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612 Kai-Uwe Bux

Once upon a time, all �nitely generated groups were �nitely presented. There
were discontinuous subgroups of Lie groups or groups acting nicely on beauti-
ful geometries|one should think, for example, of �nitely generated Fuchsian
groups. Then B H Neumann gave the �rst example of a �nitely generated but
in�nitely related group in [33] where he even showed that there are uncountably
many 2 generator groups. Among these, of course, only countably many are
�nitely presented. Hence �nite presentability is a much stronger property than
�nite generation.

More than twenty years later, working on decision problems, G Baumslag, W W
Boone, and B H Neumann showed that even �nitely generated subgroups of
�nitely presented groups need not be �nitely presented [7].

However, it took almost another twenty years until �nitely generated in�nitely
related groups were \observed in nature". In [39], U Stuhler proved that the
groups SL2(k[t; t−1]), where k is a �nite �eld, are �nitely generated but not
�nitely presented. He extended these results in [40] constructing series of groups
with increasing �niteness properties. In [38], R Strebel gives a historical and
systematic survey with focus on soluble groups.

Because of the topological background of �nite generation and �nite presentabil-
ity, there are two generalizations to higher dimensions: one based on homotopy
groups, the other based on homology. A group G is of type Fm if there is an
Eilenberg{MacLane space K(G; 1) with �nite m{skeleton. G is of type FPm

if the trivial ZG{module Z admits a projective resolution that is �nitely gen-
erated in dimensions � m. This is a homological variant of the homotopical
�niteness property Fm . The de�nition of type Fm was given by C T C Wall in
[43]. It is convenient to de�ne the �niteness length of a group to be the largest
dimension m for which a group is of type Fm .

A group is of type F1 if and only if it is �nitely generated. Moreover, type F1

and type FP1 are equivalent notions. A group is of type F2 if and only if it
is �nitely presented. M Bestvina and N Brady [11] have given an example of a
group of type FP2 that is not �nitely presented. However, this is the only way
in which homotopical and homological �niteness properties di�er:

For m � 2, a group G is of type Fm if and only if it is �nitely
presented and of type FPm .

Finiteness properties are still somewhat mysterious. Theorems relating �nite-
ness properties in a transparent way to other, more group theoretic properties
are in short supply. For special classes of groups, however, the situation is bet-
ter. Eg, for metabelian groups, the Bieri{Strebel theory of geometric invariants

Geometry & Topology, Volume 8 (2004)



Finiteness properties of soluble arithmetic groups 613

leads to nice conjectures which are con�rmed by a lot of examples and partial
results. Finite presentability is well understood within this context. Eg, these
groups are �nitely presented if and only if they are of type FP2 [16].

In a situation like this, the best one can hope for is to get a feeling for the
relationship between �niteness conditions and group structure within certain
classes of groups. We will consider a class of S{arithmetic groups. These
matrix groups are given by means of an algebraic group scheme G and a set S
of primes over a global �eld K which determines an S{arithmetic ring OS � K .
These two parameters can be varied independently, and one would like to know
how �niteness properties vary with them. Moreover, these groups are natural
generalizations of lattices in Lie groups, for which �niteness properties often
have a more direct geometric interpretation. For all these reasons, a lot of
research has already been done on �niteness properties of S{arithmetic groups.

The theory of S{arithmetic groups is dominated by two fundamental distinc-
tions. The �eld K can be a global number �eld or a global function �eld. With
respect to the group scheme, there are two extremes the �rst of which is given
by reductive groups, eg, GLn or SLn , which is even a Chevalley group. Soluble
groups, eg, groups of upper triangular matrices form the other extreme. Let us
recall the most important results:

G reductive:

K number �eld: G(OS) is of type F1 , ie, of type Fm for all m 2 N
[18].

K function �eld: Finite generation and �nite presentability are com-
pletely understood [9].
There are series of examples that support the conjecture that the
�niteness length grows with jSj and the rank of G . The most im-
portant results are:

� SL2(OS) is of type F jSj−1 but not of type FP jSj [40].
� If G is a Chevalley group of rank n not of exceptional type, then
G(k[t]) is of type Fn−1 but not of type FPn provided the �nite
�eld k is large enough [6, Corollary 20, page 113].

B soluble:

K number �eld: Finite generation and �nite presentability are com-
pletely understood. Finite presentability is treated in [1].
In [41, Theorem 3.1], a Hasse principle is derived: B(OS) is of type
FPm if and only if for each place p 2 S , the group B(Op) satis�es
the compactness property CPm , which is de�ned in [3]. If B is
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a Borel subgroup of a Chevalley group, B(OS) is of type F1 [41,
Corollary 4.5].
Beyond these, there are some series of examples, eg, in [2].

K function �eld: No Hasse principle holds in this case. This follows
already from the series of metabelian groups that is examined us-
ing Bieri{Strebel theory in [24]. In this article, we generalize those
results to group schemes of higher rank.

Our main result is the following:

Theorem A Let G be a Chevalley group, B � G a Borel subgroup, K a global
function �eld, S a non-empty set of places over K , and OS the corresponding
S{arithmetic ring. Then B(OS) is of type F jSj−1 but not of type FP jSj .

We will de�ne notions and �x notations in the �rst two sections. Then we will
deal with the rank{1-case. Sections 4 to 7 contain the proof of Theorem A: in
Theorem 5.1 the upper bound is established whereas the lower bound is given
in Theorem 7.5. The last section presents Theorem 8.5, which provides bounds
for the \geometric invariants". De�nitions and a bit of motivation will be given
at the beginning of Section 8.

This paper grew out of my PhD thesis, which I wrote under the supervision of
Prof Robert Bieri. I would like to thank him for his support and encouragement.
I also would like to thank the referee for very carefully reading the paper and
suggesting numerous improvements.

1 Preliminaries on ad�eles and unipotent groups

General references about global �elds and ad�eles are [27] or [45]. In this paper

� K is a global function �eld. Its elements are called functions. Let

� P denote the set of all places of K . We regard a place as a normalized
discrete valuation p : K ! Z [ f1g. For each place p, there is a local
function �eld

� Kp , which is the completion of K at p. This is a topological �eld.
Extending p continuously, we obtain a normalized discrete valuation on
Kp , which we also denote by p. The subring of functions holomorphic at
p is denoted by
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� Op := ff 2 Kp p(f) � 0g. This ring is a compact open subspace of Kp .
Moreover, it is a local ring with maximal ideal

� mp = ff 2 Kp p(f) > 0g. The constant functions, ie, the functions in K
that are holomorphic everywhere form a �nite sub�eld

� k . The residue �eld
� kp := Op=mp is a �nite extension of the �eld k of degree
� dp := [kp : k]. We de�ne a norm on Kp by
� jf jp := e−dpp(f) , which is proportional to the modulus of Kp .

Ad�eles provide a formalism to dealt with all places simultaneously. For a �nite
non-empty set S � P of places,

� OS := ff 2 K p(f) � 0 8p 2 P n Sg is the ring of functions holomorphic
outside S and

� AS :=
J

p2SKp �
J
p 62S Op is the topological ring of S{ad�eles.

The ring of ad�eles of K is the direct limit

� A := lim−! SAS of topological rings. For an ad�ele a = (fp)p2P 2 A, let
� jaj :=

Q
p jfpjp be the id�elic norm.

There is an inclusion K � A because every function in K is holomorphic at
almost all places. This way, K is a discrete subring of A, and we have

OS = AS \K:
Since we are working with topological rings, we regard a linear algebraic group
G de�ned over a commutative ring R as a functor from the category of (topo-
logical) commutative R{algebras into the category of (topological) groups.

A fundamental theorem says that the quotient A=K is compact [45, Theorem 2,
page 64]. We need a slightly more general statement.

Lemma 1.1 Let U be a unipotent linear algebraic group de�ned over K .
Then U(K) is a discrete subgroup of U(A) and the quotients U(A)=U(K)
and U(K)nU(A) are compact.

