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1 Introduction

Let S be a connected finite type oriented surface. In Mod(S), the mapping
class group of S , a particularly tractable class of elements (or automorphisms)
are the positive multi-twists. These are products of positive Dehn twists about
disjoint essential simple closed curves. For a given positive multi-twist, the
union of these simple closed curves is a closed essential 1–manifold, and the
set of positive multi-twists is in a one-to-one correspondence with S ′(S), the
set of isotopy classes of essential 1–manifolds on S . Given A ∈ S ′(S), we let
TA denote the positive multi-twist which is the product of positive Dehn twists
about the components of A.

This paper is concerned with subgroups of Mod(S) generated by two positive
multi-twists and is based on a construction of Thurston [54] (see also Long [36]
and Veech [56]). When A ∪ B fills the surface (that is, every essential curve
intersects A or B ) Thurston constructs a certain type of Euclidean cone metric,
which we refer to as a flat structure, for which 〈TA, TB〉 acts by affine home-
omorphisms. The derivative of this action defines a discrete homomorphism
DAf : 〈TA, TB〉 → PSL2(R) with finite kernel. This homomorphism is deter-
mined by a single number, µ(A ∪ B), depending on the geometric intersection
numbers of the components of A with those of B .

The novelty in our approach to studying these groups is Proposition 5.1 in
which we show that µ(A∪B) is the spectral radius of the configuration graph,
G(A ∪ B). This graph has a vertex for each component of A and of B and
an edge for every point of intersection between corresponding components (see
Figure 1).

Figure 1: 1–manifolds AL and BL with configuration graph G(AL ∪ BL) = Eh10

This observation, along with some elementary hyperbolic geometry and well-
known graph theoretic results, has many interesting consequences.
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On groups generated by two positive multi-twists 1303

1.1 Freeness

The graphs of type Ac (c ≥ 1), Dc (c ≥ 4), E6 , E7 , and E8 play an important
role in our work, and we refer to them as recessive graphs (see Figures 2–4).
Any graph which is not recessive will be called dominant.

, , , , ...

Figure 2: Ac , c ≥ 1

, , , ...

Figure 3: Dc , c ≥ 4

, ,

Figure 4: E6 , E7 , and E8

Theorem 6.1 〈TA, TB〉 ∼= F2 if and only if G(A ∪ B) contains a dominant
component.

This theorem was inspired by the work of Hamidi-Tehrani in [26] where sufficient
conditions for 〈TA, TB〉 ∼= F2 in terms of intersection numbers of components of
A with those of B are given. In [54], Thurston remarks (without proof) that a
necessary and sufficient condition for this group to be free is that µ(A∪B) ≥ 2,
and this is the basis for Theorem 6.1.

1.2 Teichmüller curves

The proof of Theorem 6.1 reduces to the case that A∪B fills S (see Proposition
10.1 and Section 10), and we assume this to be the case for the remainder of
Section 1.

The flat structure on S determines a quadratic differential and thus a Te-
ichmüller disk (see Section 3). The group 〈TA, TB〉 stabilizes this disk, though
in general this group has infinite index in the full stabilizer. The quotient of
a Teichmüller disk by its stabilizer is called a Teichmüller curve when it has
finite area, that is when the stabilizer is a lattice. In this case, the Teichmüller
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curve isometrically immerses into the moduli space of S , and we say that the
Teichmüller disk covers a Teichmüller curve.

In Zemljakov and Katok [61] it is shown how to associate a Riemann surface
and quadratic differential to a rational polygon in such a way that billiards
trajectories in the polygon correspond to geodesics for the associated flat struc-
ture (see Section 3.4). A theorem of Veech [56] implies that the billiards in
a polygon have optimal dynamical properties if the corresponding Teichmüller
disk covers a Teichmüller curve, in which case the polygon is called a lattice

polygon. In particular, understanding and classifying Teichmüller curves and
lattice polygons is an interesting problem which has received much attention
(see eg Veech [56], [57], Harvey [27], Gutkin and Judge [25], Kenyon and Smillie
[32], Puchta [48], McMullen [44], and Calta [13]). Our second main theorem
provides a complete classification for a certain class of Teichmüller curves.

Theorem 7.1 The Teichmüller curves for which the associated stabilizers
contain a group generated by two positive multi-twists with finite index are
precisely those defined by A∪B filling S , where G(A∪B) is critical or recessive.

The critical graphs are those of type P2c (c ≥ 1), Qc (c ≥ 5), R7 , R8 , and
R9 (see Figures 5 – 7).

, , , ...

Figure 5: P2c , c ≥ 1

, , ...,

Figure 6: Qc , c ≥ 5

,,

Figure 7: R7 , R8 , and R9

A classification of right and acute lattice triangles was initiated by Kenyon and
Smillie in [32] and completed by Puchta in [50] (see Theorem 3.5). Using this
classification, we prove the following theorem.

Geometry & Topology, Volume 8 (2004)
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Theorem 7.2 The Teichmüller curves determined by the right and acute
lattice triangles have associated stabilizers containing a finite index subgroup
of the form 〈TA, TB〉 with G(A ∪ B) recessive.

Moreover, all the flat structures associated to G(A∪B) of type Ac and Dc are
affine equivalent to structures which can be tiled by one or two regular Euclidean
polygons (see Section 7). These were all studied by Veech in [56] and [57] and by
Earle and Gardiner in [17]. The remaining three cases where G(A∪B) has type
E6 , E7 , and E8 correspond to the exceptional triangles mentioned above and
were studied by Veech in [56], Vorobets in [58], and Kenyon and Smillie in [32].
In particular, in those cases that 〈TA, TB〉 fails to be free, the aforementioned
references provide a description of these groups.

Theorem 7.3 If G(A∪B) is recessive, then DAf maps 〈TA, TB〉 onto a Fuch-
sian triangle group with finite central kernel of order at most 2. The signature
of the triangle group is described by the following table.

configuration graph signature configuration graph signature

Dc, c ≥ 4 (c − 1,∞,∞) E6 (6,∞,∞)

A2c+1, c ≥ 1 (c + 1,∞,∞) E7 (9,∞,∞)

A2c, c ≥ 1 (2, 2c + 1,∞) E8 (15,∞,∞)

1.3 Lehmer’s number and Coxeter groups

The original purpose of Thurston’s construction was not to study groups gen-
erated by two positive multi-twists, but rather to construct explicit examples
of pseudo-Anosov automorphisms. Indeed, in these groups, pseudo-Anosov au-
tomorphisms are generic (see Proposition 6.4). Associated to a pseudo-Anosov
automorphism, φ, is an algebraic integer λ(φ) > 1 called the dilatation reflect-
ing certain dynamical properties (see Section 2.5).

Theorem 6.2 For any surface S , any A,B ∈ S ′(S), and any pseudo-Anosov
element

φ ∈ 〈TA, TB〉 < Mod(S)

we have λ(φ) ≥ λL ≈ 1.1762808. Moreover, λ(φ) = λL precisely when S has
genus 5 (with at most one marked point), {A,B} = {AL, BL} as in Figure 1
(up to homeomorphism), and φ is conjugate to (TATB)±1 .

Geometry & Topology, Volume 8 (2004)
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Here λL is Lehmer’s number which is the largest real root of Lehmer’s polyno-

mial:

x10 + x9 − x7 − x6 − x5 − x4 − x3 + x + 1 (1)

λL was discovered by Lehmer in 1933 [35] and is the smallest known Salem
number and Mahler measure of an integral polynomial (see Section 9.1).

Given any G = G(A∪B), we can view this as a Coxeter graph, and we let C(G)
and A(G) denote the associated Coxeter group and Artin group, respectively,
with πac : A(G) → C(G) the canonical epimorphism. We let Θ denote the
geometric action of C(G) on (RK ,ΠG) (see Section 8).

Theorem 6.2 is strikingly similar to the main theorem of [43] (see Theorem
8.4) in which McMullen shows that the minimal spectral radius of any essential
element in a Coxeter group with respect to Θ is either 1 or else bounded below
by λL . Moreover, λL is achieved precisely when the associated Coxeter graph
is Eh10 .

We say G has small type if there are no multiple edges between vertices. It is
well known that there is a homomorphism

Ψ: A(G(A ∪ B)) → Mod(S)

sending the standard generators to the corresponding Dehn twists in the A
and B curves, when G(A ∪ B) has small type (see Section 8.2). This provides
the first link with the groups under consideration. The following describes the
connection with McMullen’s Theorem 8.4.

Theorem 8.1 Let G(A ∪B) be non-critical dominant with small type. Then
σAσB is sent by Ψ to a pseudo-Anosov with dilatation equal to the spectral
radius of its image under Θ ◦ πac . Moreover, among all essential elements in
〈σA, σB〉, σAσB minimizes both dilatation as well as spectral radius for the
respective homomorphisms.

In this theorem, σAσB is the bicolored Coxeter element (see Section 8.1). In-
spired by the work of Hironaka in [28] (see Theorem 8.5), we find that under
some additional hypothesis, (part of) the action of TATB on H1(S; R) is almost
semi-conjugate to the geometric action of this Coxeter element.

Theorem 8.2 Let G(A ∪B) have small type and suppose that A and B can
be oriented so that all intersections of A with B are positive. Then there exists
a homomorphism

η : R
K → H1(S; R)

Geometry & Topology, Volume 8 (2004)
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such that

(TATB)∗ ◦ η = −η ◦ Θ(σAσB).

Moreover, Θ(σAσB)|ker(η) = −I and η preserves spectral radii.

To say that η preserves spectral radii, we simply mean that Θ(σAσB) and
(TATB)∗ have the same spectral radius (modulus of leading eigenvalue). If we
wish to relate TATB to σAσB , this theorem is likely the best we can do. For,
unlike Hironaka’s Theorem 8.5, there is no relation between dim(H1(S; R)) and
K .

Remarks

(1) Theorem 6.1 allows the possibility that A ∪ B does not fill S , while we
implicitly assume this for the other theorems. We also note that Theorem 6.1
holds when S has nonempty boundary (see Section 10).

(2) We caution the reader that the connection to Coxeter groups we have
described is only valid when the configuration graph has small type. This is
easily explained by the fact that the adjacency matrix for a graph is the same
as the Coxeter adjacency matrix only when the graph has small type.

The paper is organized as follows. Sections 2 and 3 contain definitions and
theorems regarding surface topology, mapping class groups, and Teichmüller
space. We recall the relevant facts concerning matrices and graphs in Section
4. In Section 5 we give Thurston’s construction and prove Proposition 5.1
relating this to the spectral radius of the configuration graph. Next we discuss
some basics of Fuchsian groups and use them to prove Theorems 6.1 and 6.2 in
Section 6. In Section 7 we discuss in more detail the groups corresponding to
the critical and recessive configurations and prove Theorems 7.1, 7.2, and 7.3.
We then turn to Coxeter and Artin groups in Section 8, describe the connection
with groups generated by two positive multi-twists, and prove Theorems 8.1 and
8.2. In Section 9 we provide a few applications of the theorems and indicate
some interesting open questions.

We have also included two appendices. The first, Section 10, reduces the proof of
Theorem 6.1 to the filling case, as well as extending it to the situation of surfaces
with boundary. The second, Section 11, addresses a construction of pseudo-
Anosov automorphisms given by Penner which extends Thurston’s construction.
For completeness, we show that the lower bound given by Theorem 6.2 holds
for this class as well.
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2 Surface topology and mapping class groups

For more details on the material reviewed in this section, see Thurston [54],
Birman [8], Ivanov [31], and the lecture notes [18].

2.1 Surfaces and essential 1–manifolds

Let S = Sg,p be a smooth, compact, connected, oriented, genus–g surface with
p marked points. We will ignore the trivial cases, and hence from this point
on assume S 6= S0,p for p ≤ 3. Denote by Ṡ the surface S with the p marked
points removed.

We denote the set of isotopy classes of essential simple closed curves on S by
S(S). That is, an element of S(S) is an isotopy class of homotopically essential
simple closed curves on Ṡ not isotopic to a puncture of Ṡ . The geometric
intersection number for a pair of elements a, b ∈ S(S), denoted i(a, b), is the
minimal number of transverse intersection points among all representatives of
a and of b.

Let S ′(S) denote the set of isotopy classes of essential, closed 1–manifolds
embedded in S . An element A ∈ S ′(S) is an embedded 1–submanifold of Ṡ ,
for which every component is homotopically essential in Ṡ and not isotopic to
a puncture, well-defined up to isotopy. We will make no distinction between 1–
manifolds and the isotopy classes they represent when convenient. We refer to
the components of A as elements of S(S). Whenever we write A = a1∪· · ·∪an

it will be assumed that ai ∈ S(S), for each i = 1, . . . , n.

Note that an element of S ′(S) is allowed to have several of its components
parallel (isotopic) to one another.

Geometry & Topology, Volume 8 (2004)
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When considering elements A,B ∈ S ′(S) as representative 1–manifolds of their
isotopy classes, we will always assume that they meet transversely and mini-
mally. When this is done, a component a of A and b of B meet in exactly
i(a, b) points. Consequently, the configuration graph G(A∪B) depends only on
A and B , and its components are in a one-to-one correspondence with those of
A ∪ B , thought of as a subset of S .

