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Abstract

Let S3
r (K) be the oriented 3{manifold obtained by rational r{surgery on a knot

K � S3 . Using the contact Ozsv�ath{Szab�o invariants we prove, for a class of
knots K containing all the algebraic knots, that S3

r (K) carries positive, tight
contact structures for every r 6= 2gs(K) − 1, where gs(K) is the slice genus
of K . This implies, in particular, that the Brieskorn spheres −�(2; 3; 4) and
−�(2; 3; 3) carry tight, positive contact structures. As an application of our
main result we show that for each m 2 N there exists a Seifert �bered rational
homology 3{sphere Mm carrying at least m pairwise non{isomorphic tight,
non�llable contact structures.
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1 Introduction

According to a classical result of Lutz and Martinet, every closed, oriented 3{
manifold admits a positive contact structure. In fact, every oriented 2{plane
�eld on an oriented 3{manifold is homotopic to a positive contact structure.
The proof of the Lutz{Martinet theorem | relying on contact surgery along
transverse links in the standard contact 3-sphere [13] | typically produces
overtwisted contact structures. (For a proof of the Lutz{Martinet theorem using
contact surgery along Legendrian links see [6].) Finding tight contact structures
on a closed 3{manifold is, in general, much more di�cult, indeed impossible for
the Poincar�e homology 3{sphere with its natural orientation reversed [12].

Let Y be a closed, oriented 3{manifold. Consider the following problem:

(P) Does Y carry a positive, tight contact structure?

Until recently, the two most important methods to deal with problem (P) were
Eliashberg’s Legendrian surgery as used eg by Gompf in [14], and the state
traversal method, developed by Ko Honda and based on Giroux’s theory of
convex surfaces. The limitations of these two methods come from the fact that
Legendrian surgery can only prove tightness of Stein �llable contact structures,
while the state traversal becomes combinatorially unwieldy in the absence of
suitable incompressible surfaces. For example, both methods fail to deal with
problem (P) when Y is one of the Brieskorn spheres −�(2; 3; 4) or −�(2; 3; 3),
because these Seifert �bered 3{manifolds do not contain vertical incompressible
tori, nor do they carry symplectically �llable contact structures [18].

The purpose of the present paper is to show that contact Ozsv�ath{Szab�o in-
variants [28] can be e�ectively combined with contact surgery [4, 5] to tackle
problem (P). In particular, it follows from Theorem 1.1 below that −�(2; 3; 4)
and −�(2; 3; 3) do indeed carry tight, positive contact structures. Moreover,
such contact structures admit an explicit description (cf Corollary 1.2 and the
following remark).

In order to state our main result we need to introduce some notation. Recall
that the standard contact structure on S3 is the 2{dimensional distribution
�st � TS3 given by the complex tangents, where S3 is viewed as the boundary
of the unit 4{ball in C2 . We say that a knot in S3 is Legendrian if it is ev-
erywhere tangent to �st . To every Legendrian knot L � S3 one can associate
its Thurston{Bennequin number tb(L) 2 Z, which is invariant under Legen-
drian isotopies of L [1]. Given a knot K � S3 , let TB(K) denote the maximal
Thurston{Bennequin number of K , de�ned as
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TB(K) = maxftb(L) j L is Legendrian and smoothly isotopic to Kg.

Let gs(K) denote the slice genus (aka the 4{ball genus) of K . Let S3
r (K) be

the oriented 3{manifold given by rational r{surgery on a knot K � S3 .

Theorem 1.1 Let K � S3 be a knot such that

gs(K) > 0 and TB(K) = 2gs(K)− 1:

Then, the oriented 3{manifold S3
r (K) carries positive, tight contact structures

for every r 6= 2gs(K)− 1.

Remark By the slice Bennequin inequality [33], for any knot K � S3 we have

TB(K) � 2gs(K)− 1:

Moreover, by [2, 3] (see [1, page 123]), if K is an algebraic knot then

TB(K) = 2g(K)− 1;

where g(K) is the Seifert genus of K . Since gs(K) � g(K), it follows that
the family of knots K satisfying the assumption of Theorem 1.1 contains all
nontrivial algebraic knots. In fact, there are non{�bered, hence non{algebraic,
knots satisfying the same assumption, as for example certain negative twist
knots.1

Let T � S3 be the right{handed trefoil. Since T is algebraic, Theorem 1.1
applies. In particular, since S3

2(T ) = −�(2; 3; 4) and S3
3(T ) = −�(2; 3; 3),

Theorem 1.1 immediately implies the following result, which solves a well{
known open problem [11, Question 8]:

Corollary 1.2 The Brieskorn spheres −�(2; 3; 3) and −�(2; 3; 4) carry posi-
tive, tight contact structures.

1Let Kq be a twist knot with q < 0 twists (cf [32, page 112]). It is easy to �nd
a Legendrian representative of Kq with Thurston{Bennequin number equal to 1. On
the other hand, by resolving the clasp it follows that gs(Kq) � 1. Therefore the slice
Bennequin inequality implies gs(Kq) = TB(Kq) = 1. The knots Kq are not �bered
for q < −1 because the leading coe�cient of their Alexander polynomial is not equal
to 1.
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Remarks (1) The proof of Theorem 1.1 shows that Figures 1 and 2 below
provide explicit descriptions of the tight contact structures of Corollary 1.2.