Proof Let bU denote the group of characters of U , ie, the linear algebraic
group of K{morphisms from U to Mult := GL1 . Put

U(A)� :=
�
g 2 U(A)

�� j�(g)j = 1 for all � 2 bU(K)
}
:

According to [17, Theorem 4.8], U can be triagonalized over K . Hence, [8,
Satz 3] implies that the quotient U(A)�=U(K) is compact. Therefore, it suf-
�ces to prove that U(A)� = U(A). This, however, follows from the fact that
unipotent groups do not admit non-trivial characters, since homomorphisms of
a�ne algebraic groups preserve unipotency [17, Theorem 4.4].
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2 Chevalley groups and the associated buildings

We �x a Chevalley group

� G , ie, a semisimple linear algebraic group de�ned over Z. How to build
such a group scheme is described, for example, in [28], [37], and [5]. A
standard references for the following facts are [22] and [23].
Every Chevalley group comes with a root system

� �. For any commutative unitary ring, we denote the group of R{points
of G by

� G(R). If K 0 is a �eld, the group G(K 0) acts strong-transitively on the
associated spherical building

� � (K 0) of type �. Given a place p on K 0 , there is an a�ne building

� Xp(K 0) associated to and acted upon by G(K 0). A�ne buildings have
apartments that are Euclidean Coxeter complexes. Using the Euclidean
metric on apartments, the induced path-metric on an a�ne building is
CAT(0). Moreover, apartments in a�ne buildings can be characterized
in terms of this metric: a subspace is an apartment (in the complete
system of apartments) if and only if it is a maximal flat subspace, ie,
an isometrically embedded Euclidean space of maximal dimension. An
excellent source and reference for the theory of a�ne buildings is [21,
Chapter VI].
The building � (K 0) can be viewed in a natural way as the building at
in�nity of Xp(K 0). If K 0 is complete with respect to p, then the system
of apartments in � (K 0) induces the complete system of apartments in
Xp(K 0). Then we have a 1{1{correspondence of spherical and a�ne
apartments. In this case, we say that an a�ne apartment contains a
chamber, a point, or a halfapartment at in�nity if the corresponding
spherical apartment does. Put

� � := � (K) for the �xed global function �eld K . Let

� Xp := Xp(Kp) denote the a�ne building associated to G(Kp) whereas

� �p will denote the corresponding spherical building at in�nity.
We �x a chain

T � B � G

of group schemes de�ned over Z such that T (K) is a maximal K{split
torus in G(K) and B(K) is a Borel subgroup, ie, a maximal solvable
K{subgroup in G(K). Then, there is a unique apartment

Geometry & Topology, Volume 8 (2004)



Finiteness properties of soluble arithmetic groups 617

� �p in Xp that is stabilized by T (Kp). We regard �p as the standard
apartment. The group T (Kp) acts on �p as a maximum rank lattice
of translations. Thus, the action of T (Kp) on �p is cocompact, ie, the
quotient space of orbits of this action is compact.
Let

� n be the dimension of T . This is by de�nition the rank of G . The building
Xp is a piecewise Euclidean complex of dimension n, and G(Kp) acts
upon Xp by cell-permuting isometries: every element of a cell stabilizer
�xes the cell pointwise. Cell stabilizers are open and compact. Since Kp

is complete with respect to p, the group G(Kp) acts strongly-transitively
on Xp(Kp), ie, the action is transitive on the set of pairs (�; c) where �
is an apartment in Xp(Kp) and c is a chamber in �.
The group B(Kp) is the stabilizer of a chamber at in�nity

� Cp in the standard apartment �p . We call this the fundamental chamber
at in�nity. It is represented by a parallelity class of sectors in Xp . There
is a canonical projection B ! T , which turns the torus T into a retract
of B . Let

� U denote its kernel, which is called the unipotent part of B . The group
U(Kp) not just stabilizes the fundamental chamber Cp , it �xes this cham-
ber at in�nity, ie, for each element in U(Kp), there is a sector represent-
ing Cp which is �xed pointwise by the chosen element. This follows from
the way the a�ne building Xp and the action of G(Kp) on Xp are con-
structed: the group U(Kp) turns out to be generated by root groups all of
whose elements actually �x a Euclidean half apartment in �p containing
Cp . The construction of the building is described in [22, Section 7.4] and
the property of root groups used here is spelled out in Proposition (7.4.5)
of said section. (These root groups are spherical and not to be confused
with the a�ne root groups discussed in Section 6.)
Since any element of U(Kp) �xes a sector representing Cp , it cannot move
chambers within the standard apartment �p at all: just consider a gallery
in �p from a moved chamber to a chamber in the �xed sector. Since, on
the other hand, G(Kp) acts strongly-transitively, U(Kp) acts on Xp with
�p as a fundamental domain. We thus obtain a projection map

� �p : Xp ! �p .
In order to determine the �niteness properties of B(OS), we will study
its action on the product

� X :=
J
p2SXp of a�ne buildings. The projections �p induce a map

� � : X ! � :=
J
p2S �p onto the product of standard apartments.
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Lemma 2.1 The map � induces a proper map U(OS)nX ! �.

Proof Let � :=
J
p2S �p be a polysimplex in X . For each place p 2 S , the

stabilizer Gp of �p in U(Kp) is an open compact subgroup. For p 62 S , we put
Gp := U(Op). Then G :=

J
pGp is an open subgroup of U(AS).

There is an obvious action of U(AS) on X : Components outside S act trivially
whereas a component corresponding to a place p 2 S acts on the factor Xp .
Hence X = U(AS) ��: The stabilizer of � is G whence the �ber of � over �
is isomorphic to U(AS)=G which in turn is a discrete set since G is open.

The group U(OS) � U(AS) acts on U(AS)=G. Since OS = K\AS , Lemma 1.1
implies that the double quotient

U(OS)nU(AS)=G

is discrete and compact. Thus, it is �nite.

Therefore, the �{�ber over each polysimplex consists of �nitely many U(OS){
orbits of cells. Now the claim is evident.

Lemma 2.2 The group G(OS) acts on X with �nite cell stabilizers.

Proof The cell stabilizers of the action of G(Kp) on Xp are compact. Indeed,
vertex stabilizers of this action are maximal compact subgroups of G(Kp) [22,
Section 3.3]. Therefore, the stabilizer in G(AS) of a polysimplex in X is
compact. The claim follows since G(OS) is a discrete subgroup of G(AS).

Each standard apartment �p is a Euclidean space of dimension n. Within each
of them, we choose a sector

� Sp � �p representing the fundamental chamber Cp of �p . We regard
the cone point of Sp as the origin in �p turning the apartment into a
Euclidean vector space. Moreover, we represent all roots in � as linear
forms on �p . Following the usual convention, we call those of them
negative that take negative values inside Sp . Thus we are given a system

� �−p of negative roots in �p . Considered as a subset of �, it is independent
of the place p since all fundamental chambers Cp correspond to the same
Borel subgroup scheme B . Passing to a set of base roots, we obtain a
system of coordinates
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Finiteness properties of soluble arithmetic groups 619

� ’p :=
(
�

(p)
1 ; : : : ; �

(p)
n

�
on �p . With respect to these coordinates, the

sector Sp is given by

Sp =
�
xp 2 �p

�� �(p)
i (xp) � 0 8i 2 f1; : : : ; ng

}
:

Thus
x = (xp)p2S 7!

