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Abstract

Let B,, be the Artin braid group on n strings with standard generators o7y, ...,
on_1, and let SB,, be the singular braid monoid with generators ail e ,inl,
T1,..-,Tn—1- The desingularization map is the multiplicative homomorphism
n: SB, — Z|B,)] defined by n(si') = oF' and n(r;) = o; —o; ', for 1 <
i < n —1. The purpose of the present paper is to prove Birman’s conjecture,
namely, that the desingularization map 7 is injective.
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1282 Luis Paris

1 Introduction

Define an n—braid to be a collection b = (by,...,by,) of disjoint smooth paths
in C x [0,1], called the strings of b, such that the k-th string by runs mono-
tonically in ¢ € [0,1] from the point (k,0) to some point (((k),1), where ¢
is a permutation of {1,2,...,n}. An isotopy in this context is a deformation
through braids which fixes the ends. Multiplication of braids is defined by
concatenation. The isotopy classes of braids with this multiplication form a
group, called braid group on n strings, and denoted by B,,. This group has a
well-known presentation with generators oy,...,0,-1 and relations

00 = 0%0; if |j—k|>1,
OjOL0j = OROjO} if [j—kl=1.

The group B, has other equivalent descriptions as a group of automorphisms
of a free group, as the fundamental group of a configuration space, or as the
mapping class group of the n—punctured disk, and plays a prominent réle in
many disciplines. We refer to ] for a general exposition on the subject.

The Artin braid group B, has been extended to the singular braid monoid
SB,, by Birman [5] and Baez [I] in order to study Vassiliev invariants. The
strings of a singular braid are allowed to intersect transversely in finitely many
double points, called singular points. As with braids, isotopy is a deformation
through singular braids which fixes the ends, and multiplication is by concate-
nation. Note that the isotopy classes of singular braids form a monoid and not
a group. It is shown in [5] that SB,, has a monoid presentation with generators

afd, . ,Uff_ll, T,...,Tn_1, and relations
UiO'i_lzdi_IO'i:l, 0T = T;0; if 1<i<n-—1,
0i05 = 004, 0T =Tj0;, TiTj =TT, if |Z_]| >1,
0;0j0; = 040,05, 00Ty = Tj0,05, if ‘Z—j’zl.

Consider the braid group ring Z[B,]. The natural embedding B,, — Z[B,)]
can be extended to a multiplicative homomorphism n: SB,, — Z[B,], called
desingularization map, and defined by

nei)y =o', nm)=oi—o;t, if 1<i<n-—1.

This homomorphism is one of the main ingredients of the definition of Vassiliev
invariants for braids. It has been also used by Birman [5] to establish a relation
between Vassiliev knot invariants and quantum groups.

One of the most popular problems in the subject, known as “Birman’s conjec-
ture”, is to determine whether 7 is an embedding (see [B]). At the time of this
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writing, the only known partial answer to this question is that 7 is injective on
singular braids with up to three singularities (see [I7]), and on singular braids
with up to three strings (see [13]).

The aim of the present paper is to solve this problem, namely, we prove the
following.

Theorem 1.1 The desingularization map n: SB, — Z[B,] is injective.

Let S4B, denote the set of isotopy classes of singular braids with d singular
points. Recall that a Vassiliev invariant of type d is defined to be a homo-
morphism v: Z[B,] — A of Z—modules which vanishes on 7(Sg+1By). One of
the main results on Vassiliev braid invariants is that they separate braids (see
Bl, 5], [16]). Whether Vassiliev knot invariants separate knots remains an
important open question. Now, it has been shown by Zhu [I7] that this sepa-
rating property extends to singular braids if n is injective. So, a consequence
of Theorem 1.1 is the following.

Corollary 1.2 Vassiliev braid invariants classify singular braids.

Let T' be a graph (with no loop and no multiple edge), let X be the set of
vertices, and let E = E(T') be the set of edges of I'. Define the graph monoid
of T to be the monoid M(I") given by the monoid presentation

M) = (X |2y =yz if {z,y} € B())".

Graph monoids are also known as free partially commutative monoids or as
right-angled Artin monoids. They were first introduced by Cartier and Foata [7]
to study combinatorial problems on rearrangements of words, and, since then,
have been extensively studied by both computer scientists and mathematicians.

The key point of the proof of Theorem 1.1 consists in understanding the struc-
ture of the multiplicative submonoid of Z[B,,] generated by the set {ac?a~! —
1; € B, and 1 <i <n—1}. More precisely, we prove the following.
Theorem 1.3 Let Q2 be the graph defined as follows.

o T = {ozaizoz_l; a € By, and 1 <i <n — 1} is the set of vertices of §;

o {u,v} is an edge of Q if and only if we have wv = vu in B,,.