(2) Theorem 1.1 is optimal for the right{handed trefoil knot T = T3;2 , because
S3

1(T ) = −�(2; 3; 5) is known not to carry positive, tight contact structures [12].
On the other hand, it is natural to ask whether the same is true for other torus
knots. We address this question in the companion paper [22].

Recall that a symplectic �lling of a contact three{manifold (Y; �) is a pair (X;!)
consisting of a smooth, compact, connected four{manifold X and a symplectic
form ! on X such that, if X is oriented by ! ^ ! , @X is given the boundary
orientation and Y is oriented by � , then @X = Y and !j� 6= 0 at every point
of @X . As an application of Theorem 1.1 we prove the following result, which
should be compared with the results of [20, 21].

Theorem 1.3 For each m 2 N there is a Seifert �bered rational homology
sphere Mm carrying at least m pairwise non{isomorphic tight, not symplecti-
cally �llable contact structures.

The paper is organized as follows. In Section 2 we describe the necessary
background in contact surgery and Heegaard Floer theory. In Sections 3 and 4
we prove, respectively, Theorems 1.1 and 1.3.

Acknowledgements The �rst author was partially supported by MURST,
and he is a member of EDGE, Research Training Network HPRN-CT-2000-
00101, supported by The European Human Potential Programme. The second
author would like to thank Peter Ozsv�ath and Zolt�an Szab�o for many useful dis-
cussions regarding their joint work. The second author was partially supported
by OTKA T34885.

2 Surgeries and Ozsv�ath{Szab�o invariants

Contact surgery

Let (Y; �) be a contact 3{manifold. The framing of a Legendrian knot K � Y
naturally induced by � is called the contact framing of K . Given a Legendrian
knot K in a contact 3{manifold (Y; �) and a non{zero rational number r 2 Q,
one can perform contact r{surgery along K to obtain a new contact 3{manifold
(Y 0; �0) [4, 5]. Here Y 0 is the 3{manifold obtained by smooth r{surgery along
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K with respect to the contact framing, while �0 is constructed by extending
� from the complement of a standard neighborhood of K to a tight contact
structure on the glued{up solid torus. If r 6= 0 such an extension always exists,
and for r = 1

k (k 2 Z) it is unique [15]. When r = −1 the corresponding
contact surgery coincides with Legendrian surgery along K [9, 14, 34].

As an illustration of the contact surgery construction, consider the Legendrian
trefoil knot T represented by the Legendrian front (see eg [14] for notation)
of Figure 1. Since the coe�cient +1 represents the contact surgery coe�cient
and tb(T ) = 1, the picture represents a contact structure on the oriented 3{
manifold obtained by a smooth (+2){surgery on a right{handed trefoil knot,
that is on −�(2; 3; 4).

+1

Figure 1: A contact structure on −�(2; 3; 4)

According to [5, Proposition 7], a contact r = p
q {surgery (p; q 2 N) on a

Legendrian knot K is equivalent to a contact 1
k {surgery on K followed by a

contact p
q−kp {surgery on a Legendrian pusho� of K for any integer k 2 N such

that q − kp < 0. Moreover, by [5, Proposition 3] any contact r{surgery along
K � (Y; �) with r < 0 is equivalent to a Legendrian surgery along a Legendrian
link L = [mi=0Li which is determined via a simple algorithm by the Legendrian
knot K and the contact surgery coe�cient r . The algorithm to obtain L is the
following. Let

[a0; : : : ; am]; a0; : : : am � 2

be the continued fraction expansion of 1 − r . To obtain the �rst component
L0 , push o� K using the contact framing and stabilize it a0 − 2 times. Then,
push o� L0 and stabilize it a1 − 2 times. Repeat the above scheme for each of
the remaining pivots of the continued fraction expansion. Since there are ai−1
inequivalent ways to stabilize a Legendrian knot ai− 2 times, this construction
yields �m

i=0(ai − 1) potentially di�erent contact structures.

For example, according to the algorithm just described, any contact (+2){
surgery on T is equivalent to one of the contact surgeries of Figure 2 (the
coe�cients indicate surgery with respect to the contact framings).
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+1 +1

−1 −1

Figure 2: Contact structures on −�(2; 3; 3)

Since, by [4, Proposition 9], a contact 1
k {surgery (k 2 N) on a Legendrian

knot K can be replaced by k contact (+1){surgeries on k Legendrian pusho�s
of K , it follows that any contact rational r{surgery (r 6= 0) can be replaced
by contact (�1){surgery along a Legendrian link; for a related discussion see
also [6, 21].

