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296 P B Kronheimer and T S Mrowka

1 Introduction

Let K be a knot in S3 and let Y1 be the oriented 3–manifold obtained by +1–
surgery on K . The following is one formulation of the “Property P” conjecture
for knots:

Conjecture 1 If K is a non-trivial knot, then Y1 is not a homotopy 3–sphere.

The purpose of this note is to prove the conjecture. The ingredients of the argu-
ment are: (a) Taubes’ theorem [21] on the non-vanishing of the Seiberg–Witten
invariants for symplectic 4–manifolds; (b) the theorem of Gabai [16] on the
existence of taut foliations on 3–manifolds with non-zero Betti number; (c) the
construction of Eliashberg and Thurston [9], which produces a contact structure
from a foliation; (d) Floer’s exact triangle [13, 4] for instanton Floer homology;
(e) a recent result of Eliashberg [8] on concave filling of contact 3–manifolds1;
and (f) Witten’s conjecture relating the Seiberg–Witten and Donaldson invari-
ants of smooth 4–manifolds. Although the full version of Witten’s conjecture
remains open, a weaker version that is still strong enough to serve our purposes
has recently been established by Feehan and Leness [12], following a program
proposed by Pidstrigatch and Tyurin. With these ingredients, we shall prove:

Theorem 2 Let Y1 be obtained by +1–surgery on a non-trivial knot K in
S3 . Then there is a non-trivial homomorphism ρ : π1(Y1) → SO(3).

It is known [18] that surgery on a non-trivial knot can never yield S3 , so the
Property P conjecture would follow from the Poincaré conjecture. Theorem 2 is
a slightly sharper statement which implies Conjecture 1. The same techniques
yield a closely-related theorem:

Theorem 3 Let Y be an irreducible, closed, orientable 3–manifold (not S1 ×
S2 ), and let v be an element of H2(Y ; Z/2). Then there is a homomorphism
ρ : π1(Y ) → SO(3) having w2(ρ) = v .

Remarks The question whether surgery on a knot could produce a coun-
terexample to the Poincaré conjecture was asked explicitly by Bing in [2], and
the question was formalized with the definition of “Property P” by Bing and

1The authors have learned that this result was also known to Etnyre, who shows in
[10] that it is a straightforward extension of the earlier results of [11].
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Martin in [3]. To verify that a knot K has Property P in their sense, it is suffi-
cient to verify that the 3–manifolds Y obtained by non-trivial Dehn surgeries
on K all have non-trivial fundamental group. In [6], it was shown that π1(Y ) is
non-trivial if K is non-trivial and the surgery-coefficient is not ±1. This is why
Conjecture 1 is now equivalent to the original version. The problem appears on
Kirby’s problem list [19, Problem 1.15], where there is also a summary of some
of the contributions that have been made.

It follows from Casson’s work (see [1]) that if Y is obtained by Dehn surgery
on a knot K whose symmetrized Alexander polynomial ∆K satisifes ∆′′

K(1) 6=
0, then π1(Y ) admits a non-trivial homomorphisms to SO(3). Such knots
therefore have Property P. The argument used by Casson is closely related to
what is done here. The quantity ∆′′

K(1) is equal to the Euler characteristic
of a Floer homology group HF (Y0), associated to the manifold Y0 obtained
by 0–framed surgery on K . We shall show that the Floer homology group
HF (Y0) itself is always non-trivial if K is not the unknot, even though the
Euler characteristic may vanish.

The authors were aware some time ago that Property P could be deduced from
Witten’s conjecture and other known results, if one only had a suitably general
“concave filling” result for symplectic 4–manifolds with contact boundary, as
explained later in this paper. At the time (around 1996), no concave filling
results were known. The first general result on concave filling of contact 3–
manifolds is given in [11], using results on open-book decompositions from [17].
More recently, Eliashberg has shown [8] that one can construct a concave filling
compatible with a given symplectic form on a collar of the contact 3–manifold,
provided only that the symplectic form is positive on the contact planes. It is
this stronger result from [8] that we need here.

Acknowledgements The first author was supported by NSF grant DMS-
0100771. The second author was supported by NSF grants DMS-0206485, DMS-
0111298 and FRG-0244663. Both authors would like to thank Yasha Eliashberg
for generously sharing his expertise.

