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702 Weimin Chen

1 Introduction

In this paper, we prove the following theorem.

Theorem 1.1 Let (W;!) be a symplectic homology cobordism between two
lens spaces which are equipped with their canonical contact structure. Then
W is di�eomorphic to the product of a lens space with the unit interval.

Here the canonical contact structure �0 on a lens space L(p; q) is the descendant
of the distribution of complex lines on S3 = f(z1; z2) j jz1j2 + jz2j2 = 1g under
the quotient map S3 ! L(p; q) of the Zp{action (z1; z2) 7! (�pz1; �

q
pz2). (Here

�p = exp(
p
−12�

p ), and p; q are relatively prime and 0 < q < p.) The contact
structure �0 induces a canonical orientation on L(p; q) where a volume form is
given by � ^ d� for some 1{form � such that �0 = ker�. A symplectic cobor-
dism from (L(p0; q0); �00) to (L(p; q); �0) is a symplectic 4{manifold (W;!) with
boundary @W = L(p; q) − L(p0; q0), such that there exists a vector�eld v in a
neighborhood of L(p; q)[L(p0; q0) �W , which is transverse to L(p; q)[L(p0; q0)
and for which Lv! = ! , �00 = ker (iv!jL(p0;q0)), �0 = ker (iv!jL(p;q)), and the
canonical orientations on L(p; q); L(p0; q0) agree with the orientations de�ned by
the normal vector v . (Here W is canonically oriented by the symplectic form
! , ie, ! ^ ! is a volume form.) The cobordism W is called a homology cobor-
dism if each L(p; q) � W;L(p0; q0) � W induces an isomorphism on homology
groups (with Z coe�cients). In particular, this condition implies p = p0 .

As a special case, consider the following:

Corollary 1.2 Let � be a symplectic Zp{action on (R4; !0) where !0 =
dx1 ^ dy1 + dx2 ^ dy2 . Suppose outside of a ball, � is linear and free, and is
orthogonal with respect to the Euclidean metric g0 =

P2
i=1(dx2

i + dy2
i ). Then

� is conjugate to a linear action by a di�eomorphism which is identity outside
of a ball.

Remark 1.3 (1) It is likely that Corollary 1.2 can be strengthened to the as-
sertion that the action � is conjugate to a linear action by a symplectomorphism
of (R4; !0). We plan to address this problem in a separate paper.

(2) Relevant to Theorem 1.1 and Corollary 1.2, we mention two earlier results.
One is due to Eliashberg (cf [6]) which says that a symplectic 4{manifold W
with contact boundary S3 (in the weak sense) is di�eomorphic to a blowup of
the 4{ball B4 . The other is due to Gromov{McDu� (cf for example Theorem
9.4.2 in [16]) which says that if (W;!) is a minimal symplectic 4{manifold and
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Orbifold adjunction formula and symplectic cobordisms 703

there are compact subsets K � W and V � R4 with V being star-shaped
such that (W nK;!) is symplectormorphic to (R4 n V; !0) via a map  , then
there exists a symplectomorphism � : (W;!) ! (R4; !0) which agrees with  
on W nK 0 for some larger compact subset K 0 � K .

(3) Symplectic �llings (in the weak sense) of lens spaces with the canonical
contact structure are classi�ed up to orientation-preserving di�eomorphisms in
[13], where it is shown that there are in�nitely many lens spaces which have a
unique �lling up to blowups. For these lens spaces, it is clear that when the two
ends of @W are di�eomorphic, the condition that W is a homology cobordism
is equivalent to the condition that (W;!) is minimal.

The proof of Theorem 1.1 is based on studying pseudoholomorphic curves in a
certain symplectic 4{orbifold in the fashion of Gromov{McDu� in the manifold
setting (cf for example [16]). There are two main ingredients. One is the orb-
ifold analog of the adjunction and intersection formulae for pseudoholomorphic
curves, extending the relevant work of Gromov and McDu� [7, 14, 15] in the
manifold setting. The other is a structural theorem for the space of a certain
notion of maps1 between orbifolds developed in [3], which is needed here for the
corresponding Fredholm theory.

The paper is organized as follows. In Section 2 we introduce a notion of dif-
ferentiable chains in orbifolds, which serves as a bridge between the de Rham
cohomology of an orbifold and the singular cohomology of its underlying space
via integration. Section 3 is devoted to the proof of the orbifold analog of the
adjunction and intersection formulae. The main results are proved in Section 4.
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704 Weimin Chen

2 Di�erentiable chains in orbifolds

We introduce here a notion of di�erentiable chains in orbifolds. The homology
groups of the corresponding chain complex are naturally isomorphic to the sin-
gular homology groups of the underlying space over Q, so that this construction
yields an explicit pairing between the de Rham cohomology groups of the orb-
ifold and the singular homology groups of the underlying space via integration
over di�erentiable chains. In light of the development in [3], the notion intro-
duced here may be regarded as a natural generalization to the orbifold category
of the notion of di�erentiable singular chains in smooth manifolds.

A di�erentiable r{chain in an orbifold X (of class C l for some l � 1) is a �nite
linear combination of di�erentiable r{simplexes in X , where a di�erentiable
r{simplex � in X is a di�erentiable map (in the sense of [3]) from a certain
r{dimensional orbihedron into X . More precisely, the said r{dimensional or-
bihedron is an orbispace where the underlying space is the standard r{simplex
�r in Rr , and the orbispace structure is given by a complex of �nite groups over
�r in the sense of Haefliger [8] (see also Part II of [3]). Recall that a complex of
groups consists of the following data: (K;G� ;  a; ga;b), where K is a simplicial
complex, G� is a group assigned to each cell � 2 K ,  a : Gi(a) ! Gt(a) is an
injective homomorphism assigned to each edge a in the barycentric subdivision
of K with i(a), t(a) being the cells of K whose barycenters are the end points
of a such that t(a) is a face of i(a), and ga;b is an element of Gt(a) assigned to
each pair of composable edges a; b such that

Ad(ga;b) �  ab =  a �  b;  a(gb;c)ga;bc = ga;bgab;c:

The orbihedron is covered by a set of \uniformizing systems" which are given
with compatible equivariant simplicial structures. The r{simplex � being a
di�erentiable map means that the representatives of � are di�erentiable when
restricted to each simplex in the corresponding uniformizing system.

Let � be a di�erential r{form on X . Then a di�erentiable r{simplex � in X
pulls back � to a di�erential r{form ��� on �r , the standard r{simplex in
Rr . We de�ne the integration of � over � byZ

�
� =

1
jGj

Z
�r

���

where jGj is the order of the group G assigned to the top cell of �r in the
complex of �nite groups that de�nes the orbispace structure of the orbihedron
over which � is de�ned. The integration over a di�erentiable r{chain c =
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Orbifold adjunction formula and symplectic cobordisms 705

P
k ak�k is de�ned to be Z

c
� =

X
k

ak

Z
�k

�:

Next we introduce a boundary operator @ on the set of di�erentiable chains.
To this end, let �r

i , 0 � i � r , be the i-th face of the standard r{simplex �r .
The restriction of a di�erentiable r{simplex � to �r

i (given the suborbihedron
structure, cf [3]) is a di�erentiable (r − 1){simplex, which will be denoted by
�i . We de�ne

@� =
rX
i=0

(−1)i
jGij
jGj �i

where Gi; G are the groups assigned to the top cell of �r
i ;�

r respectively.
The boundary of a di�erentiable r{chain c =

P
k ak�k is de�ned to be @c =P

k ak@�k , which clearly satis�es

@ � @ = 0:

Finally, the Stokes’ theorem implies that for any di�erentiable r{chain c and
(r − 1){form �, Z

c
d� =

Z
@c
�:

For any orbifold X , let H�(X), H�(X) be the homology and cohomology groups
of di�erentiable chains (with Z coe�cients) in X . There are canonical homo-
morphisms

H�dR(X)!H�(X) ⊗ R

induced by integration over di�erentiable chains, and

H�(X)! H�(X;Q)

which is de�ned at the chain level by

� 7! 1
jGj j�j

for each di�erentiable r{simplex � : �r ! X , where j�j is the induced singular
r{simplex in the underlying space, and jGj is the order of the group G assigned
to the top cell of �r .

Theorem 2.1 The canonical homomorphism H�dR(X) ! H�(X) ⊗ R is iso-
morphic, and the canonical homomorphism H�(X) ! H�(X;Q) is isomorphic
over Q.

Geometry & Topology, Volume 8 (2004)



706 Weimin Chen

Theorem 2.1 will not be used in this paper, and its proof will be given elsewhere.
But we remark that the key point in the proof is to show that H�(X) ⊗ Q
are the cohomology groups associated to a �ne torsionless resolution of the
constant sheaf Q�X , with which the proof follows by the usual sheaf theoretical
argument, for instance, as in [20].

In light of Theorem 2.1, we will say that a di�erentiable cycle c in X (ie,
a di�erentiable chain c such that @c = 0) is Poincar�e dual to a de Rham
cohomology class γ 2 H�dR(X) if there is a closed form � 2 γ such that for any
closed form � on X , Z

c
� =

Z
X
� ^ �:

Here is a typical situation: Let Y be a compact, closed, and oriented r{
dimensional orbifold and f : Y ! X be a di�erentiable map in the sense of
[3]. Note that Y can be triangulated such that with respect to the triangula-
tion, Y is natually an orbihedron (cf Part II of [3]). Thus the restriction of f
to each top simplex in the triangulation of Y de�nes a di�erentiable r{simplex
in X , and in this way f(Y ) naturally becomes a di�erentiable r{chain in X
which is a cycle because Y is compact, closed, and oriented. Clearly, in this
case we have Z

f(Y )
� =

Z
Y
f��

for any di�erential form � on X .

