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1044 Francis X Connolly and James F Davis

1 Introduction and statement of results

In this paper we complete the computation of the Wall surgery obstruction
groups for the infinite dihedral group, the L–theory of the polynomial ring
Z[t], the L–theory of the Laurent polynomial ring Ln(Z[t, t−1]), with either the
trivial involution or the involution t 7→ −t, and the Cappell unitary nilpotent
groups for the ring Z. The problem of computing these groups is thirty years
old. We take an historical approach in this introduction which sets the stage and
indicates the interrelation between the various groups, but has the drawback of
postponing the discussion of the main results of this paper. The main results
are 1.10, 1.9, 1.7 and 1.8.

Our algebraic computations are motivated by the following geometric question:
is a homotopy equivalence

f : M → X1#X2

from a closed n–manifold to a connected sum of two others splittable? That is
to say, is M expressible as a connected sum M = M1#M2 so that f homotopic
to a map of the form

f1#f2 : M1#M2 → X1#X2

where each fi : Mi → Xi is a homotopy equivalence? In particular, is M itself
a connected sum?

Let’s restrict now to the case where both Xi are connected and have cyclic
fundamental group of order two. Cappell [5, 8] defined an element s(f) in a 4–
periodic abelian group UNiln+1(Z; Z±, Z±). The ±’s depend on the orientabil-
ity of X1 and X2 and are often omitted if both are orientable. If s(f) 6= 0,
then f is not splittable. If s(f) = 0 and n ≥ 4, then f is splittable topolog-
ically; if s(f) = 0 and n ≥ 5, then f splits smoothly. (In the smooth case
one allows connected sum along a homotopy sphere.) Fixing X1 and X2 and
given s ∈ UNiln+1(Z; Z±, Z±), there is a realization result: there is a homotopy
equivalence f : M → X1#X2 with s(f) = s, with M a topological manifold
when n ≥ 4, a smooth manifold when n ≥ 5. A particularly interesting exam-
ple is to take X1 = X2 = RP 4 and 0 6= s ∈ UNil5(Z; Z−, Z−); then realization
gives a nonsplittable homotopy equivalence M → RP 4#RP 4 . The geometric
properties of M seem both unexplored and of some interest.

The unitary nilpotent groups UNiln(R;A1, A2) are defined for a ring R with
involution and R–bimodules A1, A2 with involution. We won’t need the defini-
tions of these groups, only their relation to L–groups discussed below and the
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The surgery obstruction groups of the infinite dihedral group 1045

isomorphisms

UNiln(R;A2, A1) ∼= UNiln(R;A1, A2) ∼= UNiln+2(R;A−
1 , A−

2 ).

Here A−
i is the bimodule Ai , but with the involution a 7→ −a.

Associated to a ring with involution are the algebraic L–groups Ln(R). They
are 4–periodic. The definition of L0(R) (and L2(R)) are reviewed in Section 2;
they are Witt groups of (skew)-quadratic forms. L2k+1(R) is the abelianization
of the stable automorphism group of the (−1)k –hyperbolic form (any form
admitting a Lagrangian).1

Fix a group G and a homomorphism w : G → {±1}. There is an induced
involution

∑
agg 7→

∑
agw(g)g−1on ZG. The associated groups Ln(ZG,w)

are key ingredients in the classification of closed, oriented manifolds with fun-
damental group G and orientation character w .

Parallel to the work of Stallings [26] and Waldhausen [27] in algebraic K–
theory, Cappell [7, 9] studied the L–groups of amalgamated free products and
showed that if H is a subgroup of groups G1 and G2 , then UNiln(ZH; Z[G1 −
H], Z[G2−H]) is a summand of Ln(Z[G1∗H G2]), and that the L–group modulo
the UNil–term fits into a Mayer–Vietoris exact sequence. Farrell [12] showed
that the UNil–term has exponent at most four. However he was unable to
find an element α ∈ UNiln(R;A,B) for which 2α 6= 0. Cappell proved that
the UNil–term vanishes provided that the inclusions H →֒ Gi are square root
closed, ie, g ∈ Gi and g2 ∈ H implies g ∈ H .

The infinite dihedral group is

D∞ = Z2 ∗ Z2 = 〈a1, a2 | a2
1 = e = a2

2〉 = 〈g, t | t2 = e, tgt−1 = g−1〉.

Let w : D∞ → {±1} be a homomorphism. The L–groups Ln(Z[D∞], w) and
the corresponding UNil–groups UNiln(Z; Zw(a1), Zw(a2)) seem particularly fun-
damental. First the infinite dihedral group is the simplest group which is not
square root closed. Second, due to the isomorphism conjecture of Farrell–Jones
[13] (generalizing the Borel–Novikov conjectures of manifold theory), attention
has been recently focused on the infinite dihedral group. The isomorphism
conjecture roughly states that Ln(ZΓ) depends on the K– and L–theory of
virtually cyclic subgroups and homological data depending on Γ. A group G is

1These are the so-called Lh–groups measuring the obstruction to doing surgery up
to homotopy equivalence. They are defined as in Wall [29, Chapters 6 and 7], except
one deletes the requirement that the torsions are trivial. A definition of these groups
is given in [16] where they were denoted Vn(R). Ranicki [20] later gave a definition of
Ln(R) as cobordism classes of n–dimensional quadratic Poincaré complexes over R .
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1046 Francis X Connolly and James F Davis

virtually cyclic if either G is finite, or G surjects onto Z with finite kernel, or
G surjects onto D∞ with finite kernel. The L–theory in the first two cases has
been examined in detail [14, 25, 17, 18]. Therefore Ln(D∞) is the next obvious
case to consider.

In this paper we are writing a conclusion to the long tale of the computa-
tion of UNiln(Z; Z±, Z±). Cappell showed UNil2(Z; Z, Z) was infinitely gen-
erated [6] and announced that UNil0(Z; Z, Z) = 0 [7]. Connolly–Koźniewski
[10] obtained an isomorphism UNil2(Z; Z, Z) ∼= (Z2)

∞ and also showed that
UNil0(Z; Z, Z) = 0. Connolly–Ranicki [11] showed UNil1(Z; Z, Z) = 0 and com-
puted UNil3(Z; Z, Z) up to extension, and thereby showed that it was infinitely
generated. Andrew Ranicki outlined the construction and detection of an ele-
ment of UNil3(Z; Z, Z) of exponent 4 in a letter [22] to the first author. After
a preliminary version of this paper was circulated, Banagl–Ranicki [3] gave
an independent complete computation of UNil3(Z; Z, Z) using generalized Arf
invariants.

In this paper we give complete computations for all n as well as doing the
non-oriented case.

But before we discuss our computations we pause and explain how computations
of the unitary nilpotent group give explicit computations of the L–theory of
the infinite dihedral group. We rely on the Mayer–Vietoris exact sequence (see
Cappell [7]):

· · · → Ln(Z) → Ln(Z[Z2], w1) ⊕ Ln(Z[Z2], w2)

→
Ln(Z[D∞], w)

UNiln(Z; Zε1, Zε2)
→ Ln−1(Z) → · · ·

where wi = w|〈ai〉 and εi = w(ai) = ±1. We assume ε2 ≥ ε1 and write

L̃n(Z[G], w) for the cokernel of the natural map Ln(Z) → Ln(Z[G], w). The
above sequence, and the calculational results in Wall [29, Chapter 13A], quickly
lead us to the following equations.

Ln(Z[D∞], w) = L̃n(Z[Z2], w1) ⊕ Ln(Z[Z2], w2) ⊕ UNil n(Z; Zε1, Zε2)

unless n ≡ 1 mod 4, and w1, w2 are both nontrivial; in this case, we get:

L1(Z[D∞], w) = UNil 1(Z; Z−, Z−) ⊕ L0(Z).

For the values of Ln(Z[Z2], w) see Wall [29, Chapter 13A].

There is another relation between the unitary nilpotent groups and L–groups
which will be crucial to our computations. Let R[t±] denote the polynomial
ring R[t] with + involution

∑
rit

i 7→
∑

rit
i or the − involution

∑
rit

i 7→
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∑
(−1)irit

i . Let ε0 : R[t] → R be the map of rings given by ε0(f(t)) = f(0);
it is a split surjection with the splitting s0 : R → R[t] given by constant poly-
nomials. Define

N±Ln(R) = ker(ε0 : Ln(R[t±]) → Ln(R)).

Then Ln(R[t±]) = Ln(R) ⊕ N±Ln(R). Note that Ln(Z) ∼= Z, 0, Z2, 0 for n ≡
0, 1, 2, 3 (mod 4) so our computation of N±Ln(Z) given below also computes
Ln(Z[t±]).

Theorem 1.1 (Connolly–Ranicki) There is an isomorphism, natural in R,

r : UNiln(R;R±, R) → N±Ln(R).

Connolly–Ranicki [11, Theorem A] prove this in the + case; we remark here that
their formula [11, Definition 2.13] for r and their proof that r is an isomorphism
apply equally well in the − case. Note that this implies a 2–fold periodicity

N−Ln(R) ∼= UNiln(R;R−, R) ∼= UNiln+2(R;R,R−) ∼= N−Ln+2(R).

These NL–groups are analogous to Bass’ nilpotent K–groups NKi(R) =
ker(ε : Ki(R[t] → Ki(R)) occurring in the fundamental theorem of algebraic
K–theory [2].

The following theorem, which is an easy consequence of Theorem 4.6, provides
the calculation of N±L2k(Z).

Theorem 1.2 There are isomorphisms of abelian groups:

(1) ε0∗ : L0(Z[t])
∼=
−→ L0(Z). Thus NL0(Z) = 0.

(2) P
Z[t]
2 : tZ2[t]/{p

2 − p : p ∈ tZ2[t]}
∼=
−→ NL2(Z).

(3) P
Z[t−]
2 : t2Z2[t

2]/{p2 − p : p ∈ t2Z2[t
2]}

∼=
−→ N−L2(Z).

(4) Q
Z[t−]
0 : t2Z2[t

2]/{p2 − p : p ∈ t2Z2[t
2]}

∼=
−→ N−L0(Z).

The maps P
Z[t±]
2 and Q

Z[t−]
0 are defined in Section 4. The inverse maps in

(2), (3), and (4) are all essentially given by the Arf invariant of the function
field Z2(t). Also in Section 4, we compute L2(Z2[t]) = L0(Z2[t]) and show it is
isomorphic to L2(Z[t]).