Let v: M(Q) — Z[B,] be the homomorphism defined by v(u) =u — 1, for all
u € Y. Then v is injective.
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The proof of the implication Theorem 1.3 = Theorem 1.1 is based on the
observation that SB, is isomorphic to the semi-direct product of M(2) with
the braid group B,,, and that v: M(Q) — Z[B,] is the restriction to M ()
of the desingularization map. The proof of this implication is the subject of
Section 2. Let A;;, 1 <i < j < n, be the standard generators of the pure braid
group PB,,. In Section 3, we show that T is the disjoint union of the conjugacy
classes of the A;;’s in PB,,. Using homological arguments, we then show that
we can restrict the study to the submonoid of M(Q2) generated by the conjugacy
classes of two given generators, A;; and A,,. If {¢,5} N {r,s} # 0, then the
subgroup generated by the conjugacy classes of A;; and A, is a free group,
and we prove the injectivity using a sort of Magnus expansion (see Section 4).
The case {i,j} N{r,s} = 0 is handled using the previous case together with a
technical result on automorphisms of free groups (Proposition 5.1).

Acknowledgement My first proof of Proposition 5.1 was awful, hence I asked
some experts whether they know another proof or a reference for the result. The
proof given here is a variant of a proof indicated to me by Warren Dicks. So, I
would like to thank him for his help.

2 Theorem 1.3 implies Theorem 1.1

We assume throughout this section that the result of Theorem 1.3 holds, and
we prove Theorem 1.1.

Let 0; = oy for 1 < ¢ < n—1. Then SB, is generated as a monoid by

afl, e ,Jff_ll, 61,...,0,_1, and has a monoid presentation with relations
O'Z'O'i_lzJi_lo'izl, UiéizéiO'i, if 1§i§n—1,
0;0j = 0;0;, O’Z’(Sj :(5]'0'7;, (5,(5] :(5]'(5,', if ‘Z—j’ >1,
UZ'UjO'Z' :UjUiO'j, O'Z'Ujéi :5j0'2'0'j, if |Z—j| =1.

Moreover, the desingularization map n: SB,, — Z[B,] is determined by
nefy =o', (&) =02 -1, if 1<i<n-—1.
The following lemma is a particular case of [12], Theorem 7.1.

Lemma 2.1 Let i,j € {1,...,n— 1}, and let 3 € SB,,. Then the following
are equivalent:

(1) Bo7 =03p;
(2) B =6;p5.
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This lemma shows the following.

Lemma 2.2 Let Q) be the graph defined as follows.

o« T= {ad;a™; o€ B, and 1 <i < n — 1} is the set of vertices of Q;
e {i,0} is an edge of Q if and only if we have @0 = 0t in SB,.

Then there exists an isomorphism ¢: M(Q) — M() which sends ad;a~" € T
to ozaizoz_l €Y foralla € B, and1<i<n-—1.

Proof Let o, € B, and i,j € {1,...,n—1}. Then, by Lemma 2.1,

cw ﬁcr?ﬁ ! & (fla)gf =0i(6 ')
s (B! )5 _5,(3a) o adia~l = 85,371

This shows that there exists a bijection ¢: T — T which sends ad;o=t € T
to ozaizoz_l € Y forall «a € B, and 1 < i <n-—1. Let o,08 € B, and
i,j€{1l,...,n—1}. Again, by Lemma 2.1,

(agia™")(Bo3B7) = (Bo3 6~ )(Oéff a™h)
001023 a) = (0~ o2 0)o?
di(a _15025 la) = (« _15025_ @)d;
(B~ tad; Oflﬁ)ffz—ff (B~ 04504 1ﬁ)
(B 045204_1@5 —5(ﬁ lag;a™1)
& (adia™)(80;671) = (B8;87 1) (adia™t)

This shows that the bijection p: T — T extends to an isomorphism ¢: M(Q)
— M(Q). O

A
g
=
=

Now, we have the following decomposition for SB,,.

Lemma 2.3 SB, = M(Q) x B

Proof Clearly, there exists a homomorphism f: M(Q) x B, — SB, which
sends 3 to 8 € SB,, for all 3 € B,, and sends @ to @ € SB, forall 4 € T. On
the other hand, one can easily verify using the presentation of SB,, that there
exists a homomorphism ¢g: SB,, — M(Q ) x B, such that g(cF') = o' € B,

foralli € {1,...,n—1},and g(6;) = 6; € T forall i € {1,...,n—1}. Obviously,
fog=1Id and go f =1d. O
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N

Remarks (1) Let G(Q2) be the group given by the presentation
GQ) = (Y | av =oa if {a,0} € B(Q)).

It is well-known that M(QA) embeds in G(Q) (see [@], [I0]), thus SB, =

M(Q) x B,, embeds in G(2) x B,,. This furnishes one more proof of the
fact that SB, embeds in a group (see [I1], [2], [14]).

~

(2) The decomposition SB, = M(2) x B,, together with Lemma 2.2 can be
used to solve the word problem in SB,. The proof of this fact is left to
the reader. Another solution to the word problem for SB,, can be found
in [§].

Proof of Theorem 1.1 Consider the homomorphism deg: B, — Z defined
by deg(o;) =1for 1 <i<n-—1. For k € Z, let B = {6 € By; deg(B) = k}.
We have the decomposition
Z[B,] = PzBP,
keZ

where Z[Bék)] denotes the free abelian group freely generated by Bgf). Let
P € Z[By]. We write P = 3", _, P, where P} € Z[By(Lk)] for all k£ € Z. Then
P, is called the k-th component of P.