3 Adjunction and intersection formulae

In this section, we derive the adjunction formula for pseudoholomorphic curves
in an almost complex 4{orbifold and a corresponding formula which expresses
the algebraic intersection number of two distinct pseudoholomorphic curves in
terms of local contributions from their geometric intersection, extending rele-
vant work of Gromov [7] and McDu� [14, 15] in the manifold setting.

First of all, some convention and terminology. In this section (and the previous
one as well), the notion of orbifolds is more general in the sense that the group
action on each uniformizing system needs not to be e�ective. The orbifolds
in the classical sense where the group actions are e�ective are called reduced.
The points which are the principal orbits in each uniformizing system are called
regular points. They have the smallest isotropy groups in each connected com-
ponent of the orbifold, which are all isomorphic, and they form an open, dense
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Orbifold adjunction formula and symplectic cobordisms 707

submanifold of the orbifold. The points in the complement of regular points are
called orbifold points. When the orbifold is reduced and has no codimension 2
subsets of orbifold points, we also allow ourselves to use the usual terminologies,
ie, \orbifold point" = \singular point" and \regular point" = \smooth point".

We now begin by setting the stage. Let X be a compact, closed, and al-
most complex 4{dimensional orbifold which is canonically oriented by the al-
most complex structure J . We shall assume that the 4{orbifold X is reduced
throughout. We shall also consider connected, compact, and closed complex
orbifolds � with dimC� = 1, namely the orbifold Riemann surfaces, which are
not assumed to be reduced in general.

De�nition A

A J {holomorphic curve in X is a closed subset C � X such that there is a
nonconstant map f : �! X in the sense of [3] with C = Im f ,2 which obeys

(a) The representatives of f are J {holomorphic.

(b) The homomorphisms between isotropy groups in each representative of f
are injective, and are isomorphic at all but at most �nitely many regular
points of �.

(c) The map f is not multiply covered in the following sense: f does not
factor through any holomorphic map � : � ! �0 to a map f 0 : �0 ! X
such that the degree of the map induced by � between the underlying
Riemann surfaces is greater than one.

A J {holomorphic curve C is called of type I if � is reduced, and is called of
type II otherwise. Clearly this de�nition is independent of the parametrization
f : � ! X . Likewise, the order of the isotropy groups of the \regular" points
in C , ie, the images of all but at most �nitely many regular points in � under
f , depends only on C , and is called the multiplicity of C and is denoted by
mC throughout. A J {holomorphic curve C is of type I if and only if mC = 1.
A type I J {holomorphic curve is contained in the set of regular points of X
except for possibly �nitely many points, and a type II J {holomorphic curve is
contained entirely in the set of orbifold points of X . Finally, we remark that
for a type I J {holomorphic curve C , any parametrization f : � ! X of C is
uniquely determined by the induced map between the underlying spaces.

2Each map f in the sense of [3] induces a continuous map between the underlying
spaces; by the image under such an f , we always mean the image under the map
induced by f .

Geometry & Topology, Volume 8 (2004)



708 Weimin Chen

De�nition B

(1) For any J {holomorphic curve C in X , the Poincar�e dual of C is de�ned
to be the class PD(C) 2 H2(X;Q) which is uniquely determined by

m−1
C �[C] = PD(C) [ �[X];8� 2 H2(X;Q);

where [C] is the class of C in H2(X;Z).

(2) The algebraic intersection number of two J {holomorphic curves C;C 0 (not
necessarily distinct) is de�ned to be

C � C 0 = PD(C) [ PD(C 0)[X]:

We remark that the Poincar�e dual PD(C) di�ers from the usual one by a factor
m−1
C , thus is di�erent for a type II J {holomorphic curve. On the other hand,

if C is parametrized by f : � ! X , the class of the di�erentiable cycle f(�)
in H2(X) is sent to m−1

C [C] under the canonical homomorphism H2(X) !
H2(X;Q). In light of Theorem 2.1, PD(C) is Poincar�e dual to f(�) under the
canonical isomorphisms H2

dR(X) �= H2(X)⊗ R �= H2(X;R).

We proceed further with a digression on some crucial local properties of J {
holomorphic curves in C2 due to McDu�, cf [14, 15], where we assume that
C2 is given with an almost complex structure J which equals the standard
structure at the origin. To �x the notation, the disc of radius R in C centered
at 0 is denoted by D(R).

First, some local analytic properties of J {holomorphic curves:

� For any J {holomorphic curve f : (D(R); 0) ! (C2; 0) where f is not
multiply covered, there exists an 0 < R0 � R such that f jD(R0)nf0g is
embedded.

� Let f : (D(R); 0)!(C2; 0) be a J {holomorphic curve such that f jD(R)nf0g
is embedded. Then for any su�ciently small � > 0, there is an almost
complex structure J� and a J�{holomorphic immersion f� (not multiply
covered) such that as � ! 0, J� ! J in C1 topology and f� ! f in C2

topology. Moreover, given any annuli f� � jzj � Rg and f�0 � jzj � �g
in D(R), one can arrange to have f = f� in f� � jzj � Rg and to have
J� = J except in a chosen neighborhood of the image of f�0 � jzj � �g
under f by letting � > 0 su�ciently small.

� Any two distinct J {holomorphic curves f : D(R)! C2 , f 0 : D(R0)! C2

intersect at only �nitely many points, ie, the set f(z; z0) 2 D(R)�D(R0) j
f(z) = f 0(z0)g is �nite.

Geometry & Topology, Volume 8 (2004)
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Second, the local intersection and self-intersection number of J {holomorphic
curves:

� Let C , C 0 be distinct J {holomorphic curves which are parametrized
by f : (D(R); 0) ! (C2; 0) and f 0 : (D(R0); 0) ! (C2; 0), such that
f jD(R)nf0g and f 0jD(R0)nf0g are embedded and 0 2 C2 is the only in-
tersection of C and C 0 . Perturb C into C (which may not be pseudo-
holomorphic), keeping @C and C disjoint from C 0 and @C 0 respectively,
such that C intersects with C 0 transversely. Then the intersection num-
ber C �C 0 is de�ned by counting the intersection of C and C 0 with signs.
C � C 0 may be determined using the following recipe: perturb f; f 0 into
J�{holomorphic immersions f�; f 0� , then

C � C 0 =
X

f(z;z0)jf�(z)=f 0�(z0)g
t(z;z0)

where t(z;z0) = 1 when f�(z) = f 0�(z
0) is a transverse intersection, and

t(z;z0) = n � 2 when f�(z) = f 0�(z
0) has tangency of order n. The inter-

section number C �C 0 has the following properties: it depends only on the
germs of C;C 0 at 0 2 C2 , it is always positive, and it equals one if and
only if C;C 0 are both embedded and intersect at 0 2 C2 transversely.

� Let C be a J {holomorphic curve which is parametrized by f : (D(R); 0)
! (C2; 0) such that f jD(R)nf0g is embedded. Then the local self-inter-
section number C � C is well-de�ned, which can be determined using the
following recipe: perturb f into a J�{holomorphic immersion f� , then

C � C =
X

f[z;z0]jz 6=z0;f�(z)=f�(z0)g
t[z;z0];

where [z; z0] denotes the unordered pair of z; z0 , and where t[z;z0] = 1
when f�(z) = f�(z0) is a transverse intersection, and t[z;z0] = n � 2 when
f�(z) = f�(z0) has tangency of order n. The local self-intersection number
C � C has the following properties: it depends only on the germ of C at
0 2 C2 , and it is non-negative which equals zero if and only if C is
embedded.

End of digression.

In order to state the adjunction and intersection formulae, we need to further
introduce some de�nitions.

(1) Recall from [3] that a representative of a map f : � ! X parametrizing
a J {holomorphic curve C gives rise to a collection of pairs (fi; �i) : (cDi; GDi)!
( bUi; GUi) satisfying certain compatibility conditions, where f(cDi; GDi)g,
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710 Weimin Chen

f( bUi; GUi)g are a collection of uniformizing systems of � and X respectively,
and each �i is a homomorphism, which is injective by (b) of De�nition A, and
each fi is a �i{equivariant J {holomorphic map. We may assume without loss
of generality that each cDi is a disc centered at 0 2 C and each bUi is a ball
centered at 0 2 C2 , and GDi ; GUi act linearly. Moreover, because of (b) and
(c) in De�nition A, we may assume that each fi is embedded when restricted
to cDi n f0g and �i(GDi) is the subgroup of GUi which leaves fi(cDi) � bUi in-
variant. (The case of type II is explained in the proof of Lemma 3.4 below.)
Let z be the orbit of 0 2 cDi in �. We shall call the germ of Imfi at 0 2 cDi a
local representative of the J {holomorphic curve C = Imf at z 2 �. The set
�(C)z of all local representatives of C at z is clearly the set of germs of the
elements in

fIm(g � fi) j g 2 GUig;
which is naturally parametrized by the coset GUi=�i(GDi). Note that for all
but at most �nitely many points z 2 �, the set �(C)z of local representatives
of C at z contains only one element.

(2) For any J {holomorphic curve C in X , its virtual genus is de�ned to be

g(C) =
1
2

(C � C + c(C)) +
1
mC

where c = −c1(TX). Note that g(C) is a rational number in general.