But why do these polynomials p(t) appear in the computation of the L–groups?
None of the groups above are Z[t]–modules, but the above isomorphisms seem
to be more than isomorphisms of abelian groups. We explain that now.
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1048 Francis X Connolly and James F Davis

For each integer i > 0, and each ring R, we have a ring endomorphism:

Vi : R[t] → R[t] Vi(p(t)) = p(ti).

Note ε0 ◦ Vi = ε0 . The resulting monoid of endomorphisms of Ln(Z[t]),

M = {V1, V2, V3, . . . }; ViVj = Vij

therefore makes Ln(Z[t]) and NLn(Z) modules over the Verschiebung Algebra,

V = Z[M],

a polynomial ring on {Vp : p is a prime}: V = Z[V2, V3, V5, . . . ] . The subalge-
bra indexed by the odd primes, Vod := Z[V3, V5, V7, V11, . . . ] acts similarly on
N−Ln(Z). (Note that for i > 0 even, Vi : Z[t−] → Z[t−] is not a map of rings
with involution.) The map in Theorem 1.2(2) is a map of V –modules and the
maps in Theorem 1.2(3) and 1.2(4) are maps of Vod–modules. We have the
following reformulation of Theorem 1.2:

Theorem 1.3

NL2k(Z2) ∼= NL2(Z) ∼= V/〈2, V2 − 1〉

N−L2(Z) ∼= N−L0(Z) ∼= Vod/〈2〉

NL0(Z) = 0

To attack the odd-dimensional L– and UNil–groups, we use the classical tech-
nique of quadratic linking forms. Given a ring with involution R and a central
multiplicative subset S = S of non-zero divisors, one can define L2k(R,S)
to be the Witt group of (−1)k –quadratic linking forms on finitely generated
S–torsion R–modules of length one (see [21]). Furthermore, one can identify
L2k(R,S) with the relative L–group L2k(R → S−1R). There is an analogous
theory for L2k+1 .

For a ring with involution R where 2 is not a divisor of zero, define 〈2〉 = {2i :
i ≥ 0} ⊂ R and

N±Ln(R, 〈2〉) = ker ε0 : Ln(R[t±]), 〈2〉) → Ln(R, 〈2〉).

Proposition 1.4 For any Dedekind domain with involution R where 2 is not
a divisor of zero,

N±Ln(R, 〈2〉) ∼= N±Ln−1(R).

Geometry & Topology, Volume 8 (2004)
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Proof By comparing the long exact sequence of the ring map

R[t±] → R[1/2][t±]

with that of R → R[1/2], one obtains a localization exact sequence

· · · → N±Ln(R[1/2]) → N±Ln(R, 〈2〉) → N±Ln−1(R) → N±Ln−1(R[1/2]) · · ·

Since 2 is a unit, N±Lk(R[1/2]) = N±Lk(R[1/2]). Connolly–Ranicki show that
for a Dedekind domain Λ with involution, N±Lk(Λ) = 0 (see [11, Proposition
2.11, Proposition 2.19, and the discussion after Proposition 2.19]).

These Witt groups of quadratic linking forms are the main object of study in
our paper. They occur so often that introduce new notation for them.

L(Z[t±], 〈2〉) = L0(Z[t±], 〈2〉)

L̃(Z[t±], 〈2〉) = N±L0(Z, 〈2〉)

L(Z, 〈2〉) = L0(Z, 〈2〉) ∼= Z2 ⊕ Z8 (see [24, Theorem 5.2.2])

We also use the notation L(Z[t±], 2n) to denote the Witt group of quadratic
linking forms on length one Z[t]–modules of exponent 2n (see Section 2.) To
study these groups we use the method of characteristic elements.

A key technical result for us in the following devissage result (see Section 5).

Theorem 1.5 L̃(Z[t±], 2) ∼= L̃(Z[t±], 〈2〉).

We next present some examples of quadratic linking forms on Z[t]–modules
with exponent 2.

Definition 1.6 For polynomials p, g ∈ Z[t], define the quadratic linking form

Np,g =

(
Z2[t]

2,

(
p/2 1/2
1/2 0

)
,

(
p/2
g

))
. (1)

By this notation we mean that if {e1, e2} is the standard basis of Z2[t]
2 over

Z2[t], then the 2 × 2 matrix is (b(ei, ej)) and the column vector is (q(ei)). If

p(0) ∈ 4Z, or g(0) ∈ 2Z, then [Np,g] is an element of L̃(Z[t], 〈2〉).

We wish compute these Witt groups as modules over the Verschiebung Algebra.
To this end, note tZ2[t] is a V –module in the obvious way: Vn(p(t)) = p(tn).

Geometry & Topology, Volume 8 (2004)



1050 Francis X Connolly and James F Davis

But, as a less obvious module, [tZ2[t]] shall denote the abelian group tZ2[t],
equipped with the following V –module structure:

V2n+1(p(t)) = p(t2n+1); (2)

V2n(p(t)) = 0,

for all n ≥ 0, and all p ∈ tZ2[t].

We are now is a position to state our main theorem. (See Section 6 for the
proof.)

Theorem 1.7 (1) There is an isomorphism of V –modules,

j1 + j2 :
tZ4[t]

(2V2 − 2)tZ4[t]
⊕ [tZ2[t]] → L̃(Z[t], 〈2〉)

given by j1[tp] = [Ntp,1] and j2[tp] = [N1,tp] − [Nt,p].

(2) There is an isomorphism of Vod–modules,

j : t2Z2[t
2] → L̃(Z[t−], 〈2〉); j(t2p(t2)) = [Nt2p(t2), 1].

Corollary 1.8

L̃(Z[t], 〈2〉) =

∞⊕

k=−1

V · bk; L̃(Z[t−], 〈2〉) =

∞⊕

j=1

Vod · cj

where b−1 = [Nt, 1] and bk = [N
1, t2k ]− [N

t, t2k−1 ] for all k ≥ 0, and cj = N
t2

j
,1

,
for all j ≥ 1. The annihilator ideals of these elements are:

Ann(b−1) = 〈4, 2V2 − 2〉; Ann(bk) = 〈2, V2〉 for k ≥ 0; AnnVod
(cj) = 〈2〉.

Proof Note that tZ[t] is a free rank one V –module. In tZ4[t]
(2V2−2)tZ4[t] , a V –

generator is t, with annihilator ideal 〈4, 2V2 − 2〉. Also [tZ2[t]] is a free module

over V/〈2, V2〉, with basis {t2
k

: k = 0, 1, 2, . . . }. Finally the set {t2
j

: j =
1, 2, 3, . . . } is a Vod/2Vod basis for t2Z[t2]. The result now follows from Theorem
1.7.

As a consequence of our computation we have the following corollary (cf [22]).

Corollary 1.9 There is an element α ∈ UNil3(Z; Z, Z) of order 4.

We give a separate, elementary proof of this using Gauss sums in Section 3.

The heart of our paper is the following set of calculations which we summarize
as follows:

Geometry & Topology, Volume 8 (2004)
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Theorem 1.10

UNil0(Z; Z−, Z) = UNil 2(Z; Z−, Z) ∼= Vod/〈2〉 (Theorem 4.6)

UNil1(Z; Z−, Z) = UNil 3(Z; Z−, Z) ∼=

∞⊕

i=1

Vod/〈2〉 (Corollary 1.8)

UNil 0(Z; Z , Z) = 0 (Theorem 4.6)

UNil 1(Z; Z , Z) = 0 (Proposition 6.3)

UNil 2(Z; Z , Z) ∼= V/〈2, V2 − 1〉 (Theorem 4.6)

UNil 3(Z; Z , Z) ∼= V/〈4, 2V2 − 2〉 ⊕
∞⊕

i=0

V/〈2, V2〉 (Corollary 1.8)

Finally, let Z[t, t−1]± be the Laurent polynomial ring Z[t, t−1] with the invo-
lution t 7→ ±t. The following formulas and the results of this paper compute
Ln(Z[t, t−1]±).

Ln(Z[t, t−1]) ∼= Ln(Z)2 ⊕ NLn(Z)2

Ln(Z[t, t−1]−) ∼= Ln(Z) ⊕ Ln+2(Z) ⊕ N−Ln(Z)2

The first formula is proved by Ranicki in [19] in the oriented case, and the
second can be proven with similar techniques.

2 Definitions

Here we present a unified framework including both the Witt group of quadratic
linking forms over a ring R, and the surgery obstruction groups L2k(R).

Let R be a ring. An R–module M has length one if there is a short exact
sequence 0 → F1 → F0 → M → 0, where F0 and F1 are finitely generated
free R–modules. A submodule L of a length one module M has colength one
if M/L has length one. This implies L has length one.

A ring with involution is a ring R with a function − : R → R satisfying 1 = 1,
r = r , r + s = r + s, and rs = s r for all r, s ∈ R. An R–bimodule with
involution is an R–bimodule A with Z–automorphism − : A → A of order 2
satisfying ras = s a r for all r, s ∈ R, a ∈ A.

Let (R,A) be a ring R with involution, together with some R–bimodule with
involution. If M is a left R–module, then M∧ := HomR(M,A) is also a left

Geometry & Topology, Volume 8 (2004)
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R–module if we set (rϕ)(m) = ϕ(m)r . A symmetric form over (R,A) is an
R–module M and a function λ : M × M → A satisfying:

λ(x, y) = λ(y, x)

λ(x, y + y′) = λ(x, y) + λ(x, y′)

λ(x, ry) = rλ(x, y)

for all r ∈ R, x, y, y′ ∈ M . If the R–map

Ad λ : M → M∧ = HomR(M,A) x 7→ (y 7→ λ(x, y))

is an isomorphism, then (M,λ) is nonsingular.

A (nonsingular) quadratic form over (R,A) is a (nonsingular) symmetric form
(M,λ) over (R,A) and a function µ : M → A/{a − a : a ∈ A} so that

λ(x, x) = {1 + ∗}µ(x)

[λ(x, y)] = µ(x + y) − µ(x) − µ(y)

µ(rx) = rµ(x)r

for all r ∈ R, x, y ∈ M . Here [ ] : A → A/{a − a : a ∈ A}, a 7→ [a] is the
quotient map and {1 + ∗} : A/{a − a : a ∈ A} → A is given by [a] 7→ a + a.

A skew-quadratic (or (−1)–quadratic) form over (R,A) is a quadratic form over
(R,A−). Here A− is the bimodule A, but with the involution: a 7→ −a.