Let v, € SB,, such that n(vy) = n(y'). We write v = o8 and 7' = o/’ where
o,/ € M(Q) and 3,3 € B, (see Lemma 2.3). Let d = deg(8). We observe
that the d-th component of n(vy) is £, and, for k < d, the k-th component
of () is 0. In particular, () completely determines 3. Since n(y) = n(v/),
it follows that 8 = 3.

So, multiplyipg ~ and v on the right by 57! if necessary, we may assume that
y=a € M(Q) and v = o' € M(2). Observe that

(wop)() =n(y) =n()=@op)(y).
Since v is injective (Theorem 1.3) and ¢ is an isomorphism (Lemma 2.2), we
conclude that v = +'. O

3 Proof of Theorem 1.3

We start this section with the following result on graph monoids.

Lemma 3.1 Let I' be a graph, let X be the set of vertices, and let E = E(T")
be the set of edges of '. Let x1,...,x;,y1,...,y € X and k € {1,2,...,l}
such that:
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o ri1xo...x;=y1y2...y (in M(T));
o yv=x1,and y; Fx1 foralli=1,... . k—1.

Then {y;,x1} € E(T') for all i =1,2,...,k—1.

Proof Let F™(X) denote the free monoid freely generated by X. Let =; be
the relation on F'(X) defined as follows. We set u =; v if there exist uy,us €
FT(X) and x,y € X such that u = uyazyus, v = wyrus, and {z,y} € E(T).
For p € N, we define the relation =, on F7(X) by setting u =, v if there
exists a sequence ug = u,U1,...,Up = vV in F*(X) such that w;—; = u; for
all ¢ = 1,...,p. Consider the elements u = x1x2...2; and v = y1y2...y; in
FT(X). Obviously, there is some p € N such that u =, v. Now, we prove the
result of Lemma 3.1 by induction on p.

The case p = 0 being obvious, we may assume p > 1. There exists a sequence
Uy = U, U1, - .., Up—1,Up = v in FT(X) such that u;_y =y u; forall i =1,...,p.
By definition of =1, there exists j € {1,2,...,l—1} such that {y;,y;+1} € E(T)
and up—1 = Y1 -..Yj—1Yj+1YjYj+2- .-y If either j <k —1 or j > k, then, by
the inductive hypothesis, we have {z1,y;} € E(T') for all i = 1,...,k— 1. If
j = k — 1, then, by the inductive hypothesis, we have {x1,y;} € E(T") for all
i=1,...,k—2. Moreover, in this case, {y;,yj+1} = {Ur—1, Uk} = {yp—1,21} €
E(T). If j = k, then, by the inductive hypothesis, we have {y;,x1} € E(T") for
ali=1,...,k—landi=k+1. O

Now, consider the standard epimorphism #: B, — Sym,, defined by 60(c;) =
(i,1+1) for 1 <i <n—1. The kernel of § is called the pure braid group on n
strings, and is denoted by PB,,. It has a presentation with generators

2 -1 -1 .
Aij:O'j_l...O'Z‘+1O'i0'i+1...0'j_1, 1<i<3<n,

and relations
A,T;AUATS:AU if r<s<i<jori<r<s<y,
AT A A = A A AL i s =1,
AT A A = AijAs A ATATT if i=r<s<j,
A AijAr s = A jAGA T TATTAijAgj A AT AT iE r<i<s <.

(See []). We denote by Hy(PB,,) the abelianization of PB,,, and, for § € PB,,
we denote by [3] the element of Hy(PB,) represented by . A consequence of
the above presentation is that Hi(PB,,) is a free abelian group freely generated
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by {[4ij]; 1 < i < j < n}. This last fact shall be of importance in the
remainder of the paper.

For 1 <i<j<n, weset
Yij={BAi;8™"; B € PBy}.

Lemma 3.2 We have the disjoint union T = | |,_; T;;.

Proof It is esily checked that

Aij1 it r=j,

Aj—lez’j—lAj__llj if r =7—1>1,
UTAijUT_IZ Ai+1j if j—1>1=r,

Ai_lei—leij if r=1-— 1,

A;j otherwise .

This implies that the union (J, . j T;; is invariant by the action of B,, by con-
jugation. Moreover, 02 = A;;+1 € Yiy1 for all i € {1,...,n — 1}, thus
T C U,<; Tij. On the other hand, A;; is conjugate (by an element of By,) to
o2, thus Y;; C Y for all i < j, therefore Ui<j T;; CT.

Let i,7,7,s € {1,...,n} such that i < j, » < s, and {i,5} # {r,s}. Let
uwe€ Y;; and v € Tps. Then [u] = [A;;] # [A,s] = [v], therefore u # v. This
shows that Y;; N Y, 5 = 0. O

The following lemmas 3.3 and 3.5 will be proved in Sections 4 and 5, respectively.