The Ozsv�ath{Szab�o invariants of 3{manifolds

The Ozsv�ath{Szab�o invariants [24, 25, 26] assign to each oriented spinc 3{
manifold (Y; s) a �nitely generated Abelian group dHF (Y; s), and to each ori-
ented spinc cobordism (W; t) between (Y1; s1) and (Y2; s2) a homomorphism

FW;t : dHF (Y1; s1)!dHF (Y2; s2):

For simplicity, in the following we will use these homology theories with Z=2Z
coe�cients. In this setting, dHF (Y; s) is a �nite dimensional vector space over
the �eld Z=2Z. De�ne dHF (Y ) =

M
s2Spinc(Y )

dHF (Y; s):

Since there are only �nitely many spinc structures with nonvanishing invariants
[25, Theorem 7.1], dHF (Y ) is still �nite dimensional.

An important ingredient of our proofs is the following result, which appears
implicitly in the papers of Ozsv�ath and Szab�o (see especially [30]). We provide
a detailed proof for completeness.

Proposition 2.1 Let W be a cobordism obtained by attaching a 2{handle
to a 3{manifold Y with b1(Y ) = 0. Let t0 2 Spinc(W ), and suppose that W
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contains a smoothly embedded, closed, oriented surface � of genus g(�) > 0
such that

� � � � 0 and jhc1(t0); [�]ij + � � � > 2g(�) − 2:

Then, FW;t0 = 0.

Proof Arguing by contradiction, suppose that FW;t0 6= 0. By a fundamental
property of the invariants [26] there are only �nitely many spinc structures
t1; : : : ; tk 2 Spinc(W ) such that FW;ti 6= 0. Moreover, by [26, Theorem 3.6] we
have

FW;t0 6= 0 () FW;t0
6= 0

where t0 is the spinc structure conjugate to t0 . Therefore, up to replacing t0

with one of the ti ’s we may assume that

hc1(t0); [�]i = jhc1(t0); [�]ij = maxfhc1(ti); [�]i j i = 1; : : : ; kg: (2.1)

Let � � � = n, and let cW be the smooth 4{manifold obtained by blowing up
W at n distinct points of W n �. Choose exceptional classes

e1; : : : ; en 2 H2(cW )

and let bt0 denote the unique spinc structure on cW such that bt0jW = t and
hc1(bt0); eii = 1 for every i = 1; : : : ; n.

Let b� � cW be a smooth, oriented surface obtained by piping � to the n
exceptional spheres, so that

[b�] = [�] +
nX
i=1

ei:

Let γ � cW be a properly embedded arc (disjoint from Y and b� away from its
endpoints) connecting Y to b�. Denote by cW1 a closed regular neighborhood
of the union Y [ γ [ b�, and let cW2 be the closure of cW ncW1 .

Let
S =

nbt 2 Spinc(cW ) j btj
Ŵi

= bt0jŴi
; i = 1; 2

o
:

By the composition law [26, Theorem 3.4] we have

F
Ŵ2 ;̂t0jŴ2

� F
Ŵ1 ;̂t0jŴ1

=
X
t̂2S

F
Ŵ ;̂t

: (2.2)

We are going to show that the sum at the right hand side of (2.2) admits at
most one nontrivial term. In fact, we shall prove thatbt 2 S and F

Ŵ ;̂t
6= 0 =) bt = bt0:
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Recall that Spinc(cW ) admits a free and transitive action of H2(cW ;Z). Hence,
there is an element L 2 H2(cW ;Z) such thatbt− bt0 = L:

Since btj
Ŵi

= bt0jŴi
; i = 1; 2;

we have, in particular, LjY = 0. Therefore L is the image of an element
A 2 H2(cW;Y ;Z) under the restriction map H2(cW;Y ;Z) ! H2(cW ;Z). Our
plan is to show that bt = bt0 by proving that A = 0. Since

H1(W;Y ;Z) �= H1(cW;Y ;Z) = 0;

the universal coe�cient theorem implies that

H2(cW;Y ;Z) �= Hom(H2(cW;Y ;Z);Z);

therefore to show A = 0 it is enough to show 2A = 0, and 2A is determined
by its values on the elements of H2(cW;Y ;Z). But since b1(Y ) = 0, it su�ces
to show that 2A evaluates trivially on the image of the map

i� : H2(cW ;Z) −! H2(cW;Y ;Z):

On the other hand, since b� � cW1 , if bt 2 S then hc1(bt); [b�]i = hc1(bt0); [b�]i, ie,

hc1(btjW ); [�]i+
nX
i=1

hc1(bt); eii = hc1(t0); [�]i+ n: (2.3)

Moreover, by the blow{up formula [26, Theorem 3.7] if bt 2 Spinc(cW ) then

FW;tjW 6= 0 () F
Ŵ ;̂t
6= 0 =) jhc1(bt); eiij = 1; i = 1; : : : ; n:

Therefore, if F
Ŵ ;̂t
6= 0, by Equations (2.1) and (2.3) we have

hc1(btjW ); [�]i = hc1(t0); [�]i and hc1(bt); eii = hc1(bt0); eii = 1; i = 1; : : : ; n:

It follows that c1(bt) = c1(bt0). Therefore, for every � 2 H2(cW ;Z) we have

h2A; i�(�)i = h2L;�i = hc1(bt)− c1(bt0); �i = 0:

Thus, bt = bt0 , and the right{hand side of Equation (2.2) reduces to F
Ŵ ;̂t0

.