Definition 2.1 Suppose R is a ring with involution, A is an R–bimodule with
involution, and M is a class of left R–modules. We assume (R,A,M) satisfies
the following properties:

(1) If M ∈ M, then M∧ ∈ M, and the double duality map M
D
−→ M∧∧ is

an isomorphism.

(2) The direct sum of two modules in M is in M. {0} is in M.

(3) If 0 → M1 → M2 → M3 → 0 is exact and M2,M3 are in M, then M1 is
also in M, and 0 → M∧

3 → M∧
2 → M∧

1 → 0 is also exact.

A (R,A,M)–form is a nonsingular quadratic form m = (M,λ, µ) over (R,A),
such that M ∈ M.

Next we give the examples we care about. It is clear that the first example
below satisfies the conditions of 2.1. Proposition A.1 proves that the second
example also satisfies the conditions.

• (R,R,F). Here R is a ring with involution; A = R; F is the class of all
finitely generated stably free R–modules. We will also use (R,R−,F).

Geometry & Topology, Volume 8 (2004)
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• (R, QR/R,M2n). Here R is a ring with involution which is torsion free
as an abelian group and A = QR/R, where QR denotes the localization
of R obtained by inverting the positive integers in R; M2n is the class
of all length one R–modules M for which 2nM = 0.
We will also use (R, QR/R,M〈2〉), where M〈2〉 := ∪n≥0 M2n .

A subLagrangian for a (R,A,M)–form m = (M,λ, µ) is a submodule L ⊆ M
such that M/L ∈ M, µ(L) = 0, and L ⊆ L⊥ , where

L⊥ := {x ∈ M : λ(x,L) = 0}.

If L = L⊥ , we say L is a Lagrangian for m, and that m admits a Lagrangian.

Define an equivalence relation on the collection of (R,A,M)–forms by:

m ∼ m′ if m ⊕ m0
∼= m′ ⊕ m′

0

where m0 and m′
0 are (R,A,M)–forms which admit Lagrangians. (Here ∼=

means “is isometric to”.)

Definition 2.2 The quadratic Witt group QW (R,A,M) is the abelian group
of equivalence classes of (R,A,M)–forms. Addition is orthogonal direct sum.

The negative of [M,λ, µ] is [M,−λ,−µ], since their sum admits the diagonal
Lagrangian {(x, x) : x ∈ M}.

The SubLagrangian Construction Given a (R,A,M)–form m = (M,λ, µ)
and a subLagrangian S for m, we define an induced quadratic form

mS = (S⊥/S, bS , µS) : bS([x], [y]) = b(x, y); µS([x]) = µ(x).

Lemma A.2 shows that mS is again a (R,A,M)–form and [m] = [mS ] ∈
QW (R,A,M).

The Wall surgery obstruction groups of R (in even dimensions) are:

L0(R) = QW (R,R,F) L2(R) = QW (R,R−,F),

where F is the class of finitely generated, stably free R–modules.

We are going to define the Witt groups of quadratic linking forms L(R, 2n) and
L(R, 〈2〉), so that,

L(R, 2n) ∼= QW (R, QR/R,M2n)

L(R, 〈2〉) ∼= QW (R, QR/R,M〈2〉)

But for historical reasons (see for example [28]), we will first change coordinates,
and do all of our work in the classical regime of quadratic linking forms.

Geometry & Topology, Volume 8 (2004)



1054 Francis X Connolly and James F Davis

Definition 2.3 Assume R is a ring with involution which is torsion free as an
abelian group.

A quadratic linking form over R is a triple (M, b, q) such that M ∈ M2n for
some n, (M, b) is a nonsingular symmetric form over (R, QR/R), and q : M →
QR/(1 + ∗)R is a function satisfying:

[q(x)] = b(x, x) ∈ QR/R,

q(x + y) − q(x) − q(y) = {1 + ∗}b(x, y) ∈ QR/(1 + ∗)R,

q(rx) = rq(x)r.

Here

{1 + ∗} :
QR/R

(1 − ∗)QR/R
→

(1 + ∗)QR

(1 + ∗)R

is the isomorphism: [x] 7→ (x + x) mod (1 + ∗)R.

Note 2n+1q(x) = 0, whenever 2nb(x, x) = 0. Also q(M) ⊂ (1+∗)QR
(1+∗)R .

In other words, a quadratic linking form (M, b, q) is any triple which can be
written in the form (M, b, {1 + ∗}µ), where (M, b, µ) is a (R, QR/R,M〈2〉)–
form.

Let Λ(R, 2n) denote the set of isometry classes of quadratic linking forms with
exponent 2n . The rule

(M,λ, µ) ↔ (M,λ, {1 + ∗}µ) (3)

gives a one to one correspondence between the set of isometry classes of
(R, QR/R,M2n)–forms and Λ(R, 2n).

A Lagrangian for a quadratic linking form (M, b, {1 + ∗}µ) is defined to be a
Lagrangian for the (R, QR/R,M〈2〉)–form (M, b, µ).

Two elements m,m′ ∈ Λ(R, 2n) are equivalent if m⊕m0
∼= m′ ⊕m′

0 where m0

and m′
0 are elements of Λ(R, 2n) which admit Lagrangians.

Set: L(R, 2n) = Λ(R, 2n)/ ∼,

an abelian group under orthogonal direct sum. (3) induces an isomorphism

QW (R, QR/R,M2n) ∼= L(R, 2n).

Similarly, the above equivalence relation on each of the Λ(R, 2n)’s defines an
equivalence relation on their union,

Λ(R, 〈2〉) = ∪∞
n=1Λ(R, 2n),
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and the abelian group of equivalence classes,

L(R, 〈2〉) := Λ(R, 〈2〉)/ ∼

is canonically isomorphic to QW (R, QR/R,M〈2〉) by the rule (3).

One could define a corresponding group of skew-quadratic linking forms, but
we do not do so here, because we show in Proposition 6.3 that when R = Z,
any such form admits a Lagrangian.

3 The proof of Corollary 1.9

In this section we give a short proof, independent of the rest of this paper, of
the fact that L̃(Z[t], 2) ∼= UNil3(Z; Z, Z) ∼= L3(Z[t]) has an element of order 4.
We first review the isomorphism [24, 5.2.2].

Rk ⊕ GS: L(Z, 〈2〉)
≃
−→ Z2 ⊕ Z8.

The rank homomorphism is

Rk[M, b, q] =

{
0 if |M | = 22k

1 if |M | = 22k+1.

The Gauss sum homomorphism is

GS[M, b, q] = [k] ∈ Z8

where
1√
|M |

∑

x∈M

eπiq(x) = e2πik.

Now let α =

[
Z2[t]

2,

(
1/2 0
0 1/2

)
,

(
1/2

t − 1/2

)]
∈ L(Z[t], 〈2〉). Note that ε0(α)

has the diagonal Lagrangian L = {(0, 0), (1, 1)}, so α ∈ L̃(Z[t], 〈2〉). Consider
now the ring map

ε1 : Z[t] → Z, f(t) 7→ f(1).

Then: (Rk ⊕ GS)ε1(α) = 0 ⊕ 2 ∈ Z2 ⊕ Z8,

so α ∈ L̃(Z[t], 〈2〉) is an element of order at least 4. One can show 4α = 0 by
quoting Farrell’s Exponent Four Theorem [12] or by showing directly that 4α
has a Lagrangian.
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4 Computation of UNil2n(Z; Z, Z), UNil2n(Z; Z−, Z), and

Lev(Z[t±], 2)

According to Theorem 1.1,

Ln(Z[t±]) = Ln(Z) ⊕ N±Ln(Z) = Ln(Z) ⊕ UNiln(Z; Z±, Z).

In this section we compute L2n(Z[t±]), and therefore UNil2n(Z; Z±, Z). We
also compute the group Lev(Z[t±], 2) of quadratic linking forms of exponent 2
with even type, as defined below.

Throughout this section, R denotes a ring with involution.

Definition 4.1 Fix an integer n > 0. Assume R is torsion free as an abelian
group. Let Λev(R, 2n) be the collection of all quadratic linking forms m =
(M, b, q) for which 2nM = 0 and 2nq(x) = 0 for all x ∈ M . Quadratic linking
forms in Λev(R, 2n) are called forms of exponent 2n with even type.

We define an equivalence relation on Λev(R, 2n) by:

m ∼ m′ ⇔ m ⊕ m0
∼= m′ ⊕ m′

0

for some m0,m
′
0 in Λev(R, 2n) admitting Lagrangians. The abelian group of

equivalence classes of forms of exponent 2n with even type is:

Lev(R, 2n) = Λev(R, 2n)/ ∼

Forgetful maps define homomorphisms,

L(R, 2n−1)
jn−1
−−−→ Lev(R, 2n)

ιn−→ L(R, 2n)
in−→ L(R, 〈2〉).

The map ιn ◦ jn−1 is mentioned in Theorem 5.1 below.

There is a natural map

α∗ : L0(R/2R) → Lev(R, 2), [M,λ, µ] 7→ [M,α ◦ λ, β ◦ µ]

where
R/2R

α
−→ QR/R, [x] 7→ [x/2]

R/2R

(1 − ∗)(R/2R)

β
−→ QR/(1 + ∗)R, [y] 7→ [(y + y)/2].

Proposition 4.2 α∗ : L0(Z2[t]) → Lev(Z[t], 2) is an isomorphism.

Proof Z2[t]
α
−→ 2(Q[t]/Z[t]) and Z2[t]

β
−→ 2(Q[t]/2Z[t]) = Z2[t] are isomor-

phisms. Here 2A = {a ∈ A : 2a = 0} for an abelian group A.
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We view

Ĥn(Z2;R) =
{x ∈ R : x = (−1)n+1x}

{y − (−1)ny : y ∈ R}
.

as a R/2R–module by the rule [a] ◦ [x] := [axā].

We will need the following three classes of quadratic forms. For each p, g ∈
Ĥn(Z2;R) (or even p, g ∈ R representing classes in Ĥn(Z2;R)), define [Pp,g] ∈
L2n(R) by the nonsingular (−1)n–quadratic form:

Pp,g =

(
R2,

(
0 1

(−1)n 0

)
,

(
p
g

))
.

The notational conventions here are similar to those described after Definition
1.6. The symmetric form λ is determined by the matrix (λ(ei, ej)) and the
quadratic refinement µ is specified by the vector (µ(ei)).