(3) Let � be an (connected) orbifold Riemann surface, and let m� be the order
(of isotropy groups) of its regular points and m1;m2; � � � ;mk be the orders (of
isotropy groups) of its orbifold points. We de�ne the orbifold genus of � by

g� =
gj�j
m�

+
kX
i=1

(
1

2m�
− 1

2mi
);

where gj�j is the genus of the underlying Riemann surface of �. Note that
with the above de�nition, c1(T�)(�) = 2m−1

� − 2g� where T� is the orbifold
tangent bundle.

With the preceding understood, consider the following:

Theorem 3.1 (Adjunction Formula) Let C be a J {holomorphic curve which
is parametrized by f : �! X . Then

g(C) = g� +
X

f[z;z0]jz 6=z0;f(z)=f(z0)g
k[z;z0] +

X
z2�

kz;

where [z; z0] denotes the unordered pair of z; z0 , and where the numbers k[z;z0]; kz
are de�ned as follows.

Geometry & Topology, Volume 8 (2004)
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� Let G[z;z0] be the isotropy group at f(z) = f(z0) and �(C)z = fCz;�g,
�(C)z0 = fCz0;�0g, then

k[z;z0] =
1

jG[z;z0]j
X
�;�0

Cz;� � Cz0;�0 :

� Let Gz be the isotropy group at f(z) and �(C)z = fCz;�g, then

kz =
1

2jGz j
(
X
�

Cz;� � Cz;� +
X
�;�

Cz;� � Cz;�):

(Note: the second sum is over all �; � which are not necessarily distinct.)

Theorem 3.2 (Intersection Formula) Let C;C 0 be distinct J {holomorphic
curves parametrized by f : � ! X , f 0 : �0 ! X respectively. Then the alge-
braic intersection number

C � C 0 =
X

f(z;z0)jf(z)=f 0(z0)g
k(z;z0)

where k(z;z0) is de�ned as follows. Let G(z;z0) be the isotropy group at f(z) =
f 0(z0) and �(C)z = fCz;�g, �(C 0)z0 = fC 0z0;�0g, then

k(z;z0) =
1

jG(z;z0)j
X
�;�0

Cz;� � C 0z0;�0 :

The adjunction formula implies the following:

Corollary 3.3 Let C be a J {holomorphic curve parametrized by f : �! X .
Then the virtual genus of C is greater than or equal to the orbifold genus of �,
ie, g(C) � g� , with g(C) = g� i� C is a suborbifold of X and f is an orbifold
embedding.

The rest of this section is occupied by the proof of Theorem 3.1 and Theorem
3.2. We begin with some preliminary lemmas.

Lemma 3.4 Let C be a type II J {holomorphic curve parametrized by f : �!
X . Then f is represented by a collection of pairs f(fi; �i)g where each fi is an
embedding.

Proof Let (bU;GU ) be a uniformizing system of X , where bU is a ball in C2

and GU is nontrivial and acts linearly. We say that GU is of type A if the
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712 Weimin Chen

�xed-point set of GU is a complex line in C2 , and that GU is of type B if
0 2 C2 is the only �xed point.

Let f(fi; �i)g be a representative of f (cf [3]), where each (fi; �i) : (cDi; GDi)!
( bUi; GUi). Since C is of type II, each GUi is nontrivial. Consider the case
where GUi is of type A �rst. In this case, Im fi lies in the complex line which
is �xed by GUi , therefore fi is a holomorphic map between two discs in C.
It follows that fi is either an embedding or a branched covering. Suppose fi
is a branched covering, and without loss of generality assume that 0 2 cDi is
the only branching point. Then there are z; z0 6= 0 in cDi with z 6= z0 , such
that fi(z) = fi(z0) 2 bUi . Since f is not multiply covered, there must be a
g 2 GDi such that g � z = z0 . On the other hand, by (b) of De�nition A, �i
is an isomorphism onto GUi when restricted to the isotropy subgroup of z , so
that there is an h 2 GDi �xing z such that �i(h) = �i(g). It is easily seen that
�i(gh−1) = 1 2 GUi but gh−1 6= 1 2 GDi , a contradiction to the assumption
in (b) of De�nition A that �i is injective. Hence fi is an embedding. When
GUi is of type B, Imfi lies in a complex line in C2 whose isotropy is a proper
subgroup H of GUi . Again fi is either an embedding or a branched covering.
If fi is a branched covering, then there are z; z0 6= 0 in cDi with z 6= z0 , such
that fi(z) = fi(z0) 2 bUi . Moreover, since f is not multiply covered, there is a
g 2 GDi such that g �z = z0 , and in this case, note that �i(g) 2 H . On the other
hand, there is an h in the isotropy subgroup of z such that �i(h) = �i(g) 2 H ,
which gives a contradiction as in the type A case. Hence the lemma.

Lemma 3.5 Let C be a J {holomorphic curve parametrized by f : � ! X .
Then there is a closed 2{form �C on X which represents the Poincar�e dual of
the di�erentiable cycle f(�) in X , ie, for any 2{form � on X ,Z

�
f�� =

Z
X
�C ^ �:

Moreover, �C may be chosen such that it is supported in any given neighbor-
hood of C in X .

Proof We consider the case where C is of type I �rst.

To �x the notation, let z1; z2; � � � ; zk be the set of points in � whose image
under f is an orbifold point in X . For each i = 1; 2; � � � ; k , we set pi = f(zi)
and let mi � 1 be the order of the isotropy group at zi . Furthermore, we denote
by (cDi;Zmi), ( bVi; Gi) some local uniformizing systems at zi , pi respectively,
and denote by (fi; �i) : (cDi;Zmi) ! ( bVi; Gi) a local representative of f at zi
such that fi is embedded when restricted to cDi n f0g. Set Di = cDi=Zmi
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and Vi = bVi=Gi for the corresponding neighborhood of zi and pi in � and
X respectively. Without loss of generality, we may assume that Di is the
connected component of f−1(Vi) that contains zi .

For each critical point z of f (ie df(z) = 0) where f(z) is a regular point in
X , we perturb f locally in a small neighborhood of z into a J�{holomorphic
immersion, which is supported in the complement of

Sk
i=1Di , and for each

i = 1; 2; � � � ; k , we perturb fi into a J�{holomorphic immersion fi;� (if fi is
already embedded, we simply let fi;� = fi ). Let cD0i � cDi be a closed disc of a
smaller radius such that fi;� = fi over cDi n cD0i . We set �0 = � n

Sk
i=1 Di and

�00 = � n
Sk
i=1D

0
i where D0i = cD0i=Zmi , and we denote the perturbation of f

over �00 by f� , which is a J�{holomorphic immersion into X0 , the complement
of orbifold points in X . Note that fi;� may not be �i{equivariant, and J� may
not be Gi{equivariant over bVi . Hence f� , fi;� , i = 1; 2; � � � ; k , may not de�ne a
pseudoholomorphic curve in X . Nevertheless, for any closed 2{form � on X ,
it is easily seen that

Z
�
f�� =

Z
�0

f�� �+
kX
i=1

1
mi

Z
D̂i

f�i;��:

Let �� = f�� TX
0=T�00 be the normal bundle of the immersion f� in X0 , and

let �i;� = f�i;�T
bVi=TcDi be the normal bundle of the immersion fi;� in bVi , i =

1; 2; � � � ; k . We �x an immersion �f� of a tubular neighborhood of the zero
section of �� into X0 , and �x an immersion �fi;� of a tubular neighborhood of
the zero section of �i;� into bVi for each i, which are assumed to be compatible
on the overlaps. We denote by �� , �i;� the push-forward of some Thom forms
�� , �i;� of �� , �i;� by �f� , �fi;� respectively, where �� , �i;� are compatible on
the overlaps. Finally, let x1; x2; � � � ; xl be the set fpi j i = 1; 2; � � � ; kg. For
each xj , j = 1; 2; � � � ; l , let (cVxj ; Gxj ) be a local uniformizing system at xj .
Without loss of generality, we assume Vi = Vxj = cVxj=Gxj whenever pi = xj .

With the preceding understood, the 2{form �C is de�ned as follows. On X nSl
j=1 Vxj , �C = �� , and on each cVxj , j = 1; 2; � � � ; l ,

�C =
X

fijpi=xjg

1
mi

X
g2Gxj

g��i;� :
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Now for any 2{form � on X , we haveZ
X
�C ^ � =

Z
Xn
⋃l
j=1 Vxj

�C ^ �+
lX

j=1

1
jGxj j

Z
V̂xj

�C ^ �

=
Z
Xn
⋃l
j=1 Vxj

�� ^ �+
lX

j=1

1
jGxj j

Z
V̂xj

(
X

fijpi=xjg

1
mi

X
g2Gxj

g��i;�) ^ �

=
Z

�0

f�� �+
lX

j=1

X
fijpi=xjg

1
mi

(
1
jGxj j

Z
V̂xj

X
g2Gxj

g�(�i;� ^ �))

=
Z

�0

f�� �+
lX

j=1

X
fijpi=xjg

1
mi

Z
V̂xj

�i;� ^ �

=
Z

�0

f�� �+
kX
i=1

1
mi

Z
D̂i

f�i;�� =
Z

�
f��:

Hence �C represents the Poincar�e dual of the di�erentiable cycle f(�). By way
of construction, �C may be chosen to be supported in any given neighborhood
of C in X .

Next we consider the case where C is of type II.