We further note that G(A∪B) is bipartite. That is, the vertices may be colored
by two colors (call them A and B ) so that no two vertices of the same color
are adjacent.

When A∪B fills S (see Section 1) it follows that the components of S \(A∪B)
are disks (each with at most one marked point). Note that G(A∪B) is connected
when A ∪ B fills S .

2.2 Uniqueness

Given a bipartite graph G , there may be several different pairs of 1–manifolds
having G as the configuration graph. Indeed, G need not even determine the
homeomorphism type of the underlying surface. However, there are instances
in which one does have uniqueness.

Proposition 2.1 Suppose Ai, Bi ∈ S ′(Si), Ai ∪ Bi filling Si , i = 1, 2, and
G = G(A1 ∪ B1) = G(A2 ∪ B2). If G is a tree with only one vertex of valence
at most three (in particular, if it is recessive), then there is a homeomorphism
from S1 to S2 taking {A1, B1} to {A2, B2}, up to adding marked points.

Sketch of proof Let N (Ai ∪Bi) denote a regular neighborhood of Ai ∪Bi in
Si . Si is obtained from N (Ai ∪ Bi) by adding disks with zero or one marked
point each, and there is just one way to do this, up to homeomorphism. So,
to find a homeomorphism from S1 to S2 , it suffices to find a homeomorphism
from N (A1 ∪ B1) to N (A2 ∪ B2). We view N (Ai ∪ Bi) as a union of annular
neighborhoods of the components of Ai and Bi with pairs of annuli intersecting
in squares if the corresponding curves intersect, and otherwise not at all (see
Figure 8). Thus, in each surface, we have an annulus associated to each vertex
of G(Ai ∪ Bi) and a square of intersections of annuli for each edge.

We first define a homeomorphism on the annulus corresponding to the three-
valent vertex, v , (if it exists, otherwise, we can start at any vertex). We do
this so that the three (or fewer) squares corresponding to the edges meeting v

Geometry & Topology, Volume 8 (2004)



1310 Christopher J Leininger

Figure 8: Pieces of annuli intersecting in squares

Ai

Bi

are taken to the squares corresponding to the same three edges. This is pos-
sible because homeomorphisms of the circle act transitively on ordered triples
of points (and so homeomorphisms of an annulus act transitively on ordered
triples of disjoint squares). Next we extend the homeomorphism over the an-
nuli corresponding to the vertices adjacent to v , again preserving the squares
corresponding to the edges meeting those vertices. The homeomorphism is al-
ready defined on one of these squares and now there is at most one other square
(since these vertices have valence at most 2), so this is possible as well. We may
continue in this way extending over annuli corresponding to adjacent vertices,
preserving intersection squares. At each stage, we only encounter vertices with
valence at most 2, so this is always possible.

Since there are only finitely many vertices, after finitely many steps we obtain a
homeomorphism from N (A1∪B1) to N (A2∪B2), taking annuli to annuli. The
union of the cores of these annuli is precisely Ai ∪Bi , so applying an isotopy if
necessary, we may assume that A1 ∪ B1 is taken to A2 ∪ B2 .

2.3 Automorphisms

We say that a homeomorphism φ : S → S is allowable if it preserves the marked
points. We denote the group of allowable, orientation preserving homeomor-
phisms of S by Homeo+(S) and the identity component by Homeo0(S). The
mapping class group is defined to be the quotient group

Mod(S) = Homeo+(S)/Homeo0(S).

An element of Mod(S) is referred to as an automorphism of S , and by definition
is a homeomorphism, well-defined up to isotopy. When no confusion can arise,
we will make no distinction between a homeomorphism and the automorphism
it determines.

Geometry & Topology, Volume 8 (2004)
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2.4 Multi-twists

Given a ∈ S(S), a positive Dehn twist is the isotopy class of a homeomorphism
supported in an annular neighborhood of a described as follows. If we identify
the annular neighborhood of a with the annulus R/τZ× [0, σ] by an orientation
preserving homeomorphism, then with respect to the obvious coordinates on
this annulus, (t, s), the Dehn twist is given by

(t, s) 7→
(
t + s

τ

σ
, s
)

(2)

We note that this makes the Dehn twist affine with respect to the natural
Euclidean metric on the annulus for any τ, σ > 0.

Given A = a1 ∪ · · · ∪ an ∈ S ′(S), a multi-twist along A is the product

T ε1
a1

· · ·T εn
an

where εi ∈ {±1}. The positive multi-twist along A, written TA , is given by
the above product where εi = 1 for each i = 1, . . . , n. The map A 7→ TA

determines a bijection between S ′(S) and the set of positive multi-twists.

In the definition of TA the order of the product does not matter since Dehn
twists in disjoint curves obviously commute. In fact, for a, b ∈ S(S), we have

i(a, b) = 0 ⇒ TaTb = TbTa

i(a, b) = 1 ⇒ TaTbTa = TbTaTb
(3)

The second equality is the well known braid relation and easily follows from the
calculation that TaTb(a) = b.

Remark One often requires only that εi ∈ Z+ in the definition of a positive
multi-twist. However, we may replace a power of a Dehn twist about a curve
a by a product of Dehn twist about several isotopic copies of a, so there is no
loss in generality in taking only the powers 1 in our definition.

2.5 Pseudo-Anosov automorphisms

An automorphism [φ] ∈ Mod(S) is called pseudo-Anosov if there is a represen-
tative φ which leaves invariant a pair of mutually transverse singular foliations
with the following property. These foliations admit transverse measures and φ
multiplies one measure by a factor λ > 1 and the other by λ−1 . The number
λ = λ([φ]) = λ(φ) > 1 is an algebraic integer called the dilatation of [φ].

The dilatation has the following geometric description. For any a ∈ S(S) and
any complete hyperbolic metric on S , the length of the geodesic representative
of φn(a) grows like λn . That is, λ−nlength(φn(a)) converges to a nonzero
number.

Geometry & Topology, Volume 8 (2004)
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2.6 Reduction to the filling case

As was mentioned in the introduction, Theorem 6.1 is valid for any surface and
any pair of 1–manifolds, but the proof reduces to the filling case. A proof of
the following is given in the Appendix, in Section 10.

Proposition 10.1 It suffices to prove Theorem 6.1 for A ∪ B filling S .

Convention For the remainder of this paper (excluding Section 10) we shall
assume that every pair of essential 1–manifolds is filling.

3 Teichmüller and moduli spaces

For more details on Teichmüller space and quadratic differentials see Gardiner
and Lakic [23], Masur [40], Masur and Tabachnikov [41], Earle and Gardiner
[17], and McMullen [44].

Consider the space of complex structures on S , with orientation compatible
with the given orientation. Homeo+(S) acts on this space, and the quotient is
called the moduli space of S and is denoted M(S). If we quotient by the action
of the subgroup Homeo0(S) the resulting space is called the Teichmüller space

of S , and is denoted T (S). T (S) is the universal orbifold covering of M(S),
with covering group Mod(S).

Given [J0], [J1] ∈ T (S), the Teichmüller distance is defined by

d([J0], [J1]) =
1

2
inf

f'IdS

log (K (f : (S, J0) → (S, J1))) ,

where the infimum is taken over all quasi-conformal homeomorphisms f isotopic
to the identity, and K(f) is the dilatation of f . The action of Mod(S) is by
isometries, and so the metric pushes down to M(S).

3.1 Quadratic differentials

Let [J ] ∈ T (S), and consider the space Q(S, J) of integrable meromorphic
quadratic differentials on (S, J) which are holomorphic on Ṡ . Any q ∈ Q(S, J)
determines a singular Euclidean metric |q| on S with cone-type singularities
having cone angles kπ for k ∈ Z≥3 at non-marked points and k ∈ Z≥1 at
marked points. It also defines a singular measured foliation Fh , called the
horizontal foliation, whose leaves are geodesic with respect to |q|. These leaves

Geometry & Topology, Volume 8 (2004)
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are precisely the injectively immersed 1–manifolds γ satisfying q(γ′(t)) ≥ 0.
We refer to this structure as a flat structure, and will also denote it by q .

When all the leaves of Fh are compact, the complement of the singular leaves
is a disjoint union of annuli. In this situation, we say that q (or Fh) determines
an annular decomposition of S .

Suppose now we are given a flat structure q . That is, we have a singular Euclid-
ean metric |q| (having the above types of singularities) and a singular foliation
Fh with geodesic leaves. This defines a complex structure J and quadratic
differential which can be described as follows. The singular Euclidean metric
is given by an atlas of charts into C on the complement of the singularities for
which the transition functions are Euclidean isometries. This defines a complex
structure on the complement of the singularities which then extends over this
finite set. Requiring that the leaves of Fh be sent to horizontal lines by our
charts restricts our transition functions to be of the form z 7→ ±z + ξ , for some
ξ ∈ C. We refer to such an atlas of charts as a preferred atlas for q . The form
dz2 is invariant under the transition functions and pulls back to the desired
quadratic differential. The horizontal foliation is precisely Fh .

We also obtain a locally defined orthonormal basis e1, e2 for the tangent space
to any non-singular point such that e1 is tangent to Fh . Away from the sin-
gularities, this basis is globally well-defined by this condition, up to sign (ie
by replacing {e1, e2} by {−e1,−e2}). The dual basis {e1, e2} locally defines a
holomorphic 1–form ω = e1 + ie2 . Although ω is not in general globally well-
defined, its square is, and this is precisely the quadratic differential q = ω2 .
Note that ω is globally defined precisely when the metric has no holonomy.

3.2 Teichmüller disks and curves

Given [J ] ∈ T (S), and q ∈ Q(S, J), there exists a map

f̃ : SL2R → T (S)

which sends γ ∈ SL2R to a point in T (S) obtained by deforming [J ] according
to γ as follows. An element γ ∈ SL2R defines a new atlas by composing each
chart in the preferred atlas with γ (here we are identifying C with R

2 and γ
is the obvious R–linear map). The transition functions for the new atlas are
again of the form z 7→ ±z + ξ , and we obtain a new complex structure γ · J
and quadratic differential γ · q . We define f̃(γ) = γ · J .

Note that SO(2) does not change the underlying complex structure, and so f̃
factors through a map

f : H
2 ∼= SO2 \ SL2(R) → T (S).

Geometry & Topology, Volume 8 (2004)
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After scaling the hyperbolic metric this is a holomorphic isometric embedding
and is called a Teichmüller disk.

Given a Teichmüller disk f : H
2 → T (S), we have the stabilizer of f(H2)

Stab(f(H2)) < Mod(S).

Conjugating by f we obtain a subgroup of PSL2(R) which we denote

Stab(f) = f−1Stab(f(H2))f.

Forming the quotient by Stab(f), f then descends to a map

f̂ : H
2/Stab(f) → M(S).

When H
2/Stab(f) has finite area, its image f̂(H2/Stab(f)) is an algebraic

curve totally geodesically immersed in M(S) called a Teichmüller curve.

If f is a Teichmüller disk defined by q , then every automorphism of Stab(f(H2))
can be realized by an affine automorphism with respect to the flat structure.
The derivative with respect to the basis {e1, e2} defines a discrete representation

DAf : Stab(f(H2)) → PSL2(R)

(this is into PSL2(R), rather than SL2(R) because the basis is only defined up
to sign).

An element of the kernel of DAf leaves the complex structure and the quadratic
differential invariant. It follows that such an element fixes the Teichmüller disk
pointwise. Because the action on T (S) is properly discontinuous, the kernel of
DAf is finite.

We collect these and other facts into the following theorem for ease of reference.
Parts of this theorem have appeared in several different locations (see eg the
lecture notes [18], Thurston [54], Kra [34], Long [36], and Veech [56]).

Theorem 3.1 (Thurston, Kra, Veech) Let f : H
2 → T (S) be a Teichmüller

disk. Then
DAf : Stab(f(H2)) → PSL2R

is discrete, with finite kernel. For φ ∈ Stab(f(H2)) \ {1} the following is true:

(1) if DAf(φ) is elliptic or the identity, then φ has finite order,

(2) if DAf(φ) is parabolic, then φ is reducible and some power of φ is a
positive multi-twist, and

(3) if DAf(φ) is hyperbolic, then φ is pseudo-Anosov and the dilatation is
given by λ(φ) = exp

(
1
2L(DAf(φ))

)
where L(DAf(φ)) is the translation

length of DAf(φ) on H
2 .
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There is a strong converse to part 3 of the theorem which is essentially Bers’
description of pseudo-Anosov automorphisms.

Theorem 3.2 (Bers) Given any pseudo-Anosov automorphism φ, there is a
unique Teichmüller disk which it stabilizes.

The quotients H
2/DAf(Stab(f(H2))) and H

2/Stab(f) are essentially the same
(see eg [17] or [44]).

Proposition 3.3 H
2/Stab(f) is isometric to H

2/DAf(Stab(f(H2))). In par-
ticular, Stab(f) has finite co-area if and only if DAf(Stab(f(H2))) does.