Now observe that cW1 is a cobordism from Y to Y#S1 � b�, and since

hc1(bt0); [b�]i = hc1(t0); [�]i + n > 2g(b�)− 2;

by the adjunction inequality [25, Theorem 7.1] the groupdHF (Y#S1 � b�;et0jS1��̂
)

is trivial. But this group is the domain of the map F
Ŵ2 ;̂t0jŴ2

. Thus, Equa-

tion (2.2) implies that F
Ŵ ;̂t0

= 0 and therefore FW;t0 = 0, which gives the
desired contradiction.

Geometry & Topology, Volume 8 (2004)



Ozsv�ath{Szab�o invariants and tight contact three{manifolds, I 933

Contact Ozsv�ath{Szab�o invariants

In [28] Ozsv�ath and Szab�o de�ned an invariant

c(Y; �) 2dHF (−Y; s�)=h�1i

for a contact 3{manifold (Y; �), where s� denotes the spinc structure induced
by the contact structure � . Since in this paper we are using this homology
theory with Z=2Z coe�cients, the above sign ambiguity for c(Y; �) does not
occur. It is proved in [28] that if (Y; �) is overtwisted then c(Y; �) = 0, and if
(Y; �) is Stein �llable then c(Y; �) 6= 0. In particular, c(S3; �st) 6= 0. We are
going to use the properties of c(Y; �) described in the following theorem and
corollary.

Theorem 2.2 ([21], Theorem 2.3) Suppose that (Y 0; �0) is obtained from
(Y; �) by a contact (+1){surgery. Let −X be the cobordism induced by the
surgery with reversed orientation. De�ne

F−X :=
X

t2Spinc(−X)

F−X;t:

Then,

F−X(c(Y; �)) = c(Y 0; �0):

In particular, if c(Y 0; �0) 6= 0 then (Y; �) is tight.

Corollary 2.3 ([21], Corollary 2.4) If c(Y1; �1) 6= 0 and (Y2; �2) is obtained
from (Y1; �1) by Legendrian surgery along a Legendrian knot, then c(Y2; �2) 6= 0.
In particular, (Y2; �2) is tight.

The surgery exact triangle

Here we describe what is usually called the surgery exact triangle for the
Ozsv�ath{Szab�o homologies.

Let Y be a closed, oriented 3{manifold and let K � Y be a framed knot with
framing f . Let Y (K) denote the 3{manifold given by surgery along K � Y
with respect to the framing f . The surgery can be viewed at the 4{manifold
level as a 4{dimensional 2{handle addition. The resulting cobordism X induces
a homomorphism

FX :=
X

t2Spinc(X)

FX;t : dHF (Y )!dHF (Y (K))

Geometry & Topology, Volume 8 (2004)
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obtained by summing over all spinc structures on X . Similarly, there is a
cobordism U de�ned by adding a 2{handle to Y (K) along a normal circle N
to K with framing −1 with respect to a normal disk to K . The boundary
components of U are Y (K) and the 3{manifold Y 0(K) obtained from Y by a
surgery along K with framing f + 1. As before, U induces a homomorphism

FU : dHF (Y (K))!dHF (Y 0(K)):

It is proved in [25, Theorem 9.16]2 that

kerFU = ImFX : (2.4)

The above construction can be repeated starting with Y (K) and N � Y (K)
equipped with the framing speci�ed above: we get U (playing the role pre-
viously played by X ) and a new cobordism V starting from Y 0(K), given by
attaching a 4{dimensional 2{handle along a normal circle C to N with framing
−1 with respect to a normal disk. It is easy to check that this last operation
yields Y at the 3{manifold level. Again, we have kerFV = ImFU . Moreover,
we can apply the construction once again, and denote by W the cobordism
obtained by attaching a 2{handle along a normal circle D to C with fram-
ing −1. In fact, W is orientation{preserving di�eomorphic to X . This fact
is explained in Figure 3, where the �rst picture represents W and the last
picture represents X . In the �gure, the framed dotted circle is the attaching
circle of the 2{handle. The �rst di�eomorphism in Figure 3 is obtained by
\blowing down" the framed knot C . In other words, the �rst two pictures
represent 2{handles attached to di�eomorphic 3{manifolds, and show that the
corresponding attaching maps commute with the given di�eomorphism. The
second di�eomorphism is obtained by a handle slide, and the third di�eomor-
phism by erasing a cancelling pair. It follows immediately from Equation (2.4)
that the homomorphisms FX ; FU and FV �t into the surgery exact triangle:

dHF (Y ) dHF (Y (K))

dHF (Y 0(K))

FX

FUFV
(2.5)

2In fact, the maps FU and FX were de�ned in [25] by counting pseudo{holomorphic
triangles in a Heegaard triple, but an easy comparison with the maps associated to
2{handles de�ned in [26, Subsection 4.1] shows that FU and FX are the sums of
maps associated to cobordisms given above (see the discussion at the beginning of [27,
Section 3]).
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K

N C D

K K K K

f f f f f

�= �= �=−1

−1 −1 0 0 0

Figure 3: The di�eomorphism between W and X

Remark Given an exact triangle of vector spaces and homomorphisms

V1 V2

V3

F3

F1F2

we have
dimVi � dimVj + dimVk (2.6)

for fi; j; kg = f1; 2; 3g. Moreover, equality holds in (2.6) if and only if Fi = 0.