Let F(X) be a free group freely generated by some set X. Let Y = {gzg~!; g €

F(X) and z € X}, and let F'*(Y) be the free monoid freely generated by Y .
We prove in Section 4 that the homomorphism v: F*(Y) — Z[F(X)], defined
by v(y) =y — 1 for all y € Y, is injective (Proposition 4.1). The proof of this
result is based on the construction of a sort of Magnus expansion. Proposition
4.1 together with the fact that PB,, can be decomposed as PB,, = F X PB,,_1,
where F' is a free group freely generated by {A;,; 1 <i <n—1}, are the main
ingredients of the proof of Lemma 3.3.

Choose some xy € X, consider the decomposition F(X) = (xg) * F(X \ {z0}),
and let p: F(X) — F(X) be an automorphism which fixes zy and which
leaves F(X \ {zo}) invariant. Let yi,...,y € {grog™'; g € F(X)}. We prove
in Section 5 that, if p(y1...y) = y1...y;, then p(y;) = y; for all i = 1,...,1
(Proposition 5.1). The proof of Lemma 3.5 is based on this result together with
Corollary 3.4 below.
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Lemma 3.3 Let i,j,r,s € {1,...,n} such that i < j, r < s, {i,j} # {r, s},
and {i,j} N{r,s} #0. Let M[i,j,r, s| be the free monoid freely generated by
Y;; UTY,s, and let v: M]i,j,r,s] — Z[By] be the homomorphism defined by
v(u)=u—1 forall we Y;;UY, . Then v is injective.

Corollary 3.4 Let i,j € {1,...,n} such that i < j. Let M[i,j] be the free
monoid freely generated by Y;;, and let v: M{i, j| — Z[B,] be the homomor-
phism defined by v(u) =u —1 for all w € Y;;. Then v is injective.

Lemma 3.5 Let i,j,7,s € {1,...,n} such that i < j, r <s, and {i,j} N
{r,s} = 0. (In particular, we have n > 4.) Let i, j,r, s| be the graph defined
as follows.

e Y,;;UY,, is the set of vertices of Qi, j,r, s|;

e {u,v} is an edge of Q[i,j,r,s] if and only if we have uv = vu in B,.

Let M[i,j,r,s] = M(Qi, j, 7, s]|), and let v: M]i,j,r,s] — Z[By] be the ho-
momorphism defined by v(u) =u—1 forall u € T;;UY,,. Then U is injective.

Proof of Theorem 1.3 Recall the decomposition

Z|B,) = P ZIBY] (1)
keZ
given in the proof of Theorem 1.1, where By(Lk) = {08 € By; deg(B) = k}, and

Z[BT(Lk)] is the free abelian group freely generated by B% . Note that deg(u) =2
forall u e T.

Let « € M(Q2). We write « = wjug...u;, where u; € Y for all i = 1,...,1.
Define the length of « to be |a| = [. We denote by a the element of B,
represented by « (ie, & = wjuz...u; in By). Let [1,1]] = {1,2,...,l}. Define
a subindex of [1,1] to be a sequence I = (i1,12,...,14,) such that i1,i,...,i4 €
[1,]], and ¢y < g < --- < ig. The notation I < [1,I] means that I is a
subindex of [1,1]. The length of I is |I| = q. For I = (i1,142,...,4q) < [1,{], we
set o) = wi Uiy . .. u;, € M(2) and @(I) denotes the corresponding element
of ng).

Observe that the decomposition of v(«) with respect to the direct sum () is:

l
vi)=) (D)7 Y al), (2)

7=0 I<[L]], [I|=q
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and

Y. al) ez,

I<[1,1], |I|=q
for all g =0,1,...,1.

Let o/ = vju) ... u) € M(Q) such that v(«) = v(/). The decomposition given
in () shows that k =1 and

> o an= Y &, (3)
I<[L,1], |I|=¢q I<[1,1], |I|=¢q
forall g =0,1,...,1.

We prove that o = o' by induction on [. The cases | = 0 and [ = 1 being
obvious, we assume [ > 2.

Suppose first that u] = u;. We prove
> am= Y a) (4)
I<[2,0], |I|=q I<[2,1], |I|=¢q

by induction on ¢. The case ¢ = 0 being obvious, we assume ¢ > 1. Then

> a()

I<[2,1], |I|=¢q
= > ah)-wu- >al
I<[L), |I|=q 1<[2.0], [I|=q—1
= Z a'(l) —uy - Z a'(I)  (by induction and (B))
I<[1,1, |I|=q I<[2,l], |I|=¢—1
= > al.
I1<[2,1], |I|=¢q

Let oy = wug...u and o = ujy...u;. By (@), we have

~
|
—

vl =) (170 Y a()

I<[2,1], [I|=q

~
=)

=Y (=t ¥ d ) = v(ah)

=0 I<[2,l], |I|=q

[}

thus, by the inductive hypothesis, a; = o], therefore o = ujoy = w10 = o’
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Now, we consider the general case. ([Bl) applied to ¢ =1 gives

So, there exists k € {1,...,1} such that w, = u; and u # wu; for all i =
1,...,k —1. We prove that, for 1 < ¢ < k—1, «, and w; = uj multi-
plicatively commute (in B, or, equivalently, in M(Q)). It follows that o/ =
ujul ... up_quy ... u;, and hence, by the case u; = u) considered before,
a=da.