Next assume p, g ∈ R are in ker(1−∗). Assume R is torsion free as an abelian
group. Define [Pp,g] ∈ Lev(R, 2) and [Np,g] ∈ L(R, 2) by the quadratic linking
forms:

Pp,g =

(
(R/2R)2,

(
0 1/2

1/2 0

)
,

(
p
g

))

Np,g =

(
(R/2R)2,

(
p/2 1/2
1/2 0

)
,

(
p/2
g

))

Note that N2p,g = Pp,g and that [Pp,g] maps to [Pp,g] under the composite

L2(R) → L2(R/2R) = L0(R/2R)
α∗−→ Lev(R, 2).

Lemma 4.3 (Formal Properties of Pp,g , Pp,g , and Np,g )

(1) Pp,g
∼= Pg,p; Pp,g

∼= Pg,p ( ∼= means “is isometric to”).

(2) [Pp1,g ⊕ Pp2,g] = [Pp1+p2, g]; [Np1,g ⊕Np2,g] = [Np1+p2, g].

(3) 2[Np,g] = [Pp,g]; 2[Pp,g] = 0; 2[Pp,g] = 0.

(4) [Ppgp,g] = [Pp,g]; [Ppgp,g] = [Pp,g].

(5) [Nxpx, g] = [Np, xgx]; [Pxpx, g] = [Pp, xgx] for x ∈ R.

(6) [Pp,g] = [Ppg,1], if R = Z2[t], or if R = Z[t] or Z[t−] and n is odd.

(7) Vk([Np,g]) = [Np(tk),g(tk)] in L(R[t±], 2).

(8) [Np,g+h] − [Np,g] − [Np,h] = [Ppgp,h].
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Proof (1) Replace the standard basis {e1, e2} by {e2, (−1)ne1}.

(2) Let {e1, e2}, {e3, e4} be the standard bases for Pp1,g and Pp2,g . A subLa-
grangian for m = Pp1,g ⊕Pp2,g is S = 〈e2 + e4〉. Then {[e1 + e3], [e2]} is a basis
for S⊥/S . The subLagrangian construction satisfies mS = Pp1+p2, g proving
the result. The proof for Np1,g ⊕Np2,g is the same.

(3) is immediate from (2) and the definitions, since 2[p/2] = [p] in Ĥ1(Z2;R).

(4) By (2) and (3) it suffices to note that 〈e1+pe2〉 is a Lagrangian for Ppgp+p,g .

(5) A Lagrangian for Nxpx,g ⊕N−p,−xgx is 〈e1 + xe3, xe2 + e4〉. The proof of
the second part is similar.

(6) We first consider the cases of R = Z[t] with n odd and R = Z2[t]. By
(1) and (2), it is suffices to consider the cases p = tk, g = tl, for some k, l ≥ 0.
From (5) above, [Ptk ,tl+2m ] = [Ptk+2m,tl ], so we may assume l is 0 or 1. The
case l = 0 is immediate, so we assume l = 1 and proceed by induction on k .
If k is even, the result follows from (5) and (1). If k = 2i − 1 is odd, then
[Pt2i−1,t] = [Pti−1,t] = [Pti,1] = [Pt2i,1]; the first equality comes from replacing
the standard basis {e1, e2} by {e1 + ti−1e2, e2}, the second equality from the
induction hypothesis, and the third from (4).

The proof in the case R = Z[t−] and n odd is similar; it involves replacing t
by t2 everywhere in the above paragraph.

(7) This is immediate from the definitions.

(8) Let m = Np,g+h ⊕ N−p,g ⊕ N−p,h . A subLagrangian for m is S = 〈e1 +
e3, e2 + e4 + e6〉. An arbitrary element

∑6
i=1 aiei ∈ (R/2R)6 is in S⊥ if and

only if: a1p + a2 + a3p + a4 = 0 = a1 + a3 + a5 . Therefore, x ∈ S⊥ if
and only if x = a1(e1 + e3) + a2(e2 + e4) + a5(e3 + pe4 + e5) + a6e6 . Hence
S⊥/S = 〈[e3 + pe4 + e5], [e6]〉. Thus [m] = [mS ] = [Ppgp̄,h].

Definition 4.4 Let R be a ring with involution. Define maps

(1) P2 = PR
2 : Ĥ1(Z2;R) → L2(R), [p] 7→ [Pp,1],

(2) Q0 = Q
R[t−]
0 : t2Ĥ1(Z2;R[t−]) → NL−

0 (R), [t2p] 7→ [Ptp,t].

Note that ε0∗[Ptp,t] = [P0,0] = 0, so Q0 takes its values in N−L0(R) ⊂
L0(R[t−]). Both P2 and Q0 are homomorphisms by Lemma 4.3(2).

Lemma 4.5 Let R be a commutative ring with trivial involution.

(1) If p ∈ R[t±] satisfies p = p, then P
R[t±]
2 ([p2] − [p]) = 0.
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(2) If p ∈ R[t−] satisfies p = p, then Q
R[t−]
0 ([(t2p)2] − [t2p]) = 0.

(3) P
R[t]
2 is a map of V –modules. P

R[t−]
2 and Q

R[t−]
0 are maps of Vod–

modules. (The Verschiebung algebras V and Vod were defined in the
introduction.)

Proof Parts (1) and (2) follow from Lemma 4.3(4). The assertions concerning
P2 in Part (3) are clear. Finally, note

V2k+1Q0[t
2p(t2)] = [Pt2k+1p(t4k+2),t2k+1 ]

= [Pt4k+1p(t4k+2),t] by Lemma 4.3(5)

= Q0V2k+1[t
2p(t2)].

We now specialize to R = Z and Z2 . We will abuse notation (somewhat) in
the statement of the theorem below by maintaining the names P2 and Q0 for
a factorization through a quotient.

Theorem 4.6 (1) ε0∗ : L0(Z[t])
∼=
−→ L0(Z).

(2) P
R[t]
2 : Ĥ1(Z2;R[t])/(V2 − 1)Ĥ1(Z2;R[t])

∼=
−→ L2(R[t]), if R = Z or Z2 .

(3) P
Z[t−]
2 : Ĥ1(Z2; Z[t−])/{p2 − p : p ∈ Ĥ1(Z2; Z[t−])}

∼=
−→ L2(Z[t−]).

(4) Q
Z[t−]
0 : t2Ĥ1(Z2; Z[t−])/{p2 − p : p ∈ t2Ĥ1(Z2; Z[t−])}

∼=
−→ N−L2(Z[t−]).

The isomorphism in (1) is of abelian groups, in (2) of V –modules, and in (3)
and (4) of Vod–modules.

To prove this, we will need the following lemma, which is similar to [23, Propo-
sition 41.3(v)] and [11, Proposition 2.11(ii)].

Lemma 4.7 Let R be a principal ideal domain with involution. Any ξ ∈
ker(ε0∗ : L2n(R[t±]) → L2n(R)) can be represented by a (−1)n–quadratic form
(M [t], λ, µ) for which there is a free R–summand L ⊂ M , such that L[t] = L[t]⊥

(a “symmetric Lagrangian”).

Proof By Higman Linearization ([10, Lemma 3.6ab], also [21, Proposition
5.1.3]), extended to the case t 7→ −t, one can represent ξ by a form (M [t], λ, µ)
= (M [t], λ0 + tλ1, µ0 + tµ1). Here M is a finitely generated free R–module;
M [t] = R[t]⊗RM ; and λ0(x, y), λ1(x, y) are R–valued. A similar interpretation
holds for µ0 + tµ1 .
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It follows that (M,λ0, µ0) is a (−1)n–quadratic form and (M,λ1, µ1) is an
ε(−1)n–quadratic form where t 7→ εt. Since λ0 and λ0 + tλ1 are nonsingular,
the R–map ν = (Ad λ0)

−1 ◦ Adλ1 : M → M is nilpotent and satisfies:

λ1(x, y) = λ0(νx, y) = ελ0(x, νy), for all x, y ∈ M.

Choose k ≥ 0 so that νk+1 = 0, but νk 6= 0. First assume ν > 0. Let

νk(M) = {x ∈ M : ax ∈ νk(M) for some a ∈ R − 0}.

This is a summand of M . Pick a basis element e1 ∈ νkM . Then ν(e1) = 0,
and λ0(e1, e1) = 0.

Set m = (M,λ0), S1 = Re1 . Then S1 is a subLagrangian for m and ν induces
a nilpotent map νS1 : S⊥

1 /S1 → S⊥
1 /S1 . Repeat this step on the subLagrangian

construction mS1 = (S⊥
1 /S1, (λ0)S1), getting e2 , etc., until one obtains a basis

{e1, e2, . . . , em} for a summand S of M satisfying:

S ⊂ S⊥, ν(S⊥) ⊂ S.

The Witt class of mS = (S⊥/S, (λ0)S) is zero because ξ ∈ ker(ε0∗). So by
adding a hyperbolic form, if necessary, to the original (M [t], λ, µ), we may
as well assume mS is hyperbolic. We can therefore find additional elements,
em+1, . . . , ek ∈ S⊥ , whose images in S⊥/S form a basis for a Lagrangian of
mS . It follows that L =< e1, . . . , ek > is a summand of M satisfying:

L⊥ = L (relative to λ0); ν(L) ⊂ L.

Therefore L[t] = L[t]⊥ (relative to λ).

Proof of Theorem 4.6 Let R = Z or Z2 . Let n = 0 or 1. Let ξ ∈
N±L2n(R) = ker(ε0∗ : L2n(R[t±] → L2n(R)). By Lemma 4.7, we may write
ξ = [M [t], λ, µ], where M is a free R–module containing a free summand L for
which L[t] = L[t]⊥ . Since λ is an even form, any R–basis {e1, . . . , ek} for L
extends to an R[t]–symplectic basis {e1, . . . , ek, f1, . . . , fk} for (M [t], λ). So

ξ =

k∑

i=1

[Ppi,qi
] where pi = µ(ei), qi = µ(fi).

We use this expression for ξ repeatedly below.

Our first step is to show that the maps P
R[t±]
2 and Q

Z[t−]
0 of Theorem 4.6 are

surjective. We start with P
R[t±]
2 . Note that P

R[t±]
2 [1] = [P1,1] generates the

image of L2(R), so we just need to show that every ξ ∈ N±L2(R) is in the
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image of P2 . By the first paragraph of this proof and parts (6) and (2) of
Lemma 4.3,

ξ =
k∑

i=1

[Ppi,qi
] =

k∑

i=1

[Ppiqi,1] = P
R[t±]
2 (

k∑

i=1

piqi).

To see Q
Z[t−]
0 is surjective, consider ξ =

∑k
i=1 [Ppi,qi

] ∈ N−L0(Z) as before.