3 The proof of Theorem 1.1

Let L be a Legendrian knot smoothly isotopic to K with

t := tb(L) = 2gs(K)− 1:

Let r 2 Q n ftg and r0 = r − t. Then, any contact r0{surgery along L yields a
contact structure on S3

r (K).

If r < t = 2gs(K) − 1 then r0 < 0. Since any contact r0{surgery along L
can be realized by Legendrian surgery, the resulting contact structure is Stein
�llable and hence tight [10]. Therefore, to prove Theorem 1.1 it su�ces to show
that any contact r0{surgery along L with r0 > 0 yields a contact structure on
S3
r (K) with non{zero contact Ozsv�ath{Szab�o invariant.

Let (Yk; �k), with k any positive integer, denote the result of contact 1
k {surgery

along L. If r0 > 0, any contact r0{surgery along L is equivalent to a sequence
of Legendrian surgeries on (Yk; �k) for some k > 0. Therefore, by Corollary 2.3

Geometry & Topology, Volume 8 (2004)
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it su�ces to prove that the contact invariants of (Yk; �k) do not vanish. We
claim that, for every k � 1,

c(Yk; �k) 6= 0: (3.1)

We are going to prove the claim by induction on k . To start the induction, we
examine the case k = 1 �rst.

Observe that Y1(L) = S3
2gs(K), and let −X be the cobordism induced by

contact (+1){surgery along L with reversed orientation. Then it is easy to
check that, according to the discussion preceding (2.5), the homomorphism
F−X �ts into an exact triangle

dHF (S3) dHF (S3
−2gs(K))

dHF (S3
−2gs+1(K))

F−X

FUFV

(3.2)

where K denotes the mirror image of K . By Theorem 2.2 the map F−X sends
the non{zero contact Ozsv�ath{Szab�o invariant c(S3; �st) to c(Y1(L); �1). It is
now easy to see that the cobordism V viewed up{side down is obtained by
attaching a 2{handle to S3 along K with framing 2gs(K) − 1. Therefore,
V contains a smoothly embedded surface of genus gs(K) and self{intersection
2gs(K)−1. It follows by Proposition 2.1 that FV = 0. By exactness this means
that F−X is injective, therefore

F−X(c(S3; �st)) = c(Y1(L); �1) 6= 0;

and the claim (3.1) is proved for k = 1. We are left to prove that

c(Yk; �k) 6= 0 =) c(Yk+1; �k+1) 6= 0 (3.3)

for every k � 1.

By construction, (Yk+1; �k+1) is given as contact (+1){surgery on a Legendrian
knot in (Yk; �k). If Xk denotes the corresponding cobordism, by Theorem 2.2
we have

F−Xk(c(Yk; �k)) = c(Yk+1; �k+1): (3.4)

The homomorphism F−Xk �ts into the exact triangle

dHF (−Yk) dHF (−Yk+1)

dHF (S3
−2gs+1(K))

F−Xk

FUkFVk
(3.5)
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where K denotes the mirror image of K and the cobordisms −Xk , Uk and Vk
are described in Figure 4 where, in each picture, the framed dashed knot repre-
sents the attaching circle of a 2{handle giving rise to a cobordism. Remarkably,
the third manifold in the triangle is independent of k . This is evident from
the di�eomorphism given in the lower portion of Figure 4, which is obtained by
k + 1 blowdowns. We are going to show that, for every k � 1, the cobordism

−Yk = −Xk

K

−2

−2gs

−2 −2 −2

k − 1 K

−2

−2gs

−2 −2 −1

k

= −Yk+1

UkVk

K

−2gs + 1

S3
−2gs+1(K) = �=

@

K

−2

−2gs

−2 −2 −1 −1

k + 1

k

Figure 4: The surgery exact triangle involving −Yk , −Yk+1 and S3
−2gs+1(K).

Vk contains an embedded surface � of genus g(�) > 0 and

� � � � 2g(�)− 1: (3.6)

In view of Proposition 2.1, this implies FVk = 0, and therefore that F−Xk is
injective. Assuming c(Yk; �k) 6= 0, Equation (3.4) then implies c(Yk+1; �k+1) 6=
0, and (3.3) follows. Therefore, to �nish the proof we only need to establish
the existence of the surface � � Vk satisfying (3.6).