Fix some t € {1,...,k —1}. Let 4,5,r,s € {1,...,n} such that i < j, r < s,
U = u; € T;j, and u; € Y, 5. There are three possible cases that we handle
simultaneously:

(1) {i, g} =A{r,s};
(2) {i,j} # {r,s} and {i,j} N {r,s} #0;
3) {i,j}n{r,s}=0.

Let Q[i, 7,7, s] be the graph defined as follows.

e Y;;UY, is the set of vertices of Q[i, j,r, s|;

e {u,v} is an edge of Q[i,],7,s| if and only if we have uv = vu in B,.

Let M(i, j,r,s] = M(Q[i, j,r,s]), and let v: M]i, j,r,s| — Z[B,] be the homo-
morphism defined by 7(u) = u—1 for all w € T;;UTY, ;. Note that, by Corollary
3.4 and Lemma 3.3, Q[i, j, r, s] has no edge and M]i, j, r, s] is a free monoid in
Cases 1 and 2. Moreover, the homomorphism 7 is injective by Lemmas 3.3 and
3.5 and by Corollary 3.4.

Let a1 = 1,a2,...,a, € [1,1], a1 < ag < --- < ap, be the indices such that
ug, € Yij UT,s for all £ = 1,2,...,p. Let Iy = (a1,a2,...,a,), and let
a(ly) = Uay Uay - - - Ua, € MIi, j, 7, 5]. (It is true that M][i, j,7, 5] is a submonoid
of M(2), but this fact is not needed for our purpose. So, we should consider
a(ly) as an element of M]i, j, 7, s], and not as an element of M(Q2).) Recall
that, for § € PB,, we denote by [3] the element of H;(PB,) represented
by 3. Recall also that H;(PB,) is a free abelian group freely generated by
{[4;;]; 1 <i<j<n}. Observe that

/4

p(a(lp)) =Y (1)1 > a(l). (6)
q=0 I<[1vl]7 u‘:%
[@(D)]€Z[A; j1+Z[Ar §]
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Let by,...,b, € [1,1], by < by < --- < by, be the indices such that ugg €

T;; UY, forall £ =1,2,...,p. (Clearly, (@) implies that we have as many
ag’s as be’s.) Note that ¢,k € {b1,...,by}. Let Iy = (by,b2,...,bp), and let
o' (Ip) = wp, wp, - up, € M[i, j, 7, s]. By (@) we have

3 a(l) = > a'(I),

I'<[1vl]7 ‘I‘:‘L I'<[17”7 IIIZ‘L
[a(D)]€Z[A; ;] +Z[Ar ] (&' (I)]€Z[A; j]+Z[Ar 5]

for all ¢ € N, thus, by @), 7(a(lp)) = v(c/(1})). Since v is injective, it follows
that «(ly) = o/(I), and we conclude by Lemma 3.1 that u; and u), = w;
commute. O

4 Proof of Lemma 3.3

As pointed out in the previous section, the key point of the proof of Lemma 3.3
is the following result.

Proposition 4.1 Let F(X) be a free group freely generated by some set X,
let Y = {gxg~'; g € F(X) and x € X}, let F(Y) be the free monoid freely
generated by Y, and let v: F*(Y) — Z[F(X)] be the homomorphism defined
by v(y) =y —1 for all y € Y. Then v is injective.

First, we shall prove Lemmas 4.2, 4.3, and 4.4 that are preliminary results to
the proof of Proposition 4.1.

Let deg: F(X) — Z be the homomorphism defined by deg(x) = 1 for all
x € X. Write A =Z[F(X)]. For k € Z,let F,(X) = {g € F(X); deg(g) > k},
and let Ay = Z[F}(X)] be the free Z-module freely generated by Fj(X). The
family {Ag}rez is a filtration of A compatible with the multiplication, that is:

o A, C A ifk>1;

o A, A, C A,y forall p,qeZ;

o 1eA.

Moreover, this filtration is a separating filtration, that is:

o NiezAr = {0}.

Let A denote the completion of A with respect to this filtration. For k € Z, we
write F®)(X) = {g € F(X); deg(g) = k}, and we denote by A*) = Z[li’(k) (X))
the free Z-module freely generated by F(¥)(X). Then any element of A can be
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uniquely represented by a formal series 21—2?1 Py, where d € Z and P, € AW
for all k> d.

We take a copy G of Z x Z generated by {z,2}, for all z € X, and we set
G = #%4exGy. Let AZ/I(.A) denote the group of units of A. Then there is a
homomorphism 7: G — U(A) defined by

nz)=z, n@)=xz-1, forzeX.

Note that

—iwk, forx € X.

The homomorphism 7 defined above is a sort of Magnus expansion and the
proof of the following lemma is strongly inspired by the proof of [6], Ch. II, §
5, Thm. 1.