Note pi, qi ∈ Ĥ0(Z2; Z[t−]) = tZ2[t
2]. Therefore, write pi ≡ ritri (mod 2Z[t−])

and qi ≡ sitsi (mod 2Z[t−]) where ri, si ∈ Z[t−]. Then, with the help of
Lemma 4.3(5), one sees

ξ =
k∑

i=1

[Ppi,qi
] =

k∑

i=1

[Pritri,sitsi
] =

k∑

i=1

[Psiritrisi,t] = Q
Z[t−]
0 (

k∑

i=1

sirit
2risi).

Now we need to prove injectivity of the four maps. We start with ε0∗ . By
the first paragraph of the proof, every ξ ∈ ker(ε0∗ : L0(Z[t] → L0(Z)) can be
represented by a quadratic form (M [t], λ, µ) where M [t] has a free summand
L[t] so that for all x ∈ L[t], one has λ(x, x) = 0. But 2µ(x) = λ(x, x) ∈ Z[t],
so µ|L[t] = 0. Thus L[t] is a Lagrangian and so ξ = 0. Hence ε0∗ is injective.

For a field F of characteristic 2, there is a well-defined epimorphism called the
Arf invariant (see [1], [24])

Arf : L2n(F ) → F/{x2 + x : x ∈ F}, [M,λ, µ] 7→
k∑

i=1

µ(ei)µ(fi),

where {e1, . . . ek, f1, . . . fk} is a symplectic basis for (M,λ). Applying this to
the function field Z2(t) and then restricting to the subring Z2[t], one obtains
an epimorphism

arf : L2n(Z2[t]) → Z2[t]/{x
2 + x : x ∈ Z2[t]}.

(Note, there is a subtle point here – one needs that Z2[t]/{x
2 +x : x ∈ Z2[t]} →

Z2(t)/{x
2 + x : x ∈ Z2(t)} is injective. This can be shown using the fact that

Z2[t] is a PID and hence integrally closed.)

We now return to the proof of injectivity of P
R[t]
2 where R = Z or Z2 . Let

r : L2(R[t]) → L2(Z2[t]) be mod 2 reduction or the identity map. Then P
R[t]
2

is injective since arf ◦ r ◦ P
R[t]
2 is the identity map.

To show that P
Z[t−]
2 is injective we consider mod 2 reduction r : L2(Z[t−]) →

L2(Z2[t]). We will show

arf ◦ r ◦ P
Z[t−]
2 : Z2[t

2]/{x2 − x : x ∈ Z2[t
2]} → Z2[t

2]/{x2 − x : x ∈ Z2[t]}
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is injective. Suppose (arf ◦ r ◦ P
Z[t−]
2 )[p] = [p] = 0 for some p ∈ Z2[t

2]. This
last equality means p = x2 − x for some x ∈ Z2[t

2]. Since x2 and x2 − x are
both in Z2[t

2], we see x ∈ Z2[t
2] and thus [p] = 0 ∈ Z2[t

2]/{x2−x : x ∈ Z2[t
2]}.

Hence P
Z[t−]
2 is injective.

To show that Q
Z[t−]
0 is injective we consider mod 2 reduction r : L0(Z[t−]) →

L0(Z2[t]). We will show

arf ◦ r ◦ Q
Z[t−]
0 : t2Z2[t

2]/{x2 − x : x ∈ t2Z2[t
2]} → Z2[t

2]/{x2 − x : x ∈ Z2[t]}

is injective. Suppose (arf ◦ r ◦Q
Z[t−]
0 )[t2p] = [t2p] = 0 for some p ∈ Z2[t

2]. This
last equality means t2p = x2 − x for some x ∈ Z2[t

2]. Since x2 and x2 − x are
both in Z2[t

2], we see x ∈ Z2[t
2]. Set x = c+ y where c ∈ Z2 and y ∈ t2Z2[t

2].
Clearly y2 − y = (x2 − x) + (c2 − c) = x2 − x = t2p. Thus [t2p] = 0 in the

domain. Hence Q
Z[t−]
0 is injective.

We can now calculate Lev(Z[t±], 2).

Theorem 4.8 (1) There is an isomorphism of V –modules,

V/〈2, V2 − 1〉 ∼=
tZ2[t]

(V2 − 1)tZ2[t]

P
∼= L̃ev(Z[t], 2);

P[p] =

[
Z2[t]

2,

(
0 1/2

1/2 0

)(
p
1

)]
.

(2) L̃ev(Z[t−], 2) = 0.

Proof (1) By Proposition 4.2, α∗ : L̃0(Z2[t]) → L̃ev(Z[t], 2) is an isomor-
phism. Then (α∗)

−1 ◦ P is the isomorphism of Theorem 4.6(2).

(2) Let m = (M, b, q) be a quadratic linking form of exponent 2 with even
type over Z[t−]. Then M admits a symplectic basis over Z2[t]. This means m
is an orthogonal sum of terms of the form Pp,g , where p, g ∈ Z[t2]. By parts
(2) and (4) of Lemma 4.3, [m] is a sum of terms of the form [Pt4n+2,1].

But [Pt4n+2,1] = 0 in L̃(Z[t−], 2), because 〈e + t2n+1f〉 is a Lagrangian for
Pt4n+2,1 . To see this, we compute:

q(e1 + t2n+1e2) = t4n+2 + t4n+2 + {1 + ∗}(t2n+1/2) = {1 + ∗}(t2n+1/2) = 0.

This proves L̃ev(Z[t−], 2) = 0.
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5 Characteristic elements and the proof of Theorem

1.5

In this section we write R for Z[t], Z[t−], or Z. For any R–module M and
any k ∈ N we write

kM = {x ∈ M : kx = 0}.

Let N be a submodule of a length one R–module M of exponent 2n , for some
n. The closure of N in M is:

N = {x ∈ M : px ∈ N for some p ∈ R r 2R}.

By Corollary A.5 of the Appendix, N is the unique smallest colength one
submodule of M which contains N . We will use this concept below.

The goal of this section is to prove:

Theorem 5.1 Let R = Z[t±] or Z. There is a short exact sequence:

0 → L(R, 2) → L(R, 〈2〉)
Q
−→ Z2 → 0

Moreover, L(R, 2n) → L(R, 2n+1) is an isomorphism if n ≥ 2.

We will then prove Theorem 1.5 as a corollary of Theorem 5.1.

Construction of Characteristic Elements vo,v1 Fix an integer n ≥ 1
and a quadratic linking form m = (M, b, q) for which 2nM = 0. We construct

elements v
(n)
0 (m), v

(n)
1 (m) ∈ 2M . They depend on M, b, and n.

Recall that Ĥ1(Z2;R) is an R/2R–module via [a] ◦ [x] = [axā]. Consider the
R–linear map

φ : M → Ĥ1(Z2;R), φ(x) = {1 + ∗}2n−1b(x, x) = 2nq(x) ∈ Ĥ1(Z2;R).

Here {1 + ∗} : 1
2R/R → Ĥ1(Z2;R) is given by [x] 7→ [x + x̄] ∈ Ĥ1(Z2;R). It is

bijective if R = Z[t] or Z.

The map φ measures the failure of m to be of even type.

As an R/2R–module, Ĥ1(Z2;R) is free on the basis {[1], [t]} if R = Z[t] and
on the basis {[1]} if R = Z[t−] or Z. Therefore, if R = Z[t], there are R–maps
φ0, φ1 : M → R/2R, uniquely specified by the rule

φ(x) = φ0(x) ◦ [1] + φ1(x) ◦ [t].
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If R = Z[t−] or Z, we get a single map φ0 : M → R/2R, uniquely specified by

φ(x) = φ0(x) ◦ [1].

We define φ1 to be 0 in these cases.

The map Ad b : M → M∧ restricts to an isomorphism

2M
∼=
−→ 2(M

∧) = HomR(M,
1

2
R/R).

We will change the target using the isomorphism {2} : 1
2R/R

∼=
−→ R/2R sending

x + R to 2x + 2R.

Therefore there are elements vi = v
(n)
i (m) ∈ 2M , defined by

vi = (Ad b)−1({2}−1 ◦ φi).

In other words
{2}b(vi, x) = φi(x) for all x ∈ M .

If R = Z[t−] or Z, then v1 = 0.

We conclude that v0, v1 ∈ 2M are characterized by the fact that for all x ∈ M :

{2}2n−1b(x, x) = ({2}b(v0, x))2 + ({2}b(v1, x))2t ∈ Z2[t], if R = Z[t], (4)

{2}2n−1b(x, x) = ({2}b(v0, x))2 ∈ Z2[t
2], if R = Z[t−], (5)

{2}2n−1b(x, x) = ({2}b(v0, x))2 = {2}b(v0, x) ∈ Z2, if R = Z. (6)

Proposition 5.2 The construction above satisfies the following properties:

(1) If m = m′ ⊕ m′′ (orthogonal direct sum), then

v
(n)
i (m′ ⊕ m′′) = v

(n)
i (m′) ⊕ v

(n)
i (m′′).

(2) Suppose L ⊂ M and 2n−1b(x, x) = 0, for all x ∈ L. Then v
(n)
i (m) ∈ L⊥ .

So if L is a Lagrangian for m, then v
(n)
i (m) ∈ L, and q(v

(n)
i (m)) = 0 for

each i.

(3) v
(n)
i (m) ∈ 2n−1M , for i = 0, 1.

Proof (1) This is obvious from the definitions.

(2) This is clear from (4), (5), and (6), because φ(L) = 0.

(3) In general, (2kM)⊥ = 2kM . This implies (2kM)⊥ = (2kM)⊥⊥ = (2kM),
by Proposition A.6 in the Appendix. So we must only show that vi ∈ (2n−1M)⊥ ,
for i = 0, 1. But this is clear from (2) above, if we set L = 2n−1M .
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There is one crucial case in which we can slightly strengthen Proposition 5.2(3),
which we describe now. A quadratic linking form (M, b, q) is irreducible if for
all x 6= 0 in M , we have q(x) 6= 0.

Lemma 5.3 Let m = (M, b, q) be an irreducible quadratic linking form over

R, with 4M = 0. Then v
(2)
i (m) ∈ 2M , for each i.

Proof We assume R = Z[t±]; in the R = Z case there is nothing to prove by
Proposition 5.2(3). For any p ∈ Z[t] r 2Z[t], let M(p) denote the Z[t]–module
generated by two elements φ, τ , subject only to the two relations:

2τ = 0, 2φ = pτ.