�(
�

(p)
1 (xp); : : : ; �(p)

n (xp)
��

p2S

de�nes coordinates on �. Scaling the di�erent p{components appropri-
ately, we arrange things such that the action of T (OS) leaves the map

� ’ : x = (xp)p2S 7!
(P

p2S �
(p)
1 (xp); : : : ;

P
p2S �

(p)
n (xp)

�
invariant. We

can do so because the idelic norm is identically 1 on K� by the product
formula [27, page 60]. The coordinates �(p)

i correspond to base roots and,
therefore, to characters �i : T !Mult . An element �p 2 T (Kp) acts on
�p by a translation whose i{coordinate is dpp(�i(�p)).
We let B(AS) act on � via the projection B ! T . This way, � becomes
a B(AS){map and hence a B(OS){map. Since this action of B(OS) on
� factors through the torus T it leaves the map

� � := ’ � � invariant.

Lemma 2.3 For any compact subset C � Rn , the preimage �−1(C) contains
a compact subset whose B(OS){translates cover �−1(C).

Proof Dirichlet’s Unit Theorem [27, page 72] implies that T (OS) acts cocom-
pactly on the kernel of ’ whence it acts cocompactly on the preimage ’−1(C)
as well. So, let C0 � � be a compact set whose T (OS){translates cover ’−1(C).

By Lemma 2.1, we can �nd a compact subset C00 �X whose U(OS){translates
cover �−1(C0). Then, the B(OS){translates of C00 cover �−1(C).

3 Example: Rank{1{groups and trees

It is as instructive as useful to treat the most simple case �rst: the Cheval-
ley group SL2 . Serre gives a comprehensive discussion of this group and its
associated building in [36, II.1]. The group D0

2 of diagonal matrices with deter-
minant 1 is a maximal torus, and the group B0

2 of upper triangular matrices
with determinant 1 is a Borel subgroup. Its unipotent part is the group U2

of strict upper triangular matrices all of whose diagonal entries equal 1. The
a�ne building Xp at the place p is a regular tree of order jkpj + 1: points in
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the link of a vertex correspond to points of the projective line over kp . The
standard apartment �p is a line. The projection map �p can be regarded as
a height function on Xp by identifying the apartment �p with the real line R
via the negative base root �(p) : �p ! R. By scaling, as in the general case, we
arrange that the action of D0

2(OS) on the product X :=
J

p2SXp leaves the
height function � : X ! R invariant. This situation has been discussed already
in [24]. Here we will treat it without making use of Bieri{Strebel theory.

Trees are crucial for everything that follows. Therefore, we will repeatedly
make use of the following lemma, which may look somewhat technical at a �rst
glance. However, it describes a rather natural geometrical situation.

Lemma 3.1 Let (hi : Ti ! R)i2f1;:::;mg be a family of locally �nite simplicial
trees Ti with height functions hi . Suppose for every index i,

(1) hi maps the vertices of Ti to a discrete subset of R;

(2) there is exactly one descending end in Ti , ie, any two edge paths along
which the height strictly decreases will eventually conincide; and

(3) each vertex in Ti has degree � 3.

So all descending paths eventually meet, and every vertex has a unique lower
neighbor and at least two higher neighbors.

Let T := T1 � � � � � Tm be the product of the trees Ti and let h : T ! R be
de�ned by

h : � = (�1; : : : ; �m) 7!
mX
i=1

hi(�i):

For every compact interval I � R, put T [I] := h−1(I).

Then, for each compact interval I , the space T [I] is (m − 2){connected, ie,
the homotopy groups �i(T [I]) are trivial for 0 � i � m− 2.

Moreover, for any two intervals I � J , the inclusion T [I] � T [J ] induces a
non-trivial map eHm−1 (T [I])! eHm−1 (T [J ]) in reduced homology.

Proof The map h is a Morse function as de�ned in [11, De�nition 2.2]. Its
ascending and descending links in T are the joins of the ascending and descend-
ing links of the hi in the trees Ti , respectively. Thus, the descending links are
points, and the ascending links are wedges of (m− 1){spheres. Hence ascend-
ing and descending links in T are (m− 2){connected. Then [11, Corollary 2.6]
implies that T [I] is (m − 2){connected for each interval I : The product T
could not be contractible otherwise.

Geometry & Topology, Volume 8 (2004)



Finiteness properties of soluble arithmetic groups 621

As for the second claim, recall that each tree Ti has a unique descending end.
Moving every point in Ti with unit speed downhill toward this end de�nes
a flow on Ti . We obtain a flow on T that moves all points in T [I] toward
T [fmin(I)g]. This construction shows that T [fmin(I)g] is a strong deforma-
tion retract of T [I].

For I � J the retraction T [J ]! T [fmin(J)g] induces a map T [fmin(I)g]!
T [fmin(J)g] such that the following diagram

eHm−1 (T [I])

��

eHm−1 (T [fmin(I)g])

��eHm−1 (T [J ]) eHm−1 (T [fmin(J)g])

commutes. We will construct a sphere in T [fmin(I)g] which maps to a non-
trivial embedded (m−1){sphere in T [fmin(J)g]. This proves the claim because
the latter sphere de�nes a non-trivial cycle that cannot be a boundary because
there is no m{skeleton in T [fmin(J)g].

We choose a point � = (�1; : : : ; �m) 2 T with h(� ) < min(J) all of whose
coordinates �i 2 Ti are vertices. For each i, we choose two ascending rays L+

i

and L−i starting at �i without a common initial segment|recall that every
vertex has at least two higher neighbors. The union Li := L+

i [ L−i is a line
in Ti . The distance of a point � 0i 2 Li to the \splitting vertex" �i is given
by hi(� 0i) − hi(�i). Hence the map � ′ 7! h(� ′) − h(� ) de�nes a norm on the
product L :=

Jm
i=1 Li .

The sphere we wanted is the sphere of all points in L whose norm is min(I)−
h(� ). The retraction shrinks it to the sphere of radius min(J) − h(� ), which
is still strictly positive.

The rank{1{case is now easy since we can invoke K S Brown’s celebrated cri-
terion:

Citation 3.2 ([20, Remark (2) to Theorem 2.2 and Theorem 3.2]) Let G be
a group, D a directed set, and (X�)�2D a directed system of CW-complexes on
which G acts by cell permuting homeomorphisms such that the following hold:

(1) For each � 2 D , the orbit space GnX� is compact.

(2) The stabilizer in G of each i{cell in X� is a group of type Fm−i .

(3) The continuous map X� ! X� indexed by � � � is G{equivariant.
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622 Kai-Uwe Bux

(4) The limit of the directed system of homotopy groups (�i(X�))�2D van-
ishes for i < m.

Then, G is of type FPm if and only if for all i < m, the directed system of
reduced homology groups (eHi (X�))�2D is essentially trivial, ie, for each � 2 D ,
there is � � � such that the map eHi (X�)! eHi (X�) induced by X� ! X� is
trivial.

Moreover, G is of type Fm if and only if the directed system of homotopy
groups (�i(X�))�2D is essentially trivial for all i < m.

Corollary 3.3 Let G act cocompactly by cell-permuting homeomorphisms on
an (m − 1){connected CW-complex X such that the stabilizer of each cell is
�nite. Then G is of type Fm .

Proof Take a directed set consisting of just one element, assign X as the
corresponding complex, and observe that the identity map induces trivial maps
in homotopy groups in those dimensions where these groups vanish. Since �nite
groups are of type F1 , the claim follows from Brown’s Criterion.

Remark 3.4 In our applications, the direct limit of the spaces X� will be the
union of these spaces. Usually, it will be contractible which then implies that
the limit of the directed system of homotopy groups (�i(X�))�2D vanishes for
i < m.

Corollary 3.5 The group B0
2(OS) is of type F jSj−1 but not of type FP jSj .

Proof We apply Brown’s Criterion. The set of all compact intervals in R is a
directed set ordered by inclusion, and we are looking for a family of cocompact
B0

2(OS){CW{complexes over this system. B0
2(OS) acts on the product of trees

X with � as an invariant height function. Hence for each compact interval I ,
the preimage X [I] := �−1(I) is a B0

2(OS){complex. This de�nes our directed
system with inclusions as continuous, B0

2(OS){equivariant maps.