2 Donaldson and Seiberg–Witten invariants

2.1 Donaldson invariants and simple type

Let X be a smooth, closed, oriented 4–manifold, with b+(X) odd and greater
than 1, and b1(X) = 0. Fix a homology orientation for X . For each w ∈
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H2(X; Z), the Donaldson invariants of X (constructed using U(2) bundles
with first Chern class w) constitute a linear map

Dw
X : A(X) → Z,

where A(X) is the symmetric algebra on H2(X; Z) ⊕H0(X; Z). Our notation
here follows [20], and we write x for the element of A(X) corresponding to the
positive generator of H0(X; Z). We make A(X) a graded algebra, by putting
the generators from H2(X; Z) in degree 2 and the generator x in degree 4.
With this grading, the restriction

Dw
X : A2d(X) → Z

is non-zero only when

d ≡ −w2 −
3

2
(b+(X) + 1) (mod 4). (1)

The manifold X is said to have simple type if the invariant satisfies

Dw
X(x2z) = 4Dw

X(z)

for all z in A(X). This notion was introduced in [20], where it was shown that
X has simple type if it contains a tight surface: a smoothly embedded oriented
surface Σ whose genus g satisfies 2g−2 = [Σ] · [Σ] > 0. For manifolds of simple
type, it is natural to introduce

D̄w
X : A(X) → Z,

defined by D̄w
X(z) = Dw

X(z) +Dw
X(zx/2).

If z is homogeneous of degree 2d, then only one of the terms on the right can
be non-zero because of the congruence (1); and both terms are zero unless

d ≡ −w2 −
3

2
(b+(X) + 1) (mod 2). (2)

We combine the Donaldson invariants to form a series

Dw
X(h) = D̄w

X(eh)

=
∑

Dw
X(hd)/d! + 1

2

∑

Dw
X(xhd)/d!

We regard this as a formal power series for h ∈ H2(X; R). The main result of
[20] contains the following:

Theorem 4 [20] Let X be a 4–manifold of simple type with b1 = 0. Then the
Donaldson series converges for all w and there exist finitely many cohomology
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classes K1 , . . . , Ks ∈ H2(X; Z) and non-zero rational numbers β1 , . . . , βs

(both independent of w) such that

Dw
X = exp

(

Q

2

) s
∑

r=1

(−1)(w
2+Kr·w)/2 βre

Kr

as analytic functions on H2(X; R). Here Q is the intersection form, regarded
as a quadratic function. Each of the classes Kr is an integral lift of w2(X).

Remarks The classes Kr are called the basic classes of X . The theorem is
supposed to include the case that the Donaldson invariants are identically zero.
This is the case s = 0. The Donaldson series is always either an even or an odd
function of h, so the non-zero basic classes come in pairs differing by sign.

It is more common today to use the terms “simple type” and “basic classes” to
refer to properties defined not by the Donaldson invariants but by the Seiberg–
Witten invariants, as explained below. We will therefore refer to these as D–
simple type and D–basic classes henceforth, to avoid ambiguity.

2.2 Seiberg–Witten invariants and Witten’s conjecture

The Seiberg–Witten invariants of a 4–manifold X such as the one we are con-
sidering (with b+ odd and greater than 1 and b1 = 0) are a function on the
set of Spinc structures on X . For each Spinc structure s, they define an in-
teger SW (s) ∈ Z. To simplify our notation, we shall assume that X has no
2–torsion in its second cohomology: in this case, s is determined by the first
Chern class K of the corresponding half-spin bundle S+ , and we can regard
SW as a function of K :

SW : H2(X; Z) → Z.

The manifold X is said to have SW –simple type if SW (K) = 0 whenever K2 is
not equal to 2χ+3σ . The SW –basic classes are the classes K ∈ H2(X; Z) with
SW (K) 6= 0. The following is a stripped-down version of Witten’s conjecture
from [22].

Conjecture 5 Let X be a 4–manifold with b+ odd and greater than 1, with
b1(X) = 0 and with no 2–torsion in H2(X; Z). Suppose X has SW –simple
type. Then X has D–simple type, the D–basic classes are the SW –basic
classes, and for each basic class Kr , the corresponding rational number βr in
the statement of Theorem 4 is given by

βr = c(X)SW (Kr),
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where c(X) is a non-zero rational number depending on X .