Note that M(p) can also be viewed as the submodule 〈[p], [2]〉 of Z4[t]. Hence
by Corollary A.4 M(p) has length one.

Its dual, M(p)∧ = HomR(M, QR/R), is generated by two homomorphisms Φ, T
defined by:

Φ(φ) =
p

4
, Φ(τ) =

1

2
= T (φ), T (τ) = 0.

Note M(p) ∼= M(p)∧ .

Since 4M = 0, multiplication by 2 gives a monomorphism ×2: M/2M → 2M
of finitely generated torsion-free modules over the principal ideal domain Z2[t].
By the structure theorem for such modules, we can find bases {τ1, τ2, . . . , τl}
for 2M , and {[φ1], [φ2], . . . , [φk]} for M/2M over Z2[t], (where φi ∈ M, i =
1, . . . , k), so that 2φi = piτi for some pi ∈ Z[t] r 2Z[t], whose class [pi] ∈ Z2[t]
divides [pi+1], for 0 < i < k . Note that 0 ≤ k ≤ l.

It follows that M = M(p1) ⊕ M(p2) ⊕ . . . M(pk) ⊕ N , where N ∼= Z2[t]
l−k

is the submodule with basis {τk+1, . . . , τl}. Therefore, M∧ is spanned by
Φ1, . . . ,Φk, T1, . . . , Tl , and N∧ is spanned by Tk+1, . . . , Tl .

Now rankZ2[t](Ĥ1(Z2;R)) = 1 or 2. Since m is irreducible,

4q : M/2M → Ĥ1(Z2;R)

is an Z2[t]–linear monomorphism. So k ≤ 2 if R = Z[t]; k ≤ 1 if R = Z[t−].
The rest of the proof breaks into cases depending on the value of k.

Case One Assume k = 0. By Proposition 5.2(3), v
(2)
i (m) ∈ 2M , but 2M =

2M since 2M = 0.

Case Two Assume k = 1. We have M = M(p1) ⊕ N . Because b is nonsin-
gular, (Ad b)(φ1) ≡ Φ1 (mod 2(M

∧)), noting that M/2M and M∧/2(M
∧) are
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both free and rank 1 over Z2[t] with bases φ1 and Φ1 . Therefore, 2b(φ1, φ1) =
p1

2 . We have:

p1 = {2}2b(φ1, φ1) = 4q(φ1) = q(p1τ1) = (p1)
2q(τ1) ∈ Z2[t].

So p1q(τ1) = 1 in Z2[t]. In particular, [p1] = 1 ∈ Z2[t], and so 2M = 2M since
M = Z4[t] ⊕ Z2[t]

j . So again Proposition 5.2(3) proves the result.

Case Three Assume k = 2. Hence R = Z[t] and M = M(p1) ⊕ M(p2) ⊕ N.

Claim [p1] = [p2] ∈ Z2[t].

Proof of Claim Write [p2] = [p1r] where r ∈ Z[t]. Then let A : 2M ∼= 2M∧

be the restriction of the isomorphism Ad b : M → M∧ . Let
(

α β
γ δ

)
∈ GL2(Z2[t])

be the matrix of A relative to the bases {τ1, τ2} and {T1, T2} for 2M and 2M∧

respectively. We then have

p1

2
γ = p1γT2(φ2) = p1A(τ1)(φ2) = p1b(τ1, φ2) = p1b(φ2, τ1) =

b(2φ2, φ1) = p2A(τ2)(φ1) = p1rβT1(φ1) =
p1

2
rβ ∈

1

2
Z[t]/Z[t].

Therefore γ = rβ . The matrix
(

α β
rβ δ

)
is therefore nonsingular, αδ = 1 + rβ2 ,

and consequently δ is relatively prime to [r].

On the other hand,

p1rδ = p2δ = p2{2}
δ

2
= {2}b(p2τ2, φ2) = 4q(φ2) = q(p2τ2) = p2

1r
2q(τ2) ∈ Z2[t].

Therefore δ = p1r q(τ2), and so [r] obviously divides δ . This implies [r] = 1 ∈
Z2[t], proving the claim.

Returning to the proof of Case Three, we write M = M(p)⊕M(p)⊕N . Note
that 4q(φi) = p2q(τi), i = 1, 2. Therefore 4q(M) ⊂ p ◦ Ĥ1(Z2; Z[t]), and so
{2}b(vi,M) ⊂ pZ2[t], which tells us vi ∈ pM . But, by construction of M we
see pM ∩ 2M = 2M , so by Proposition 5.2(3) again, vi ∈ 2M, for i = 0, 1.
This completes the proof.

Remark 5.4 A study of the above proof shows that M(p) has the following
two cool properties. Each length one Z[t]–module of exponent four is isomorphic
to a direct sum M(p1) ⊕ . . . M(pk) ⊕ Z2[t]

j . If [p] 6= 0, 1, then M(p) admits a
nonsingular bilinear linking form, but no quadratic linking form.
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Our proof of Theorem 5.1 is largely accomplished by the following definition
and the next two lemmas.

Definition 5.5 (of Q
(n)
0 , Q

(n)
1 : L(R, 2n) → Ĥ1(Z2;R))

Let m = (M, b, q) be a quadratic linking form over R with 2nM = 0. By

Proposition 5.2(3), the characteristic elements satisfy vi = v
(n)
i (m) ∈ 2n−1M .

Therefore if n 6= 1, b(vi, vi) = 0 for each i, so that q(vi) ∈ Ĥ1(Z2;R). (Recall
Ĥ1(Z2;R) is Z2[t] or Z2[t

2] or Z2 .) We set

Q
(n)
i (m) = q(vi) ∈ Ĥ1(Z2;R), if n > 1,

Q
(1)
i (m) = q(vi) ∈

1

2
{x ∈ R : x = x}/(1 + ∗)R, if n = 1.

Then Q
(n)
i is additive, and Q

(n)
i (m) = 0 if m admits a Lagrangian, by Propo-

sition 5.2(2). So each Q
(n)
i is a well-defined homomorphism on L(R, 2n).

Obviously, if R = Z or Z[t−], Q
(n)
1 = 0 for all n. We define

Lε(R, 2n) = ker Q
(n)
0 ∩ ker Q

(n)
1 ⊂ L(R, 2n). (7)

If m is a quadratic linking form of exponent 2n with even type, v
(n)
0 (m) =

v
(n)
1 (m) = 0. Hence

ιn(Lev(R, 2n)) ⊂ Lε(R, 2n). (8)

Lemma 5.6 (1) For all n ≥ 3, Lε(R, 2n) = L(R, 2n) .

(2) Furthermore Q
(2)
1 = 0, and there is a short exact sequence:

0 → Lε(R, 4) → L(R, 4)
Q

(2)
0−−−→ Z2 → 0.

(3) Finally, for each i, Q
(1)
i (L̃(R, 2)) ⊂ Ĥ1(Z2;R).

Proof (1) First suppose n ≥ 3, and [m] = [M, b, q] ∈ L(R, 2n). We show for

each i, that q(v
(n)
i (m)) = 0. This will prove Lε(R, 2n) = L(R, 2n).

By Proposition 5.2(3), v
(n)
i (m) ∈ 2n−1M . Therefore pv

(n)
i (m) ∈ 2n−1M , for

some p ∈ R such that [p] 6= 0 in R/2R. Therefore p2q(v
(n)
i (m)) ∈ q(2n−1M) =

22n−2q(M) = 0, because 2n − 2 ≥ n + 1. This implies q(v
(n)
i (m)) = 0.

(2) Next we prove Q
(2)
1 = 0 and im (Q

(2)
0 ) ⊂ Z2 .
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Let m = (M, b, q) be a quadratic linking form with 4M = 0. Let vi = v
(2)
i (m).

We must show that q(v1) = 0, and q(v0) = 0 or 1. If we choose, we may replace
m by mS = (S⊥/S, bS , qS), where S is any subLagrangian of m. Moreover,
S = 〈x〉 is a subLagrangian, for any x ∈ M for which q(x) = 0, by Corollary
A.5 of the Appendix. This means we may as well assume that m is irreducible.
Therefore, by Lemma 5.3, we may write v0 = 2y0, v1 = 2y1 , for some y0, y1 .
Define bij = {2}b(vi, yj) = bji ∈ R/2R. Note

bii = {2}2b(yi, yi) = 4q(yi) = q(vi).

From (4) we see

bii = {2}2b(yi, yi) = b2
0i + b2

1it.

(When R = Z[t−] or Z, these equations simplify to: b00 = b2
00 , which immedi-

ately gives Q
(2)
0 (m) = 0 or 1, Q

(2)
1 = 0).

But, in the ring R/2R = Z2[t], the equations

b00 = b2
00 + b2

10t

b11 = b2
10 + b2

11t

have only two solutions: 0 = b11 = b10; b00 = 0 or 1. For no polynomial of

the form p2−p ∈ Z2[t] is an odd degree polynomial if deg(p) > 0. So Q
(2)
0 (m) ∈

{0, 1}, Q
(2)
1 (m) = 0, and Lε(R, 4) = ker(Q

(2)
0 ) ∩ ker(Q

(2)
1 ) = ker(Q

(2)
0 ).

To finish the proof of (2), we note that Q
(2)
0 ([m]) = 1 when

M = Z4[t
±], b(x, y) =

xȳ

4
, q(x) =

xx̄

4
for all x, y ∈ M.

In this case v0 = 2. Consequently, Q
(2)
0 (m) = q(2) = 1. This proves (2).

(3) This is similar to the argument for (2). Let [m] ∈ L(R, 2), and assume

ε0∗([m]) = 0. To show Q1
i (m) ∈ Ĥ1(Z2;R), we only have to show 2q(v

(1)
i (m)) =

0 for each i. Set vi = v
(1)
i (m). This time set aij = {1 + ∗}b(vi, vj), so that

2q(vi) = aii . Again from (4), (5), (6) we get

a00 = a2
00 + a2

10t

a11 = a2
10 + a2

11t.

This yields again that 2q(v1) = a11 = 0, 2q(v0) = a00 = 0 or 1, and a10 =
b(v1, v2) = 0. But if 2q(v0) were equal to 1, we would recall ε0∗([m]) = 0

in L(Z, 2), and conclude 1 = ε0(1) = ε0(Q
(1)
0 ([m]) = Q

(1)
0 (ε0∗[m]) = Q

(1)
0 (0),

which is impossible. This proves Q
(1)
i (L̃(R, 2)) ⊂ Ĥ1(Z2;R).
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Lemma 5.7 (1) For n ≥ 1, Lev(R, 2n)
ιn−→ Lε(R, 2n) is an isomorphism.