The hypotheses of Brown’s Criterion are satis�ed: The action is by cell-
permuting homeomorphisms, it is cocompact by Lemma 2.3, cell stabilizers
are even �nite by Lemma 2.2, and condition 4 is satis�ed because the limit X
of all X [I] is contractible.

The height function � can be regarded as a sum of height function de�ned on
the factors Xp such that we are in the setting of Lemma 3.1: the descending
end in Xp is the unique chamber at in�nity (in this case just a point) stabilized
by B0

2(Kp). This completes the proof.
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Finiteness properties of soluble arithmetic groups 623

What can we say about the related group scheme GL2? The short exact se-
quence SL2 � GL2 !! Mult with the determinant as the projection map
induces by restriction a short exact sequence

B0
2(OS) // // B2(OS) // // O�S

whence B2(OS) inherits all �niteness properties of B0
2(OS) since O�S is of type

F1 . However, B2(OS) might even exhibit stronger �niteness properties, but
we can rule out this possibility:

Remark 3.6 The group B2(OS) is of type F jSj−1 but not of type FP jSj .

Proof Passing to projective groups, we obtain the following commutative di-
agram all of whose rows and columns are short exact sequences of groups:

f−1; 1g // //

��

�I2
��

O�S
(�)2

// //

��

�I2
��

O�S2 :=
�
f2 f 2 O�S

}
��

��

B0
2(OS) // //

����

B2(OS) // //

����

O�S

����

PB0
2(OS) // // PB2(OS) // // O�S=O�S2

Consider the bottom row �rst. The factor O�S=O�S2 on the right is an abelian
torsion group which is �nitely generated by Dirichlet’s Unit Theorem. Hence
O�S=O�S2 is �nite. Therefore, the other two groups in this row enjoy the same
�niteness properties. Then, this also holds for their extensions in the middle
row because the kernels on top are of type F1 .

Remark 3.7 Of course, the same argument implies that B0
n(OS) and Bn(OS)

enjoy identical �niteness properties.

4 Higher ranks|an algebraic prelude

Perhaps the most striking consequence of Theorem A is that the �niteness
length of B(OS) does not depend of the rank of the Chevalley group G . In
this section, a simple algebraic explanation for the group scheme B0

n � SLn is
given.
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Proposition 4.1 Suppose G
// //
Hoooo is a retract diagram of groups, ie, the

composition of arrows is the identity on H . Then H inherits all �niteness
properties of G.

Proof Finite generation is trivial, �nite presentability is easy and dealt with
in [43, Lemma 1.3] where it is attributed to J R Stallings. Thus, it su�ces
to treat the homological �niteness properties starting with FP2 . It would be
possible to cite [4, (� ), page 280], but �Aberg is merely hinting at the argument.
The following claims to be what he had in mind.

The key observation is, that functors and cofunctors both preserve retract dia-
grams. So for each index set J , consider the functor that assigns to a group G
the pair (G;

J
J ZG) where we regard

J
J ZG as a ZG{module. Applying the

homology functor Hi(−;−) yields the following retract diagram:

Hi(G;
J

J ZG) // // Hi(H;
J

J ZH)oooo

Hence Hi(H;
J

J ZH) vanishes whenever Hi(G;
J

J ZG) does.

The claim now follows by means of the Bieri{Eckmann Criterion: A �nitely
generated group H is of type FPm if and only if Hi(H;

J
J ZH) = 0 for all

index sets J and all i 2 f1; : : : ;m− 1g [13, Proposition 1.2 and the equation
above Theorem 2.3].

A di�erent proof, based not on the Bieri{Eckmann Criterion but on Brown’s
Criterion, can be found in [26, Remark 3.3].

Corollary 4.2 The groups Bn(OS) and B0
n(OS) are not of type FP jSj .

Proof We con�ne ourselves to n = 3. The group B2 embeds into B3 like this:

B2
�=

0@ � � 0
0 � 0
0 0 1

1A � B3:

This way, we recognize B2 as a retract of B3 . Hence, the preceding Proposi-
tion 4.1 applies and the claim follows from Corollary 3.5 and the Remarks 3.6
and 3.7.
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5 A geometric version of the argument

Theorem 5.1 The group B(OS) is not of type FP jSj .

The entire section is devoted to the proof of this theorem. The reasoning
can be viewed as a geometric interpretation of the argument presented in the
preceding section. Let us start with a brief outline: Each of the a�ne buildings
Xp contains a tree Tp as a retract. Hence the product X contains a product T
of trees as a retract. We will �nd a directed system of subspaces in X satisfying
the hypotheses of Brown’s Criterion. So we only have to prove that the induced
system of reduced homology groups is not essentially trivial. Finally, using the
retraction map, we pass to a corresponding system of subspaces in T where
Lemma 3.1 applies.

Let us call an a�ne apartment in Xp a layer if it contains the fundamental
chamber at in�nity Cp . The base root �(p) := �

(p)
1 de�nes half apartments in

Xp by
�p (t) :=

�
xp 2 �p

�� �(p)(xp) � t
}
:

Call an apartment in Xp special if it contains such a half apartment. To put
it in a slightly di�erent way: The base root de�nes a half apartment at in�nity
�1p � �p , which contains the fundamental chamber Cp . An a�ne apartment in
Xp is special if and only if it contains �1p . Obviously, every special apartment
is a layer.

The map hp := �(p) � �p restricts to an a�ne map on every layer|hence on
every special apartment. Two special apartments �1

p and �2
p intersect in a

convex set, which contains a subset of the form �p (s). Hence,

�1
p \ �2

p =
�
x 2 �1

p hp(x) � t
}

=
�
x 2 �2

p hp(x) � t
}

where t = max hp(�1
p \�2

p). Thus we conclude:

Observation 5.2 The union of all special apartments in Xp is a subcomplex
isometric to a product Tp � Rn−1 where Tp is a tree. The projection onto the

second factor Rn−1 is de�ned by
(
�

(p)
2 � �p; : : : ; �(p)

n � �p
�
. In particular, the

�ber over each tuple (t2; : : : ; tn) is a tree on which hp induces a height function
h�p : Tp ! R.

In [35, Chapter 10.2], M Ronan gives two constructions for the tree Tp . The
equivalence of these two constructions underlies the following argument.
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Lemma 5.3 For each layer �
0
p , there is a special apartment �s

p such that

hp(�
0
p \ �s

p) is unbounded.

Proof We argue within the spherical building �p . The apartment at in�nity
�
0
p
1

corresponding to �
0
p contains Cp . The root �1p determines a codimen-

sion 1 face of the fundamental chamber Cp . Let C
0
p be the other neighboring

chamber in �
0
p
1

. Then there is a unique apartment containing the chamber C
0
p

and the half apartment �1p . The corresponding a�ne apartment �s
p satis�es

our needs since hp is unbounded on any sector representing C
0
p in �s

p .

Lemma 5.4 Let �1
p and �2

p be special apartments and �
0
p be a layer. More-

over, let t be a real number and let xip 2 �i
p \ �

0
p be two points such that

t = hp(xip). Then t 2 hp(�1
p \ �2

p).

Proof Both intersections �i
p\�

0
p are convex and contain a sector representing

Cp . Let Sip be the corresponding parallel sector with cone point xip . Both
sectors S1

p and S2
p are simplicial cones with a codimension 1 face restricted

to which hp is identically t. Hence, these two faces intersect within �
0
p and

their intersection is a simplicial cone of codimension 1, which is contained in
�1
p \ �2

p .

With the aid of the two lemmas above, we can see a projection �p : Xp ! Tp .

Lemma 5.5 There is a continuous projection map �p : Xp ! Tp compatible
with hp , ie, the diagram

Xp //

hp

��

Tp

h�p
��

R R

commutes where h�p is as in Observation 5.2.