3.3 Homology representation

As noted above, q is the square of a holomorphic 1–form ω = e1 + ie2 if and
only if the metric has no holonomy. Now suppose q = ω2 and let f : H

2 → T (S)
denote the associated Teichmüller disk. In this case, the two-dimensional sub-
space 〈e1, e2〉 ⊂ H1(S; R) is left invariant by the action of Stab(f(H2)) since the
R–span of the vector fields {e1, e2} is invariant. Moreover, the action on 〈e1, e2〉
is dual to the action on 〈e1, e2〉 ∼= R

2 given by DAf. In particular, the induced
action on H1(S; R) has a finite kernel. Since finite order automorphisms can
never act trivially on (co)homology, we obtain the following result.

Proposition 3.4 Suppose q = ω2 and f : H
2 → T (S) is the corresponding

Teichmüller disk. Then the action of Stab(f(H2)) on homology is faithful.

3.4 Example: Billiards

Let P ⊂ R
2 be a compact rational polygon, that is, the angle at every vertex

is a rational multiple of π . One can naturally associate the data of a surface
with flat structure (SP , qP ) so that the geodesics correspond to trajectories of
billiards in P . We give a very brief discussion of this and refer the reader to
Zemlyakov and Katok [61], Kerckhoff, Masur, and Smillie [33], and Masur and
Tabachnikov [41] for more details.

To construct SP , first consider the dihedral group D2k generated by reflections
in the lines through the origin in R

2 , parallel to the sides of P . Let

P =
∐

γ∈D2k

γP
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be the disjoint union of the images of P under the linear action by D2k . We
view the components γP as having a well-defined embedding in R

2 , up to
translation. The group D2k acts on P in an obvious way, and we form the
surface SP as the quotient of P obtained by identifying an edge e of P with its
image γe, for γ ∈ D2k , if e and γe are parallel (with the same orientation). dz2

is defined on each polygon and pieces together to give a well-defined quadratic
differential qP on SP . In fact, dz is invariant, so that q = ω2 for a globally
defined 1–form ω . The polygon P is said to be a lattice polygon if (SP , qP )
defines a Teichmüller curve in M(SP ).

The right and isosceles lattice triangles have been classified by Kenyon and
Smillie in [32]. They conjectured that there were exactly three non-isosceles,
acute lattice triangles and proved this for a large number of examples. The
conjecture was proven by Puchta in [48]. We collect these facts together in the
following.

Theorem 3.5 (Kenyon–Smillie, Puchta) The right lattice triangles are those
with smallest angle π

k
, k ∈ Z≥4 . The acute isosceles lattice triangles are those

with smallest angle π
k
, k ∈ Z≥3 . There are precisely three acute, non-isosceles

lattice triangles, namely those with angles

(1)

(
π

4
,
π

3
,
5π

12

)
(2)

(
2π

9
,
π

3
,
4π

9

)
(3)

(
π

5
,
π

3
,
7π

15

)

We will discuss the surfaces and quadratic differentials associated to these lattice
triangles in more detail in Section 7.

4 Matrices and graphs

4.1 Non-negative matrices

Let M be a square, n × n matrix with real entries. The spectral radius of M
is the maximum of the moduli of its eigenvalues, and we denote this by µ(M).

We say that M is non-negative (respectively, positive) if the entries of M are
non-negative (respectively, positive) and in this case we write M ≥ 0 (respec-
tively, M > 0). Say that M ≥ 0 is irreducible if for every 1 ≤ i, j ≤ n there
is some power, Mk , so that (Mk)ij > 0 (see [22]). If M,M ′ ≥ 0, then write
M ≤ M ′ if Mij ≤ M ′

ij for every 1 ≤ i, j ≤ n and write M < M ′ if in addition

this inequality is strict for some 1 ≤ i, j ≤ n. We similarly define ~V ≥ 0,
~V > 0, ~V ≤ ~V ′ , and ~V < ~V ′ for vectors ~V and ~V ′ in R

n .
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The following theorem on irreducible matrices will be useful (see [22] for a
proof).

Theorem 4.1 (Perron–Frobenius) Suppose that M ≥ 0 is irreducible. Then
M has a unique (up to scaling) non-negative eigenvector ~V . This vector is
positive with eigenvalue µ = µ(M) > 0. Moreover, for any non-negative vector
~U 6= 0, we have

min
1≤i≤n

(
(M ~U )i

~Ui

)
≤ µ ≤ max

1≤i≤n

(
(M ~U )i

~Ui

)

with either inequality being an equality if and only if ~U is a multiple of ~V .

Remark We define (M ~U)i

~Ui

= +∞ whenever ~Ui = 0.

When M is irreducible, we refer to the eigenvalue µ(M) (equal to the spec-
tral radius) as the Perron–Frobenius eigenvalue (briefly, PF eigenvalue) of M
and an associated eigenvector, as in the theorem, is called a Perron–Frobenius

eigenvector (briefly, PF eigenvector) for M .

4.2 Graphs

For more details on spectral radii of graphs, see the survey article of Cvetković
and Rowlinson [16]. The author is thankful to Curt McMullen for pointing out
this reference which greatly simplified the exposition.

Given any finite graph G , one can associate to G a matrix, Ad(G), called the
adjacency matrix, as follows. Labeling the vertices of G by x1, . . . , xn , the
(i, j)–entry of Ad(G) is defined to be the number of edges connecting xi to xj .
The spectral radius of G is defined to be µ(G) = µ(Ad(G)). Note that when
G is connected, Ad(G) is irreducible. Indeed, ((Ad(G))k)ij is the number of
combinatorial paths of length k from the ith vertex to the j th. The following
is an elementary consequence of Theorem 4.1.

Theorem 4.2 If G0 ⊂ G is a subgraph of a connected graph G , then µ(G0) ≤
µ(G), with equality if and only if G0 = G .

From this theorem one easily obtains a proof of the following (which is a special
case of the classical result of Smith [53]).

Geometry & Topology, Volume 8 (2004)



1318 Christopher J Leininger

Theorem 4.3 (Smith) The set of connected bipartite graphs G with µ(G) <
2 are precisely the recessive graphs, and those with µ(G) = 2 are precisely the
critical graphs.

Proof An explicit calculation (see eg [16]) shows that the spectral radius of
every critical graph is 2. Any connected bipartite graph G contains or is con-
tained in one of the critical graphs. To see this, we note that if G is not a tree,
then it contains a cycle (of even length since G is bipartite). Hence P2c ⊂ G
for some c. If G is a tree, then one of the following holds

(1) G is homeomorphic to an interval (and thus contained in some Qc ),

(2) G contains a vertex with valence at least 4 (and so contains Q5 ),

(3) G has at least two vertices of valence at least 3 (and so contains some
Qc ), or

(4) G has exactly one vertex of valence 3 and all other vertices of valence at
most 2.

In case (4), by inspection, G is either contained in one of Qc , R7 , R8 , or R9 ,
or else it contains R7 , R8 , or R9 .

The only connected proper subgraphs of the critical graphs are the recessive
graphs, and so any other connected graph contains some critical graph. The
theorem now follows from Theorem 4.2.

There is also a classification of graphs, similar to Smith’s, for graphs having

spectral radius in the interval (2,
√

2 +
√

5] due to Cvetković, Doob, and Gut-
man [15] and Brouwer and Neumaier [12]. From this, we easily obtain the
following.

Theorem 4.4 (Cvetković, Doob, Gutman, Brouwer, Neumaier) Given any
bipartite graph G with µ(G) > 2, we have

µ(G) ≥ µL ≈ 2.0065936

with equality if and only if G = Eh10 .

Here µL is the square root of the unique largest root of

x5 − 9x4 + 27x3 − 31x2 + 12x − 1 (4)

This polynomial is the square root of the characteristic polynomial for the
matrix (Ad(Eh10))

2 .
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Proof Appealing to the aforementioned classification (see [16]), one can verify
by explicit calculation that Eh10 uniquely minimizes spectral radius among
graphs in the list, and that its spectral radius is µL . The classification is
for graphs without multiple edges, so we verify directly that a graph G with
multiple edges has µ(G) > µL . Such a graph must contain one of the graphs
shown in Figure 9. These each have spectral radius at least

√
5 > µL , and so

the theorem follows from Theorem 4.2.

Figure 9: Subgraphs of a graph with multiple edges and µ > 2

5 Affine actions for groups generated by two positive

multi-twists

5.1 Constructing the flat structure

In this section, we recall the construction of Thurston [54]. Slight variations are
also described in Long [36], Veech [56], and a special case in the lecture notes
[18].

Viewing A ∪ B as a graph on S , the components of S \ A ∪ B are then the
(interiors of) faces of this graph (actually, we are viewing S as a 2–complex
with A ∪ B as the 1–skeleton). Thus, each face is a disk (with at most one
marked point) which we may view as a 2k–gon for some k ∈ Z. Since A and
B are assumed to intersect minimally, any face containing no marked points
must have at least four edges. Write A = a1 ∪ · · · ∪ an and B = b1 ∪ · · · ∪ bm .

Let ΓA,B be the dual graph to A∪B embedded in S so that the vertex of ΓA,B

dual to a face with a marked point is that marked point. ΓA,B defines a cell
division of S , which we also denote by ΓA,B , each 2–cell of which is a rectangle.
Every rectangle contains a single arc of some ai and a single arc of some bj

intersecting in one point (see Figure 10). Note that every vertex which is not a
marked point of S must have valence at least 4 by the previous paragraph.

One can now use ΓA,B to define a Euclidean cone metric on S by declaring
each rectangle to be a Euclidean rectangle. The choice of Euclidean rectangles
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Figure 10: The local picture in any rectangle

ai

bj

is of course subject to the condition that whenever two rectangles meet along
an edge, the shared edge must have the same length in each rectangle. It
follows that we obtain one real parameter for each component of A and of B ,
corresponding to the length of the edges which that component meets. This
defines a flat structure having orthonormal basis ±{e1, e2} with e1 parallel to
the edges which B transversely intersects, and e2 parallel to the edges which
A intersects.

Since we want 〈TA, TB〉 to act by affine transformations with respect to this
structure, we choose these rectangle parameters as follows. Define N = NA,B

to be the n×m matrix whose (i, j)–entry is i(ai, bj). The connectivity of A∪B
guarantees that NN t is irreducible (here N t is the matrix transpose of N ).
Let ~V be a PF eigenvector for µ = µ(NN t). Notice that for the same reason,

N tN is also irreducible, and setting ~V ′ = µ− 1

2 N t~V ≥ 0, we see that

N tN ~V ′ = N tNµ− 1

2 N t~V = µ− 1

2 N t(NN t~V ) = µ− 1

2 N tµ~V = µµ− 1

2 N t~V = µ~V ′

so that µ(N tN) = µ = µ(NN t). With this choice of ~V and ~V ′ , note that we

also have ~V = µ− 1

2 N ~V ′ . We write µ(A ∪ B) to denote
√

µ(NN t) (the reason
for the square root will soon become evident).

We now make any rectangle of ΓA,B containing arcs of ai and bj into a Euclid-

ean rectangle for which the sides transverse to ai have length ~Vi and the sides
transverse to bj have length ~V ′

j (see Figure 11). For any component ai of A,
the rectangles containing arcs of ai fit together to give a Euclidean annulus
(which is a neighborhood of ai ). The length of this annulus is ~Vi , and to see
what the girth is, note that for each j = 1, . . . ,m and for each intersection
point of ai with bj there is a rectangle of width ~V ′

j in the annulus. So, for
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Figure 11: The Euclidean rectangle

ai

bj

~Vi

~V ′

j

each j = 1, . . . ,m, there is a contribution of i(ai, bj) rectangles of width ~V ′
j .

Therefore, the girth is

m∑

j=1

i(ai, bj)~V
′
j = (N ~V ′)i = µ

1

2 ~Vi = µ(A ∪ B)~Vi

Similarly, the rectangles containing arcs of bj fit together to give a Euclidean

annulus of length ~V ′
j and girth µ(A ∪ B)~V ′

j .

We now verify that TA and TB are represented by affine transformations with
respect to this structure. The derivative of the affine map for TA (in terms of
±{e1, e2}) is given by

DAf(TA) =

(
1 µ(A ∪ B)
0 1

)

To see this, first construct the affine twist on each of the Euclidean annuli
described above and note that it has the desired derivative (see (2) and Section
2.4). Since each of the twists is the identity on the boundary of its defining
annulus, they all piece together to give a well-defined affine homeomorphism
with the correct derivative. Similarly, the derivative of the affine representative
of TB is

DAf(TB) =

(
1 0

−µ(A ∪ B) 1

)

We note that, by construction, all vertices of ΓA,B are fixed by every element
of 〈TA, TB〉.
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5.2 µ(A ∪ B) vs µ(G(A ∪ B))

Given A∪B filling S , we have associated two positive numbers, µ(A∪B) and
µ(G(A ∪ B)). Not surprisingly, these are the same numbers.

Proposition 5.1 With N = NA,B as in the previous section, we have

Ad(G(A ∪ B)) =

(
0 N

N t 0

)

In particular, µ(A ∪ B) =
√

µ(NN t) = µ(G(A ∪ B)).