The cobordism Vk is obtained by attaching a 2{handle to S3
−t(K), where the

corresponding framed attaching circle is shown in the lower left portion of Fig-
ure 4. We can think of S3

−t(K) as the boundary of the 4{manifold Z obtained
by attaching a 2{handle HK to the 4{ball along K with framing −t. Let W
denote the union Z [ Vk , and let F � Z be a smooth surface representing
a generator of H2(Z;Z) obtained by capping o� a slicing surface for K with
the core disk of HK . Consider a generic pusho� F 0 of F , viewed as a surface
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in W . When suitably oriented, F and F 0 intersect transversely in t negative
points p1; : : : ; pt 2 F 0 . Consider t generic pusho�s S1; : : : ; St of the embedded
2{sphere S � W corresponding to the k{framed unknot of the lower left por-
tion of Figure 4, oriented so that Si � F = +1 for i = 1; : : : ; t. Each 2{sphere
Si intersects F transversely in a unique point qi . Consider disjoint, smootly
embedded arcs γ1; : : : ; γt � F such that γi joins pi to qi for each i = 1; : : : ; t.
Let �(F ) be a small tubular neighborhood of the surface F . We can view its
boundary @�(F ) as a smooth S1 bundle

� : @�(F )! F;

so that each of the sets F 0 \ @�(F ) and [ti=1Si \ @�(F ) consists of exactly t
�bers of � . The immersed surfacee� = F 0 n �(F ) [ti=1 �

−1(γi) [ti=1 Si n �(F ) �W

is contained in the complement of F . The singularities of e� come from the
intersections among S1; : : : ; St and F 0 . Resolving those singularities one gets
a smoothly embedded surface which can be isotoped to a surface � � Vk .
Moreover, a simple computation using the fact that g(F 0) = gs(K) = 1

2 (t + 1)
shows that

� � � = t2k + t and g(�) =
t(t− 1)

2
k +

t+ 1
2

:

Since
� � �− (2g(�) − 1) = tk > 0;

the surface � satis�es (3.6). This concludes the proof of Theorem 1.1.

4 The proof of Theorem 1.3

The following facts (4.1), (4.2) and (4.3) are proved in [25, Propositions 3.1 and
5.1]. Let L(p; q) be a lens space. Then,

dimZ=2ZdHF (L(p; q)) = p: (4.1)

Let Y be a closed, oriented 3{manifold, and let −Y be the same 3{manifold
with reversed orientation. Then,dHF (−Y ) �= dHF (Y ): (4.2)

If b1(Y ) = 0 then
dimZ=2ZdHF (Y ) � jH1(Y ;Z)j: (4.3)
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A rational homology 3{sphere Y is called an L{space if

dimZ=2ZdHF (Y ) = jH1(Y ;Z)j:

Notice that according to (4.1) lens spaces are L{spaces.

Proposition 4.1 Let K � S3 be a knot such that gs(K) > 0 and S3
n(K)

is an L{space for some integer n > 0. Then, S3
r (K) is an L{space for every

rational number r � 2gs(K)− 1.

Proof The 3{manifold S3
r (K) is an L{space for every rational number r � n.

In fact, it follows from [29, Proposition 2.1], that

S3
a
b
(K) L{space =) S3

a+1
b

(K) L{space: (4.4)

Suppose r = p
q � n, and write p = qn+ k with n; k � 0. Then, applying (4.4)

k times starting from S3
n= p−k

q

(K) one deduces that S3
r (K) is an L{space.

The statement follows immediately if n < 2gs(K) − 1. If n � 2gs(K) − 1, it
is enough to show that S3

2gs(K)−1(K) is an L{space. We do this by backwards
induction on n. For n = 2gs(K) − 1 the statement trivially holds. If n >
2gs(K)− 1, consider the surgery exact triangle given by S3 and K � S3 with
framing n− 1: dHF (S3) �= Z=2Z dHF (S3

n−1(K))

dHF (S3
n(K))

FX

FUFV
(4.5)

Since the cobordism X contains a smoothly embedded surface � of genus
g(�) = gs(K) > 0 and

� � � = n− 1 > 2gs(K)− 2;

by Proposition 2.1 we have FX = 0. This implies that the exact triangle splits,
therefore dHF (S3

n(K)) �= dHF (S3
n−1(K))� Z=2Z:

Hence, if S3
n(K) is an L{space then so is S3

n−1(K) once n > 2gs(K)−1, proving
the inductive step.

The following theorem generalizes a result of the �rst author [18]: Recall that
Tp;q denotes the positive torus knot of type (p; q).
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Theorem 4.2 For each rational number r 2 [2n− 1; 4n) \Q, the 3{manifold

S3
r (T2n+1;2)

carries no �llable contact structures.

Proof Figure 5 describes a 6{step sequence of 3{dimensional Kirby moves
which show that the oriented 3{manifold S3

r (T2n+1;2) is the boundary of the
4{dimensional plumbing X described by the last picture. The �rst step of the

n

−1 −1

n

r r − 4n

r − 4n

2

n

−2 −2 −2 −2 −1

r − 4n− 2

−1

−1

− 2n+1
n

r − 4n− 2

−1

− 2n+1
n

−2

r−4n−2
r−4n−1

2

2n+1
n+1

2

n+ 1 2 2 a1 a2 ak−1 ak

2
2

X =

Figure 5: Presentation of S3
r (T2n+1;2) as boundary of a plumbing

sequence is obtained by n blowups. The second step by n−1 handle slides and
the third one by two blowups plus a conversion from integer to rational surgery.
The fourth step is given by a handle slide, the �fth one by three Rolfsen twists
and the sixth one by a conversion from rational to integer surgery. Observe
that

1 <
r − 4n− 2
r − 4n− 1

< 2
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because r < 4n. The coe�cients a1; : : : ; ak are given by

r − 4n− 2
r − 4n− 1

= 2−
1

a1 −
1

. . . −
1
ak

; a1; : : : ; ak � 2:

By using [17, Theorem 5.2], it is easy to check that the 4{dimensional plumbing
X is positive de�nite. Moreover, the intersection lattice of the plumbing with
reversed orientation −X contains the intersection lattice �a1;n described in
Figure 6.