Proof There is a 1{1{correspondence

fspecial apartments in Xpg $
�

lines in Tp that h�p
maps isometrically to R

�
=: L:

According to Lemma 5.3, for each layer, there is a line onto which the layer can
be projected in a way compatible with hp . These projection maps agree where
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layers intersect by Lemma 5.4. Hence we have de�ned a projection map on Xp

since the a�ne building is the union of all layers.

This projection map is continuous when restricted to a layer since the tree Tp
carries the weak topology with respect to the lines in L. Thus, the projection
map is continuous because the building Xp carries the weak topology with
respect to the layers.

To see that this projection is a retraction, we need to �nd a continuous section.
However, these exist in abundance by Observation 5.2.

Consider the product

� T :=
J
p2S Tp , on which the height function

� h∗ : T ! R is de�ned by

� = (�p)p2S 7!
X
p2S

h�p(�p):

There is the projection map

� � : X ! T that admits a lot of sections, which are parameterized by
tuples (tp;i p 2 S; i 2 f2; : : : ; ng) of real numbers. Hence, T is a retract
of X .

Observation 5.6 The following diagram commutes:

X
// //

ξ

��

Toooo

h∗

��

Rn // // R

Here, the arrow in the bottom row is the projection onto the �rst coordinate.

Finally, we can turn to �niteness properties of B(OS). We want to apply
Brown’s Criterion; thus, we specify a directed system of cocompact B(OS){
subcomplexes in X : A brick is a product I := I1 � � � � � In � Rn of compact
intervals. The set of bricks is a directed set ordered by inclusion. By Lemma 2.3,
the family X [I] := �−1(I) of preimages of bricks is a directed system of co-
compact B(OS){complexes.

Lemma 5.7 The system eHjSj−1 (X [I]) of reduced homology groups is not
essentially trivial.
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Proof Given a brick I , let J := J1 � � � � � Jn be a brick containing I , ie,
Ii � Ji for all i. Choose a tuple (tp;i p 2 S; i 2 f2; : : : ; ng) of real numbers
such that

P
p2S tp;i 2 Ii for 2 � i � n. This de�nes a section of �, which

restricts to a section

T [I1] := h∗−1(I1)! X

�
I1 �

�X
p2S

tp;2

�
� � � � �

�X
p2S

tp;n

��
�X [I] :

Thus, Observation 5.6 implies that the preimage T [I1] is a retract of X [I] and
that the diagram

X [I] // //

��

T [I1]oooo

��

X [J ] // // T [J1]oooo

commutes. Passing to homology, we obtain the following commutative diagram:

eHjSj−1 (X [I]) // //

��

eHjSj−1 (T [I1])oooo

��eHjSj−1 (X [J ]) // // eHjSj−1 (T [J1])oooo

The right vertical arrow is non-trivial by Lemma 3.1 whence the left vertical
arrow cannot be trivial either since the right hand side is a retract of the left
hand side.

To �nish the proof of Theorem 5.1, observe that the preimages X [I] exhaust
X , which is contractible. The action of B(OS) on X is by cell-permuting
homeomorphisms, and cell-stabilizers are �nite by Lemma 2.2. Thus, in view
of Brown’s Criterion 3.2, Lemma 5.7 completes the proof of Theorem 5.1.

6 The Moufang property

Fix a building X and an apartment � therein. For any half apartment �, let
−� denote the complementary half apartment. Two half apartments � and
� in � are prenilpotent if � \ � contains a chamber and −� \ −� contains a
chamber, too. In this case, we set

� [�; �] := fγ � \ � � γ;−� \ −� � −γg and

� (�; �) := [�; �] n f�; �g :
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X is called Moufang if one can associate root groups

� U� of automorphisms of the building X to the half apartments � � �
such that the following axioms hold:

(M.1) U� �xes every chamber in �, and for each panel � 2 @� (a panel is a
codimension 1 face of a chamber), U� acts simply-transitively on the set
of chambers in St (�) but outside �.

(M.2) For each prenilpotent pair f�; �g, we have [U�;U�] � U(�;�) . Here,
U(�;�) denotes the group generated by all Uγ with γ 2 (�; �).

(M.3) For each u 2 U� nf1g, there is an element m(u) 2 U−� uU−� stabi-
lizing �.

(M.4) For n = m(u) as in M.3, we have nU� n
−1 = Un� for all half apart-

ments � .

Fact 6.1 The a�ne building associated to a Chevalley group G over a local
function �eld is Moufang. In particular, this holds for the buildings Xp .

This is \well-known" to those who, well, know it. However, there seems to be
no explicit reference for this fact in the literature. For this reason, an outline
of the argument is included.

Sketch of proof By Hensel’s Lemma or [45, Theorem 8, page 20], any local
function �eld is isomorphic, as a �eld with a valuation, to a �eld of Laurent
series over a �nite �eld. This can be regarded as the completion of the �eld
of rational functions over the same �nite �eld. The associated buildings are
isomorphic. Thus, we may con�ne ourselves to the case of a rational function
�eld. As P Abramenko observes in [6, page 19], the corresponding building is
isomorphic to the positive partner within the twin building of G over the ring of
Laurent polynomials. He shows that this group has an RGD-system (confer [6,
De�nition 2, pages 14f]).

Finally one can derive the Moufang axioms from the RGD-axioms. This is not
too di�cult since the Moufang axioms M.2 to M.4 can be read as geometric
interpretations of analogous RGD-axioms. The transitivity of the action in the
Moufang axiom M.1 follows from [42, 5.6 Proposition 3, page 564] whereas
(RGD 3) immediately implies that the action is simply-transitive.

In [4], H �Aberg gave a method to detect the vanishing of homotopy groups for
certain subspaces in products of trees. We will generalize his ideas to a�ne
buildings.
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De�nition 6.2 Let X be an a�ne building and C a chamber at in�nity. We
call a (not necessarily in�nite) sequence of apartments (�i) directed if for each
index j the closed set

�j n
[
i<j

�i

is an intersection of half apartments in �j that do not contain C .

Proposition 6.3 If X is locally �nite and Moufang then there is an in�nite
directed sequence (�i)i2N of apartments that covers X .

The proof will take the remainder of this section. So let us �x X and C as in
the proposition. Further let us consider a bi-in�nite geodesic gallery

� g := (: : : ; ci; ci+1; : : :) within a chosen standard apartment

� � that contains C . We will make more speci�c choices later. Let

� �i be the half apartment of � containing ci−1 but not ci . We will write

� Ui := U�i to avoid double subscripts.

The following facts are quoted from [35, pages 74+] or can be proved by similar
arguments without di�culty:

(1) U� �xes the star of every panel in � n @�.

(2) U(r;s) := hUi i 2 fr; : : : ; sgi = Ur � � �Us . Moreover, the corresponding
factorization u = ur � � � us is unique for every element u 2 U(r;s) .

(3) Ur−1 and Us+1 normalize U(r;s) .

(4) U(r;s) is �nite since the building X is locally �nite.

Lemma 6.4 An element u = ur � � � us 2 U(r;s) �xes exactly those chambers
of � that lie in the intersection of all �i with ui 6= 1. Moreover, this is the
intersection u� \�.

Proof Put u(i) := ur � � � ui . We proceed by induction on i. For i = r , we have
u(i) 2 Ur . If this element is trivial, then it �xes all of �, which we regard as the
intersection of an empty family of half apartments. Now suppose ur 6= 1 and
assume that there was a chamber c in � n �r �xed by u(r) . Then the element
u(r) would �x every minimal gallery connecting c to a chamber in �r . In this
case there would be a panel � 2 @�r whose star contained two chambers �xed
by u(r) . This, however, is impossible by axiom M.1.

Geometry & Topology, Volume 8 (2004)



Finiteness properties of soluble arithmetic groups 631

Now suppose i > r . By induction, the lemma holds for u(i−1) . Put D :=
u(i−1)� \ �. We have to show that for ui 6= 1, the identity

L := D \ �i = u(i)� \ � =: R

holds. By induction, we see that cr−1 2 �r \ � � � \ �i � L � R since ui �xes
the half apartment �i .