By Lemma 3.4, � = f�TX=T� is an orbifold complex line bundle over �. Let
� be a Thom form of � . Then notice that � is sort of a quasi-normal bundle of
C in X in the sense that one can push-forward � to X . The resulting form,
which is de�ned to be �C , is a closed 2{form on X , supported in any given
neighborhood of C , and for any x 2 C , there exists a local uniformizing system
(bV ;G) at x such that on bV ,

�C =
lX
i=1

1
mi

X
g2G

g��i;

where f−1(x) = fz1; z2; � � � ; zlg, mi is the order of zi in �, and �i is the push-
forward of � to bV associated to some arbitrarily �xed choice of representatives
of the parametrization f : � ! X of C . As in the case where C is of type I,
we have for any 2{form � on XZ

X
�C ^ � =

Z
�
f��;

so that �C represents the Poincar�e dual of the di�erentiable cycle f(�).
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Note that by the above lemma, we have

C � C 0 =
Z
X
�C ^ �C0

for the algebraic intersection number of two J {holomorphic curves C;C 0 .

The next lemma is concerned with a formula which expresses the �rst Chern
class of an orbifold complex vector bundle over a reduced orbifold Riemann
surface in terms of the �rst Chern class over the complement of the orbifold
points with respect to a certain canonical trivialization and the \�rst Chern
class" at each orbifold point. To be more precise, let E ! � be a rank n
orbifold complex vector bundle over a reduced orbifold Riemann surface. Let
z1; z2; � � � ; zk 2 � be any given set of points which contains the set of orbifold
points, and let m1;m2; � � � ;mk be the orders of the corresponding isotropy
groups. Suppose over a local uniformizing system (cDi;Zmi) at each zi , the
orbifold bundle E has a trivialization (cDi � Cn;Zmi), such that Zmi acts oncDi � Cn by

�mi � (z; v1; v2; � � � ; vn) = (�miz; �
mi;1
mi v1; �

mi;2
mi v2; � � � ; �mi;nmi vn);

where �mi = exp(
p
−1 2�

mi
) is the generator of Zmi , and 0 � mi;j < mi , j =

1; 2; � � � ; n. Set Di = cDi=Zmi , �0 = � n
Sk
i=1Di , and E0 = Ej�0 . We consider

the trivialization � of E0 over @�0 =
Sk
i=1 @Di where along each @Di , � is

given by pushing down a set of equivariant sections fsj(z) j j = 1; 2; � � � ; ng of
@cDi � Cn over @cDi , where sj(z) = (0; � � � ; zmi;j ; � � � ; 0), j = 1; 2; � � � ; n. Let
@Di � Cn be the trivialization � of E0 over @Di . Then the canonical map
 i : @cDi � Cn ! @Di � Cn is given by

 i(z; v1; v2; � � � ; vn) = (zmi ; z−mi;1v1; z
−mi;2v2; � � � ; z−mi;nvn):

With the preceding understood, the said formula is the following:

Lemma 3.6 c1(E)(�) = c1(E0; �)(�0; @�0) +
Pk

i=1(
Pn

j=1
mi;j
mi

).

Proof Let r0 be a unitary connection of E0 which is trivial with respect to the
trivialization � along the boundary @�0 . Over each (cDi �Cn;Zmi), we de�ne
an equivariant connection r = � �ir0 +(1−�)d where � is an equivariant cut-
o� function equaling one near @cDi and d is the trivial connection with respect
to the natural trivialization of cDi � Cn . Clearly r0;r are compatible on the
overlaps so that they de�ne a connection of the orbifold bundle E , which is
still denoted by r for simplicity. We observe that over �0 , r = r0 , and with
respect to each local trivialization (cDi�Cn;Zmi), the curvature form F (r) is
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given by the diagonal matrix whose entries are −d(�mi;1
dz
z ); � � � ;−d(�mi;n

dz
z ).

Hence

c1(E)(�) =
Z

�

p
−1

2�
trF (r)

=
Z

�0

p
−1

2�
trF (r0) +

kX
i=1

1
mi

Z
D̂i

p
−1

2�
trF (r)

= c1(E0; �)(�0; @�0) +
kX
i=1

(
nX
j=1

mi;j

mi
):

As an example which is also relevant in the later discussion, we consider the case
where E = T� ! �. On each local uniformizing system (cDi;Zmi), T� has a
natural trivialization (cDi �C;Zmi) de�ned by the section @

@z , where Zmi acts
by complex multiplication (ie mi;1 = 1). On the other hand, the trivialization
� is de�ned by d�i(z @

@z ) = miw
@
@w along each @Di , where �i : cDi ! Di is the

map w = zmi . It is easily seen that c1(T�0; �)(�0; @�0) = 2− 2gj�j − k where
gj�j is the genus of the underlying Riemann surface of �, and k is the number
of components in @�0 . Hence Lemma 3.6 recovers the formula

c1(T�)(�) = 2− 2gj�j −
kX
i=1

(1− 1
mi

):

Note that the right hand side of the above equation equals 2 − 2g� by the
de�nition of the orbifold genus g� .

Proof of Theorem 3.1

We consider �rst the case where C is a type I J {holomorphic curve. We shall
continue to use the notations introduced in the proof of Lemma 3.5.

Let E ! � be the pullback of TX by f , which is a rank 2 orbifold complex
vector bundle. Over each local uniformizing system (cDi;Zmi), E has a trivi-
alization (cDi � C2;Zmi), where fzg � C2;8z 2 cDi , is identi�ed with T bVijfi(z) ,
and Zmi acts by �mi � (z;w) = (�miz; �i(�mi)(w)), �mi = exp(

p
−1 2�

mi
). More

concretely, we may identify bVi with C2 such that the almost complex struc-
ture J equals the standard one at the origin 0, and there are coordinates u; v
such that �i(�mi) acts linearly as a diagonal matrix, say with entries �

mi;1
mi ,

�
mi;2
mi where 0 � mi;1;mi;2 < mi , and that fi(z) = (zli ; aizli) + O(jzjli+1)
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for some integer li � 1 and ai 2 C. Observe that if ai 6= 0, then fi be-
ing �i{equivariant implies that mi;1 = mi;2 , so that we may modify with
a linear coordinate change (u; v) 7! (u; v − aiu) such that �i(�mi) is still
diagonalized and fi(z) = (zli ; 0) + O(jzjli+1). Thus in any event, we have
fi(z) = (zli ; 0) +O(jzjli+1). Let E0 = Ej�0 , and � be the canonical trivializa-
tion of E0 along @�0 which is determined by the equivariant sections (zmi;1 ; 0)
and (0; zmi;2) of cDi � C2 ! cDi along each @Di . Recall that c = −c1(TX).
Hence by Lemma 3.6,

c(C) = −c1(E0; �)(�0; @�0)−
kX
i=1

mi;1 +mi;2

mi
:

Observe that f�� TX0 = E0 along @�0 � �00 . Hence the canonical trivialization
� of E0 along @�0 gives rise to a trivialization of f�� TX0 along @�00 , which is
also denoted by � for simplicity. Furthermore, note that c1(E0; �)(�0; @�0) =
c1(f�� TX0; �)(�00; @�00). On the other hand, let �h be the trivialization of T�00
along the boundary @�00 given by the section w @

@w (here w is the holomorphic
coordinate of each Di ). Then �; �h determine a unique trivialization �v of ��
along @�00 such that

c1(f�� TX
0; �) = c1(T�00; �h) + c1(��; �v):

There are canonical bundle morphisms �i;�j@D̂i ! ��j@Di induced by �i : cDi !
Di where �i(z) = zmi . Through these bundle morphisms, the trivialization �v
gives rise to a trivialization �i;v of �i;� along @cDi . In order to determine �i;v ,
we recall that fi(z) = (zli ; 0) + O(jzjli+1) and fi;� = fi in cDi n cD0i . If we let
�i;h be the trivialization of TcDi along @cDi (as a sub-bundle of f�i;�T bVi ) which
is induced by the trivialization �h of T�00 along @�00 through �i , then �i;h is
given by the section (lizli ; 0) up to homotopy. Hence �i;v is given by the section
(0; z−li+mi;1+mi;2) up to homotopy, since � is given by the sections (zmi;1 ; 0)
and (0; zmi;2).

We push f� o� near @�00 along the direction given by the trivialization �v of
the normal bundle �� (note that f� is embedded near @�00 ). Call the resulting
map f 0� . Correspondingly, each fi;� is pushed o� near @cDi to a f 0i;� along the
direction given by the trivialization �i;v of the normal bundle �i;� . As in the
proof of Lemma 3.5, we can similarly construct a closed 2{form �0C using f 0�; f 0i;�
instead of f�; fi;� , which is also Poincar�e dual to the di�erentiable cycle f(�).
Furthermore,

C � C =
Z
X
�0C ^ �C =

Z
�0

(f 0�)
��C +

kX
i=1

1
mi

Z
D̂i

(f 0i;�)
��C :
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By way of construction,Z
�0

(f 0�)
��C = c1(��; �v)(�0; @�0) +

X
f[z;z0]jz 6=z0;f�(z)=f�(z0)g

2t[z;z0];

where [z; z0] denotes the unordered pair of z; z0 , and t[z;z0] is the order of tan-
gency of the intersection f�(z) = f�(z0). It is easily seen that the second term
in the above equation is equal toX

f[z;z0]jz 6=z0;f(z)=f(z0)g
2k[z;z0] +

X
fzjdf(z)=0g

2kz ; where z; z0 2 �0:

To evaluate
R
D̂i

(f 0i;�)
��C , i = 1; 2; � � � ; k , let Ii be the set labeling �(C)zi , ie

�(C)zi = fCi;� j � 2 Iig, and let Ci 2 �(C)zi be the element de�ned by fi .
ThenZ
D̂i

(f 0i;�)
��C =

Z
D̂i

(f 0i;�)
�(

X
fjjf(zi)=f(zj )g

1
mj

X
g2Gi

g��j;�)

=
1
mi

X
g2Gi

Z
D̂i

(f 0i;�)
�(g��i;�)