An important corollary of this conjecture is the assertion that the Donaldson
invariants are non-zero if the Seiberg–Witten invariants are non-zero and X
has SW –simple type. Witten’s conjecture also gives the value of c(X) as

c(X) = 22+ 1

4
(7χ+11σ),

but we will not need this statement.

2.3 The theorem of Feehan and Leness

A weaker version of Witten’s conjecture is proved by Feehan and Leness in [12].
We rephrase Theorem 1.1 of [12] here, specializing to the case that X has SW –
simple type, and simplifying the statement to suit our needs, as follows. The
theorem involves a choice of auxiliary class Λ ∈ H2(X; Z) with Λ−w = w2(X)
mod 2. In the version we state here, we take Λ to be the class dual to a tight
surface in X . This ensures that Λ ·K is zero, for all SW –basic classes K . The
presence of a tight surface ensures that X has D–simple type. We choose Λ
to be divisible by 2 and w to be an integer lift of w2(X). Set

N = Λ2 ∈ Z.

We may replace Λ by any multiple of Λ, to make N as large as we might need.

Theorem 6 [12] Let X be a 4–manifold with b1 = 0 and b+ odd and greater
than 1. Suppose that X has no 2–torsion in its second cohomology and has
SW –simple type. Suppose in addition that X contains a tight surface with
positive self-intersection number. Let Λ and N be as above, and let d be an
integer in the range

0 ≤ d < N − 1
4(χ+ σ) − 2

satisfying the congruence (2). Then for any class h in H2(X; R) with Λ ·h = 0,
we have

D̄w
X(hd) =

∑

K

(−1)(w
2+K·w)/2SW (K) pd(K · h,Q(h)).

Here pd is a weighted-homogeneous polynomial,

pd(s, t) =
∑

a+2b=d

Ca,bs
atb,

whose coefficients Ca,b ∈ Q are universal functions of χ(X), σ(X) and N .
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From this result, it is straightforward to deduce:

Corollary 7 Witten’s conjecture, in the form of Conjecture 5, holds for X as
long as X satisfies the following three additional conditions:

(1) X contains a tight surface Σ with positive self-intersection;

(2) X has the same Euler number and signature as some smooth hypersurface
in CP3 whose degree is even and at least 6;

(3) X contains a sphere of self-intersection −1.

Remark The second condition is much more restrictive than necessary, but
suffices for our application.

Proof of the corollary The assertion of Conjecture 5 is an equality

Dw
X = c(X) exp(Q/2)

∑

K

(−1)(w
2+K·w)/2SW (K)eK (3)

of analytic functions on H2(X; R), where c(X) is a non-zero rational number.
We are assuming that X contains a tight surface, so X has D–simple type. If
we change w to w′ , then we know how Dw

X changes, from Theorem 4, and we
know also how the right-hand side changes. It is therefore enough to verify the
conjecture for one particular w . We take w to be an integral lift of w2(X).

Let Λ ∈ H2(X; Z) be some large even multiple of the class dual to the tight
surface. All the SW –basic classes and all the D–basic classes are orthogonal
to Λ by the adjunction inequality. If we write h = h1 + h2 , where Λ · h1 = 0
and h2 is in the span of the dual of Λ, then

Dw
X(h1 + h2) = Dw

X(h1) exp(Q(h2)/2).

The same holds for the function defined by the right-hand side of (3). So it is
enough to verify that the conjecture holds for the restriction of the Donaldson
series to the kernel of Λ.

Let X∗ be a hypersurface in CP3 with the same Euler number and signature
as X . We take Λ∗ in H2(X∗; Z) to be a class orthogonal to the canonical
class K∗ of X∗ , represented by a tight surface. By replacing Λ∗ and Λ by
suitable multiples, we can arrange that they have the same square N . When the
degree of X∗ is even, the congruence (2) asserts that d is even. The Donaldson
invariants of X and X∗ are even functions on the second homology in this case,
and the Seiberg–Witten invariants satisfy SW (K) = SW (−K) in both cases.
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We apply Theorem 6 to X∗ , with w = 0. The SW –basic classes are ±K∗ , and
it is known that SW (±K∗) = 1. We learn that

D̄0
X∗

(hd) = 2
∑

a+2b=d

Ca,b(K∗ · h)
aQ(h)b

for all h orthogonal to Λ∗ . This formula determines the coefficients Ca,b en-
tirely, in terms of the Donaldson invariants of X∗ , because the linear function
K∗ and the quadratic form Q are algebraically independent as functions on
this vector space.