Proof Let us denote the vertices of G(A ∪ B) (and curves of A and B ) by
both a1, . . . , an, b1, . . . , bm and x1, . . . , xn+m where xi = ai ⊂ A, i = 1, . . . , n,
and xj+n = bj ⊂ B , j = 1, . . . ,m. Then, the (i, j)–entry of Ad(G(A ∪ B)) is
the number of edges from xi to xj . By definition of G(A ∪B), this is equal to
i(xi, xj). Since the (i, j)–entry of N (respectively N t) is i(ai, bj) (respectively
i(bi, aj)), it is immediate that

Ad(G(A ∪ B)) =

(
0 N

N t 0

)

To see the second statement, note that µ(Ad(G(A∪B)))2 = µ((Ad(G(A∪B)))2)
and that

(Ad(G(A ∪ B)))2 =

(
NN t 0

0 N tN

)

6 Fuchsian groups

Here we note a few lemmas concerning the Fuchsian groups which occur as
the images of groups 〈TA, TB〉 under DAf. The proofs are routine exercises in
hyperbolic geometry, and we refer to Beardon’s text [6], Ratcliffe’s text [51],
and the Thurston’s notes [55] for more background on hyperbolic geometry and
Fuchsian groups. The following two theorems are then easily derived from these
lemmas.

Theorem 6.1 〈TA, TB〉 ∼= F2 if and only if G(A ∪ B) contains a dominant
component.
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Theorem 6.2 For any surface S , any A,B ∈ S ′(S), and any pseudo-Anosov
element

φ ∈ 〈TA, TB〉 < Mod(S)

we have λ(φ) ≥ λL ≈ 1.1762808. Moreover, λ(φ) = λL precisely when S has
genus 5 (with at most one marked point), {A,B} = {AL, BL} as in Figure 1
(up to homeomorphism), and φ is conjugate to (TATB)±1 .

Remark I would like to thank Joan Birman for pointing out that the number
obtained as the minimal dilation was Lehmer’s number.

6.1 Groups generated by two parabolics

For µ > 0, set

γ1(µ) =

(
1 µ
0 1

)
, γ2(µ) =

(
1 0
−µ 1

)
∈ PSL2R

and

Γµ = 〈γ1(µ), γ2(µ)〉 < PSL2R

Note that DAf maps 〈TA, TB〉 onto Γµ(A∪B) . We write Oµ = H
2/Γµ .

Recall that the convex core of a hyperbolic manifold M , denoted C(M), is the
smallest convex sub-manifold for which the inclusion is a homotopy equivalence.
The signature of a triangle orbifold, O , (or, equivalently, its associated triangle
group) is a triple (p, q, r) with p, q, r ∈ Z≥2 ∪ {∞}. O is a sphere with cone
points of order p, q , and r , where a cone point of infinite order is a cusp.

Lemma 6.3 If Γµ is discrete, then Γµ
∼= F2 if and only if µ ≥ 2. Moreover,

(1) for µ > 2, Oµ has infinite area and C(Oµ) is a twice punctured disk,

(2) for µ = 2, Oµ
∼= Ṡ0,3 , and

(3) for µ < 2, Oµ is a triangle orbifold with signature

• (q,∞,∞) if γ1 and γ2 are not conjugate and

• (2, q,∞) if γ1 and γ2 are conjugate

where q is the order of γ1γ2 .

In particular, Γµ has finite co-area if and only if µ ≤ 2.
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Figure 12: Fundamental domains for Γµ with µ = 2 (left) and µ > 2 (right)

1 1

Proof If µ ≥ 2, one can construct a fundamental domain for the action of Γµ

on H
2 , as is shown in Figure 12 in the upper half-plane model. Identifying the

faces of this fundamental domain as indicated gives the quotient Oµ . Therefore
Oµ

∼= Ṡ0,3 for µ = 2, and C(Oµ) is a twice-punctured disk (with punctures
represented by cusps) for µ > 2. In particular, Γµ

∼= F2 if µ ≥ 2.

When µ < 2, we note that Tr(γ1γ2) = 2− µ2 ∈ (−2, 2), and so γ1γ2 is elliptic.
Because Γµ is discrete, γ1γ2 must have finite order, and so Γµ 6∼= F2 .

Using the Dirichlet domain construction centered at the point 2i, one can check
that the resulting fundamental domain must be contained in the set, P , shown
in Figure 13.

P =
{
z ∈ H

2 | d(z, 2i) ≤ d(z, γ(2i)) for γ = γ1(µ)±1, γ2(µ)±1
}

P is a polygon with two finite vertices at points z± ∈ H
2 (Re(z±) = ±µ

2 and
|z±| = 1) and two infinite vertices at 0 and ∞.

Figure 13: The set P containing the fundamental domain

1

z+z−

γ2

γ1
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The point z+ is fixed by γ1γ2 and z− is fixed by the conjugate γ2γ1 . Let θ
denote the interior angle at z+ , which is equal to the angle at z− . A calculation
shows that 2 cos

(
θ
2

)
= µ and that γ1γ2 is a clockwise rotation about the point

z+ through an angle 2θ .

If 2θ = 2π
q

for some integer q , then O is obtained from P by identifying the
two pairs of edges according to γ1 and γ2 . In this case, Oµ has two cusps,
one corresponding to each of 〈γ1〉 and 〈γ2〉 and one cone point of order q = 2θ

2π

(which is the order of γ1γ2 ). The maximal parabolic subgroups 〈γ1〉 and 〈γ2〉
are not conjugate since they represent different cusps. In this case Oµ is a
triangle orbifold with signature (q,∞,∞), as required.

If 2θ = 4π
q

for some odd integer q , then γ1γ2 generates a cyclic subgroup of

order q in Γµ . This subgroup also contains the clockwise rotation ρ = (γ1γ2)
q+1

2

about z+ through an angle θ = 2π
q

. Consider the element δ = γ−1
1 ρ which takes

0 to ∞ and fixes i. If we intersect P with the complement of the unit disk
in C, we obtain a fundamental domain for Γµ as shown in Figure 14, with
quotient given by the identifications by γ1 and δ as shown. In this case Oµ is
a triangle orbifold with signature (2, q,∞) and γ1 and γ2 are conjugate by δ ,
as required.

Figure 14: The fundamental domain when 2θ = 4π
q

, q odd

z+z−

γ1

δ

Finally, suppose 2θ 6∈
{

4π
q

| q ∈ Z+

}
. In this case the cyclic subgroup gener-

ated by γ1γ2 contains a rotation about z+ through an angle less than θ . In
particular, the Dirichlet domain construction based at an appropriate point on
the imaginary axis gives a compact fundamental domain contained in P . This
contradicts the fact that Γµ contains parabolics and hence any fundamental
domain is noncompact.
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6.2 Freeness at last

Proof of Theorem 6.1 Proposition 10.1 shows that it suffices to assume
that A ∪ B fills S . According to Theorem 4.3, µ(G(A ∪ B)) ≥ 2 if and only if
G(A ∪ B) is dominant. Now, by Proposition 5.1, µ(A ∪ B) = µ(G(A ∪ B)), so
it suffices to show that 〈TA, TB〉 is free if and only if µ(A∪B) ≥ 2. This latter
equivalence is precisely what Thurston had suggested in [54].

Suppose µ(A ∪ B) ≥ 2. By Lemma 6.3, DAf is a surjection to F2 . Since
〈TA, TB〉 is generated by two elements, we have a surjection

χ : F2 → 〈TA, TB〉

DAf ◦ χ is therefore a surjection from F2 onto itself. Free groups are Hopfian
(see [38]), hence this is an isomorphism. Therefore, χ is also an isomorphism,
proving that 〈TA, TB〉 ∼= F2 .

If µ(A ∪ B) < 2, Lemma 6.3 implies DAf(TATB) has finite order, so Theorem
3.1 says TATB also has finite order, hence 〈TA, TB〉 6∼= F2 .

The next proposition is included for it own interest. It makes precise the state-
ment that most elements in 〈TA, TB〉 are pseudo-Anosov.

Proposition 6.4 Suppose A ∪ B fills S and G(A ∪ B) is dominant. Then
every element of 〈TA, TB〉 is pseudo-Anosov except conjugates of powers of TA

and TB , and also TATB when G(A ∪ B) is critical.

Proof The hyperbolic elements of Γµ = π1(H
2/Γµ) are precisely those ele-

ments corresponding to loops that are freely homotopic to closed geodesics. All
loops that are not homotopic to cusps have such a representative, and so the
corollary follows from Theorem 3.1, Lemma 6.3, and the fact that DAf is an
isomorphism in this case.

Remark When Γµ is discrete and µ < 2, it also has precisely 3 conjugacy
classes of cyclic subgroups which make up all non-hyperbolic elements. How-
ever, DAf is not necessarily an isomorphism in this case, so we only know that
all non-pseudo-Anosov elements map by DAf to one of 3 cyclic subgroups, up
to conjugacy.
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6.3 Dilatation bounds and Lehmer’s number

The connection between translation lengths and dilatations is provided by The-
orem 3.1. This is the basis for the proof of Theorem 6.2, and so to apply this we
will need a few elementary facts concerning translation lengths in the Fuchsian
groups Γµ . As Lemma 6.3 shows, for µ ≤ 2, H

2/Γµ is a triangle orbifold.
Furthermore, triangle orbifolds can have no closed embedded geodesics, so the
following is an immediate consequence of Theorem 11.6.8 of Beardon [6].

Proposition 6.5 (Beardon) For any µ ≤ 2, the smallest translation length
of a hyperbolic element of Γµ is bounded below by

2 sinh−1

(√
cos

(
3π

7

))

For the remaining cases, we have the following.

Lemma 6.6 When µ > 2, the smallest translation length of a hyperbolic
element of Γµ is realized (uniquely up to conjugacy) by (γ1(µ)γ2(µ))±1 , and is
given by 2 log(λµ), where λµ is the larger root of

x2 + x(2 − µ2) + 1 (5)

Remark The larger root λµ of (5) defines an increasing function of µ > 2.

Proof Since C(H2/Γµ) is a twice-punctured disk, any geodesic γ determines
a conjugacy class represented by an element which we also call γ ∈ Γµ . The
translation length of γ is the length of the geodesic with the same name, and
is given by 2 log(λ) where λ is the spectral radius of a matrix representative of
γ ∈ Γµ . The only simple closed geodesic is the boundary of the convex core.
Moreover, for any other closed geodesic, one can cut and paste a collection
of arcs of this geodesic to obtain a curve homotopic to this boundary curve.
It follows that the boundary geodesic is the unique shortest geodesic. This is
represented by γ1(µ)γ2(µ).

The natural representation of the projective class of γ1(µ)γ2(µ) by a matrix
(given the matrices for γ1(µ) and γ2(µ) we have chosen) has Tr(γ1(µ)γ2(µ)) =
2 − µ2 < 0, so we see that −λ satisfies the characteristic equation. Therefore,
λ is the larger root of (5).
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Corollary 6.7 Let φ ∈ 〈TA, TB〉 be any pseudo-Anosov automorphism. If
µ = µ(A ∪ B) > 2, then

λ(φ) ≥ λµ

where λµ is a root of (5). Equality holds if and only if φ = (TATB)±1 up to
conjugacy. If µ ≤ 2, then

λ(φ) > 1.47

Proof Suppose µ > 2. By Theorem 3.1 λ(φ) = exp(1
2L(DAf(φ))), hence

the smallest dilatation occurs precisely when DAf(φ) has smallest translation
length (dilation is an increasing function of translation length). By Lemma
6.6, this is precisely when DAf(φ) is conjugate to DAf(TATB)±1 . As the proof
of Theorem 6.1 shows, DAf is an isomorphism, and so this happens if and
only if φ is conjugate to (TATB)±1 . In this case, we have λ(φ) = λ(TATB) =
exp

(
1
22 log(λµ)

)
= λµ .

When µ ≤ 2, by similar reasoning (appealing now to Proposition 6.5 rather
than Lemma 6.6) we obtain

λ(φ) ≥ exp

(
1

2
2 sinh−1

(√
cos

(
3π

7

)))
> 1.47

Proof of Theorem 6.2 By Corollary 6.7, we need only consider µ = µ(A ∪
B) > 2, and it suffices to show that λµ ≥ λL with equality if and only if
{A,B} = {AL, BL}. The remark following Lemma 6.6 tells us that to minimize
λµ , we need only minimize µ(A ∪ B). Theorem 4.4 says that µ is minimized
uniquely by µL when G(A ∪ B) = Eh10 . Here µ2

L is the largest root of the
polynomial (4). By Corollary 6.7, λµL

is a root of (5) with µ = µL . Thus,
(λµL

, µL) = (x, y) satisfies
{

x2 + x(2 − y2) + 1 = 0
y5 − 9y4 + 27y3 − 31y2 + 12y − 1 = 0

Eliminating y from this pair we find that λµL
is a root of (1), and so λµL

= λL .

The only configuration which minimizes µ is Eh10 . Since Eh10 is a tree with
one vertex having valence at most three, Proposition 2.1 completes the proof
of the theorem.

7 Teichmüller curves, triangle groups, and billiards

The first theorem of this section is the following:
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Theorem 7.1 The Teichmüller curves for which the associated stabilizers con-
tain a group generated by two positive multi-twists with finite index are pre-
cisely those defined by A∪B filling S , where G(A ∪B) is critical or recessive.