(2) For n ≥ 2, L(R, 2n−1)
jn−1
−−−→ Lev(R, 2n) is an isomorphism.

Proof Throughout this proof we use without comment Corollary A.5 which
states that a submodule N of a length one module M has colength one if and
only if N = N . For example, a subLagrangian S satisfies S = S .

(1) We construct an inverse Gn : Lε(R, 2n) → Lev(R, 2n) to ιn for each n ≥ 1.

Let [m] = [M, b, q] ∈ Lε(R, 2n). Set vi = v
(n)
i (m). By definition of Lε(R, 2n)

and by Proposition 5.2(3),

T (m) = 〈v0, v1〉

is a subLagrangian. (If n = 1 and R = Z[t], we must also use the conclusion
b(v1, v0) = 0 from the proof of Lemma 5.6). By the definition of vi , we see
2nq(x) = 0 for all x ∈ T (m)⊥ , and so mT (m) is of exponent 2n with even type.
We define

g(m) = [mT (m)] ∈ Lev(R, 2n).

Note g(m ⊕ m′) = g(m) + g(m′). Moreover if m = (M, b, q) has a Lagrangian
L, then by Proposition 5.2(2), T (m) ⊂ L, and so L/T (m) is a Lagrangian for
mT (m) . Therefore g(m) = 0. Therefore g induces a well defined homomor-
phism,

Gn : Lε(R, 2n) → Lev(R, 2n), Gn([m]) = [mT (m)].

Since m and mT (m) share the same Witt class in Lε(R, 2n), ιnGn = Id. When
[m] ∈ Lev(R, 2n), note T (m) = 0, m = mT (m) , and so Gnιn = Id. Therefore
Gn is the inverse of ιn .

(2) Suppose n ≥ 2. We construct an inverse Fn : Lev(R, 2n) → L(R, 2n−1) to
jn−1 . Let m = (M, b, q) ∈ Λev(R, 2n). Then

S(m) = 2n−1M

is a subLagrangian. Its subLagrangian construction mS(m) has exponent 2n−1

because 2n−1(S(m)⊥) ⊂ 2n−1M ⊂ S(m). We therefore define a homomorphism

f : Λev(R, 2n) → L(R, 2n−1); f(m) = [mS(m)].

Claim A Let S be any subLagrangian of m ∈ Λev(R, 2n) such that

2n−1S⊥ ⊂ S ⊂ S(m). (9)

Then f(m) = [mS ]. (The first inclusion ensures that mS ∈ Λ(R, 2n−1)).
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Proof of Claim A A Lagrangian for

(S⊥/S, bS , qS) ⊕ (S(m)⊥/S(m),−bS(m),−qS(m))

is
∆ = {[x] ⊕ [x] : x ∈ S(m)⊥}.

The second inclusion of (9) ensures that ∆ ⊂ S⊥/S⊕S(m)⊥/S(m). This proves
Claim A.

Claim B If m ∈ Λev(R, 2n) and m has a Lagrangian, then f(m) = 0.

Proof of Claim B Suppose m = (M, b, q) is a quadratic linking form, and
2nM = 0, 2nq = 0 and L is a Lagrangian for m. We must prove f(m) = 0.

Let S = L ∩ S(m), where S(m) = 2n−1M . Obviously S ⊂ S(m), and L/S is
a Lagrangian for mS . Therefore, by Claim A, we can show f(m) = [mS ] = 0
by showing 2n−1S⊥ ⊂ S , which we now do.

By Proposition A.6, 2n−1M = (2n−1M)⊥⊥ = ( 2n−1M)⊥ . So,

S⊥ = (L ∩ 2n−1M)⊥ = (L⊥ ∩ 2n−1M )⊥ = (L⊥ ∩ (2n−1M)⊥)⊥

= (L + 2n−1M)⊥⊥ = L + 2n−1M.

Therefore, 2n−1S⊥ = 2n−1(L + 2n−1M) ⊂ 2n−1L ⊂ L ∩ 2n−1M = S.

This proves 2n−1S⊥ ⊂ S , and therefore proves Claim B.

By Claim B, f induces a homomorphism:

Fn : Lev(R, 2n) → L(R, 2n−1); Fn([m]) = [mS(m)].

Since m and mS(m) share the same Witt class in Lev(R, 2n), we see jn−1Fn =
Id. If [m] ∈ L(R, 2n−1), then S(m) = 0 and m = mS(m) . So Fnjn−1 = Id.
This shows Fn is inverse to jn−1 .

Proof of Theorem 5.1 By the definition and Lemmas 5.7, 5.6(1), L(R, 〈2〉)
is the direct limit of the maps ιn+1◦jn : L(R, 2n) → L(R, 2n+1), and these maps
are isomorphisms for n ≥ 2. So in : L(R, 2n) → L(R, 〈2〉) is an isomorphism if
n ≥ 2. Define

Q : L(R, 〈2〉) → Z2 by: Q ◦ i2 = Q
(2)
0 : L(R, 4) → Z2.

From Lemmas 5.7 and 5.6, the following sequence is exact

0 → L(R, 2)
i1−→ L(R, 〈2〉)

Q
−→ Z2 → 0.
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Proof of Theorem 1.5 Let R = Z[t] or Z[t−]. From Theorem 5.1 we get a
commutative diagram with exact rows, whose vertical maps are induced by the
augmentation ε0 :

0 −−−−→ L(R, 2)
i1−−−−→ L(R, 〈2〉)

Q
−−−−→ Z2 −−−−→ 0

y
yε0

yε
(2)
0

yId

y

0 −−−−→ L(Z, 2)
i1−−−−→ L(Z, 〈2〉)

Q
−−−−→ Z2 −−−−→ 0

Since L̃(R, 2) = ker ε0 and L̃(R, 〈2〉) = ker ε
(2)
0 , a simple diagram chase yields

i1 : L̃(R, 2) ∼= L̃(R, 〈2〉).

6 Proof of Theorem 1.7

In this section we prove Theorem 1.7 by computing L̃(Z[t±], 2), the reduced
Witt group of quadratic linking forms over Z[t±] of exponent 2.

We begin with a piece of notation: For p(t) ∈ Z2[t], define pod(t), pev(t) ∈ Z2[t]
by the equation

p = p2
ev + tp2

od = pev(t
2) + tpod(t

2) ∈ Z2[t].

Definition 6.1 Let [m] ∈ L̃(Z[t], 2). Set vi = v
(1)
i ([m]). Define

B = (B1, B2) : L̃(Z[t±], 2) → tZ2[t] × tZ2[t]

B1([m]) = q(v0) + tq(v1); (10)

B2([m]) = (t (q(v1)od))2 + t (q(v0)od)2. (11)

Note B is a homomorphism. By (7), L̃ε(Z[t], 2)=ker (B). (Indeed, if B2([m])=
0, then q(vi) = (q(vi)ev)2 for i = 0, 1. If, in addition, B1([m]) = 0, then q(v0)
and q(v1) are zero.) By Lemma 5.6, B takes values in Ĥ1(Z2;R)×Ĥ1(Z2;R)t =
Z2[t]× tZ2[t]. But since ε0 ◦Q(1) = Q(1) ◦ε0∗ , and ε0∗([m]) = 0, B takes values
in tZ2[t] × tZ2[t].

The following example shows that L̃(Z[t], 2)
B
−→ tZ2[t] × tZ2[t] is an epimor-

phism.

Example 6.2 Let p, g ∈ Z[t]. For the quadratic linking form

Np,g =

(
Z2[t]

2,

(
p/2 1/2
1/2 0

)
,

(
p/2
g

))
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we have v0 = (0, pev) and v1 = (0, pod) by equation (4). Hence,

q(v0) = p2
evg, q(v1) = p2

odg. (12)

B([Np,g]) = (pg, (god)2tp). In particular,

B([Ntp,1]) = (tp, 0); (13)

B([N1,tp] − [Nt,p]) = (0, tp). (14)

Proof of Theorem 1.7

(1) The above discussion, together with Lemma 5.7(1) and Theorem 4.8(1)
(where P is defined), show that the following sequence is exact:

0 → tZ2[t]/(V2 − 1)tZ2[t]
ι1◦P−−−→ L̃(Z[t], 2)

B
−→ tZ2[t] × tZ2[t] → 0.

In particular, L̃(Z[t], 2) is generated by those elements [Np,g], for which either
p or q is divisible by t (cf Lemma 4.3(3)). By Lemma 4.3, parts (2), (3), and
(4), the map

j1 : tZ4[t]/(2V2 − 2)tZ4[t] → L̃(Z[t], 2); j1[tp] = [Ntp,1]

is a well-defined homomorphism of abelian groups. It satisfies j1[2tp] = ι1P[tp].
It is clearly a V –map. By Example 6.2,

B1j1[tp] = [tp]; B2j1[tp] = 0.

Therefore the following sequence is exact.

0 → tZ4[t]/(2V2 − 2)tZ4[t]
j1
−→ L̃(Z[t], 2)

B2−→ tZ2[t] → 0 (15)

We next claim that the map B2 : L̃(Z[t], 2) → [tZ2[t]] is a V –map, where [tZ2[t]]
is the V –module defined by (2). In fact,

V2n+1B2([Np,g]) = tp(t2n+1) (tngod(t2n+1))2 =

B2([Np(t2n+1),g(t2n+1)]) = B2V2n+1([Np,g]);

V2B2([Np,g]) = 0 = B2([Np(t2),g(t2)]) = B2V2([Np,g]).

proving the claim. Therefore (15) becomes an exact sequence of V –modules. A
right splitting for it is the map

j2 : [tZ2[t]] → L̃(Z[t], 2); j2[tp] = [N1,tp] − [Nt,p].

Note j2[tp + t2q] = [N1,tp] − [Nt,p] = j2[tp], so j2 is well defined. Similarly, j2

is a homomorphism because

j2[tp] + j2[tq] − j2[tp + tq] = [Ptp,tq] − [Pt2p,q] = 0,
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by Lemmas 4.3(8) and 4.3(6). It is a splitting by equation (14). It is a V –map
by Lemma 4.3(7) and the following calculation:

V2(j2(tp)) = [N1,t2p2] − [Nt2,p2] = 0 by Lemma 4.3(5).

j2V2(tp) = 0, for all tp ∈ [tZ2[t]] by (2).