In particular, we see that Ca,b is independent of N . We can therefore sum over
all d, and write

D0
X∗

(h) = 2
∑

d even

(1/d!)
∑

a+2b=d

Ca,b(K∗ · h)
aQ(h)b.

On the other hand, we know from Theorem 4 that D0
X∗

has the special form
given there; and we also know that the Donaldson invariants of this complex
surface are not identically zero. Thus

2
∑

d even

(1/d!)
∑

a+2b=d

Ca,b(K∗ · h)
aQ(h)b = exp(Q(h)/2)f(K∗ · h)

where f : R → R is a non-zero even function of the form

f(t) =

m
∑

r=1

αr cosh(λrt)

for some rational numbers αr and λr ≥ 0. The rational numbers λr are such
that the D–basic classes of X are ±λrK∗ . The basic classes are supposed to
be integer classes, and this constrains the denominator of λr . The adjunction
inequality also implies that λr ≤ 1.

With this information about Ca,b , we can now apply Theorem 6 to our original
X , to deduce that

Dw
X = exp(Q/2)

∑

K

(−1)(w
2+K·w)/2SW (K)f(K)

as functions on the orthogonal complement of Λ. If any of the λr are not
integral, then this formula is inconsistent with Theorem 4, because the SW –
basic classes K for X are primitive, because X contains a sphere of square
−1. The D–basic classes are also all non-zero for X , for the same reason, and
this means that no λr can be zero. So λr can only be ±1, and it follows that
f(K) is simply a multiple of cosh(K). This establishes the result.
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3 Proofs of the theorems

3.1 Concave filling

Let Y be a closed oriented 3–manifold (not necessarily connected), and ξ an
oriented contact structure compatible with the orientation of Y . This means
that ξ is the 2–plane field defined as the kernel of a 1–form α on Y , and α∧dα
is a positive 3–form. If Y is the oriented boundary of an oriented 4–manifold
of W , then a symplectic form ω on W is said to be weakly compatible with
ξ if the restriction ω|Y is positive on the 2–plane field ξ ; or equivalently, if
α ∧ ω|Y > 0. The following is proved in [8].

Theorem 8 [8] Let Y be the oriented boundary of a 4–manifold W and let
ω be a symplectic form on W . Suppose there is a contact structure ξ on Y
that is compatible with the orientation of Y and weakly compatible with ω .
Then we can embed W in a closed symplectic 4–manifold (X,Ω) in such a way
that Ω|W = ω .

Because we will need to construct an (X,Ω) satisfying some additional mild
restrictions, we summarize how X is constructed in [8] as a smooth mani-
fold (without concern for the symplectic form). If the components of Y are
Y1, . . . , Yn , then the first step is to choose an open-book decomposition of each
Yi with binding Bi . These open-book decompositions are required to be com-
patible with the contact structures ξ|Yi

in the sense of [17]. We can take each
binding Bi to be connected. Let W ′ be obtained from W by attaching a 2–
handle along each knot Bi with zero framing. The boundary Y ′ = ∂W ′ is the
union of 3–manifolds Y ′

i , obtained from Yi by zero surgery: each Y ′

i fibers over
the circle with typical fiber Σi . The genus of Σi is the genus of the leaves of the
open-book decomposition of Yi . For each i, one then constructs a symplectic
Lefschetz fibration

pi : Zi → Bi (4)

over a 2–manifold-with-boundary Bi , with ∂Bi = S1 . One constructs Zi to
have the same fiber Σi , and ∂Zi = −Y ′

i . The 4–manifold X is obtained as the
union of W ′ and the Zi , joined along their common boundaries Y ′

i .

There is considerable freedom in this construction. We exploit this freedom in
a sequence of lemmas, each of which states that we can choose Zi so as to fulfill
a particular additional property.

Lemma 9 We can choose the Lefschetz fibration pi : Zi → Bi so that the base
Bi is a disk D2 .
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Proof The constructions in [8] already establish this. We present a slight
variation of the argument.