+
X

fj 6=ijf(zj)=f(zi)g

1
mj

X
g2Gi

Z
D̂i

(f 0i;�)
�(g��j;�)

= c1(�i;�; �i;v)(cDi; @cDi) + Ci � Ci +
X
�2Ii

Ci � Ci;�

+
X

fj 6=ijf(zi)=f(zj)g

X
�2Ij

Ci � Cj;�

= c1(�i;�; �i;v)(cDi; @cDi) +
mi

jGij
(
X
�2Ii

Ci;� � Ci;� +
X
�;�2Ii

Ci;� � Ci;�)

+
mi

jGij
X

fj 6=ijf(zi)=f(zj)g

X
�2Ii;�2Ij

Ci;� � Cj;�:

In order to evaluate c1(�i;�; �i;v)(cDi; @cDi), we observe that fi;� is an immer-
sion and equals (zli ; 0) + O(jzjli+1) near @cDi . Let � 0i;v be the trivialization of
�i;� along @cDi which can be extended over the entire cDi . Then � 0i;v is given
by the section (0; z−li+1) up to homotopy. But �i;v is given by the section
(0; z−li+mi;1+mi;2) up to homotopy. Hence

c1(�i;�; �i;v)(cDi; @cDi) = mi;1 +mi;2 − 1:
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Putting things altogether, we have

C � C + c(C) = c(C) + c1(��; �v)(�0; @�0) +
kX
i=1

mi;1 +mi;2 − 1
mi

+
X

f[z;z0]jz 6=z0;f(z)=f(z0)g
2k[z;z0] +

X
z2�

2kz

= −c1(T�0; �h)(�0; @�0)−
kX
i=1

1
mi

+
X

f[z;z0]jz 6=z0;f(z)=f(z0)g
2k[z;z0] +

X
z2�

2kz

= 2gj�j − 2 + k −
kX
i=1

1
mi

+
X

f[z;z0]jz 6=z0;f(z)=f(z0)g
2k[z;z0] +

X
z2�

2kz ;

from which the adjunction formula for the case where C is of type I follows
easily.

The case where C is of type II is actually much simpler. It follows by directly
evaluating the last integral in

C � C =
Z
X
�C ^ �C =

Z
�
f��C ;

and then appealing to c1(TX)(�) = c1(�)(�) + c1(T�)(�) and mC = m� .

Proof of Theorem 3.2

For simplicity, we shall only consider the case where C;C 0 are of type I. The
discussion for the rest of the cases is similar, and we shall leave the details to
the reader.

Let �C , �C0 be the closed 2{forms in Lemma 3.5 which are Poicar�e dual to the
di�erentiable cycles f(�), f 0(�0) respectively. Then

C � C 0 =
Z
X
�C ^ �C0

=
Z

�0

f�� �C0 +
kX
i=1

1
mi

Z
D̂i

f�i;��C0 :
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Now observe that the subset f(z; z0) j f(z) = f 0(z0)g � � � �0 is �nite. Hence
we may arrange in the construction of �C and �C0 such that for su�ciently
small � > 0,

R
�0
f�� �C0 equals

P
k(z;z0) where (z; z0) is running over the set of

pairs with f(z) = f 0(z0) being a regular point of X , and
Pk

i=1
1
mi

R
D̂i
f�i;��C0

equals
P
k(z;z0) where (z; z0) is running over the set of pairs with f(z) = f 0(z0)

being an orbifold point of X . Hence the theorem.

4 Proof of main results

We begin by setting the stage. Let p; q be relatively prime integers with 0 <
q < p. We denote by C(p;q) the symplectic cone over L(p; q), which is the

symplectic orbifold (C2; !0)=Zp where !0 =
p
−1
2

P2
i=1 dzi^d�zi and Zp acts by

�p � (z1; z2) = (�pz1; �
q
pz2). Let d be the descendant of the function 1

2(jz1j2 +
jz2j2) on C2 to C(p;q) . Then for any r > 0, C(p;q)(r) � d−1([0; r]) � C(p;q) is a
suborbifold of contact boundary (L(p; q); �0).

Next we follow the discussion in [12] to embed each C(p;q)(r) into an appropriate
closed symplectic 4{orbifold. To this end, consider the Hamiltonian circle action
on (C2; !0)

s � (z1; z2) = (sz1; s
p+qz2);8s 2 S1 � fz 2 C j jzj = 1g;

with the Hamiltonian function given by �(z1; z2) = 1
2(jz1j2 + (p + q)jz2j2). It

is easily seen that the Zp{action on C2 is the action induced from the circle
action by Zp � S1 , thus there is a corresponding Hamiltonian circle action on
C2=Zp = C(p;q) with the Hamiltonian function given by �0 � 1

p�. According
to [12], for any R > 0, there is a symplectic 4{orbifold, denoted by X(p;q)(R),
which is obtained from (�0)−1([0; R]) by collapsing each orbit of the circle action
on (�0)−1(R) to a point. It is clear that for any R > 1

p(p + q)r , C(p;q)(r) is a
suborbifold of X(p;q)(R) of contact boundary (L(p; q); �0). Furthermore, there
is a distinguished 2{dimensional symplectic suborbifold C0 � (�0)−1(R)=S1 �
X(p;q)(R), whose normal bundle has Euler number p

p+q , and whose orbifold
genus is 1

2 −
1

2(p+q) , cf Section 3.

Now let (W;!) be a symplectic cobordism from (L(p0; q0); �00) to (L(p; q); �0).
By adding appropriate \symplectic collars" to the two ends of W , which does
not change the di�eomorphism class of W , we may assume without loss of gen-
erality that a neighborhood of L(p0; q0) in W is identi�ed with a neighborhood
of @C(p0;q0)(r0) in C(p0;q0)nint(C(p0;q0)(r0)) for some r0 > 0, and a neighborhood of
L(p; q) in W is identi�ed with a neighborhood of @C(p;q)(r) in C(p;q)(r) for some
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r > 0. Consequently, we can close up W by gluing X(p;q)(R) n C(p;q)(r) and
C(p0;q0)(r0) onto the corresponding ends of W for some �xed R > 1

p(p + q)r .
We denote by (X;!) the resulting symplectic 4{orbifold. Note that there is
a distinguished 2{dimensional symplectic suborbifold C0 � X inherited from
C0 � X(p;q)(R).

With the preceding understood, the strategy for proving Theorem 1.1 is to
construct a di�eomorphism of orbifold pairs from (X;C0) to (X(p;q)(R); C0).

First of all, some preliminary information about (X;C0; !). The orbifold X
has two singular points, one of them, denoted by x0 , is inherited from C(p0;q0)(r0)
and has type (p0; q0), and the other, denoted by x, is inherited from X(p;q)(R)n
C(p;q)(r) and has type (p + q; p). Here a singular point has type (a; b) if the
isotropy group is Za with action on a local uniformizing system given by �a �
(z1; z2) = (�az1; �

b
az2). The suborbifold C0 has only one orbifold point, the

point x with order p+q , and is given locally by z2 = 0 on the local uniformizing
system. We �x an !{compatible almost complex structure J on X , such that
the suborbifold C0 is J {holomorphic. For convenience, we assume that J
is integrable near x; x0 . (This is possible because of the equivariant Darboux’
theorem.) By the discussion in Section 3, we see that C0 �C0 = e(�)(C0) = p

p+q ,
where e(�) is the Euler class of the normal bundle � of C0 in X . On the other
hand, by the adjunction formula in Theorem 3.1, we have

c1(KX)(C0) = 2(
1
2
− 1

2(p + q)
)− 2− C0 � C0 = −2p+ q + 1

p+ q

for the canonical bundle KX of the almost complex 4{orbifold (X;J).

Next we digress on the Fredholm theory for pseudoholomorphic curves in a
symplectic 4{orbifold (X;!). To this end, for any given orbifold Riemann
surface �, we �x a su�ciently large positive integer k , and consider [�;X],
the space of Ck maps from � into X . It is shown in [3] (Part I, Theorem
1.4) that [�;X] is a smooth Banach orbifold (Hausdor� and second countable).
Moreover, a map f 2 [�;X] is a smooth point in the Banach orbifold if Im f
contains a regular point of X . Thus for the purpose here we may assume for
simplicity that � is reduced and [�;X] is a Banach manifold. The tangent
space Tf at f 2 [�;X] is the space of Ck sections of f�(TX), the pullback
bundle of TX via f .

For any f 2 [�;X], let Ef be the subspace of the space of Ck−1 sections of
the orbifold vector bundle Hom(T�; f�(TX)) ! �, which consists of sections
s satisfying s � j = −J � s for a �xed choice of !{compatible almost complex
structure J on X and the complex structure j on �. Then there is a Banach
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bundle E over [�;X] whose �ber at f is Ef . Consider the smooth section
L : [�;X]! E de�ned by

L(f) � df + J � df � j:

The zero loci L−1(0) is the space of J {holomorphic maps from � into X . By
elliptic regularity, each map in L−1(0) is a C1 map. Moreover, L is a Fredholm
section, and its linearization DL at each f 2 L−1(0) is given by a formula

DLf (u) = Lf (u); u 2 Tf ;

where Lf : Tf ! Ef is an elliptic linear di�erential operator of Cauchy{Riemann
type, whose coe�cients are smooth functions on � which depend on f smoothly.
The following facts are crucial for the consideration of surjectivity of DL.

� When J is integrable in a neighborhood of Im f and f is J {holomorphic,
DLf = Lf is the usual �@{operator for the orbifold holomorphic vector
bundle f�(TX) over �.