Lemma 4.2 The homomorphism 7): G — U(A) is injective.

Proof Let g € G. Define the normal form of g to be the finite sequence
(91,92, --.,9;) such that:

o forallie{1,...,l}, there exists z; € X such that g; € G, \ {1};
o x;,#wiy foralli=1,...,1—-1;
® g=0192---9i-

Clearly, such an expression for g always exists and is unique. The length of g
is defined to be lg(g) =I.

Let (p,q) € Z X Z, (p,q) # (0,0). Write

(t—1)Pt? = chpq ,

where d € Z and cipq € Z for all k > d. We show that there exists a > d such
that @ # 0 and c4pq # 0. If ¢ # 0, then a = ¢ # 0 and ¢4pq = £1 # 0. If
g=0,then a=1%#0 and ¢1,0=%p #0.
Let g€ G, g #1. Let (@' 2, ..., 2" z]") be the normal form of g. We have
i(g) = (x1 — )P a{ (zg — 1)P22® .. (2 — 1)Pra]!
kigke ki

= § Ck1p1qi1Chapaqe - Chyprgq " T1 Lo~ -+ Ly -
k12>di,....k>d;
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By the above observation, there exist ai, az,...,a; € Z\{0} such that ¢, p, ¢, #
0 foralli=1,...,l. Now, we show that x]fl...ajfl £alt ot if (k. k) #
(a1,...,a;). This implies that the coefficient of zi'...z}" in 7(g) is
Carprar -~ Cayprq 7 0, thus 7)(g) # 1.

Since (&7'z{",...,21"2{") is the normal form of g, we have z; # z;41 for all
i=1,...,0 =1, thus (z1*,..., ;") is the normal form of z{*...z}". Suppose
ki 0 forall i =1,...,[. Then (xlfl,...,a;f’) is the normal form of xlfl ...xfl,

therefore a:lfl...mfl # aft o)t if (ki,..., k) # (a1,...,a;). Suppose there
exists ¢ € {1,...,1} such that k; = 0. Then

lg(ah 3:;”) <l=Ilg(zi*...a]"),

thusxlfl...xf’#x‘fl...mfl. O

For each z € X, we take a copy SG, of Z x N generated as a monoid by
{z,27", 2}, and we set SG = %,cxSG,. Then there is a homomorphism
n: SG — Z[F(X)] defined by

ety =2, ni@)=z-1, forzeX.
Lemma 4.3 The homomorphism n: SG — Z[F(X)] is injective.

Proof We have SG C G, and, since {Ag}rez is a separating filtration, A =
Z[F(X)] is a subalgebra of A. Now, observe that n: SG — Z[F(X)] is the
restriction of n to SG, thus, by Lemma 4.2, 7 is injective. O

Let Y = {gig™ % g € F(X) and z € X} C SG, and let FH(Y) be the free

monoid freely generated by Y. The proof of the following lemma is left to the
reader. A more general statement can be found in [9].

Lemma 4.4 We have SG = FH(Y) x F(X).

Now, we can prove Proposition 4.1, and, consequently, Lemma 3.3.

Proof of Proposition 4.1 Let : F(Y) — Z[F(X)] be the restriction of
n: SG=FT(Y)x F(X)— Z[F(X)] to Ft(Y), and let p: FH(Y) — FT(Y)
be the epimorphism defined by ¢(g2g~!) = gzg~! forall g € F(X) and = € X.
(The proof that ¢ is well-defined is left to the reader.) The homomorphism
U is injective (Lemma 4.3), ¢ is a surjection, and 7 = v o ¢, thus ¢ is an
isomorphism and v is injective. O
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Proof of Lemma 3.3 Take ( € Sym, such that (({i,5}) = {1,n} and
¢({r,s}) = {2,n}. Choose (3 € B,, such that §(3) = (. Then 8Y;;871 =Ty,
and B8Y, 671 = T5,. So, up to conjugation by f if necessary, we may assume
that {i,j} = {1,n} and {r,s} = {2,n}.

Let F' be the subgroup of PB,, generated by {A;,; 1 <i<n—1}. We have:
(1) F is a free group freely generated by {A4;,; 1 <i<n—1};
(2) PBn=F x PBy_1;
(3) Yin=1{gAing™'; g€ F}foralli=1,...,n—1.

(1) and (2) are well-known and are direct consequences of the presentation of
PB,, given in Section 3, and (3) follows from the fact that the conjugacy class
of A;, in F is invariant by the action of PB,_1.

Let Y = L/~ 'Y;,, and let F*(Y’) be the free monoid freely generated by Y'.
By Proposition 4.1, the homomorphism v/: F(Y’) — Z[F], defined by v/(u) =
u—1 for all w € Y’, is injective. Recall that M][1,n,2,n] denotes the free
monoid freely generated by Y1, U To,. Then M[1,n,2,n] C FT(Y'), Z[F] C
Z[By), and v: M[1,n,2,n] — Z[B,] is the restriction of v/ to M[1,n,2,n],
thus v is injective. O

5 Proof of Lemma 3.5

We assume throughout this section that n > 4. As pointed out in Section 3,
one of the main ingredients of the proof of Lemma 3.5 is the following result.