V2n+1(j2(tp)) = [N1, t2n+1p(t2n+1)] − [Nt2n+1, p(t2n+1)]

= [N1, t2n+1p(t2n+1)] − [Nt, t2np(t2n+1)] by Lemma 4.3(5).

= j2V2n+1(tp) by (2).

Therefore, we get an isomorphism of V –modules, proving Theorem 1.7(1),

j1 + j2 :
tZ4[t]

(2V2 − 2)tZ4[t]
⊕ [tZ2[t]] → L̃(Z[t], 〈2〉).

(2) If [m] ∈ L̃(Z[t−], 2), then q(v
(1)
0 (m)) ∈ t2Z2[t

2], since ε0q(v
(1)
0 (m)) =

0 and q(v
(1)
0 (m)) ∈ Ĥ1(Z2; Z[t−]) = Z2[t

2], by Lemma 5.6(3). The map

Q
(1)
0 : L̃(Z[t−], 2) → t2Z2[t

2] is a homomorphism by Lemma 4.3(2). The map

Q
(1)
0 is injective by Theorem 4.8(2) and Lemma 5.7(1). In fact Q

(1)
0 is an iso-

morphism because Q
(1)
0 ([Nt2p(t2),1]) = t2p(t2), by equation (12). The inverse

isomorphism to Q
(1)
0 is the Vod–map:

j : t2Z2[t
2] → L̃(Z[t−], 2); j(t2p(t2)) = [Nt2p(t2),1].

The reader may note that UNil 1(Z; Z, Z) has not been discussed here. In fact
it is already known to be zero. See [7], or [10], or [11]. But for the reader’s
convenience we include a short proof.

Proposition 6.3 UNil1(Z; Z, Z) = 0.

Proof By Theorem 1.1 and Proposition 1.4, UNil1(Z; Z, Z) = NL1(Z) =
NL1(Z, 〈2〉), which can be identified with a subgroup of

L−(Z[t], 〈2〉) = QW (Z[t], (Q[t]/Z[t])−,M〈2〉),

the Grothendieck group of skew quadratic linking forms over Z[t]–modules M
with 2nM = 0 for some n.

We will show L−(Z[t], 〈2〉) = 0. Let R = Z[t]. For any (R, (QR/R)−,M〈2〉)–

form, say m = (M,λ, µ), we see µ : M → (QR/R)
(1−∗)(QR/R) = (QR/R)

2(QR/R) = 0. So

µ(x) = 0, and λ(x, x) = 0 for all x ∈ M . If 2nM = 0, n ≥ 2, this implies that
S = 2n−1M is a subLagrangian for m, and mS has exponent 2n−1 . And if
2M = 0, it implies that for any x 6= 0 in M , S = 〈x〉 is a subLagrangian for
m, with rankR/2R(mS) ≤ rankR/2R(m) − 1. Of course this means [m] = 0, as
desired.
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A Appendix: On length and colength and the sub-

Lagrangian construction

Here we prove several properties used in the text about the colength of an R–
submodule. Length and colength were defined in Section 2. We also prove that
the subLagrangian construction produces a nonsingular form in the same Witt
class.

Proposition A.1 Let R be a ring with involution which is torsion free as
an abelian group. Then for any n, (R, QR/R,M2n) satisfies the conditions
of Definition 2.1, where M2n is the class of length one R–modules M with
2nM = 0.

Proof 2.1(2) is obvious.

The first part of 2.1(3) is a standard fact from homological algebra. The proof
of the second part of 2.1(3) amounts to showing that Ext1R(M, QR/R) = 0
for any M ∈ M2n . But ExtiR(M, QR) = 0 for all i ≥ 0, because 2nM =
0 and ×2n : QR → QR is an isomorphism. Therefore Ext1R(M, QR/R) ∼=
Ext2R(M,R) = 0, because M has length one.

Now we prove 2.1(1). Let M ∈ M2n . Clearly 2nM∧ = 0. There is an exact
sequence 0 → F1 → F0 → M → 0, where F0, F1 are finitely generated and free.
Since M∗ := HomR(M,R) = 0, we get a resulting exact sequence 0 → F ∗

0 →
F ∗

1 → Ext1R(M,R) = M∧ → 0. This shows M ∈ M2n . Let d : F → F ∗∗ denote
the double duality isomorphism for any finitely generated free R–module. By
dualizing the above short exact sequence a second time, we get a commutative
diagram with exact rows:

0 −−−−→ F1 −−−−→ F0 −−−−→ M −−−−→ 0
y

ydF0

ydF0

yD

y

0 −−−−→ F ∗∗
0

i1−−−−→ F ∗∗
1 −−−−→ M∧∧ −−−−→ 0

where D denotes the double duality map. Since dFi
is an isomorphism for

i = 0, 1, we conclude that D is too.

Lemma A.2 Let (R,A,M) be any triple satisfying the conditions of Defini-
tion 2.1. Let S be a subLagrangian for some (R,A,M)–form m = (M,λ, µ).
Then mS (as defined in Section 2) is a (R,A,M)–form, and [m] = [mS ] in
QW (R,A,M).
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Proof Since M,M/S ∈ M and 0 → S
i
−→ M → M/S → 0 is exact, we see

S ∈ M and M∧ → S∧ is surjective. Consider the commutative diagram, where
j and k denote inclusions:

0 −−−−→ S
(Ad λ)◦i
−−−−−→ M∧ k∧

−−−−→ (S⊥)∧ −−−−→ 0
yj

yAd(λ)−1

yj∧

0 −−−−→ S⊥ k
−−−−→ M

i∧◦(Ad λ)
−−−−−−→ S∧ −−−−→ 0

The bottom row is exact, and thus, by 2.1(3), so is its dual, the top row.
The exact sequence 0 → S⊥/S → M/S → M/S⊥ → 0 and the isomorphism
M/S⊥ ∼= S∧ ∈ M show S⊥/S ∈ M and hence ker(j∧) ∼= (S⊥/S)∧ . The Snake
Lemma isomorphism S⊥/S = cok(j) ∼= ker(j∧) = (S⊥/S)∧ can be identified
with Ad λS . So mS is nonsingular and is therefore a (R,A,M)–form. To see
[m] = [mS ], note mS ⊕ (−m) has a Lagrangian; it is {([x], x) ∈ (S⊥/S) × M :
x ∈ S⊥}.

Throughout the rest of this appendix, R denotes Z[t].

Proposition A.3 Let M be a finitely generated R–module of exponent 2n

for some n. Then M has length one if and only if for each x 6= 0 in M , the
annihilator ideal satisfies AnnR(x) ⊆ 2R.

Proof ⇒: We will prove the contrapositive. Supposing that x 6= 0 in M and
AnnR(x) * 2R, we will show that LengthR(M) ≥ 2.

Replacing x, if necessary, by 2kx, for some k , we see that we may as well
assume that 2x = 0. Since Z2[t] is a principal ideal domain, AnnR(x) = 〈2, p〉
for some p ∈ R r 2R. Let f : AnnR(x) → Q[t]/Z[t] be the R–map such that
f(2) = 0, and f(p) = 1

2 . f does not extend to an R–map, R → Q[t]/Z[t].
Therefore the exact sequence, 0 → AnnR(x) → R → Rx → 0 shows that
0 6= Ext1R(Rx, Q[t]/Z[t]) ∼= Ext2R(Rx, Z[t]). Since Ext3R(−,−) = 0, the exact
sequence 0 → Rx → M → M/Rx → 0 shows that Ext2R(M, Z[t]) 6= 0. This
implies that LengthR(M) ≥ 2 as claimed.

⇐: Now assume for each x 6= 0 in M , that AnnR(x) ⊆ 2R. We show that
LengthR(M) = 1. The proof is by induction on n. If n = 1 the condition
implies M is a free R/2R–module (because it is R/2R–torsion free). This
implies LengthR(M) = 1. Assume the result is known for modules of exponent
2n−1 . Consider the exact sequence

0 → 2M → M → M/2M → 0,
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where 2M = {x ∈ M : 2x = 0}. For any x ∈ M with [x] 6= 0 in M/2M we
note AnnR([x]) ⊆ AnnR(2x) ⊆ 2R. This implies, by the inductive hypothe-
sis, that LengthR(M/2M) = 1, and also LengthR( 2M) = 1. It follows that
LengthR(M) = 1.

Corollary A.4 Let M be a finitely generated R module of exponent 2n with
length one. Any submodule of M has length one. Also M∧ has length one.

Proof The first claim is immediate from Proposition A.3. To see that M∧

has length one, one applies Proposition A.3, noting that the annihilator ideal of
any element of 2n(Q[t]/Z[t]) (and therefore any element of M∧ ) is principal,
generated by 2k for some k .

Recall the definition of the closure of a submodule N of a length one module
M :

N = {x ∈ M : px ∈ N, for some p ∈ R r 2R}

Clearly N = N . By Proposition A.3, LengthR(M/N) = 1 if and only if
N = N .

Corollary A.5 Let N be a submodule of a length one R–module M . Then
N has colength one in M if and only if N = N . In particular, N has colength
one.

Proposition A.6 Let M be a length one R–module of exponent 2n . Let
b : M×M → Q[t]/Z[t] be a nonsingular linking form (relative to some involution
on R). Let N be a submodule of M . Then N has colength one in M if and
only if N = X⊥ for some X in M . Also N = N⊥⊥ for any N .

Proof Suppose X is a submodule of M for which N = X⊥ . Then

0 → N → M
i∧X◦(Ad b)
−−−−−−→ X∧

is exact, where iX : X → M denotes the inclusion. But im(i∧X ◦ (Ad b)) has
length one by Corollary A.5. Therefore N has colength one in M .

Conversely, suppose N has colength one in M . By Proposition A.1, this implies

M∧ i∧N−→ N∧ → 0 is exact. Set X = ker(i∧N ◦ (Ad b)). This gives us an exact
sequence and its dual:

0 → X
iX−→M

i∧
N
◦(Ad b)

−−−−−−→ N∧ → 0.

0 → N
iN−→M

i∧
X
◦(Ad b)

−−−−−−→ X∧ → 0.
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The second sequence says that N = X⊥ .

Finally we show N = N⊥⊥ . By the definition of N , it is clear that N
⊥

= N⊥ .
But we have just seen that N = X⊥ , for some X ⊂ M . Moreover, X⊥⊥⊥ = X⊥

for all X . So N⊥⊥ = N ⊥⊥ = X⊥⊥⊥ = X⊥ = N .
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