Proof We must show that 〈TA, TB〉 has finite co-area if and only if G(A∪B) is
recessive or critical. Proposition 3.3 implies that the former happens if and only
if Γµ(A∪B) = 〈DAf(TA),DAf(TB)〉 has finite co-area. By Lemma 6.3, Γµ(A∪B)

has finite co-area if and only if µ(A∪B) ≤ 2. Proposition 5.1 implies µ(A∪B) =
µ(G(A ∪ B)), and Theorem 4.3 implies that µ(G(A ∪ B)) ≤ 2 if and only if
G(A ∪ B) is recessive or critical.

The Teichmüller curves obtained from this theorem are most interesting when
G(A ∪ B) are recessive (the critical configurations all give Teichmüller curves
covered by the thrice-punctured sphere). To better understand these curves,
we describe another construction for surfaces and flat structures studied by
Veech [56] and Earle and Gardiner [17]. Embedded in this construction is the
billiard construction for all but three of the lattice triangles from Theorem 3.5.
To complete the billiard picture we describe the remaining three exceptional
triangles and verify the following.

Theorem 7.2 The Teichmüller curves determined by the right and acute lat-
tice triangles have associated stabilizers containing a finite index subgroup of
the form 〈TA, TB〉 with G(A ∪ B) recessive.

The Teichmüller curves determined by these lattice triangles do not account
for all Teichmüller curves determined by recessive configuration. However, the
constructions described below are general enough to take care of all of these.
From this we obtain a complete description of the non-free groups generated by
two positive multi-twists.

Theorem 7.3 If G(A∪B) is recessive, then DAf maps 〈TA, TB〉 onto a Fuch-
sian triangle group with finite central kernel of order at most 2. The signature
of the triangle group is described by the following table.

configuration graph signature configuration graph signature

Dc, c ≥ 4 (c − 1,∞,∞) E6 (6,∞,∞)

A2c+1, c ≥ 1 (c + 1,∞,∞) E7 (9,∞,∞)

A2c, c ≥ 1 (2, 2c + 1,∞) E8 (15,∞,∞)
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We will explain the proof of Theorems 7.2 and 7.3 in Section 7.1. The strategy
in all cases is the same, but requires verification on a case-by-case basis. This
is done for the Dc graphs in Section 7.2, the Ac graphs in Section 7.3 for c
odd and Section 7.4 for c even, and finally the three graphs E6 , E7 , and E8 in
Section 7.5.

7.1 Proof outlined

In sections 7.2 through 7.5 we will describe a flat structure and positive multi-
twists in 1–manifolds A and B which act as affine automorphisms with respect
to this structure. This will generally be a different structure than the one
we constructed in Section 5.1 for A and B . However, it is affine equivalent
to that one, ie they define the same Teichmüller disk. This follows from the
uniqueness in Theorem 3.2 since both Teichmüller disks are stabilized by any
pseudo-Anosov automorphism in 〈TA, TB〉.
For each of the flat structures under consideration, and each of the pairs of
1–manifolds A and B , we will see that G(A ∪ B) is recessive. In particular,
to prove Theorem 7.2 it suffices to recognize those flat structures coming from
the billiard construction for the right and acute lattice triangles among those
which we describe. This is verified in Section 7.5.

Proof of Theorem 7.3 DAf maps 〈TA, TB〉 onto a Fuchsian triangle group by
Lemma 6.3 and the fact that µ(A ∪ B) < 2. To see that the kernel is central,
we note that by definition, any element of the kernel has derivative ±I . In
particular, this must leave both the A–annuli and the B–annuli invariant, and
hence also each of A and B are invariant. Any automorphism which leaves a 1–
manifold invariant must commute with the associated multi-twist. In particular,
we see that every element of the kernel commutes with the generators TA and
TB , and so is central.

Since any element of the kernel leaves each of A and B invariant, it induces an
automorphism of the graph A∪B which leaves the A edges and B edges invari-
ant. This in turn induces an automorphism of the graph G(A ∪ B) preserving
the bicoloring. Said differently, we obtain a homomorphism

δ : ker(DAf) → Autbc(G(A ∪ B))

Here Autbc(G(A ∪ B)) is the automorphism group of the graph preserving the
bicoloring (which has index at most 2 in the full automorphism group).

Claim ker(δ) has order at most 2.
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Proof of Claim We note that any φ ∈ ker(δ) leaves each component of A
and of B invariant. Relabeling A and B and renumbering the components
if necessary, we may assume that a1 ⊂ A is a component corresponding to a
1–valent vertex of G(A∪B). This a1 has only a single point of intersection with
(A \ {a1})∪B , and hence a1 is the closure of an edge, e1 , of the graph A∪B .
Since a1 is invariant by φ, so is e1 . Thus, ker(δ) consists of isotopy classes of
(orientation preserving) homeomorphisms of S leaving the 1–skeleton (A∪B )
of a cell structure invariant and fixing the edge e1 (not necessarily pointwise).
Such a group has order at most two.

Now, when G(A∪B) is of type A2c , Autbc(G(A∪B)) is trivial, hence ker(DAf)
has order at most 2 by the claim. When G(A ∪ B) is of type A2c+1 , c ≥ 1,
Autbc(G(A ∪ B)) has order two. However, in this case we claim that ker(δ) is
trivial. This is because the two possible elements in this group are the identity
and a hyperelliptic involution. The latter is in the full stabilizer, but not in
〈TA, TB〉 because it does not fix the two vertices of ΓA,B . This implies ker(DAf)
has order at most two in this case also.

When G(A ∪ B) is of type Dc , ker(δ) is again trivial. This is because on the
curve corresponding to the valence three vertex, any φ ∈ ker(δ) must fix the
three points of intersection with the curves corresponding to the three adjacent
vertices. It follows that φ is the identity on that curve, hence on all of S . When
c ≥ 5, there is only one non-trivial automorphism of Dc , and so ker(DAf) has
order at most two, and we are done in this case. When c = 4, we again use the
fact that all vertices of ΓA,B are fixed to see that the ker(DAf) is trivial.

For the three exceptional cases we note that Aut(G(A ∪ B)) is trivial when
G(A ∪ B) = E7 or E8 , so ker(DAf) has order at most two by the claim. In the
one remaining case that G(A∪B) = E6 , we note that Aut(G(A∪B)) has order
two. However, the non-trivial element is induced by an automorphism of the
surface which does not fix the vertices of ΓA,B , hence is not in 〈TA, TB〉.
All that remains is to verify that 〈DAf(TA),DAf(TB)〉 has the required signa-
ture. We will check below that DAf(TATB) has order given by the larger of
the two finite numbers listed in the signature. For the cases of G(A ∪ B) of
type Dc , A2c+1 , E6 , E7 , and E8 this will prove that the signature is as listed by
showing that there must be two cusps in these cases. For then, the signature is
(q,∞,∞), where q is the order of the product of the two parabolic generators
by Lemma 6.3.

Suppose that in the cases listed there were only one cusp. By Lemma 6.3 there
is an element DAf(φ) conjugating DAf(TA) to DAf(TB). Up to an element of
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the kernel, φ would conjugate TA to TB . Because the kernel is central with
order at most two, we obtain a conjugation of T 2

A to T 2
B . This cannot happen

since this would imply a homeomorphism taking a union of two copies of A to
a union of two copies of B which is not possible for the given configurations.

Finally, for the remaining cases G(A ∪ B) = A2c , we find an element in
〈DAf(TA),DAf(TB)〉 conjugating DAf(TA) to DAf(TB). Lemma 6.3 completes
the proof, modulo finding this conjugating element and verifying the orders of
TATB . This is carried out in the next four sections.

7.2 The Dc configurations

The following is described in more detail by Earle and Gardiner in [17].

Consider a regular 2k–gon, ∆2k , with k ∈ Z≥2 , embedded in the plane with two
vertical edges. Identifying opposite edges by Euclidean translations we obtain
a surface S of genus

⌊
k
2

⌋
. Because the gluings are by isometry, we obtain

a Euclidean cone metric on S , and the foliation by horizontal lines provides a
holomorphic quadratic differential q (this restricts to dz2 on ∆2k ). Let α2k = π

k

and β2k = α2k

2 .

Note first that the counter-clockwise rotation about the center of ∆2k through
an angle α2k defines an isometry of S of order 2k . We denote this by ρ2k .

We also see that the horizontal foliation of q has all closed leaves, decomposing
S into

⌈
k
2

⌉
annuli. Let B be the essential 1–manifold which is the union of

the cores of the annuli, taking two parallel copies of the core of the annulus
meeting the two vertical sides of ∆k (see Figure 15). TB acts by an affine
transformation leaving this foliation invariant, having derivative

DAf(TB) =

(
1 2 cot(β2k)
0 1

)
.

Rotate the horizontal foliation by an angle β2k (ie multiply q by eiα2k ). This
rotated foliation also has all closed leaves, decomposing S into

⌊
k
2

⌋
annuli in

another way. Let A be the union of the cores of these annuli. TA also acts by
an affine transformation, with derivative DAf(TA) given by
(

cos(β2k) − sin(β2k)
sin(β2k) cos(β2k)

)(
1 2 cot(β2k)
0 1

)(
cos(β2k) sin(β2k)

− sin(β2k) cos(β2k)

)
.

One can now verify that TATB = ρk+1
2k (eg consider the action on the line

segment from the center of the polygon to the vertex at the top of the left
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Figure 15: A ∪ B in S and G(A ∪ B), when k = 4

a1

a2

b0

b1

b2

a1 a2

b0

b1

b2

vertical edge and on the horizontal line segment from the center to the midpoint
of the right vertical edge). We also note that DAf(ρ2k) ∈ PSL2R has order k
(which is half its order in SL2R).

As is indicated in Figure 15, G(A ∪ B) is the graph Dk+1 , when k ≥ 3 (for
k = 2, we get A3 ). This proves Theorem 7.3 for the graphs Dc .

7.3 The Ac configurations I: c odd

The examples below where studied by Veech in [56] and [57]. However, we
follow the discussion of Earle and Gardiner in [17].

Let S , A, and B be as in the previous section and assume that b0 and b1 were
the parallel components of B . Write A = a1 ∪ · · · ∪ an and B = b0 ∪ · · · ∪ bm .
Note that n + m = k . Let B′ = B \ b0 and note that we may replace TB by
the following isotopic homeomorphism:

TB ' T̂B′ = T 2
b1

Tb2 · · ·Tbm

Now construct a 2–fold cover π : S̃ → S (which is a branched cover when k is
odd) for which all components of A and of B′\b1 lift to loops, but the preimage
of b1 is a connected double cover of b1 . Writing Ã = π−1(A) and B̃ = π−1(B′),
one can check that T �

A
and T �

B
cover TA and T̂B′ , respectively. Moreover, these

act as affine transformations with respect to π∗(q) with derivatives

DAf(T �

A
) = DAf(TA) and DAf(T �

B
) = DAf(T̂B′) = DAf(TB).

So, DAf(T �

A
T �

B
) has order k .

G(Ã∪B̃) is of type Ac since each curve of A and B intersects at most two other
curves. B̃ has 2m−1 components, Ã has 2n components, so G(Ã∪B̃) = A2k−1 .
This proves Theorem 7.3 for the graphs Ac with c odd.
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Remark In Veech’s description of these examples, he explicitly constructed
the surface S̃ from two regular 2k–gons in the plane, identified along an edge.
S̃ is obtained by identifying opposite sides of the resulting non-convex polygon.

7.4 The Ac configurations II: c even

The following construction is due to Veech [56], [57].

For k ∈ Z≥1 we consider two regular (2k + 1)–gons, ∆0
2k+1 and ∆1

2k+1 , in the
plane sharing a horizontal edge, and denote the non-convex polygon which is
their union by ∆2k+1 . Identifying opposite sides of ∆2k+1 we obtain a genus–k
surface, which we denote by S .

In the same fashion as above, we obtain a flat structure q on S , which restricts
to dz2 on ∆2k+1 . Let α2k+1 = 2π

2k+1 and β2k+1 =
α2k+1

2 .

The counter-clockwise rotations through an angle α2k+1 about the centers of
∆0

2k+1 and ∆1
2k+1 define an isometry ρ2k+1 of S of order 2k + 1. There is also

an involution σ2k+1 obtained by rotating ∆2k+1 about the center of the edge
shared by ∆0

2k+1 and ∆1
2k+1 . Note that σ2k+1 is in the kernel of DAf.

The horizontal foliation has all closed leaves, and so decomposes S into k
annuli. Let B be the union of the cores of these annuli. Then TB acts on S
by affine transformations with derivative

DAf(TB) =

(
1 2 cot(β2k+1)
0 1

)

Next, we let A = ρk+1
2k+1(B). Equivalently, A is obtained as follows. Rotate the

horizontal foliation of q through an angle (k+1)α2k+1 . This has the same effect
as rotating through an angle β2k+1 = (k + 1)α2k+1 − π (and hence multiplying
q by eiα2k+1 ). This foliation has all closed leaves and decomposes S into annuli,
the union of the cores of which are precisely A.

Now one can check that
TATB = ρ2k+1σ2k+1

(eg one can verify that this holds on appropriately chosen segments). So that
we see

DAf(TA) = DAf(TATB)k+1DAf(TB)DAf(TATB)−(k+1).