Proposition 5.1 Let F(X) be a free group freely generated by some set X,
let z9 € X, and let p: F(X) — F(X) be an automorphism which fixes x
and leaves F(X \ {x¢}) invariant (where F (X \ {zo}) denotes the subgroup of
F(X) (freely) generated by X \ {zo}). Let y1,...,y1 € {gzog™'; g € F(X)}.
If p(y1y2 ... Y1) = v1y2 ...y, then p(y;) =vy; forall i=1,...,1.

Proof Let Z = {hxoh™'; h € F(X\{x0})}, and let F(Z) be the subgroup of
F(X) generated by Z. Observe that Z freely generates F'(Z), p permutes the
elements of Z, and {gzog~'; g€ F(X)} ={B287'; B€ F(Z) and z € Z}.

For f € F(Z), we denote by lg(f) the word length of f with respect to Z.
For f,g € F(Z), we write fg = [ xg if 1g(fg) = 1g(f) + lg(g). Note that, if
fg=f=*g,then p(fg) = p(f)* p(g). Moreover, if fg= f+g and p(fg) = fg,
then p(f) = f and p(g) = g.
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Let go = y1y2 - ..y;. Recall that we are under the assumption that p(gg) = go-
For i =1,...,1, let §5; € F(Z) and z; € Z such that y; = ﬁi*zi*ﬁi_l. Now,
we prove that p(y;) = y; for all i« = 1,...,1 by induction on Zé:l lg(y;) =
L4250 18(8:)-

We have three cases to study.

Case 1 There exists ¢t € {1,...,l — 1} such that By = G * zt_l * v, where
Ve € F(Z)

Let y£+1 = [3t’y¢zt+1’yt_15t_l = ytyt+1yt_1. Observe that

9o =Y1 - Yt—1Yy 1 YtYt4+2 - - - Ui -

We have 1g(8v:) < 1g(0Be+1), thus, by the inductive hypothesis, p(y;) = v
for all i = 1,...,t — 1,t,t +2,...,1, and p(y;,1) = ¥;.1- Moreover, since
Yt+1 = yt_ly£+1yt7 we also have P(yt+1) = Yt+1-

Case 2 There exists t € {2,...,1} such that $;_1 = [; * 2 * vy, where v, €
F(Z).

Then we prove that p(y;) =y; for all ¢ =1,...,1 as in the previous case.

Case 3 Forallt € {1,...,l} and for all v, € F(Z) we have (3,41 # Bt*zt_l*fyt
and Bi_1 # Bt * 2 * 1.

We observe that
go = Buxz1* By Bakzg ke x B Bz« B

Since p(go) = go, it follows that p(B1) = B1, p(z1) = 21, p(Br " B2) = By ' B,
p(z2) =22, ..., p(B1B1) = B\ 81, p(z) = 21, and p(B; ') = B . This clearly
implies that p(y;) =y; forall i =1,...,1[. O

Corollary 5.2 Let u € T19 and vy,...,v; € Yp_1,. If u commutes with
vive...v; (in By ), then u commutes with v; for all i = 1,... 1.

Proof Let oy € PB,, such that u = agA; 20451. Up to conjugation of vy, ..., v
by ag L if necessary, we can suppose that ag =1 and u = Ay 4.

Recall that F' denotes the subgroup of PB,, generated by {4;,; 1 <i<n—1}.
Recall also that:

e F is a free group freely generated by {A4;,; 1 <i<mn—1};
e PB,=FxPB,_1;
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) Tm:{gAmg_l; geF} foralli=1,...,n—1.

Let p: F — F be the action of Aj2 by conjugation on F' (namely, p(g) =
Aq 29141_21 ). Observe that p(A,—1,) = An—1, and the subgroup of F' generated
by {4;,; 1 <i <mn—2} is invariant by p. Then, Proposition 5.1 shows that
p(v;)) =wv; forall i =1,...,1if p(vivy...v) =vivy... 0. O

Now, we can prove Lemma 3.5.

Proof of Lemma 3.5 Take ( € Sym, such that (({i,5}) = {1,2} and
¢({r,s}) = {n —1,n}. Choose 3 € B,, such that §(3) = ¢. Then §Y;;37! =
Y1y and B8Y, 61 = Y,_i,. So, up to conjugation by 3 if necessary, we may
assume that {i,j} ={1,2} and {r,s} = {n —1,n}.

We use the same notations as in the proof of Theorem 1.3. Let o € M[1,2,n—
1,n]. We write o = ujug...u;, where u; € T1oU Y, 1, forall i =1,... 1.
Define the length of « to be |a| = [. We denote by @ the element of B,
represented by «. Let [1,1] = {1,2,...,l}. Define a subindez of [1,I] to be a
sequence I = (i1,42,...,1y) such that ij,is,...,i; € [1,]] and i3 < iy < --- <
ig. The notation I < [1,l] means that I is a subindex of [1,l]. The length
of I'is [I| = q. For I = (i1,i2,...,1q) < [1,1], we set a(l) = wj ug, ... u;, €
M[1,2,n — 1,n].