As a component of ∂W ′ , the 3–manifold Y ′

i carries a 2–form η′ ∈ Ω2(Y ′

i ),
the restriction of the symplectic form ω′ from W ′ . This form is positive on the
fibers of the fibration p′ : Y ′

i → S1 , and its kernel is a line-field on Y ′

i transverse
to the fibers. There is a unique vector field V ′ on Y ′

i contained in the line-field,
with p′

∗
(V ′) = ∂/∂S1 on the circle S1 . The flow generated by V ′ preserves η′ ;

and at time 2π the flow determines a holonomy automorphism Hol(η′) of the
fiber over 1 ∈ S1 , which is an area-preserving map of the surface.

Since positive Dehn twists generate the mapping class group, we can construct
a Lefschetz fibration p0

i : Z0
i → D2 whose boundary is topologically −Y ′

i , as a
surface bundle over S1 . This Lefschetz fibration can be made symplectic; and
we write η′′ for the restriction of the symplectic form from Z0

i to Y ′

i . We can
assume that η′ and η′′ have the same integral on the fiber Σi .

If we can choose Z0
i so that

Hol(η′) = Hol(η′′) (5)

as area-preserving maps of the fiber over 1, then there is a fiber-preserving
diffeomorphism ψ of Y ′

i with ψ−1(η′) = η′′ . We can then use ψ to attach Z0
i

to W ′ along Y ′

i (see [8]) and our task will be complete. At this point however,
we only know that the map φ = Hol(η′) ◦ Hol(η′′)−1 is isotopic to the identity
in Diff(Σi).

To complete the proof of the lemma, it will be enough to construct a symplectic
Lefschetz fibration

p : (V, ωV ) → D2

whose boundary is the topologically trivial surface bundle over S1 and whose
holonomy is given by Hol(η) = φ, where η = ωV |∂V . We can then form Zi

as the union of Z0
i and V , attached along a neighborhood of a fiber in their

boundaries. That such a V exists is the content of the next lemma, which is a
variant of [8, Lemma 3.4].

Lemma 10 Let Σ be a closed symplectic surface of area 1 and genus 2 or
more. Let φ : Σ → Σ be an area-preserving map that is isotopic to the iden-
tity through diffeomorphisms. Then there is a symplectic Lefschetz fibration
p : (V, ω) → D2 with p−1(1) = Σ and Hol(ω|V ) = φ.

Proof As explained in [8], it will be enough if we can find a (V, ω) such that
Hol(ωV ) has the same flux as φ. In this context, the flux has the following
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interpretation. Because the identity component of the diffeomorphism group is
contractible, we can identify ∂V with S1×Σ canonically up to fiber-preserving
isotopy; so we have a canonical map

H1(Σ) → H2(∂V )

given by [γ] 7→ [S1 × γ]. The flux is the element of H1(Σ; R) corresponding to
the homomorphism

f : H1(Σ) → R

[γ] 7→

∫

S1
×γ
ω|∂V .

So the assertion of the lemma is that we can choose p : (V, ω) → D2 so that
the cohomology class of ω|∂V is any given class in H2(S1 ×Σ; R), subject only
to the constraint that the area of Σ is 1.

To see that this is possible, we observe that we can find first an example
p0 : (V0, ω0) → D2 whose flux f is zero and such that the map H2(∂V0; R) →
H2(V0; R) induced by the inclusion ∂V0 →֒ V0 is injective. Such an example is
obtained by removing a neighborhood of a fiber in a closed Lefschetz fibration
p̄0 : (V̄0, ω̄0) → S2 ; the condition on the second homology is achieved if H1(V̄0)
is zero.

Next, because non-degeneracy is an open condition on 2–forms, there exists a
neighborhood U of 0 ∈ H1(Σ; R) such that, for all f ∈ U , there exists a form
ωf on V0 such that

p0 : (V0, ωf ) → D2

is a symplectic Lefschetz fibration whose holonomy on the boundary has flux
f . Finally, given a general f , we can find an integer N such that f/N belongs
to U . We then construct (V, ω) by attaching N copies of (V0, ωf/N ) along
neighborhoods of fibers in their boundaries.

From now on, we may assume that the base of the fibration Zi is a disk. We
can now arrange that H1(Zi; Z) is zero. Indeed, H1(Zi; Z) is generated by
a collection of 1–cycles on the fiber Σi , and we can arrange that these are
vanishing cycles in the Lefschetz fibration. Thus we can state:

Lemma 11 If the map H1(Y ; Z) → H1(W ; Z) is surjective, then we can choose
X in Theorem 8 so that H1(X; Z) is zero.