� When f is a multiplicity-one parametrization of a J {holomorphic sub-
orbifold C , the linearization DLf = Lf is surjective when c1(TC)(C) > 0
and c1(KX)(C) < 0. This is the orbifold analog of the regularity criterion
discussed in Lemma 3.3.3 of [16].

The index of DLf = Lf can be computed using the index formula of Kawasaki
[10] for elliptic operators on orbifolds, cf Lemma 3.2.4 in [4].

To state the formula, let z1; z2; � � � ; zl be the set of orbifold points of � with
orders m1;m2; � � � ;ml respectively. Moreover, suppose at each zi , a local rep-
resentative of f is given by (fi; �i) : (cDi;Zmi) ! (bVi; Gi) where �i(�mi) acts
on bVi by �i(�mi) � (w1; w2) = (�mi;1mi w1; �

mi;2
mi w2), 0 � mi;1;mi;2 < mi . With

this understood, Index DLf = 2d where d 2 Z is given by

d = c1(TX) � [f(�)] + 2− 2gj�j −
lX
i=1

mi;1 +mi;2

mi
:

(Here gj�j is the genus of the underlying Riemann surface.) End of digression.

Now let � be the orbifold Riemann sphere with one orbifold point z1 � 1 of
order p + q . Observe that as a complex analytic space, � is biholomorphic to
the underlying Riemann sphere j�j, hence it has a unique complex structure.
Moreover, the group of automorphisms G can be naturally identi�ed with the
subgroup of the automorphism group of j�j which �xes the point 1. Note that
j�j n f1g = C, so that G can be identi�ed with the group f(a; b) 2 C� � C j
z 7! az + bg of linear translations on C.
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We shall consider the moduli space fM of J {holomorphic maps f : � ! X
which obey

� [f(�)] = [C0] in H2(X;Q),

� f(z1) = x, and in a local representative (f1; �1) of f at z1 , �1(�(p+q))
= �(p+q) , which acts by (z1; z2) 7! (�(p+q)z1; �

p
(p+q)z2). (Here z1; z2 are

holomorphic coordinates on a local uniformizing system at x in which C0

is locally given by z2 = 0.)

We set M = fM=G for the corresponding moduli space of unparametrized
J {holomorphic maps, where G acts on fM by reparametrization.

With the preceding understood, consider the following:

Lemma 4.1 Suppose W is a (symplectic) homology cobordism. (Note that
in particular, p = p0 and H2(X;Q) = Q � [C0].) Then

(1) Each member of fM is either an orbifold embedding onto a suborbifold
in X , or is a multiply covered map with multiplicity p onto a suborbifold
containing both x; x0 . Moreover, in the latter case, either q0 = q or q0q � 1
(mod p) must be satis�ed, and there is at most one such a member of fM up
to reparametrization by elements of G.

(2) One may alter J appropriately such that C0 is still J {holomorphic, and fM
is a smooth manifold of dimension 6. Furthermore, M is a compact, closed, 2{
dimensional smooth orbifold (possibly disconnected) with at most one orbifold

point of order p, and the action of G on fM de�nes a smooth orbifold principal
G{bundle fM!M.

Before proving Lemma 4.1, let us observe the following:

Lemma 4.2 Let C be any J {holomorphic curve in X such that

� C contains both singular points,

� [C] = r[C0] for some r 2 (0; 1] \Q.

Then C is a suborbifold and [C] = 1
p [C0]. Moreover, there is at most one such

J {holomorphic curves in X .

Proof First of all, we claim r � 1
p . To see this, note that C 6= C0 because C

contains both singular points. By the intersection formula (cf Theorem 3.2),

r � p

p+ q
= C � C0 �

1
p+ q

;
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which veri�es the claim.

Now let f : �! X be a multiplicity-one parametrization of C , and z0; z
0
0 2 �

be any points such that f(z0) = x, f(z00) = x0 . Let m0;m
0
0 be the order of

z0; z
0
0 respectively. Then observe that if m0 < p + q (resp. m00 < p), the

contribution kz0 (resp. kz00 ) on the right hand side of the adjunction formula
for C (cf Theorem 3.1) is no less than 1

2m0
(resp. 1

2m00
). (Here is the calculation

for the case of m0 : kz0 � 1
2(p+q) � [

p+q
m0

(p+qm0
−1)] � 1

2m0
if m0 < p+q .) It follows

easily that the right hand side of the adjunction formula for C is no less than

1
2

(1− 1
p+ q

) +
1
2

(1− 1
p

);

which has an equality only if m0 = p+ q and m00 = p.

On the other hand, the left hand side of the adjunction formula for C , the
virtual genus g(C), equals

1
2

(
p

p+ q
� r2 − 2p+ q + 1

p+ q
� r) + 1:

As a function of r , it is decreasing over (0; 1], hence the maximum of g(C) is
attained at r = 1

p , and it equals

1
2

(
p

p+ q
� (1
p

)2 − 2p + q + 1
p+ q

� 1
p

) + 1 =
1
2

(1− 1
p+ q

) +
1
2

(1− 1
p

):

By the adjunction formula, C is a suborbifold and [C] = 1
p [C0].

To see that there is at most one such J {holomorphic curves, note that if
there were two distinct such curves, the algebraic intersection number, which is

p
p2(p+q) , would be at least 1

p+q + 1
p by the intersection formula. A contradiction.

Proof of Lemma 4.1

(1) By the adjunction formula, each multiplicity-one member f 2 fM must be
an orbifold embedding onto a suborbifold. Now suppose f 2 fM is multiply
covered with multiplicity m > 1. Let C be the corresponding J {holomorphic
curve. Then [C] = 1

m [C0] < [C0], which implies that C also contains the
other singular point x0 . This is because by the assumption, W is a homology
cobordism, so that H2(X n fx0g;Z) is generated by the class of C0 , and hence
C can not be contained entirely in X nfx0g. By Lemma 4.2, f has multiplicity
p, and C is a suborbifold, which is unique in such kind.
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To complete the proof of (1), it remains to show that either q0 = q or q0q � 1
(mod p) if there is indeed such a curve C .

To this end, let f : �! X be any multiplicity-one parametrization of C , and
z0; z

0
0 2 � be the points such that f(z0) = x, f(z00) = x0 . Since C 6= C0 and

C � C0 = 1
p �

p
p+q = 1

p+q , it follows easily that the local representative of f at
z0 must be in the form ((u(z); z); �0) for some holomorphic function u and the
isomorphism �0 where �0(�(p+q)) = �l(p+q) with pl � 1 (mod p + q). On the
other hand, the local representative of f at z00 could either be ((w(z); z); �00),
where �00(�p) = �l

0
p with l0q0 � 1 (mod p), or ((z;w(z)); �00) with �00(�p) = �p .

Assuming the former case, we have, by the index formula for DLf ,

2p+ q + 1
p(p+ q)

+ 2− l + 1
p+ q

− l0 + 1
p
2 Z;

which implies that r(p + q) − ql0 � 0 (mod p) with r given by the equation
1 − lp = r(p + q). It is easily seen that in this case, ql0 � qr � 1 (mod p),
and hence q0 = q because l0q0 � 1 (mod p). Similarly, the latter case implies
q0q � 1 (mod p).

(2) For the smoothness of fM, we need to show that for any f 2 fM, the
linearization DLf is surjective. The dimension of fM is the index of DLf ,
f 2 fM, which is easily seen to be 6 by the index formula for DLf .

By the regularity criterion we mentioned earlier, fM is smooth at each f which
is not multiply covered, because for any such an f , C � Imf is a suborbifold
satis�ng c1(TC)(C) = 2 − (1 − 1

p+q ) > 0 and c1(KX)(C) = −2p+q+1
p+q < 0.

Suppose there is a multiply covered member (which is the only one up to
reparametrization by (1)), and let C 00 be the corresponding J {holomorphic
curve. We consider the weighted projective space P(1; p; p + q), which is the
quotient of S5 under the S1{action

s � (z1; z2; z3) = (sz1; s
pz2; s

p+qz3);8s 2 S1:

It is easily seen that a regular neighborhood of C 00 in X is di�eomorphic to a
regular neighborhood of P(p; p+ q) in P(1; p; p+ q), where P(p; p+ q) is de�ned
by z1 = 0. According to [2], P(1; p; p + q) has an orbifold Kähler metric of
positive Ricci curvature. By the orbifold version of symplectic neighborhood
theorem, we can alter the almost complex structure J in a regular neighborhood
of C 00 such that !(�; J(�)) is Kähler of positive Ricci curvature. (Note that we
can arrange so that C0 is still J {holomorphic, and J is integrable near singular
points x; x0 .) With this understood, for any f 2 fM parametrizing C 00 , DLf is
the usual �@{operator for the orbifold holomorphic vector bundle f�(TX) over
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�. In this case, the surjectivity of DLf follows from the orbifold version of
a Bochner type vanishing theorem for negative holomorphic vector bundles (cf
[11]). Thus in any event, by altering J if necessary, we can arrange so that fM
is a smooth manifold.

The action of G on fM is smooth (see the general discussion at the end of x3.3
of Part I of [3]), and is free at each f 2 fM which is not multiply covered.
At a multiply covered f 2 fM, the isotropy subgroup is the cyclic subgroup
f(�lp; 0) j l = 0; � � � ; p − 1g � G of order p up to conjugation. (Note that p
equals the multiplicity of the covering.) Thus fM ! fM=G = M is a smooth
orbifold principal G{bundle over a smooth 2{dimensional orbifold with at most
one orbifold point of order p.