Thus, DAf(TA) and DAf(TB) are conjugate in DAf(〈TA, TB〉) and DAf(TATB)
has order 2k + 1. One can check that G(A ∪ B) = A2k , thus proving Theorem
7.3 for this class of graphs.
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7.5 Billiards and E6 , E7 , and E8

The constructions of the previous three sections provide a description of the
surfaces and quadratic differentials coming from the billiard construction (see
Section 3.4) for the right and acute isosceles lattice triangles given in Theorem
3.5, as we shall now explain.

Consider first the case where P is an acute, isosceles triangle with apex angle
of the form π

k
, k ∈ Z≥3 , and k odd. P tiles the regular 2k–gon, ∆2k , with

all apex vertices at the center of ∆2k . Take any copy of P , call it P ′ , in
this tiling. Reflecting P ′ across the edge opposite the apex gives a copy, P ′′ ,
exactly opposite P ′ through the center of ∆2k , up to translation (see Figure
16). It follows that if we identify opposite sides of ∆2k as in Section 7.2 we get
exactly the surface and quadratic differential (up to a complex multiple) from
the billiard construction for P .

Figure 16: Reflecting P ′ in the side opposite the apex gives a translate of P ′′

P ′

P ′′

P ′′

Similarly, the construction from Section 7.3 gives the billiard surface and quadr-
atic differential for the acute, isosceles triangle with apex angle π

k
, k ∈ Z≥3 ,

and k even. When P is a right triangle with smallest angle of the form π
k
,

k ∈ Z≥4 , the construction using a regular k–gon in Section 7.2 for k even, and
two regular k–gons in Section 7.4 for k is odd, give the billiard surface and
quadratic differential for P .

We have thus proved Theorem 7.2, with the exception of the three non-isosceles
lattice triangles of Theorem 3.5, and Theorem 7.3, except for the cases E6 , E7 ,
and E8 .

Now, one may directly verify that µ(A ∪ B) is given by 2 cos
(

π
12

)
, 2 cos

(
π
18

)
,

and 2 cos
(

π
30

)
, for G(A ∪ B) = E6 , E7 , and E8 , respectively. The orders of

DAf(TATB) are thus, respectively, 6, 9, and 15. This shows that the signatures
are as required and completes the proof of Theorem 7.3.
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We now consider the billiard construction for the three exceptional lattice
triangles. We refer to the triangles with angles

(
π
4 , π

3 , 5π
12

)
,
(

2π
9 , π

3 , 4π
9

)
, and(

π
5 , π

3 , 7π
15

)
, as ∆6 , ∆7 , and ∆8 , respectively.

The following two surfaces and flat structures are described by Vorobets in [58].
Consider first the non-convex polygon shown in Figure 17. This is a union of
three squares and four equilateral triangles as shown. The surface, S , obtained
by identifying parallel sides as indicated has genus three, and a flat structure q .
S is tiled by 24 copies of ∆6 , no two of which are parallel. These triangles are
obtained by considering the centers of the squares and equilateral triangles and
the singular point (there is just one), and appropriately “connecting the dots”.
One of the tiles is shown in the Figure 17. Since 24 is the order of the dihedral
group generated by reflections in lines through the origin parallel to the three
sides of ∆6 , it follows that q is the flat structure from the billiard construction
for ∆6 .

Figure 17: ∆6 surface

A–direction

B–direction

x

x

y

y

z

z

w

w

u

u

v

v

The foliations parallel to the two line segments shown in Figure 17 have all
closed leaves, decomposing S into annuli in two different ways. One direction
shown is horizontal and the other makes an angle π

12 with the first. Appealing
to some trigonometry we see that these foliations do indeed define annular
decompositions. Moreover, for each of the two annular decomposition, the
product of a single Dehn twist in each annulus acts as an affine transformation.
Let A denote the union of the cores of the horizontal annuli and B the union
of the cores of the other annuli. One can then verify that G(A ∪ B) = E6 .

In a completely analogous fashion, we can consider the non-convex polygon
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shown in Figure 18 which is a union of three regular pentagons and five equilat-
eral triangles. Identifying parallel sides as indicated gives a surface, S , of genus
four with a flat structure, q . This is tiled by 30, pairwise nonparallel copies
of ∆8 , again obtained by appropriately joining centers of pentagons, regular
triangles and the singular point. As above, we see that q is the flat structure
coming from the billiard construction for ∆8 .

Figure 18: ∆8 surface
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One of the directions shown is horizontal and the other makes an angle π
30

with the horizontal. Again some trigonometry shows that we obtain annular
decompositions in these directions having cores A and B , respectively, and TA

and TB act as affine transformations. In this case G(A ∪ B) = E8 .

Finally, for the triangle ∆7 , we briefly describe the construction of Kenyon and
Smillie in [32]. We identify sides of the polygon in Figure 19 as indicated. The
result is a surface, S , of genus three and a flat structure q . S is tiled by 18
copies of ∆7 is as indicated and again q is the flat structure from the billiard
construction for ∆7 .

The foliations in the two directions indicated (one horizontal, the other at an
angle π

18 from horizontal) define annular decompositions. For each annular
decomposition, the product of a single Dehn twist in each annulus acts as an
affine transformation. Denoting the union of the cores of the horizontal annuli
by A and the union of the other cores by B , one can check that G(A∪B) = E7 .

Therefore, the three exceptional lattice triangles ∆6 , ∆7 , and ∆8 define the
same Teichmüller curves as the configurations with graph E6 , E7 , and E8 , re-
spectively. This completes the proof of Theorem 7.2.
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Figure 19: ∆7 surface
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We note that for each of the realizations of recessive configurations on surfaces
we have described over the last four sections, the corresponding quadratic dif-
ferentials are squares of holomorphic 1–forms. Therefore, the following is a
consequence of Proposition 2.1 and Proposition 3.4.

Corollary 7.4 If G(A∪B) is recessive, then the action of 〈TA, TB〉 on homol-
ogy is faithful.

8 Coxeter and Artin groups

In this section we recall a few facts about Coxeter groups and Artin groups
which indicate a connection with groups generated by two positive multi-twists.
We then state McMullen’s Theorem 8.4 and verify the following.

Theorem 8.1 Let G(A ∪B) be non-critical dominant with small type. Then
σAσB is sent by Ψ to a pseudo-Anosov with dilatation equal to the spectral
radius of its image under Θ ◦ πac . Moreover, among all essential elements in
〈σA, σB〉, σAσB minimizes both dilatation as well as spectral radius for the
respective homomorphisms.

We next examine Hironaka’s Theorem 8.5 and use her ideas, along with Theo-
rem 8.6 of Howlett, to prove the following:

Theorem 8.2 Let G(A ∪B) have small type and suppose that A and B can
be oriented so that all intersections of A with B are positive. Then there exists
a homomorphism

η : R
K → H1(S; R)
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such that

(TATB)∗ ◦ η = −η ◦ Θ(σAσB)

Moreover, Θ(σAσB)|ker(η) = −I and η preserves spectral radii.

This is a strengthening of the special case of Theorem 8.1 in which A and B can
be oriented as in the theorem. For, in this situation the flat structure defined
by A∪B in Section 5.1 has no holonomy, and the dilatation of a pseudo-Anosov
is equal to the spectral radius of the action on homology (see McMullen [44]).

Remark I would like to thank Walter Neumann for first indicating the con-
nection with Coxeter groups which led to Proposition 8.3.

8.1 Graphs and groups

Let G be any finite graph without loops (cycles of length one), which we refer
to as a Coxeter graph. Let Σ = {s1, . . . , sK} be the vertices of G (throughout
Section 8, K will denote the number of vertices of G ). For each 1 ≤ i < j ≤ K ,
let mij be 2 plus the number of edges connecting si to sj , and set mii = 1.
So, when G has small type, mij ∈ {1, 2, 3} for all i, j . This will be the primary
case of interest for us. We will restrict ourselves to the case that G is connected
(see Humphreys [30] for more details).

Remark We note that one usually allows the possibility that some vertices are
connected by infinitely many edges, but because we are only interested in the
small type case, we have not bothered to include this in the discussion. Also, a
common convention is to consider Coxeter graphs as graphs without multiple
edges, where the edge between si and sj is labeled with mij ∈ Z≥3∪{∞}. The
convention we have adopted is more suitable to our situation.

Given a Coxeter graph, G , there are two groups associated to it: the Coxeter

group

C(G) = 〈si ∈ Σ | (sisj)
mij = 1, 1 ≤ i ≤ j ≤ K〉

and the Artin group

A(G) =
〈
si ∈ Σ

∣∣∣ (sisj)
mij

2 = (sjsi)
mij

2 , 1 ≤ i < j ≤ K
〉

where for m odd we define (xy)
m
2 = (xy)

m−1

2 x (eg if mij = 3, the relation is
the braid relation sisjsi = sjsisj ).

Geometry & Topology, Volume 8 (2004)



1340 Christopher J Leininger

We will discuss both groups, and certain definitions are the same in each. How-
ever, when we wish to distinguish between an element of A(G) and C(G), we
will denote the former with a “prime”. Thus, si ∈ C(G) and s′i ∈ A(G).

C(G) is obtained from A(G) by adding the relation s2
i = 1. This defines an

epimorphism
πac : A(G) → C(G)

obtained by sending s′i to si .

Given a Coxeter or Artin group a special subgroup is any subgroup generated
by a subset Σ0 ⊂ Σ. These special subgroups are precisely the Coxeter and
Artin groups, respectively, associated to the largest subgraph of G having Σ0

as its vertex set. An element of C(G) is said to be essential if it is not conjugate
into any proper special subgroup, and we call an element A(G) essential if its
image by πac is essential.

The product of all the generators (in any order) is called a Coxeter element.
For any bipartite graph G , there is a special Coxeter element defined as follows.
Since the graph is bipartite there exists a partition Σ = A ∪ B so that no two
A–vertices (respectively, B–vertices) are adjacent. The product of the elements
of A (respectively, B ) defines

σA =
∏

si∈A

si and σB =
∏

sj∈B

sj .

The product σAσB is called the bi-colored Coxeter element.

8.2 Artin groups and mapping class groups

Let A,B ∈ S ′(S) with G = G(A∪B) of small type. There is a nice relationship
between A(G) and Mod(S). The vertices s1, . . . , sK of G can be identified with
the components of A and B as well as generators of A(G). By (3) from Section
2.4 and the definition of A(G), we can define a homomorphism

Ψ: A(G) → Mod(S)

by sending the generator si to the Dehn twist about the curve corresponding
to the vertex si . Note that, after relabeling if necessary, we have Ψ(σA) = TA

and Ψ(σB) = TB .

Remark This construction can be carried out for any graph of small type (not
necessarily bipartite). Indeed, to such a graph one can (nonuniquely) associate
a surface and a set of curves, pairwise intersecting at most once, and define
a homomorphisms Ψ as above. For more on this see eg Crisp and Paris [14],
Wajnryb [59], [60], Perron and Vannier [49], and A’Campo [1].
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8.3 Geometric representations of Coxeter groups

Suppose that G is a connected Coxeter graph. There is an associated quadratic
form ΠG on R

K and a faithful representation

Θ: C(G) → O(ΠG)

where O(ΠG) is the orthogonal group of the quadratic form ΠG , and each
generator si ∈ Σ is represented by a reflection.

Up to equivalence over R, there are precisely four possibilities for the form
ΠG (see [30]). These are characterized by the signature, sgn(ΠG), and K .
Accordingly, the group C(G) is said to be:

• spherical if sgn(ΠG) = (K, 0),

• affine if sgn(ΠG) = (K − 1, 0),

• hyperbolic if sgn(ΠG) = (p, 1) and p + 1 ≤ K , and

• higher-rank if sgn(ΠG) = (p, q) and p + q ≤ K , q ≥ 2.

When G has small type (our only case of interest), this quadratic form is easily
described in terms of Ad(G), the associated adjacency matrix (see Section 4.2).
The form ΠG is then defined by the matrix

2I −Ad(G).

Because G is connected, Ad(G) is an irreducible matrix. Moreover, one can
easily see that the group C(G) is spherical or affine if and only if µ(G) < 2 or
µ(G) = 2, respectively. The following is therefore a consequence of Theorem
4.3.

Proposition 8.3 For G = G(A ∪ B) of small type we have

• G is recessive if and only if C(G) is spherical,

• G is critical if and only if C(G) is affine, and

• G is non-critical dominant if and only if C(G) is hyperbolic or higher-rank.

This proposition and the construction mentioned in the previous section begin
to shed light on an interesting connection between Coxeter and Artin groups
and the work presented so far. The following result of McMullen [43] indicates
that the connection is stronger still (see also [7] and [2]).
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Theorem 8.4 (McMullen) Suppose G is bipartite and has small type. Then
over all essential φ ∈ C(G), the spectral radius of Θ(φ) is minimized by the
bi-colored Coxeter element φ = σAσB , and is given as the larger absolute value
of a root of the polynomial

x2 + x(2 − (µ(G))2) + 1

For spherical or affine Coxeter groups, this minimum is 1, and among all hy-
perbolic or higher-rank Coxeter groups, the minimal spectral radius is uniquely
minimized for the Coxeter group C(Eh10), and the minimal spectral radius is
precisely λL .