Observe that

q=0 I<[1,1], |I|=q
and
a(I) € Z[B?Y],
I<[L,1], |I|=q
for all g =0,1,...,1.

Let o =wjuh ... u) € M[1,2,n—1,n] such that 7(«) = (/). As in the proof
of Theorem 1.3, the decomposition given in ([ll) shows that £ =1 and

>, al)= ) a), (8)
I<[L,1], |I|=¢q I<[1,1], |I|=¢q
for all g =0,1,...,1.

We prove that o = o/ by induction on [. The cases [ = 0 and [ = 1 being
obvious, we assume [ > 2.
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Assume first that v} = w;. Then, by the same argument as in the proof of
Theorem 1.3, a = o/.

Now, we consider the general case. () applied to ¢ =1 gives

It follows that there exists a permutation ¢ € Sym; such that u; = u’qi) for all

i =1,...,1. (Note that the permutation ¢ € Sym, is not necessarily unique.
Actually, ¢ is unique if and only if u; # u; for all i # j.)

Let ay,a,...,ap € [LI], a1 < ag < --- < ap, be the indices such that u,, €
Tio forall £ =1,...,p. Let Iy = (a1,az,...,ap). Recall that, for 5 € PB,,
we denote by [3] the element of H;(PB,) represented by 3. Recall also that
H,(PB,) is a free abelian group freely generated by {[4;;]; 1 < i < j < n}.
Observe that a(ly) € MJL,2] and

p
P(a(lp) => ()% > a). (10)
k=0 I<[L]), |I|=k,
[&(I)]€Z[A1 2]
Let ay,ay,...,a, € [L,1], a) < aj < --- < a,, be the indices such that u;é €

T1o forall £ =1,...,p. Note that {{(a}),((a5),...,((ay)} = {a1,az,...,a,}.
Let Iy = (ay,ay,...,ay). By @), we have

Yo am= > a), (11)

I<[1,1], |I|=k, I<[1,1], |I|=k,

[a(1)]€Z[A1 2] &/ (D)]€Z[Ar 2]
for all k € N, thus, by [[0), 7(a(ly)) = v(¢/(1}))). By Corollary 3.4, it follows
that a(Ip) = o/(Iy). So, u), = u,, for all i =1,...,p, and the permutation
¢ € Symy; can be chosen so that ((a}) =a; forall i =1,...,p.

Let b1,b,...,bq € [1,1], b1 < by < --- < by, be the indices such that w, €
Tp_1, for all & = 1,...,¢q. Note that [1,I] = {a1,...,ap,b1,...,b5}. Let
Jo = (b1, b2,...,by). Let b}, by, ..., 0, € [1,1], by < by <--- <, bethe indices
such that ugé € Y1, forall £ =1,...,¢, and let Jy = (b, b5,...,b;). We
also have a(Jy) = o/(Jy) € M[n —1,n], wp, = uy, for all i =1,...,¢q, and ¢
can be chosen so that (b)) =0b; forall i =1,... ,ql.
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Without loss of generality, we can assume that u; € T19 (namely, a; = 1). Let
ie{l,...,p}. We set:

0 if a; < bl s
S(Z) = g if bj <a; < bj+1,
q if by <a;.
0 if a) <¥),
T(i)=9 J if b <aj<bi,
q if by <aj.
Note that o = ug,l . ..ug,T(l)ug,l "t = Upy . UbpUay - - - - Now, we show that
up = ug, commutes with up, for all ¢ = 1,...,7(1). It follows that o/ =
ULUp, - - - Uy - s and hence, by the case u} = u; considered before, a = o.

Let
v =Up, ...ubs(i)uaiugsl(i) . ..ub_ll €Yo,
V) =up, ...ubT(i)uaiub_Tl(i) ...ub_ll €Yo,
forall i=1,...,p, and let
y=wvwa... v € M[L2], & =vjvy.. v, € M[L,2].
Observe that

p
vy =| D _(=1r* > aI) [ a(o) ™,
h= I<(L], [T|=k+q,
[&(I)}:k[Al 2}+q[An71 n}

[e=]

N
‘2\
S~—

Il
[~

(1" > a'(I) | a'(Jp) "
I'<[1vl]7 IIIZk'HL
[a/(l)}:k[Al 2}+q[A7L717L]

We know that a(Jy) = &/(J}), and, by @),

Y a(I) = > a'(I),

I<[L], |I|=k+q, I<[L1], |I|=k+q,
[@(D)]=k[A1 2]+q[An—1n] [& (I)]=k[A1 2]+q[An—1n]

for all k = 0,1,...,p, thus v(y) = v(y/). By Corollary 3.4, it follows that
v =74/, namely, v; = v, for all i =1,...,p. So,

e
i
o

/ -1 -1
Uy =01 =0V = Upy --- ubT(l)ulubT(l) . ubl s

thus u; and up, <o Upp,, cOmmute (in By). We conclude by Corollary 5.2 that
uy and wup, commute for all i =1,...,7(1). O
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