Assume there is a chamber c 2 R n L. Observe that u(i) stabilizes cr−1 and
preserves the type of minimal galleries. The chamber c is uniquely determined
by the type of a minimal gallery in � connecting it to cr−1 . Hence u(i) �xes c
and also the gallery connecting c to cr−1 . Consider the panel � 2 @L within
this gallery. If � 2 @�i then both of its neighboring chambers in � lie in D and
ui �xes both of them which cannot happen. Therefore, � lies in the interior of
�i . In this case, ui �xes the star of the panel � whence u(i−1) has to �x both
neighboring chambers in �. However, one of them does not belong to D whence
u(i−1) does not �x it. Thus, the hypothesis L $ R leads to a contradiction.

We will construct a sequence of automorphisms γj 2 hUi i 2 Zi � Aut (X)
that will give rise to a directed sequence �j := γj (�). So we call a possibly
�nite sequence γ1; : : : ; γi; : : : of automorphisms of X directed if for each index
j , the set [

i<j

γ−1
j γi (�) \�

is coconvex, ie, the complement of a convex set. Here, we use the notion of
convexity that stems from the Euclidean metric on �. However, recall that a
subcomplex of the Coxeter complex � is (metrically) convex if and only if it is
an intersection of half apartments.

Observation 6.5 Suppose the gallery g is chosen such that every half apart-
ment �i contains the chamber C . Then every intersection γ−1

j γi (�) \ � con-
tains C . In this case, for any directed sequence (γi)i2N of automorphisms of
X , the sequence (γi (�))i2N is a directed sequence of apartments.

Lemma 6.6 Every directed enumeration of U(r;s) can be extended to a di-
rected enumeration of U(r−1;s+1) .

Proof We will only show that we can extend to U(r;s+1) . The argument for
the lower index is similar.
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Let U(r;s) = fγ1; : : : ; γqg be a directed sequence enumerating U(r;s) and choose
an enumeration Us+1 = fu1; : : : ; ukg starting with u1 = 1. Then

fu1γ1; : : : ; u1γq; : : : ; u2γ1; : : : ; u2γq; : : : ; ukγ1; : : : ; ukγqg
is an enumeration of U(r;s+1) which splits into k blocks of length q . The �rst
block is the given enumeration of U(r;s) . So we extended the enumeration. We
will prove that this extension is directed. Within a block, quotients of elements
agree with quotients in the �rst block. Thus, it su�ces to prove that sets of
the form �[

�<�
i�q

γ−1
j u−1

� u�γi (�) \ �
�
[
�[
i<j

γ−1
j γi (�) \ �

�
are coconvex.

The right hand term is coconvex because we extended a directed sequence.

If the left hand side is not empty it equals the half apartment �s+1 : We have
the factorization

γ−1
j u−1

� u�γi = (γ−1
j u−1

� u�γiu
−1
� u�)| {z }

2U(r;s)

(u−1
� u�)| {z }
2Us+1

:

Since u−1
� u� 6= 1, Lemma 6.4 implies γ−1

j u−1
� u�γi (�) \ � � �s+1: As i 2

f1; : : : ; qg varies, the �rst factor γ−1
j u−1

� u�γiu
−1
� u� runs through all of U(r;s) .

In particular, at some point, γ−1
j u−1

� u�γiu
−1
� u� will be the trivial element.

Therefore, �s+1 contains all sets γ−1
j u−1

� u�γi (�)\� and equals at least one of
them.

Now, we choose the gallery g . We start with a straight line in the a�ne space
� that intersects each sector representing C . Note that any such line also
intersects each sector representing the opposite chamber at in�nity: geomet-
rically such a line connects two antipodal points (in the spherical metric) of
the spherical building at in�nity. We move this line in its parallelity class so
that it does not intersect the codimension 2 skeleton of �. We can do this,
as the set of forbidden lines has measure 0 since the space of parallel lines has
codimension 1. Given such a line, it intersects a sequence of chambers and
thus de�nes the bi-in�nite gallery g = (: : : ; ci; ci+1; : : :) : By construction, all
half apartments �i contain the chamber C , and the apartment � is the convex
hull of g , ie, there is no half apartment containing the whole gallery g .

By Lemma 6.6, we can �nd a directed sequence enumerating the group
U(−1;1) := hUi i 2 Zi =

S
r;s;r�s Ur � � �Us = fγi i 2 Ng. By Observation 6.5,
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this sequence induces a directed sequence �i := γi (�) of apartments. To �nish
the proof of Proposition 6.3, it remains to show that these apartments cover
X .

Let ~c be a chamber in X . It su�ces to show that there is an element γ 2
U(−1;1) such that γ~c � �. We will use induction on the length of a shortest
gallery ~c = c0; c1; : : : ; cr−1; cr � �. Let � be the half apartment that contains
C and whose boundary contains the panel cr−1 \ cr . Since no half apartment
contains the whole gallery g , we have U� � U(−1;1) : By Axiom (M.1), there
is an element γ� 2 U� such that γ�cr−1 � �. Hence, γ�~c can be connected to
� by a shorter gallery than ~c. By induction, there is an element γ0 2 U(−1;1)

such that γ0γ�~c � �. This completes the proof of Proposition 6.3.

7 Tameness, connectivity, and �niteness properties

Let X be a metric combinatorial CW-complex such that the restriction of the
metric to a closed cell makes the cell isometric to a convex Euclidean polyhe-
dron, and let � : X ! E be a projection onto a Euclidean space E. Further-
more, let us �x a non-empty set Ψ of linear forms on E. A sheet is a subcomplex
of X that � maps isometrically onto E. A closed subset of E is Ψ{convex if
it is an intersection of halfspaces\

�2Ψ0

fe 2 E �(e) � c�g

where Ψ0 is a non-empty subset of Ψ and c� 2 R for every � 2 Ψ0 . In particular,
E is not Ψ{convex unless 0 2 Ψ. A closed subset of a sheet is called Ψ{convex
if it is identi�ed with a Ψ{convex subset of E via � . We follow the terminology
of [24] and call the triple (X;E; �) a Ψ{complex if every compact subset of X
is covered by an increasing sequence of sheets. Here we call a sequence (Bi)i
increasing if, at every stage, the piece Bs n

S
r<sBr just added is Ψ{convex.

Note that the set of sheets in a Ψ{complex X form a cover of X .

Observation 7.1 Proposition 6.3 applies in particular to the building Xp and
the chamber Cp . Thus, (Xp;�p; �p) is a �−p {complex.

By [24, Example 7.2], we can lift this result to the product �:

Consequence 7.2 Each linear form in �−p induces by composition with the
projection �! �p a linear form on �. In this sense, put
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� �− :=
B
p2S �−p .

Then (X;�;� : X ! �) is a �−{complex.

We will study the action of B(OS) on the complex

� Y := �−1(0) = �−1(H) where

� H := ker’. The map � : X ! � obviously restricts to Y and yields a
projection Y !H , which we will also denote by � .
The linear forms in �− restrict to H . Let

� g�− := �−jH be the system of linear forms obtained this way.

Observation 7.3 Let (X;E; �) be a Ψ{complex and E0 be a subspace of E.
Then

(
�−1(E0);E0; �jE0

�
is a ΨjE0 {complex. Here, ΨjE0 denotes the set of those

linear forms in E0 obtained by restricting a linear form in Ψ to E0 . In particular,

(Y ;H ;�) is a g�−{complex.

Note that the metric on �−1(E0) is not the path metric but the restriction of
the metric on X . Moreover, in general, elements of Ψ could vanish on E0 .
Observe, however, that 0 62g�− because of the product formula.

Lemma 7.4 Y is (jSj − 2){connected.