It remains to show that M is compact. First of all, by the orbifold version
of the Gromov’s compactness theorem (cf [7, 18, 21]) which was proved in [4],
any sequence of maps fn 2 fM has a subsequence which converges to a cusp-
curve after suitable reparametrization. More concretely, after reparametrization
if necessary, there is a subsequence of fn , which is still denoted by fn for
simplicity, and there are at most �nitely many simple closed loops γ1; � � � ; γl �
� containing no orbifold points, and a nodal orbifold Riemann surface �0 =
[!�! obtained by collapsing γ1; � � � ; γl , and a J {holomorphic map f : �0 ! X ,
such that (1) fn converges in C1 to f on any given compact subset in the
complement of γ1; � � � ; γl , (2) [fn(�)] = [f(�0)] 2 H2(X;Q), and (3) f 2 fM
and fn converges to f in C1 if there is only one component of �0 = [!�!

over which f is nonconstant.

Hence the space M is compact if there is only one component of �0 = [!�!

over which f is nonconstant. Suppose this is not true. Then there is a non-
constant component f! � f j�! : �! ! X , where �! is obtained by collapsing
a simple closed loop γ 2 fγ1; � � � ; γlg which bounds a disc D � �, such that
z1 2 � n D and fn converges to f! in C1 on any compact subset of the
interior of D . Set C! � Im f! . Since we assume that there are more than
one nonconstant components, [C!] � [f!(�!)] < [C0] must hold. (Note that
H2(X;Q) = Q � [C0].) By the assumption that W is a homology cobordism,
C! must contain the singular point x0 as we argued earlier. We claim that
C! must also contain the other singular point. Suppose not, then C! 6= C0 ,
and C! must intersect with C0 at a smooth point, because C! � C 6= 0. Then
by the intersection formula, C! � C0 � 1, which implies that [C!] = r[C0] for
some r � 1 + q

p . A contradiction to [C!] < [C0]. Now by Lemma 4.2, C! is a
suborbifold and [C!] = 1

p [C0].
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On the other hand, observe that there is a regular point z0 2 �! such that
either f!(z0) = x or f!(z0) = x0 . Let m! � 1 be the multiplicity of f! , and let
D0 be a su�ciently small disc neighborhood of z0 in �! . Then it is easily seen
that m! is no less than the degree of the covering map f!j@D0 onto the link of
f!(z0) in C! , which is no less than p+q or p, depending on whether f!(z0) = x
or f!(z0) = x0 . In any event, m! � p. But this contradicts [C!] = 1

p [C0] as
[C!] = 1

m!
[f!(�!)] < 1

p [C0], because [f!(�!)] < [C0].

Hence there is only one nonconstant component, and therefore M is compact.

Let H = C� be the subgroup of G = f(a; b) 2 C� � Cg which consists of
f(a; 0) j a 2 C�g. We shall next �nd an appropriate reduction of fM!M to
an orbifold principal H {bundle. We begin by giving a more detailed description
of the orbifold structure on M and the orbifold principal G{bundle fM!M.

First of all, we adopt the convention that G, as the automorphism group of �,
acts on � from the left. Second, for the orbifold structure on M, we let G
act on fM from the left by de�ning s � f � f � s−1;8s 2 G; f 2 fM. (This is
because the convention is that the group actions on a local uniformizing system
are always from the left.) To describe the orbifold structure, recall that for any
f 2 fM, there is a slice Sf through f which has the following properties (cf
[1]):

� Sf � fM is a 2{dimensional disc containing f , which is invariant under
the isotropy subgroup Gf at f .

� For any s 2 G, s � Sf \ Sf 6= ; i� s 2 Gf .
� There exists an open neighborhood O of 1 2 G such that the map
�f : O � Sf ! fM, de�ned by (s; h) 7! s � h, is an open embedding.

Let U �
F
f2M̃ Sf be the disjoint union of all slices. For any h; h0 2 U which

have the same orbit in M, and for any s 2 G such that s � h = h0 , let  sh0;h be
the local self-di�eomorphism on U de�ned as follows. Suppose h 2 Sf ; h0 2 Sf 0 .
Then there is an open neighborhood Oh � Sf of h, invariant under the isotropy
subgroup Gh at h, such that s �Oh � �f 0(O�Sf 0). Note that for any g 2 Oh ,
there is a unique s0 2 O and a unique g0 2 Sf 0 such that s�g = �f 0(s0; g0) = s0�g0 .
We de�ne  sh0;h(g) = g0 , which is clearly a local self-di�eomorphism on U
sending h to h0 . The orbifold structure on M is given by the pseudogroup
acting on U , which is generated by f sh0;hg.

To obtain the orbifold principal G{bundle fM!M, we let G act on fM from
the right by de�ning f � s � f � s;8s 2 G; f 2 fM. A local trivialization of
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fM!M over a slice Sf is given by (Sf �G;Gf ; �f ), where Gf acts on Sf �G
by t � (h; s) = (t � h; ts), 8t 2 Gf , and where �f : Sf �G! fM sends (h; s) to
h � s = h � s, which is invariant under the Gf {action (note that t � h = h � t−1 ).
The transition function associated to each  sh0;h is given by g 7! � sh0;h(g),
8g 2 Domain ( sh0;h), with � sh0;h(g) : G! G being the multiplication by (s0)−1s

from left, where s0 2 O is uniquely determined by g � s−1 =  sh0;h(g) � (s0)−1 .

In the same vein, by letting H act on fM from the right, fM becomes an
orbifold principal H {bundle over fM �G (G=H). A reduction of fM ! M
to an orbifold principal H {bundle is obtained by taking a smooth section offM�G (G=H) ! M. Note that G=H is naturally identi�ed with C, under
which the coset (a; b)H goes to b 2 C. Now at any possible multiply covered
f 2 fM, Gf � H i� Gf is the cyclic subgroup generated by �p . Its action on
G=H is given by �p �(a; b)H = (�p; 0)(a; b)H , which is simply the multiplication
by �p after identifying G=H to C. Hence for any such f , a local uniformizing
system of fM�G (G=H) at (f; 0) is given by (Sf � C; Gf ), where Gf acts by
�p �(h; b) = (�p �h; �pb). To obtain a smooth section u : M! fM�G (G=H), we
�rst pick a Gf {equivariant smooth section uf : Sf ! Sf�C for some arbitrary
choice of a multiply covered f with Gf � H (note that if there is such an f ,
its orbit in M is unique, cf Lemma 4.1 (1)), then extend it to the rest of M,
where fM�G (G=H)!M is an ordinary �ber bundle with a contractible �ber
C. We denote by cM ! M the corresponding reduction to orbifold principal
H {bundle. Note that cM is naturally a 4{dimensional submanifold of fM.

Fixing a choice of the reduction cM!M, we let Z � cM�HC be the associated
orbifold complex line bundle. Here C is canonically identi�ed with � n fz1g,
and hence the action of H on C is given by complex multiplication.

There is a canonically de�ned smooth map of orbifolds  : cM��! X , which
induces the evaluation map (f; z) 7! f(z) between the underlying spaces, cf
Proposition 3.3.5 in Part I of [3]. Note that each trivialization Sf � C of
Z ! M over a slice Sf is a submanifold of cM� �, so that by restricting  
to Z , we obtain a smooth map of orbifolds Ev: Z ! X , which induces the
evaluation map [(f; z)] 7! f(z) between the underlying spaces.

Lemma 4.3 The map Ev : Z ! X is a di�eomorphism of orbifolds onto
X n fxg.

Proof First of all, the map Ev induces an injective map on the underlying
space. This is because each J {holomorphic curve parametrized by an f 2
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cM is a suborbifold, and any two distinct such J {holomorphic curves C;C 0

intersect only at the singular point x. The latter follows from the facts that
(1) C �C 0 � C0 �C0 = p

p+q < 1, so that by the intersection formula in Theorem
3.2, C;C 0 do not intersect at any smooth point of X , (2) there is at most one
such J {holomorphic curve containing the other singular point x0 of X .

Next we prove that the di�erential of Ev is invertible at each point of Z .
Clearly the di�erential of Ev is injective along each �ber of Z !M, because
each f 2 cM is locally embedded on � n fz1g. Hence it su�ces to show that
for any f 2 cM and any u in the tangent space of cM at f which is not tangent
to the H {orbit through f , u(z) 2 (TX)f(z) is not tangent to Im f for any
z 2 � n fz1g. Note that u, being in the tangent space of cM at f , satis�es
DLf (u) = 0.

Now suppose to the contrary that u is tangent to Im f at some z 2 � n fz1g.
We can choose complex coordinates w1; w2 on a local uniformizing system at
f(z) such that Im f is locally given by w2 = 0, and J equals the standard
complex structure J0 on w2 = 0 (cf Lemma 1.2.2 in [15], or the corrected
version of Lemma 2.5 in [14]). Let w = s +

p
−1t be a local holomorphic

coordinate on � centered at z , and set @ = @
@w , �@ = @

@ �w . Then

L(f) � df + J � df � j = 0; 8f 2 [�;X]

can be written locally as

�@f i + ai�k(f)�@ �fk = 0;

where f = (f1; f2), and ai�k is a 2�2 matrix of smooth complex valued functions
of w1; w2 which vanishes on w2 = 0, cf [14]. Let u1; u2 be the components of
u in the @

@w1
; @
@w2

directions, then DLf (u) = 0 implies that

�@u2 +Au2 +B�u2 = 0

for some smooth complex valued functions A;B of s; t. It follows easily that
u2 satis�es

j�u2j � c(ju2j+ j@su2j+ j@tu2j)

pointwise for some constant c > 0, where � = @2
s + @2

t . Note that u2 is not
constantly zero but u2(z) = 0 by the assumption, hence by Hartman{Wintner’s
theorem [9],

u2(w) = awm +O(jwjm+1)

for some nonzero a 2 C and integer m > 0.
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Let f� , � � 0, be a local smooth path in cM starting at f which is tangent
to u at � = 0. Then in the local coordinate system fw1; w2g, f� is given by a
pair of functions w1 = f1

�(w); w2 = f2
�(w) which satisfy

(f1
�(w); f2

�(w)) = �(u1(w); u2(w)) +O(�2):

We introduce F�(w) = �−1(f2
�(w) − �awm). Then for any �xed, su�ciently

small � 6= 0, there is an r = r(�) > 0 such that jF�(w)j � jajrm for all w
satisfying jwj � r . For any such �xed � 6= 0, we de�ne a sequence fw = wn j
jwnj � r = r(�); n = 1; 2; � � � g inductively by solving

F�(wn) + awmn+1 = 0;

then fwng has a limit w0 in the disc jwj � r = r(�) satisfying

F�(w0) + awm0 = 0:

But this exactly means that f2
�(w0) = 0, which in turn implies that Im f� in-

tersects with Im f near f(z), for any su�ciently small � 6= 0. A contradiction.