Proof The hypothesis implies that H1(Y
′; Z) → H1(W

′; Z) is surjective also.
Choose the Zi to have trivial first homology, as explained above, and the lemma
then follows from the Mayer–Vietoris sequence.
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In a similar vein, we have:

Lemma 12 We can choose X so the restriction map H2(X; Z) → H2(W ; Z)
is surjective.

Proof The restriction map H2(W ′; Z) → H2(W ; Z) is surjective, so we may
replace W by W ′ in the statement. If we arrange that H1(Zi; Z) is zero, then
the restriction map H2(Zi; Z) → H2(Y ′

i ; Z) is surjective. The surjectivity of
the map H2(X; Z) → H2(W ′; Z) now follows from the Mayer–Vietoris sequence
for cohomology.

We can also specify the Euler number and signature quite freely subject to some
inequalities:

Lemma 13 We can choose X so that its Euler number and signature are the
same as those of X∗ , where X∗ is a smooth hypersurface in CP3 whose degree
is even and at least 6. At the same time, we can arrange that X contains a
sphere with self-intersection −1.

Proof Our strategy is to arrange that X has the same b+ as some X∗ but
has smaller b− . We then blow up X at enough points to make the value of b−

agree also.

Let V → CP1 be a symplectic Lefschetz fibration with b1(V ) = 0 and the same
fiber genus as Zi . Replace Zi by Z̃i , the Gompf fiber-sum of Zi and V . The
effect on b+(X) is to add to it the quantity

n+(V ) = b+(V ) + 2g − 1,

while b−(X) changes by

n−(V ) = b−(V ) + 2g − 1.

Here g is the fiber genus. If we use two different Lefschetz fibrations, V and
Ṽ , for which n+(V ) and n+(Ṽ ) are coprime, then the set of values that we can
achieve for b+(X) includes all sufficiently large integers.

For hypersurfaces X∗ in CP3 of large degree, the ratio b−(X∗)/b
+(X∗) ap-

proaches 2. We can therefore achieve our objective by forming a fiber-sum
with many copies of V , provided the ratio n−(V )/n+(V ) satisfies

n−(V )/n+(V ) < 2.
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This ratio condition is quite common for Lefschetz fibrations. For example, if
S is an algebraic surface with an ample class H satisfying KS · H > 0, then
the Lefschetz fibration V constructed from a pencil in the linear system |dH|
satisfies this inequality, once d is sufficiently large. A V constructed in this
way may not have the same fiber genus as one of the Zi , but we can always
increase the fiber genus of Zi by any positive integer, by adjusting the original
open-book decomposition of Yi .

We need one last lemma of this sort.

Lemma 14 We can choose X so that it contains a tight surface of positive
self-intersection number.

Proof We can choose a Lefschetz fibration V → CP1 containing a tight surface
disjoint from a fiber. We then replace one Zi by a Gompf fiber-sum, as in the
previous lemma.

We now combine the conclusions of the last four lemmas with the construction
of Eliashberg and Thurston from [9], to prove the next proposition.

Proposition 15 Let Y be a closed orientable 3–manifold admitting an ori-
ented taut foliation. Suppose Y is not S1 × S2 . Then Y can be embedded as
a separating hypersurface in a closed symplectic 4–manifold (X,Ω). Moreover,
we can arrange that X satisfies the following additional conditions.

(1) The first homology H1(X; Z) vanishes.

(2) The Euler number and signature of X are the same as those of some
smooth hypersurface in CP3 , whose degree is even and not less than 6.

(3) The restriction map H2(X; Z) → H2(Y ; Z) is surjective.

(4) The manifold X contains a tight surface of positive self-intersection num-
ber, and a sphere of self-intersection −1.

(5) The two pieces X1 and X2 obtained by cutting X along Y both have
b+ positive.