Proof By [24, Lemma 7.3] Y = �−1(0) = �−1(H) is (jSj − 2){connected
provided g�− is (jSj − 1){tame, ie, no positive linear combination of up to
jSj − 1 elements in g�− vanishes.

Let us call a positive combination of forms in �− =
B
p2S �−p complete if it

involves for each p 2 S at least one element of �−p non-trivially. We shall argue
that any positive combination of forms in �− that vanishes on H is complete
and hence involves at least jSj forms with strictly positive weight. This implies
that g�− = �−jH is (jSj − 1){tame.

Note that a positive combination of complete forms is complete. Since each
element of �−p is a positive combination of of base roots

(
�

(p)
1 ; : : : ; �

(p)
n

�
, we

can write any positive combination of elements of �− as a positive combination
of base roots. Thus, it su�ces to prove:

If
P

i;p �i;p�
(p)
i is a positive combination of base roots that vanishes

on H , then for each p 2 S , there is an i 2 f1; : : : ; ng with �i;p > 0.
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This, however, follows from the de�nition of H since
P

i;p �i;p�
(p)
i vanishes on

H only if, for each i, the coe�cient �i;p does not depend on p.

We are now in a position to tackle the companion of Theorem 5.1.

Theorem 7.5 The group B(OS) is of type F jSj−1 .

Proof B(OS) acts on Y by cell-permuting homeomorphisms. The action is
cocompact by Lemma 2.3. The cell stabilizers are �nite by Lemma 2.2. The
space Y is (jSj − 2){connected by Lemma 7.4. Hence, the claim follows from
Corollary 3.3.

Remark 7.6 The proof of Theorem 7.5 mimics the argument given in [24] and
uses the fact that the buildings Xp are Moufang, which is a global property.
Hence, this method does not apply to arithmetic groups over number �elds
as the associated buildings are not Moufang. However, the discussion in Sec-
tion 3 indicates that it might be possible to �nd an argument for Theorem 7.5
somewhat in the spirit [11] that relies only on local properties of the buildings
Xp .

Theorems 5.1 and 7.5 together imply Theorem A stated in the introduction.

8 The geometric invariants of Bieri, Geoghegan,
Neumann, Strebel and Renz

\Geometric invariants", born in [16], are by now connected with �ve names.
It would be unfeasible to draw a complete picture of the theory or its history.
The reader may consult [34] or [15] where high dimensional invariants were �rst
introduced. A more recent source is [12].

The invariant �m(G) is de�ned for every group G of type Fm . It is an open
cone in Hom(G;R). For each group G, we have a chain of inclusions

Hom(G;R) � �1(G) � �2(G) � � � � � �m(G):

De�nition 8.1 Let G be a group of type Fm and Y be an (m−1){connected
CW-complex upon which G acts by cell permuting homeomorphisms such
that the stabilizer of each i{cell is of type Fm−i and such that the action
on the m{skeleton of Y is cocompact. For each non-trivial homomorphism
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� 2 Hom(G;R), there exists a G{equivariant height function on Y , ie, a con-
tinuous map h� : Y ! R satisfying h�(gy) = �(g) + h�(y) for all points y 2 Y
and all elements g 2 G.

Let h� be a height function associated to �. By de�nition � 2 �m(G) holds if
and only if Y is essentially (m−1){connected with respect to h� , ie, the directed
systems

(
�i(h−1

� ([t;1)))
�
t2R of homotopy groups are essentially trivial for all

i < m. For the de�nition of an essentially trivial directed system of groups, see
Citation 3.2.

Remark 8.2 One can show that this de�nition is independent of the complex
Y and the height function h� chosen to represent �. See [14, Theorem 12.1]. In
earlier stages of the theory, the action of G on Y was required to be free. The
weaker hypothesis regarding �niteness properties of cell stabilizers was proven
to yield an equivalent de�nition of �m(G) by H Meinert in his PhD thesis.
Its content is published in his papers [31] and [32]. However, the reader might
prefer the reference [14, Theorem 12.1] given above since that approach avoids
a detour via homological invariants.

Remark 8.3 Still, our de�nition di�ers slightly from the literature. Since the
di�erence lies in the order of quanti�ers, this might be one of the few instances
where logical formalism actually eases understanding. In the de�nition above,
we require:

8
i<m

8
b2R

9
a�b

�i(h−1
� ([b;1))) ! �i(h−1

� ([a;1))) vanishes.

Usually, the condition is phrased in a slightly stronger way:

8
i<m

9
l�0
8
b2R

�i(h−1
� ([b;1)))! �i(h−1

� ([b− l;1))) vanishes.

However, since G acts non-trivially on R by translations, both de�nitions are
equivalent to the following even weaker condition:

8
i<m

9
b2R

9
a�b

�i(h−1
� ([b;1))) ! �i(h−1

� ([a;1))) vanishes.

In particular, if h−1
� ([b;1)) is (m − 1){connected for some b, we have � 2

�m(G).

Generally, the geometric invariants of a group G are hard to compute|they
convey a lot of information. Eg, �m(G) determines for each normal subgroup
N E G with abelian factor whether N is of type Fm :
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Citation 8.4 (confer [34, Satz C, page 17]) Let G be a group of type Fm and
N E G be a normal subgroup with abelian factor group. Then, N is of type
Fm if and only if all non-trivial homomorphisms in Hom(G;R) that vanish on
N belong to �m(G).

We already know that B(OS) is of type F jSj−1 . Thus, the geometric invariants
�m(B(OS)) are de�ned for 1 � m < jSj. Since we are working in positive
characteristic, all unipotent groups are torsion groups. Thus, every homomor-
phism from B(OS) to R factors via T (OS) which spans a maximal lattice in
the vector space H that can, therefore, be described as H �= T (OS) ⊗Z R.
Thus,

� H� := HomR(H ;R) �= HomZ(T (OS);R) �= Hom(B(OS);R) �
�m(B(OS)). To avoid cumbersome notation, we will frequently use the
complement

� �m(B(OS))c := H� n�m(B(OS)).

We will use the action of B(OS) on the space Y de�ned in Section 7 to compute
the geometric invariants of B(OS). A homomorphism from T (OS) to the real
numbers R can be represented by a linear form on H . Composition with
� : Y !H yields a B(OS){equivariant height function on Y .

We will derive a lower and an upper bound for �m(B(OS))c . These bounds will
be sharp only in the rank{1{case. To state these bounds succinctly, we need
some notation. Let

� �− :=� �− denote the set of all linear forms on � induced by base
roots and let

� g�− := �−jH �g�− be the restriction of �− to H . By

� convm;S(g�−) we refer to the set of all linear forms on H that can be
written as a positive linear combination

P
p2S �p�

(p)
ip

wherein at most
m coe�cients do not vanish. Note that all base roots occurring in the
combination belong to distinct places.
For an arbitrary set Ψ of linear forms, let

� convm(Ψ) be the set of all linear forms that are positive combinations of
up to m elements of Ψ.

Theorem 8.5 For m < jSj, we have the chain of inclusions

convm;S(g�−) � �m(B(OS))c � convm(g�−):
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Remark 8.6 In the rank{1{case, the upper and the lower bound coincide.
Hence they determine �m(B(OS))c . In this case, B(OS) is metabelian, and
Theorem 8.5 establishes the �m{conjecture for B(OS). This also follows from
results of D Kochloukova [30].

Remark 8.7 It is easy to spell out some consequences of Theorem 8.5 in view
of Citation 8.4: Let A be a normal subgroup B(OS) containing U(OS). Such
a subgroup always arises as a preimage of a subgroup T 0 � T (OS). A homo-
morphism in Hom(B(OS);R) vanishes on A if and only if the corresponding
linear form in H� vanishes on HT 0 := T 0⊗Z R �H �= T (OS)⊗Z R. Thus, we
are lead to consider H�T 0 := f� 2H� �(HT 0) = 0g � H� . The codimension
of H�T 0 in H� is nothing but the Z{rank of T 0 . According to Citation 8.4, A
is of type Fm provided the intersection �m(B(OS))c \H�T 0 is trivial.