Theorem 8.1 is an immediate consequence of Theorem 6.2, Proposition 8.3, and
Theorem 8.4.

Remarks

(1) McMullen’s theorem does not require G to have small type, although in
that case the appearance of µ(G) in the theorem is replaced by the spectral
radius of the Coxeter adjacency matrix. The bipartite assumption is also un-
necessary, however in this case, the number given by the theorem is only a lower
bound, not the minimum.

(2) We note that for a random element of 〈σA, σB〉 < A(G), there is no con-
nection between is spectral radius under Θ ◦πac and its dilatation under Ψ. In
particular, solving the minimization problem for one does not solve it for the
other.

8.4 Coxeter links and Coxeter actions

In [28], Hironaka provides a construction of a fibered link in S3 which depends
on a Coxeter graph of small type (as well as some additional data). This
expresses the link complement as the mapping torus of an automorphism of the
fiber called the monodromy. The main theorem of [28] states that, up to sign,
the action on homology of the monodromy is conjugate to the geometric action
of a certain Coxeter element (see below for the precise statement). As we shall
see, under certain additional hypotheses, the monodromy is of the form TATB

for appropriate A ∪ B filling the fiber.

We now describe Hironaka’s construction (for more details, see [28]). A chord

diagram is a collection of straight arcs L = {l1, . . . , lK}, called chords, in the
unit disk D ⊂ R

2 connecting mutually disjoint pairs of points on the boundary
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of D. The chord diagram defines a Coxeter graph G of small type as follows.
The vertices Σ are identified with the chords of L, and two vertices si and
sj are joined by an edge if and only if the corresponding chords intersect non-
trivially (see Figure 20). For a chord diagram L defining a Coxeter graph G ,
we say that L is a chord realization of G , and that the graph is chord-realizable.

Figure 20: A Coxeter graph from a chord diagram

l2

l1 l3
l4

l5

l6
l7

s1

s2

s3

s4

s5

s6

s7

Suppose that G is a chord-realizable Coxeter graph. An ordering on the vertices
Σ = {s1, . . . , sK} (equivalently, an ordering on the chords L = {l1, . . . , lK})
gives rise to a fibered link as follows. Recall that a Hopf band H is an annulus
spanning a Hopf link L (see Figure 21). For each chord we plumb a right-
handed Hopf band onto the disk in S3 so that the core of the band agrees with
the chord in the disk. We do this in the order specified by the ordering of the
chords (see Figure 21). We denote the resulting surface by S , and its boundary
by L = ∂S . It is well known that L is a fibered link (see [21]). We also note
that the ordering of the vertices also specifies a Coxeter element c = s1s2 · · · sK .

Finally, if we orient the chords in a chord diagram so that the ordering is
compatible with the orientation, then the resulting link is said to be a Coxeter

link. The compatibility here simply means that for i < j , the chord si must
intersect the chord sj positively (if at all). For example, the ordering of the
chords in Figure 21 is compatible with the orientations.

The following is proved in [28].

Theorem 8.5 (Hironaka) Given an oriented, ordered chord diagram with
associated Coxeter graph G , Coxeter link L = ∂S , fiber S , and monodromy φ,
there exists an isomorphism

ν : R
K → H1(S; R)

such that φ∗ ◦ ν = −ν ◦ Θ(c) where c is the Coxeter element determined by
the ordering. If the spectral radius of φ∗ is greater than 1, then it is bounded
below by λL .
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Figure 21: Plumbing Hopf bands onto a chord diagram

l2

l3

l5

l4

l1

Hironaka’s proof uses the following interpretation of a theorem of Howlett [29]
in the case that G has small type.

Theorem 8.6 (Howlett) If G is of small type, then the Coxeter element c is
given by

c = −(I −Ad(G)+)−1(I −Ad(G)+)t

where Ad(G)+ is the upper triangular part of the adjacency matrix Ad(G).

To prove her theorem, Hironaka shows that the Seifert matrix for the link is
given by I − Ad(G)+ . It then follows from classical knot theory (see eg [52])
that the action of the monodromy on homology is given by c, as required.

Remark There is another construction of fibered links for which Dehn twists
and Coxeter diagrams appear very naturally. This is described by A’Campo
in [3], [4], and the references contained therein. Although we have not fully
investigated this, it seems likely that this construction is closely related to the
one described above.

To relate Hironaka’s Theorem to our work, we recall that according to Gabai
[20] the monodromy of a fibered link obtained by (generalized) plumbing of two
fibers is the composition of the two monodromies (see [20] for a more precise
statement). The monodromy for a Hopf link (with fiber a right-handed Hopf
band) is a positive Dehn twist about the core of the band. It follows that the
monodromy of the Coxeter link constructed above is the product of Dehn twists
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about the cores of the plumbed on Hopf bands (the product is taken, from left
to right, in the order given by the ordering of the chords).

Suppose now that a chord diagram has bipartite Coxeter graph G with vertices
Σ colored by A and B , and there is an ordering of the vertices so that for
all si ∈ A and sj ∈ B , we have i < j . We call this a bi-colored ordering with
respect to A and B . The cores of the Hopf bands associated to A (respectively,
B ) give an essential 1–manifold we also denote by A (respectively, B ) in the
surface S . It is easy to see that G = G(A ∪ B).

The previous two paragraphs imply the following theorem.

Theorem 8.7 In the setting of Theorem 8.5, if we further assume that the
ordering is a bi-colored ordering with respect to A and B , then φ = TATB .
In particular, the action of (TATB)∗ on H1(S; R) is conjugate to the action of
−Θ(σAσB) on R

K .

It is not hard to see that this implies Theorem 8.2 in the special case that TATB

is the monodromy for a Coxeter link. We now give the proof in the general case.

Proof of Theorem 8.2 Suppose G(A∪B) has small type and we have oriented
A and B so that all intersections of A with B are positive. So, for any pair of
components ai ⊂ A and bj ⊂ B , we have

ai · bj = i(ai, bj) = −bj · ai. (6)

Let N (A∪B) be a regular neighborhood of A∪B in S , and let us denote the
inclusion into S by ι : N (A ∪ B) → S .

We may define a monomorphism

η0 : R
K → H1(N (A ∪ B); R)

by sending each basis element to the homology class of the oriented curve it
determines. We view a1, . . . , an, b1, . . . , bm as an ordered basis for both R

K as
well as the subspace V ⊂ H1(N (A∪B); R) which they span. To see that these
are indeed linearly independent in H1(N (A ∪ B); R), we note that for any one
of these, say a1 , we can easily find an arc α which intersects a1 once, but misses
all the others. This arc determines an element of H1(N (A∪B), ∂N (A∪B); R),
which by Poincaré duality, is identified with the dual space of H1(N (A∪B); R)
via intersection numbers. Thus there is a functional vanishing on all the vectors
except a1 . Since a1 was arbitrary, the vectors are linearly independent.

The action on homology of a Dehn twist Ta is given by

(Ta)∗(x) = x + (a · x)a.
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By (6), the matrix for the actions of TA and TB on V with respect to the basis
a1, . . . , an, b1, . . . , bm is thus given by

(TA)∗ =

(
I N
0 I

)
and (TB)∗ =

(
I 0

−N t I

)

where Nij = i(ai, bj) as in Section 5.1.

Now, by Theorem 8.6 and Proposition 5.1, we have:

Θ(σAσB) = −(I −Ad(G)+)−1(I −Ad(G)+)t

= −
(

I −N
0 I

)−1(
I −N
0 I

)t

= −
(

I N
0 I

)(
I 0

−N t I

)

= −(TA)∗(TB)∗ = −(TATB)∗

The matrices are given with respect to a1, . . . , an, b1, . . . , bm in both R
K and

H1(N (A ∪ B); R). Because η0 is “the identity” with respect to this basis, we
see that

(TATB)∗ ◦ η0 = −η0 ◦ Θ(σAσB). (7)

We now obtain the required homomorphism

η = ι∗ ◦ η0 : R
K → H1(S; R).

Because TATB is supported on N (A ∪ B), we have ι ◦ TATB = TATB ◦ ι, and
hence

(TATB)∗ ◦ η = −η ◦ Θ(σAσB).

This proves Theorem 8.2, except for the last sentence.

To see this, note that the kernel of η is the image of the kernel of ι∗ by η−1
0 .

Since S is obtained from N (A∪B) by gluing disks to the boundary, we see that
the kernel of ι∗ consists of the span of the homology classes of the boundary.
However, TATB fixes the boundary pointwise, and so acts as the identity on
this span in H1 . Therefore, by (7), Θ(σAσB) acts as −I on the kernel of η .

Finally, we see that spectral radii are preserved in the pseudo-Anosov case by
Theorem 8.1 and the fact that the dilatation is equal to the spectral radius (see
[44]). The only other case is when G(A ∪ B) is recessive or critical. In these
cases, the spectral radius (which is 1) is necessarily preserved.

9 Applications and questions

Here we provide a few applications of our work and state a few interesting
questions.
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9.1 Lehmer’s question, Salem numbers, and Teichmüller curves

The interest in Lehmer’s number stems from a problem in number theory known
as Lehmer’s question (see [35]). To state it, we recall that given a monic integral
polynomial p(x) ∈ Z[x], the Mahler measure of p is defined by

Ω(p) =
∏

p(θ)=0

max{1, |θ|}.

Question 9.1 (Lehmer) Is there an ε > 1 such that if Ω(p) > 1, then Ω(p)
≥ ε?

At present, the smallest known Mahler measure greater than 1 occurs for
Lehmer’s polynomial (1), Section 1.3, and is equal to λL . One may view The-
orem 6.2 as a resolution of Lehmer’s question in a particular situation. More
precisely, if we let D2 denote the set of all dilatations of pseudo-Anosov elements
in groups generated by two positive multi-twists, then Theorem 6.2 implies the
following.

Corollary 9.2 The Mahler measure of the minimal polynomial of any element
of D2 is bounded below by λL .

A Salem number is an algebraic integer λ > 1, such that the Galois conjugates
include λ−1 and all (except λ) lie in the unit disk. Note that a Salem number
is equal to the Mahler measure of its minimal polynomial. In particular, an
affirmative answer to the following (see [10] and [24]) would be a consequence
of such an answer to Lehmer’s question.

Question 9.3 Is there an ε > 1 such every Salem number λ satisfies λ ≥ ε?

Lehmer’s number is a Salem number, so of course the best guess for ε is λL .
Because of this question, one is generally interested in “small” Salem numbers.
There are currently 47 known Salem numbers less than 1.3, including λL (see
[10], [11], [45], and also [19]). However, we only obtain 5 small Salem numbers
as elements of D2 . This set consists of all but 1 of the Salem numbers obtained
by McMullen in [43] as spectral radii of certain elements of Coxeter groups.
This is not surprising, given Theorem 6.2 and the fact that 5 of the 6 small
Salem numbers obtained by McMullen come from bicolored Coxeter elements.
On the other hand, the only dilatations in D2 which can occur in the interval
(1, 1.3) are of the form λ(TATB), for G(A ∪ B) of small type (see the proof of
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Theorem 4.4 and use Proposition 6.5 along with the fact that there is exactly
one simple closed geodesic when G(A ∪ B) is non-critical dominant).

The elements of D2 are not at all representative of the general case of dilatations
of pseudo-Anosov automorphisms which are not bounded away from 1 (see
Penner [48], Bauer [5], and McMullen [42]). In particular, we ask the following:

Question 9.4 Which Salem numbers occur as dilatations of pseudo-Anosov
automorphisms?

Question 9.5 Is there some topological condition on a pseudo-Anosov which
guarantees that its dilatation is a Salem number?

In the same vein as Questions 9.1 and 9.3, we ask the following:

Question 9.6 Is there an ε > 1, such that if φ is a pseudo-Anosov automor-
phism in a finite co-area Teichmüller disk stabilizer, then λ(φ) ≥ ε?

Given that the dilatations we are obtaining are naturally occurring as spectral
radii of hyperbolic elements in certain non-elementary Fuchsian groups, we
would be remiss not to mention the following (see [46], [37], and also [24]).

Theorem 9.7 (Neumann–Reid) The Salem numbers are precisely the spec-
tral radii of hyperbolic elements of arithmetic Fuchsian groups derived from
quaternion algebras.

However, because the non-cocompact arithmetic Fuchsian groups are necessar-
ily commensurable with PSL2Z, relatively few of the groups generated by two
positive multi-twists even inject into arithmetic groups.

9.2 Unexpected multi-twists and the 3–chain relation

The work in this paper has a connection to a problem posed by McCarthy at the
2002 AMS meeting in Ann Arbor, MI. This was to determine the extent to which
the lantern relation in the mapping class group is characterized by its algebraic
properties (in particular the intersection patterns of the defining curves). Two
different solutions to this were obtained, independently by Hamidi-Tehrani in
[26], and by Margalit in [39].
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This question asks us to decide when an element in a group generated by two
Dehn twists can be a multi-twist. One could ask the same question more gen-
erally, ie for positive multi-twists. The answer is given, to a certain extent, by
Proposition 6.4, Theorem 7.3, and Theorem 3.1. We do not spell this out here,
but instead provide a partial answer to a related question posed by Margalit in
[39]. I am grateful to Joan Birman for pointing this out to me.