Proof By the results of [9], the existence of the foliation implies that the
product manifold

W = [−1, 1] × Y

carries a symplectic form ω , weakly compatible with contact structures ξ+ and
ξ− on the boundary components {1} × Y0 and {−1} × Y0 . By Theorem 8, we
may embed (W,ω) in a closed symplectic 4–manifold (X,Ω). We can choose X
to satisfy the extra conditions in Lemmas 11, 12, 13 and 14 above. This gives
the first of the four conditions on X . The last condition is straightforward.
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3.2 Proof of Theorem 2

Let Y1 be the result of +1–surgery on a non-trivial knot K , and let Y0 be the
manifold with H1(Y0) = Z obtained by 0–surgery. According to Floer’s exact
triangle [13, 4], the instanton Floer homology group HF (Y1) is isomorphic to
the Floer homology group HF (Y0), where the latter is refers to the group
constructed using the SO(3) bundle P → Y0 with non-zero w2 . We suppose
that the knot K contradicts Theorem 2. Then HF (Y1) is zero, and the exact
triangle tells us that HF (Y0) is zero also. We therefore have:

Proposition 16 Suppose K is a counterexample to Theorem 2. Let X be a
smooth closed 4–manifold containing Y0 as a separating hypersurface. Suppose
that the two pieces X1 , X2 obtained by cutting X along Y0 both have b+ non-
zero. Then the Donaldson polynomial invariant Dw

X is identically zero for any
class w ∈ H2(X; Z) whose restriction to Y0 is non-zero mod 2.

Proof When X is decomposed along Y0 as in the proposition, the value of
Dw

X(xmhn) can be expressed as a pairing

〈ψX1
, ψX2

〉,

where ψX1
and ψX2

are relative invariants of X1 and X2 taking values in the
Fukaya–Floer homology group HFF (Y0, δ) and its dual, where δ is a 1–cycle in
Y0 (see [14, 5]). The vanishing of HF (Y0) implies the vanishing of HFF (Y0, δ)
also, which explains the proposition.

Remark It is possible to avoid the use of the full exact triangle, and to avoid
mentioning any type of Floer homology in the proof of this proposition. The
hypothesis on K means that the equations for a flat SO(3) connection on Y0

with w2 non-zero admit a holonomy-type perturbation (of the sort described
in [4]), so that the resulting equations admit no solutions. (In other language,
the Chern–Simons functional has a holonomy-type perturbation after which it
has no critical points.) The vanishing of the Donaldson invariants for X then
follows from a straightforward degeneration argument.

According to [16], the manifold Y0 has a taut foliation by oriented 2–dimensional
leaves and is not the product manifold S1×S2 if K is non-trivial. We may apply
Proposition 15 to Y0 , to embed it in (X,Ω) satisfying all the conditions in that
proposition. Being symplectic, the manifold X has SW –simple type and non-
trivial Seiberg–Witten invariants, by the results of [21]. The conditions imposed
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in Proposition 15 ensure that Corollary 7 applies, so Witten’s conjecture, in the
form of Conjecture 5, holds for X . It follows that the Donaldson invariants Dw

X

are non-trivial, for all w .

However, the 3–manifold Y0 ⊂ X divides X into two pieces X1 and X2 , both of
which have positive b+ . The condition (3) of Proposition 15 allows us to choose
a w ∈ H2(X; Z) whose restriction to Y0 is the generator. For this choice of w ,
Proposition 16 tells us that Dw

X is zero. This is a contradiction.

3.3 Proof of Theorem 3

Let Y and v be as in the statement of the theorem. If the image of the element
v in Hom(H2(Y ; Z),Z/2) is zero, then the result is elementary, for there is an
integer lift of v that is a torsion element of H2(Y ; Z), which implies that there
is a flat SO(2) bundle on Y with w2 = v . We therefore turn to the interesting
case, when v has non-zero pairing with some element of H2(Y ; Z).

Gabai’s theorem [15] supplies Y with a taut foliation, so we can embed Y as
a separating hypersurface in a symplectic 4–manifold X , as in Proposition 15.
Because the restriction map on second cohomology is surjective, there is a class
w ∈ H2(X; Z) whose restriction to Y becomes v when reduced mod 2.

The hypothesis that v has non-zero pairing with some integer class ensures
that there is a well-defined Floer homology group HF v(Y ) constructed from
the connections with w2 = v (see [7]). If there are no such flat connections,
then HF v(Y ) is zero, and it follows that D̄w

X is identically zero, as in Proposi-
tion 16. On the other hand, Conjecture 5 holds for X , and we have the same
contradiction as before.
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