By the upper bound of Theorem 8.5, �m(B(OS))c is a subset of convm(g�−)
which is a �nite union of m{dimensional subspaces of H� . Hence �m(B(OS))c

has a trivial intersection with H�T 0 provided the Z{rank of T 0 is � m and HT 0

(and hence H�T 0 ) is \in general position".

The lower bound, analogously, implies that the Z{rank of T 0 is at least m if A
is of type Fm . Hence in the \generic case", the �niteness length of A is given
by the minimum of jSj − 1 and the Z{rank of T 0 .

Remark 8.8 On the other side, it is not di�cult to �nd subgroups of B(OS)
containing U(OS) that are not \in general position". Eg, consider the group8<:

0@t � �
t−2 �

t

1A 2 SL3(OS) t 2 O�S

9=; :

In the number �eld case, a related group is discussed in [2].

For jSj � 2, this group is �nitely generated: we can write the elements in the
upper right corner as products of commutators. This implies that the upper
bound of Theorem 8.5 is not sharp.

However, independently of jSj, this group is not �nitely presented: It is step{
2{nilpotent-by-abelian. If it was �nitely presented then, by [16, Corollary 5.8],
the subgroup in the upper right corner would be �nitely generated as a normal
subgroup. This is impossible since the torus acts trivially on it. It follows that
the lower bound of Theorem 8.5 is not sharp, as well.

We now embark on the proof of Theorem 8.5. Both inclusions will be proved
separately. The lower bound is derived in Lemma 8.9 and the upper bound in
Corollary 8.12.
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Lemma 8.9 For m < jSj, we have the inclusion:

convm;S(g�−) � �m(B(OS))c:

Proof Let � =
P

p2S �p�
(p)
ip

be a linear form on H . Suppose m coe�cients
are greater than 0 whereas the others vanish. We will apply the technique of
Section 5 to prove that the system

(
�m−1((� � �jY )−1[t;1))

�
t2R is not essen-

tially trivial.

In Section 5, we have seen how to construct a tree Tp associated to a base
root �(p)

ip
that is a retract of the building Xp and that carries a height function

h�p : Tp ! R related to the height function hp = �
(p)
ip
� �p : Xp ! R via the

retraction map|see Lemma 5.5 and Observation 5.2.

Put T ′ :=
J
�p 6=0 Tp . The induced retraction

J
�p 6=0 Xp ! T ′ has a section

� : T ′ ! J
�p 6=0Xp . Since m < jSj there is at least one place p 2 S with

�p = 0. Hence we �nd a continuous map � : T ′ ! J
�p=0 �p such that, for

each point � ′ 2 T ′ , the tuple (�(� ′); �(� ′)) 2 J�p=0 �p �
J
�p 6=0Xp � X

belongs to Y = �−1(H). Thus, we see that T ′ is a retract of Y .

Hence,
P

p2S �ph
�
p is a height function on T ′ compatible with the height func-

tion induced by � on Y , and the following diagram commutes:

Y
// //

��πjY
��

T ′oooo ∑
p2S �ph

�
p

��

R R
Thus, arguing as in the proof of Lemma 5.7, we see that the system(
�m−1((� � �jY )−1[t;1))

�
t2R of homotopy groups is not essentially trivial since

the corresponding system�eHm−1

��
(�p) 2 T ′

���� t �X
p2S

�ph
�
p(�p)

���
t2R

of reduced homology groups on the retract T ′ is not essentially trivial by
Lemma 3.1.

We turn to the upper bound.

Observation 8.10 Let Ψ be an m{tame set of linear forms on H and � be
a linear form on H . A positive combination of elements of Ψ vanishes on ker �
if and only if it belongs to the span of � in the dual H� . Hence, Ψ restricts
to an m{tame set of linear forms on ker � if and only if � 62 convm(Ψ) and
−� 62 convm(Ψ).
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The following lemma, which is the key observation for the upper bound of
Theorem 8.5, is a modi�cation of [24, Lemma 7.3].

Lemma 8.11 Let (X;E; �) be a Ψ{complex and � be a linear form on E.
Suppose Ψ is m{tame and � 62 convm(Ψ). Then the preimage X 0 := (� �
�)−1[0;1) is (m− 1){connected.

Proof Let (Bi)i2N be an increasing sequence in X . We will show that for
each r 2 N, the space

W r :=
[
i�r

X 0 \Bi

is (m − 1){connected. Since any compact subset of X is covered by some
increasing sequence, it follows that X 0 is (m− 1){connected.

Observe that the case r = 1 is trivial: W 1 = B1 is contractible. For r > 1,
assume by induction that W r−1 is (m − 1){connected. We obtain W r from
W r−1 by gluing a closed convex set V 0 � Br onto W r−1 : Put A := �−1[0;1)
and E0 := ker � = @A. We identify the sheet Br with E via the projection
� . This way, V 0 �= A \ V for a Ψ{convex set V � E. The \new piece" V 0 is
glued in along the set A \ @V . This process does not add material unless E0
contains an interior point of V which we shall henceforth assume. In this case,
E0 \ @V = @(A \ V ).

Using [24, Theorem 6.4] and its terminology, we distinguish two cases:

V 0 is decomposable: V 0 = V \ A is a product of a convex compact set and a
Euclidean space, which is also a factor of A. As we can split o� this
Euclidean factor, we may assume without loss of generality that V 0 is
compact. Then, the intersection V 0 \ E0 is a \free face" of V 0 , which we
can push into|recall that E0 contains an interior point of V . Hence, V 0

can be collapsed onto @V \A, which we thus recognize as a retract. Since
this is the part along which V 0 is glued in, W r is homotopy equivalent
to W r−1 .

V 0 is retractable: In this case, gluing in V 0 amounts to glue in @V 0 along A \
@V . However, we can retract everything toward E0 . Thus, we could
equivalently glue in @V 0 \E0 = V \E0 along @V \E0 = @(V \E0). So we
have to determine the homotopy type of the pair (V \ E0; @(V \ E0)):
Again, we have to distinguish two cases. Let Ψ0 � Ψ be the set of all
linear forms in Ψ that correspond to hyperplanes supporting V .
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−� 62 convm(Ψ0): We have seen in Observation 8.10 that in this case, the
system Ψ0 induces an m{tame system of linear forms on E0 . Hence,
V \ E0 is either retractable or decomposable with a compact factor
of dimension � m. The bound on the dimension follows from [24,
Corollary 6.7]. In either case, the gluing does not change homotopy
groups in dimensions < m, ie, we have �i(W r) = �i(W r−1) for
0 � i < m.

−� 2 convm(Ψ0): In this case, � is bounded from above on V . Since the
set V 0 is retractable, it contains an in�nite ray without its antipode.
This ray cannot depart from E0 since otherwise � was unbounded
on V 0 � V . Hence the ray is parallel to E0 . Thus, the set V \ E0 is
retractable as a subset of E0 : it contains a parallel ray. Hence gluing
in this set does not change the homotopy type of W r−1 .

E0 A

V 0

��
��
��
�

HH
HH

HH
H E0 A

V 0

HH
HH

HH
H

��
��
��
� E0 A

V 0

��
�
�
�

−� 62 convm(Ψ0) −� 2 convm(Ψ0)
V 0 compact V 0 retractable

Corollary 8.12 For m < jSj, we have the inclusion �m(B(OS))c �
convm(g�−).

Proof By Observation 7.3, (Y ;H ;�) is a g�−{complex. In the proof of
Lemma 7.4, we saw that g�− is jSj{tame. Thus the claim follows from
Lemma 8.11 in view of Remark 8.3.

Together with Lemma 8.9 this proves Theorem 8.5
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