Margalit asks to what extent the n–chain relation can be characterized. This
is the relation

(Ta1
Ta2

· · ·Tan)k = M

where:

• a1, . . . , an are essential simple closed curves on a surface with i(ai, ai+1) =
1, i = 1, . . . , n − 1, and all other intersection numbers 0,

• M is either Td or Td1
Td2

, where d or d1∪d2 is the boundary of a regular
neighborhood of a1 ∪ · · · ∪ an (depending on whether n is even or odd,
respectively), and

• k = 2n + 2 for n even, and k = n + 1 for n odd.

Margalit gives a characterization for n = 2, which we state here.

Theorem 9.8 (Margalit) Suppose M = (TxTy)
k , where M is a multi-twist

and k ∈ Z, is a non-trivial relation between powers of Dehn twists in Mod(S),
and [M,Tx] = 1. Then the given relation is the 2–chain relation, ie M = T j

c ,
where c is the boundary of a neighborhood of x ∪ y , i(x, y) = 1, and k = 6j .

We note that although our work has been primarily concerned with groups
generated by two multi-twists, we can in fact obtain a similar characterization
of the 3–chain relation.

Theorem 9.9 Suppose M = (TxTyTz)
k , where M is a multi-twist and k ∈

Z, is a non-trivial relation between powers of Dehn twists in Mod(S), and
[M,Tx] = [Tx, Tz] = 1. Then the given relation is the 3–chain relation, ie
M = (TcTd)

j , where c ∪ d is the boundary of a neighborhood of x ∪ y ∪ z ,
i(x, y) = i(y, z) = 1, and k = 4j .

The non-triviality here means that i(x, y) 6= 0, i(y, z) 6= 0, and k 6= 0.

Proof Since [Tx,M ] = 1, conjugating by T−1
x , we obtain

M = T−1
x (TxTyTz)

kTx = (TyTzTx)k = (Ty(TzTx))k.
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Also, TzTx is a positive multi-twist since [Tx, Tz] = 1 implies i(x, z) = 0.

Proposition 6.4 tells us that G(y ∪ (z ∪ x)) is recessive or critical (otherwise
TyTzTx , and all of its powers, would be pseudo-Anosov on the subsurface filled
by y ∪ (z ∪ x), contradicting the fact that some power is a multi-twist). The
only such graph with 3 vertices is A3 .

10 Appendix A: The nonfilling case

Here we provide a proof of the following.

Proposition 10.1 It suffices to prove Theorem 6.1 for A ∪ B filling S .

As the proof will require us to deal with surfaces having nonempty boundary, we
can also allow S to have boundary with no added complications. In particular,
Theorem 6.1 remains true in this setting. Now, an allowable homeomorphism
is one which leaves the marked points invariant and fixes the boundary compo-
nents pointwise. The definition of Mod(S) is as in Section 2.3.

On S , consider two elements A,B ∈ S ′(S). Let N (A ∪ B) denote the regular
neighborhood of A∪B in S . Write S = SA∪B for the subsurface of S obtained
by taking the union of N (A∪B) with any open disks, once-marked open disks,
and half open annuli in the complement of N (A ∪ B).

Next, let Ŝ be the surface obtained from S by gluing a disk with one marked
point to each boundary component, and write

ε : S → Ŝ

for the inclusion. We let A and B denote the images under ε of the 1–manifolds
of the same name. The components of Ŝ bijectively correspond to the compo-
nents, A1 ∪ B1, . . . , Ak ∪ Bk , of A ∪ B , and we write these as Ŝ1, . . . , Ŝk .

Note that Ar ∪ Br fills each component Ŝr , except when Ŝr
∼= S0,2 . In this

situation Ar ∪Br is a single closed curve which is not essential in Ŝr . However,
it should be clear from what follows that this technicality may be ignored.

The groups we need to consider are

G = 〈TA, TB〉 < Mod(S) G = 〈TA, TB〉 < Mod(S)

Ĝ = 〈TA, TB〉 < Mod(Ŝ) Ĝr = 〈TAr , TBr〉 < Mod(Ŝr)

for each r = 1, . . . , k . G is the group from Theorem 6.1.

Proposition 10.1 follows easily from the next proposition since Ar∪Br fills each
of Ŝr .
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Proposition 10.2 For G and Ĝ1, . . . , Ĝk as above

G ∼= F2 ⇔ Ĝr
∼= F2

for some r = 1, . . . , k .

Proof The map ε induces an epimorphism

ε∗ : Mod(S) → Mod(Ŝ).

Moreover, the kernel of ε∗ is generated by Dehn twists about curves parallel to
the boundary components of S , which defines the following central extension
[9]

0 → Z
|∂S| → Mod(S) → Mod(Ŝ) → 0.

We write

ε∗ : G → Ĝ

to denote the restricted epimorphism.

The inclusion

i : S → S

also induces a homomorphism

i∗ : Mod(S) → Mod(S).

One can show that the kernel of i∗ is contained in the kernel of ε∗ . We write

i∗ : G → G

to denote the restriction of i∗ to G. By construction, i∗ is surjective.

We also note that

Mod(Ŝ) ∼=
k∏

r=1

Mod(Ŝr)

which allows us to view Ĝ as a subgroup of the direct product

Ĝ <
k∏

r=1

Ĝr.

Denote the projection onto the rth factor by

πr : Ĝ → Ĝr

and note that this is surjective.
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Suppose now that there exists an isomorphism Ĝr → F2 for some r . G is
two-generator, hence a quotient of F2 , so we have:

F2 −−−−→ G
ε∗−−−−→ Ĝ

πr−−−−→ Ĝr −−−−→ F2

i∗

y

G

All the arrows are surjections, and free groups are Hopfian (see [38]), so the
composition of all the horizontal arrows is an isomorphism. Therefore, all hor-
izontal arrows are isomorphisms, and in particular G ∼= F2 .

Since i∗ is surjective, we’ll have G ∼= F2 if i∗ is also injective. The kernel of i∗
is contained in the kernel of ε∗ , and is therefore contained in the center of G.
Since G ∼= F2 , the center is trivial and so i∗ is injective.

Now suppose that G ∼= F2 , and note that this guarantees that G ∼= F2 , again
appealing to the Hopfian property. Because the kernel of ε∗ is central, it follows
that Ĝ ∼= F2 . We need to verify that Ĝr

∼= F2 for some r . If this were not the
case, then Kr = ker(πr) is a non-trivial normal subgroup of Ĝ for each r . An
easy induction argument shows that the commutator group

[. . . [[[K1,K2],K3],K4], . . . ,Kk]

is contained in each Kr , and hence must be trivial in Ĝ. Since Ĝ ∼= F2 ,
any commutator subgroup of non-trivial normal subgroups must be non-trivial.
This contradiction proves the proposition.

11 Appendix B: Penner’s construction

In [47], Penner gives a generalization of a special case of Thurston’s construction
for pseudo-Anosov automorphisms. In this section, we show that the lower
bound λL remains valid for this class of pseudo-Anosov automorphisms. In fact,
we show that the the dilatations of pseudo-Anosov automorphisms obtained
from this construction are bounded below by

√
5 > λL .

We begin by describing Penner’s construction. Consider A,B ∈ S ′(S), label
the components A = a1∪· · ·∪an and B = b1∪· · ·∪bm , and suppose that A∪B
fills S . Consider the semi-group G(A,B) consisting of all automorphisms of
the form

N∏

k=0

T εk
alk

T−δk

bsk
(8)
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where N, εk, δk ∈ Z≥0 . That is, G(A,B) consists of all possible products of
positive Dehn twists about components of A and negative Dehn twists about
components of B .

There is a subsemigroup G0(A,B) consisting of all elements of G(A,B) for
which every component of A and B is twisted along non-trivially at least once
in the above product. In [47], Penner proves:

Theorem 11.1 (Penner) G0(A,B) consists entirely of pseudo-Anosov auto-
morphisms.

Note that G0(A,B) contains all the elements of 〈TA, TB〉 representable as
words in TA and TB where TA (respectively, TB ) appears with all positive
(respectively, negative) exponents. However, this is a relatively small subset
of G0(A,B), as most elements of G0(A,B) do not obviously lie in 〈TA, TB〉.
Thus, Penner’s construction generalizes a particular case of the construction we
have been considering.

The method which Penner uses to prove Theorem 11.1 allows one to easily
obtain the following bound.

Theorem 11.2 The dilatation of any element of G0(A,B) is bounded below
by

√
5.

The proof we give uses the methods described in [47]. We refer the reader to
that paper for a more complete description of those techniques. We also note
that the estimates we give are rough, and this bound is likely not sharp, though
we do not prove this.

Proof Fix an element φ ∈ G0(A,B). As in [47], we will consider φ2 instead
of φ. Since λ(φ2) = (λ(φ))2 , it suffices to prove that λ(φ2) ≥ 5.

At each intersection point of a component al of A with a component bs of
B , apply a homotopy of bs so that it meets al as in Figure 22. The union of
the resulting curves is a bigon track, τ (this is essentially a train track except
we have weakened the non-degeneracy condition on complementary regions,
allowing bigons). Let us denote the branches by β1, . . . , βK .

Next, we represent φ2 as a product of Dehn twists in a particular way so that
φ2(τ) is easily seen to be carried by τ . For each component c of A and of B
one takes two push-offs, c± , one on each side of c. We then express φ2 as a
product of twists along the push-offs, rather than the original curves. Because
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Figure 22: Modifying intersection points

al

bs

al

bs

every curve which we twist along in φ shows up twice as many times in φ2 , we
can arrange that we twist along both push-offs in φ2 . We do this so that we
twist along all positive push-offs in the first application of φ and then along
negative push-offs in the second application. Thus, if φ is given by the product
in (8), we have

φ2 =

N∏

k=0

T εk

a−

lk

T−δk

b−sk

N∏

k=0

T εk

a+

lk

T−δk

b+sk

.

For each a+
l , Ta+

l
(τ) is carried by τ , as is indicated by Figure 23 in the case

that i(al, B) = 1. Let us write Ma+

l to denote the incidence matrix describing

how τ carries T
a+

l
(τ). One can verify that Ma+

l has the form

Ma+

l = I + Ra+

l

where I is the K×K identity matrix, and Ra+

l is a non-negative integral matrix.
Moreover, if βp is any branch contained in al and βq is a branch contained in

B which intersects a+
l , then the (p, q)–entry satisfies (Ra+

l )pq = 1. Similar
statements hold for push-offs a−l , b+

s , and b−s .

Figure 23: τ carrying Ta
+

l

(τ)

τ

a+

l

Ta
+

l

Ta
+

l

(τ)

collapse
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In particular, suppose that al and bs intersect in at least one point ξ , and let
βi+ , βi− , βj+ , βj− be the branches of τ around ξ as indicated in Figure 24. The

(p, q)–entries of Rc± for c = al or bs satisfy:

(Ra+

l )pq = 1 for p = i± , q = j+ (Ra−

l )pq = 1 for p = i± , q = j−

(Rb+s )pq = 1 for p = j± , q = i+ (Rb−s )pq = 1 for p = j± , q = i−

Figure 24: The branches around the intersection point ξ

βi+βi−

βj+

βj−

a+

l

a−

l

b+
sb−s

ξ

Now, the incidence matrix M describing τ carrying φ2(τ) is given by the
product

M =

N∏

k=0

(M
a−

lk )εk(M b−sk )−δk

N∏

k=0

(M
a+

lk )εk(M b+sk )−δk .

It is not hard to see that one of M b+s or M b−s occurs between Ma−

l and Ma+

l in
this product (these matrices all occur since φ ∈ G0(A,B)). So, we may write

M = X0M
a−

l X1M
bσ
s X2M

a+

l X3

where Xt = I + Yt , and Yt is a non-negative integral matrix, for 0 ≤ t ≤ 3,
and σ ∈ {+,−}. Expanding this out, we see that

M = (I + Y0)(I + Ra−

l )(I + Y1)(I + Rbσ
s )(I + Y2)(I + Ra+

l )(I + Y3)

= I + Ra−

l + Ra+

l + Ra−

l Rbσ
s + Ra−

l Rbσ
s Ra+

l + Z

where Z is a non-negative integral matrix. Using the above values for (Rc±)pq ,
one can check that each of the first 5 matrices in this last sum has a positive
entry in the (i±)th rows. It follows that the sum of the entries in each of the
(i±)th rows of M is at least 5.

The βi± were arbitrary branches contained in A: al and bs were arbitrary, and

every branch in A is adjacent to some intersection point (eg (Ra−

l )i±j− = 1,
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(Rbσ
s )j−iσ = 1, so the i±iσ entry of the third term is at least 1). Therefore,

every row of M with index corresponding to a branch in A has the sum of its
entries being at least 5. A similar argument can be made for branches contained
in B , and thus it follows that every row of M has sum at least 5. Appealing
to Theorem 4.1, we see that the PF eigenvalue of M is at least 5: take ~U to
be the vector with all entries equal to 1, and apply the first inequality of the
theorem.

The following lemma, which is implicit in the proof of Theorem 11.1 given in
[47] completes the proof.

Lemma 11.3 (Penner) The PF eigenvalue of M is λ(φ2).
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