−n−1 −2 −2 −2 −a1

−2

Figure 6: The intersection lattice �a1;n

By [31, Theorem 1.4], every symplectic �lling (W;!) of a contact 3{manifold
(Y; �) such that Y is an L{space satis�es b+2 (W ) = 0. Since S3

4n+1(T2n+1;2)
is a lens space [23] and, by [16], 2gs(T2n+1;2) − 1 = 2n − 1, Proposition 4.1
implies that S3

r (T2n+1;2) is an L{space for every r � 2n − 1. Therefore, every
symplectic �lling of a contact 3{manifold of the form (S3

r (T2n+1;2); �) with
r � 2n− 1 satis�es b+2 (W ) = 0.

If r 2 [2n− 1; 4n), since Y = S3
r (T2n+1;2) is a rational homology sphere we can

build a negative de�nite closed 4{manifold

Z = W [Y (−X)

which, according to Donaldson’s celebrated theorem [7, 8], must have intersec-
tion form QZ diagonalizable over Z. Since the intersection form Q−X embeds
in QZ it follows that �a1;n must embed in QZ as well. But we claim that �a1;n

does not admit an isometric embedding in the diagonal lattice Dm = �mh−1i.
This contradiction forbids the existence of the symplectic �lling W .

To prove the claim, we argue as in [19, Lemma 3.2]. Suppose there is an
isometric embedding ’ of �a1;n into Dm . Let e1; : : : ; ek be generators of Dm
with self{intersection −1. It is easy to check that, up to composing ’ with an
automorphism of Dm , the four generators of �a1;n corresponding to the vertices
of weight (−2) are sent to e1−e2 , e2−e3 , e3−e4 and e3 +e4 . Up to composing
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’ with the automorphism of Dm which sends e4 to −e4 and �xes the remaining
ones, the image v of one of the two remaining generators of �a1;n satis�es

v � (e3 − e4) = 0; v � (e3 + e4) = 1;

which is impossible because (e3 + e4)− (e3 − e4) = 2e4 .

Remark The statement of Theorem 4.2 is optimal, in the sense that if r 62
[2n− 1; 4n), then the 3{manifold

Yn;r := S3
r (T2n+1;2)

supports �llable contact structures. If r < 2n−1 then, as observed in the proof
of Theorem 1.1, Yn;r carries Stein �llable contact structures. The same holds
for r � 4n. In fact, examples of Stein �llable contact structures on Yn;r are
given by the contact surgery picture of Figure 7 (here we are using our notation
as well as the notation of [14]).

−1− 1
n

− 1
r−4n

Figure 7: Stein �llable contact structures on Yn;r with r � 4n

Proof of Theorem 1.3 Let m 2 N, and let p1; : : : ; pm 2 N be consecutive
odd primes with either p1 = 3 or p1 = 5, where the choice is made so that

p1 � � � pm = 4k + 3

for some k 2 N. Now let � = 2k , and consider the contact structures obtained
via the contact surgeries of Figure 8.

The underlying 3{manifold is

N� := S3
2+ 1

1+�

(T3;2):

A simple calculation shows that

H1(N�;Z) �= Z=(2� + 3)Z;

with generator the class of the dotted circle � drawn in Figure 8. The possible
choices involved in the contact surgery construction, ie, the choices of the �−1
stabilizations of the Legendrian (−�){framed unknot, yield contact structures
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+1

−�

�

Figure 8: Tight, not �llable contact structures on N�

�i(�), i = 0; : : : ; �− 1, where i denotes the number of right zig{zags added by
the stabilizations. After �xing a suitable orientation for the knots, this implies
that

c1(�i(�)) = (2i− (�− 1)) PD([�]):

(For computations of homotopic data of contact structures de�ned by surgery
diagrams see [6].) Notice that the contact structures �i(�) are tight because,
since −� < 0, they are obtained by Legendrian surgeries on the contact struc-
ture of Figure 1, which was shown to have non{zero contact Ozsv�ath{Szab�o
invariant in the proof of Theorem 1.1. Moreover, since 2 + 1

1+� 2 [1; 4), by
Theorem 1.3 no �i(�) is symplectically �llable.

We claim that, for each j 2 f1; : : : ;mg, there exists an index 0 � i(j) < �
such that c1(�i(j)(�)) has order pj . Since the primes pj are distinct, the claim
implies that the structures �i(j)(�) are pairwise non{isomorphic and, since m
can be chosen arbitrarily large, it su�ces to prove the statement.

