(M,QR/R) = 0
for any M € Man. But Exth(M,QR) = 0 for all i > 0, because 2"M =
0 and x2": QR — QR is an isomorphism. Therefore Ext}%(M, QR/R) =
Ext% (M, R) = 0, because M has length one.

Now we prove 2.1(1). Let M € Man. Clearly 2"M”" = 0. There is an exact
sequence 0 — F; — Fy — M — 0, where Fy, F; are finitely generated and free.
Since M* := Homp(M, R) = 0, we get a resulting exact sequence 0 — Fj —
Fy — Exth(M,R) = M” — 0. This shows M € Man. Let d: F — F** denote
the double duality isomorphism for any finitely generated free R—module. By
dualizing the above short exact sequence a second time, we get a commutative
diagram with exact rows:

0 F1 F() —— M —F 0
[ O N CR
0 Fpr = B —— MM —— 0

where D denotes the double duality map. Since dp, is an isomorphism for
i = 10,1, we conclude that D is too. O

Lemma A.2 Let (R,A,M) be any triple satisfying the conditions of Defini-
tion 2.1. Let S be a subLagrangian for some (R, A,M)—form m = (M, p).
Then mg (as defined in Section 2) is a (R, A,M)—form, and [m] = [mg] in
QW(R,A,M).
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Proof Since M,M/S € M and 0 — § LM — M/S — 0 is exact, we see
S €M and M”" — S” is surjective. Consider the commutative diagram, where
7 and k denote inclusions:

(Ad \)oi A
—_

0—— S M”" (SH —— 0

lj lAd(A)*1 lﬂ

0 — . g+t k. MM Sh .

The bottom row is exact, and thus, by 2.1(3), so is its dual, the top row.
The exact sequence 0 — S+/S — M/S — M/S+ — 0 and the isomorphism
M/S+ = SN € M show S+ /S € M and hence ker(j") = (S+/S)". The Snake
Lemma isomorphism S*/S = cok(j) = ker(;") = (S+/S)" can be identified
with Ad Ag. So mg is nonsingular and is therefore a (R, A, M)—form. To see
[m] = [mg], note mg @ (—m) has a Lagrangian; it is {([z],z) € (S+/S) x M :
z €St} O

Throughout the rest of this appendix, R denotes Z[t].

Proposition A.3 Let M be a finitely generated R—module of exponent 2"
for some n. Then M has length one if and only if for each x # 0 in M, the
annihilator ideal satisfies Anng(z) C 2R.

Proof =-: We will prove the contrapositive. Supposing that x # 0 in M and
Anng(z) € 2R, we will show that Lengthp(M) > 2.

Replacing z, if necessary, by 2*z, for some k, we see that we may as well
assume that 2z = 0. Since Zslt] is a principal ideal domain, Anng(z) = (2, p)
for some p € R\ 2R. Let f: Anng(z) — Q[t]/Z[t] be the R-map such that
f(2) =0, and f(p) = &. f does not extend to an R-map, R — Q[t]/Z[t].
Therefore the exact sequence, 0 — Anng(x) — R — Rx — 0 shows that
0 # BExth(Rx,Q[t]/Z[t]) = Ext%(Rz,Z[t]). Since Exth(—,—) = 0, the exact
sequence 0 — Rx — M — M/Rx — 0 shows that Ext%(M,Z[t]) # 0. This
implies that Lengthp (M) > 2 as claimed.

<: Now assume for each = # 0 in M, that Anng(z) C 2R. We show that
Lengthp(M) = 1. The proof is by induction on n. If n = 1 the condition
implies M is a free R/2R-module (because it is R/2R-torsion free). This
implies Lengthp (M) = 1. Assume the result is known for modules of exponent
2n~1 Consider the exact sequence

0— oM — M — M/oM — 0,
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where oM = {x € M : 2z = 0}. For any x € M with [z] # 0 in M/oM we
note Anng([z]) € Anng(2z) C 2R. This implies, by the inductive hypothe-
sis, that Lengthp(M/oM) = 1, and also Lengthp(oM) = 1. It follows that
Lengthp(M) = 1. O

Corollary A.4 Let M be a finitely generated R module of exponent 2" with
length one. Any submodule of M has length one. Also M” has length one.

Proof The first claim is immediate from Proposition A.3. To see that M"
has length one, one applies Proposition A.3, noting that the annihilator ideal of
any element of on(Q[t]/Z[t]) (and therefore any element of M”) is principal,
generated by 2* for some k. O

Recall the definition of the closure of a submodule N of a length one module
M:
N ={x € M :px € N, for some p € R\ 2R}

Clearly N = N. By Proposition A.3, Lengthp(M/N) = 1 if and only if
N=N.

Corollary A.5 Let N be a submodule of a length one R—module M. Then
N has colength one in M if and only if N = N. In particular, N has colength
one.

Proposition A.6 Let M be a length one R—module of exponent 2". Let
b: MxM — Q[t]/Z[t] be a nonsingular linking form (relative to some involution
on R). Let N be a submodule of M. Then N has colength one in M if and
only if N = X+ for some X in M. Also N = N+ for any N.

Proof Suppose X is a submodule of M for which N = X. Then

i o(AdD)
_

0—>N-—->M XN

is exact, where ix: X — M denotes the inclusion. But im(i% o (Adb)) has
length one by Corollary A.5. Therefore N has colength one in M.

Conversely, suppose N has colength one in M. By Proposition A.1, this implies
A

MM 2 NA = 0 is exact. Set X = ker(i%y o (Adb)). This gives us an exact

sequence and its dual:

. iN o
0 X 2y WA un g,

o(Adbd)

. VAN
0— N N X220 %A o,
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The second sequence says that N = X .

Finally we show N = Nt By the definition of N, it is clear that Nt =Nt
But we have just seen that N = X, for some X € M. Moreover, X -+ = X+
forall X. So Nt =N+ =X+t =Xx1L=N. D
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