Hence u is nowhere tangent to Im f , and the di�erential of Ev: Z ! X is
injective, hence invertible by dimension counting, at each point in Z .

To see that Ev maps the underlying space of Z onto that of X nfxg, note �rst
that the image of Ev is contained in Xnfxg and is an open subset. The latter is
because the di�erential of Ev is invertible at each point of Z so that Ev induces
an open map between the underlying spaces. On the other hand, the image of
Ev is also closed in X n fxg. To see this, suppose Ev([(fn; zn)]) = fn(zn) is
a sequence of points in X n fxg which converges to p 2 X n fxg. Since M is
compact, a subsequence of fn (still denoted by fn for simplicity) converges in
C1 to a f0 2 cM after reparametrization. If we let z0 be a limiting point of
zn in �, then z0 6= z1 , because otherwise p = limn!1 fn(zn) = f0(z1) = x, a
contradiction. This implies that the image of Ev contains p = f0(z0), therefore
it is closed in X n fxg. Hence Ev maps Z onto X n fxg, and thus it is a
di�eomorphism from Z onto X n fxg.

Proof of Theorem 1.1

First of all, note that by Lemma 4.3, M is connected, and has an orbifold point
of order p. The latter assertion is because there exists an f 2 cM such that Im f
contains the singular point x0 2 X , so that f must be a multiply covered map.
Moreover, M is orientable, and we shall orient M such that with the canonical
orientation of orbifold complex line bundle on Z , the map Ev: Z ! X is
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orientation-preserving. In order to determine the di�eomorphism type of M
and the isomorphism class of the orbifold complex line bundle Z ! M, we
consider the family of regular neighborhoods of x:

N� � f(z1; z2) j jz1j2 + jz2j2 � �2g=Z(p+q)

where z1; z2 are holomorphic coordinates on a local uniformizing system at x in
which C0 is locally given by z2 = 0 and C 00 , the unique J {holomorphic curve
containing both x; x0 , is locally given by z1 = 0.

Claim There exists an �0 > 0 such that for any 0 < � � �0 , @N� intersects
transversely with each J {holomorphic curve in the family parametrized by M
at a simple closed loop.

Proof For each � 2 M, pick a local representative (f̂�; ��) of a member
f� 2 fM whose orbit in M is �, and set C� � Im f� . Here ��(�(p+q)) acts
by (z1; z2) 7! (�(p+q)z1; �

p
(p+q)z2), and f̂� = (U�; V�) for some holomorphic

functions U�; V� de�ned on D = fz 2 C j jzj � 1g. Observe (1) since M is
compact, we may assume that for any sequence �i 2M converging to �0 2M,
there is a subsequence of �i , still denoted by �i , such that f̂�i converges to
f̂�0�� for some holomorphic reparametrization � of D , (2) for any C� 6= C0; C

0
0 ,

C� �C0 = p
p+q and C� �C 00 = 1

p+q , so that by the intersection formula in Theorem
3.2, for any such a �, U�(z) = a�;1z + � � � , V�(z) = b�;pz

p + � � � near z = 0
for some a�;1 6= 0, b�;p 6= 0. (For C0 or C 00 , f̂�(z) equals (a�;1z + � � � ; 0) or
(0; b�;pzp + � � � ) near z = 0.)

Now for each � 2M, we write U�(z) = a�;1z � u�(z), V�(z) = b�;pz
p � v�(z) on

D . Then there exist 0 < r0 � 1, 0 < �0 < 1, and c > 0, which are independent
of �, such that

1− �0 � ju�(z)j; jv�(z)j � 1 + �0; and jdu�(z)j + jdv�(z)j � c

when jzj � r0 . Write z = r exp(
p
−1�), and set

��(r; �) � jU�(z)j2 + jV�(z)j2:

Then each �� is subharmonic on D , and a simple calculation shows that

@��(r; �)
@r

= ja�;1j2r(2ju�j2 + r
@

@r
ju�j2) + jb�;pj2r2p−1(2pjv�j2 + r

@

@r
jv�j2);

from which it follows that there exists 0 < r00 � r0 such that

@��(r; �)
@r

> 0
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for all � 2M whenever 0 < r � r00 .

It remains to check that (1) there exists an �0 > 0 such that ��(r; �) � �20
implies r � r00 , (2) assuming the validity of (1), for any 0 < � � �0 , the
intersection of @N� with each C� , which is transverse because @��

@r > 0 on
�−1
� (�) by the validity of (1), is a simple closed loop.

To see the former, note that ��(r; �) � �20 implies

r � 2�0
ja�;1j � ju�j+ (jb�;pj � jv�j)1=p

;

where on the other hand, it is easily seen that there exists a c1 > 0 such that
for any � 2M and jzj � r0 ,

ja�;1j � ju�j+ (jb�;pj � jv�j)1=p � c1:

To see the latter, suppose the intersection of @N� with some C� consists of at
least two components. Then either one of them bounds a disc in D n f0g, or
there is an annulus in D n f0g bounded by them. In any event, �� will attain
its minimum on the region at an interior point of the region (note that �� is
subharmonic on D), contradicting the fact that @��(r;�)

@r > 0 there. Hence the
claim.

Back to the proof of Theorem 1.1. Let E ! M be the orbifold bundle of
unit disc associated to Z . Then the claim above implies that X n int(N�) is
di�eomorphic to E for any 0 < � � �0 . In particular, @E is di�eomorphic to
@N� = L(p + q; p). Note that @E ! M de�nes a Seifert �bration of the lens
space L(p+q; p) with one singular �ber of order p. Moreover, the Euler number
of the Seifert �bration, which equals the self-intersection of the image of the
zero section of Z under the map Ev: Z ! X , is 1+ q

p because it has a positive
and transverse intersection with C0 at a smooth point of X . This completely
determines the di�eomorphism type of M and the isomorphism class of Z .

Now observe that the same thing works for X(p;q)(R) as well. In particular, the
isomorphism class of Z is independent of X and X(p;q)(R). Fix an � > 0 and
set N � N� . Then from the proceeding paragraph, there are decompositions
X = N [�1 E and X(p;q)(R) = N [�2 E , where if we let γ = fz2 = 0g\@N and
let γ0 = C0 \ @E , then �i(γ) = γ0 , i = 1; 2. Without loss of generality, we may
assume �2 = Id and γ0 = γ by �xing an identi�cation of @E with @N . With
this understood, we claim that �1 is isotopic to the identity through a family
of di�eomorphisms �t : @N ! @N such that �t(γ) = γ .
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First, assuming the validity of the claim, we obtain consequently a di�eomor-
phism of orbifold pairs  : (X;C0) ! (X(p;q)(R); C0), which preserves the sin-
gular point of order p in X and X(p;q)(R). By restricting  to the complement
of a regular neighborhood of the union of the singular point of order p and the
suborbifold C0 , we obtain a di�eomorphism  0 : W ! L(p; q)� [0; 1].

It remains to verify the claim that �1 is isotopic to the identity through a
family of di�eomorphisms �t : @N ! @N such that �t(γ) = γ . To this end, let
Y be the complement of a regular neighborhood of γ in @N . Then �1(Y ) is
generated by the image of �1(@Y ) in �1(Y ) induced by the inclusion @Y � Y ,
ie, �1(Y ) is generated by the longitude and the meridian in @Y � T 2 . The
di�eomorphism �1jY induces an automorphism of �1(Y ) which is unique up to
conjugation. In the present case, it is clear that the automorphism of �1(Y )
can be chosen to be the identity map. Hence by the theorem of Waldhausen in
[19], there exists an isotopy �0t : Y ! Y between �1jY and Id. Moreover, we
may assume that �0tj@Y : T 2 ! T 2 is given by a family of linear translations,
cf [5]. The latter implies particularly that �0t can be extended to an isotopy �t
from �1 to Id which satis�es �t(γ) = γ . Hence the claim.

Proof of Corollary 1.2

By Smith’s theory (cf page 43 in [1]), and by the assumption that � is free
outside of a ball, we see easily that � is free in the complement of its �xed-point
set, which consists of a single point. Then by applying (the proof of) Theorem
1.1 to the quotient space of �, it follows easily that � is conjugate to a linear
action by a di�eomorphism of R4 . To see that the di�eomorphism can be made
identity outside of a ball, we note that in the di�eomorphism  : (X;C0) !
(X(p;q)(R); C0) constructed in the proof of Theorem 1.1,  jC0 : C0 ! C0 is
isotopic to identity, from which it follows easily.
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