To check the claim, de�ne

i(j) :=
1
2

(p1 � � � bpj � � � pm + �− 1) :

Then,

2i(j) − (�− 1) = p1 � � � bpj � � � pm =
1
pj

(2�+ 3);

and therefore c1(�i(j)(�)) has order pj . This concludes the proof.
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Sem. Hamburg 6 (1928) 8{54

[4] F Ding, H Geiges, Symplectic �llability of tight contact structures on torus
bundles, Algebr. Geom. Topol. 1 (2001) 153{172

[5] F Ding, H Geiges, A Legendrian surgery presentation of contact 3-manifolds,
Math. Proc. Cambridge Philos. Soc. 136 (2004) 583{598

[6] F Ding, H Geiges, A Stipsicz, Surgery diagrams for contact 3{manifolds,
Turkish J. Math. 28 (2004) 41{74

[7] S K Donaldson, An application of gauge theory to 4{dimensional topology, J.
Di�erential Geom. 18 (1983) 279{315

[8] S K Donaldson, The Seiberg-Witten equations and 4{manifold topology, Bull.
Amer. Math. Soc. 33 (1996) 45-70

[9] Y Eliashberg, Topological characterization of Stein manifolds of dimension
> 2, International J. of Math. 1 (1990) 29{46

[10] Y Eliashberg, Filling by holomorphic discs and its applications, London Math.
Soc. Lecture Notes Series 151 (1991) 45{67

[11] J Etnyre, L Ng, Problems in Low Dimensional Contact Topology, Proc. Sym-
pos. Pure Math. 71 (2003) 337-357

[12] J Etnyre, K Honda, On the nonexistence of tight contact structures, Ann. of
Math. 153 (2001) 749{766

[13] H Geiges, Contact geometry, from: \Handbook of Di�erential Geometry
vol. 2", (F J E Dillen and L C A Verstraelen, editors), Elsevier, to appear

[14] R Gompf, Handlebody constructions of Stein surfaces, Ann. of Math. 148
(1998) 619{693

[15] K Honda, On the classi�cation of tight contact structures I, Geom. Topol. 4
(2000) 309{368

[16] P Kronheimer, T Mrowka, Gauge theory for embedded surfaces I, Topology
32 (1993) 773{826

[17] W Neumann, F Raymond, Seifert manifolds, plumbing, �{invariant and
orientation reversing maps, from: \Algebraic and geometric topology (Proc.
Sympos. Univ. California, Santa Barbara, Calif. 1977)" Lecture Notes in Math.
664, Springer, Berlin (1978) 163{196

Geometry & Topology, Volume 8 (2004)



Ozsv�ath{Szab�o invariants and tight contact three{manifolds, I 945

[18] P Lisca, Symplectic �llings and positive scalar curvature, Geom. Topol. 2 (1998)
103{116

[19] P Lisca, On symplectic �llings of 3-manifolds, from: \Proceedings of the 6th

Gökova Geometry-Topology Conference", Turkish J. Math. 23 (1999) 151{159.

[20] P Lisca, A Stipsicz, An in�nite family of tight, not semi{�llable contact 3-
manifolds, Geom. Topol. 7 (2003) 1055{1073

[21] P Lisca, A Stipsicz, Seifert �bered contact three{manifolds via surgery, Algebr.
Geom. Topol. 4 (2004) 199{217

[22] P Lisca, A Stipsicz, Ozsv�ath{Szab�o invariants and tight contact three{
manifolds, II, arXiv:math.SG/0404136

[23] L Moser, Elementary surgery along a torus knot, Paci�c J. Math. 38 (1971)
737{745

[24] P Ozsv�ath, Z Szab�o, Holomorphic disks and topological invariants for closed
three-manifolds, to appear in Ann. of Math. arXiv:math.SG/0101206

[25] P Ozsv�ath, Z Szab�o, Holomorphic disks and three{manifold invariants: prop-
erties and applications, to appear in Ann. of Math. arXiv:math.SG/0105202

[26] P Ozsv�ath, Z Szab�o, Holomorphic triangles and invariants of smooth 4{
manifolds, to appear in Duke Math. J. arXiv:math.SG/0110169

[27] P. Ozsv�ath, Z. Szab�o, Absolutely graded Floer homologies and intersection
forms for four{manifolds with boundary, Adv. Math. 173 (2003) 179{261

[28] P Ozsv�ath, Z Szab�o, Heegaard Floer homologies and contact structures,
arXiv:math.SG/0210127

[29] P Ozsv�ath, Z Szab�o, On knot Floer homology and lens space surgery,
arXiv:math.GT/0303017

[30] P Ozsv�ath, Z Szab�o, Knot Floer homology and the four{ball genus, Geom.
Topol. 7 (2003) 615{639

[31] P Ozsv�ath, Z Szab�o, Holomorphic disks and genus bounds, Geom. Topol. 8
(2004) 311{334

[32] D Rolfsen, Knots and links, Mathematics Lecture Series, No. 7. Publish or
Perish, Inc., Berkeley, Calif. (1976)

[33] L Rudolph, The slice genus and the Thurston{Bennequin invariant of a knot,
Proc. Amer. Math. Soc. 125 (1997) 3049{3050

[34] A Weinstein, Contact surgery and symplectic handlebodies, Hokkaido Mathe-
matical Journal 20 (1991) 241{251

Geometry & Topology, Volume 8 (2004)


