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Abstract

We introduce the class of nonpositively curved 2{complexes with the Isolated
Flats Property. These 2{complexes are, in a sense, hyperbolic relative to their
flats. More precisely, we show that several important properties of Gromov-
hyperbolic spaces hold \relative to flats" in nonpositively curved 2{complexes
with the Isolated Flats Property.

We introduce the Relatively Thin Triangle Property, which states roughly that
the fat part of a geodesic triangle lies near a single flat. We also introduce the
Relative Fellow Traveller Property, which states that pairs of quasigeodesics
with common endpoints fellow travel relative to flats, in a suitable sense. The
main result of this paper states that in the setting of CAT(0) 2{complexes, the
Isolated Flats Property is equivalent to the Relatively Thin Triangle Property
and is also equivalent to the Relative Fellow Traveller Property.
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206 G Christopher Hruska

1 Introduction

The theory of �{hyperbolic spaces has been enormously fruitful since it was
�rst introduced by Gromov in his seminal article [21]. In that article, Gromov
establishes two facts about �{hyperbolic spaces which are used heavily in the
proofs of many results in the theory. The �rst is that geodesic triangles are thin,
and the second is that quasigeodesics with common endpoints (asynchronously)
fellow travel.

In this article, we introduce nonpositively curved spaces with the Isolated Flats
Property, generalizing �{hyperbolic spaces. Spaces with the Isolated Flats
Property can be studied using techniques analogous to those used in the study
of �{hyperbolic spaces. In fact, many results about �{hyperbolic spaces have
natural extensions to this new setting. The resulting theory shares much of
the robust character of the �{hyperbolic setting. In contrast, few methods are
currently known for extending results from �{hyperbolic spaces to arbitrary
nonpositively curved spaces.

The main result of this article provides a starting point for the process of
generalizing results from the �{hyperbolic setting to the isolated flats setting.
We introduce the Relatively Thin Triangle Property, which extends the notion
of thin triangles, and the Relative Fellow Traveller Property, which generalizes
the fellow travelling of quasigeodesics. The main theorem shows that these
\relative" properties are each equivalent to the Isolated Flats Property in the
2{dimensional setting.

Theorem 1.1 Let X be a proper, cocompact piecewise Euclidean CAT(0)
2{complex. The following are equivalent.

(1) X has the Isolated Flats Property.

(2) X has the Relatively Thin Triangle Property.

(3) X has the Relative Fellow Traveller Property.

The implications (2) ) (1) and (3) ) (1) are fairly straightforward. The con-
verse implications (1) ) (2) and (1) ) (3) are more di�cult and also have
thus far provided more applications. Typically, the Isolated Flats Property is
easier to detect than the Relatively Thin Triangle Property and the Relative
Fellow Traveller Property. However, the latter two properties are quite useful in
applications. For instance, one can start with an argument in the �{hyperbolic
setting which uses the thinness of triangles or the fellow travelling of quasigeo-
desics and try to convert it to an argument in the isolated flats setting which
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Nonpositively curved 2-complexes with isolated flats 207

uses the corresponding relative properties. In Subsection 1.4, we discuss several
applications of this nature.

In the course of the proof of Theorem 1.1, we prove a \quadratic divergence"
theorem for geodesic rays in a 2{complex with the Isolated Flats Property
(Proposition 10.3). This theorem can be interpreted as saying that given a
pair of geodesic rays in such a 2{complex neither of which lingers very long
near a single flat, the given rays diverge from each other at a rate which is
at least quadratic. This divergence theorem is of independent interest because
of its similarity to the exponential divergence theorem for �{hyperbolic spaces
proved by Cooper and Mihalik in [2, Theorem 2.19].

The exponential divergence theorem is a key ingredient of Lustig and Miha-
lik’s proof that quasigeodesics track close to geodesics in hyperbolic spaces [2,
Proposition 3.3]. Similarly, Proposition 10.3 implies that given any geodesic
segment which does not linger very long near a single flat, that geodesic tracks
close to any quasigeodesic connecting its endpoints (see Section 10).

It seems likely that the hypothesis that X is 2{dimensional can be dropped
from Theorem 1.1. Some evidence for this conjecture is presented below in
Subsection 1.3. However, the present methods are speci�c to the 2{dimensional
setting. Our techniques depend heavily on the observation that a van Kam-
pen diagram over a CAT(0) 2-complex is itself a CAT(0) space. In higher
dimensions, completely new techniques would seem to be necessary.

1.1 The Isolated Flats Property

The Isolated Flats Property is de�ned precisely in Section 5. Roughly speaking,
a CAT(0) space has the Isolated Flats Property if its isometrically embedded
flat Euclidean subspaces diverge from each other in all directions, in the sense
that their corresponding boundary spheres at in�nity are disjoint. Note that
the Isolated Flats Property is vacuously satis�ed in any �{hyperbolic CAT(0)
space.

The prototypical example is the universal cover of a truncated �nite volume hy-
perbolic manifold M . Such a space, called a neutered space or core, is obtained
from hyperbolic space Hn by removing a family of disjoint open horoballs cor-
responding to the cusps of M . The neutered space (with the induced path
metric) is a CAT(0) space whose only flat subspaces are the boundaries of the
deleted horoballs, which are isolated.

The idea of studying spaces with isolated flats is implicit in work of Kapovich{
Leeb [26] and of Wise [46, 47], and has also been studied by Kleiner (personal
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communication). In unpublished work, Wise has proved a Flat Triplane Theo-
rem, which states that in the 2{dimensional setting the Isolated Flats Property
is equivalent to an absence of isometrically embedded triplanes. A triplane
is a space obtained by gluing three Euclidean half-planes together along their
boundary lines. We provide Wise’s proof of the Flat Triplane Theorem in Sec-
tion 5.

Wise observed in [46, x4.0] that if X is any compact nonpositively curved 2{
complex each of whose 2{cells is isometric to a regular Euclidean hexagon then
the universal cover of X has the Isolated Flats Property. The reason is that
a triplane cannot be built out of regular hexagons. In [4], Ballmann and Brin
give explicit techniques for constructing CAT(0) hexagonal 2{complexes with
arbitrary local data. The following theorem due to Moussong indicates some of
the richness of this class of 2{complexes. The theorem is a special case of the
main result of Moussong’s thesis ([34], see also Haglund [22] and Benakli [6]).

Theorem 1.2 (Moussong) For any simplicial graph L, there is a CAT(0)
hexagonal 2{complex X such that the link of each vertex is isomorphic to
the graph L. If L is �nite, then the Coxeter group W de�ned by the graph L
(labeled with a 3 on each edge) acts properly, cocompactly, and cellularly on X
with a compact quotient.

In the preceding theorem, we use the convention that a simplicial graph L (with
all edges labeled by the number 3) de�nes a Coxeter system with one genera-
tor si of order two for each vertex vi , and a relation sisjsi = sjsisj whenever
two vertices vi and vj are connected by an edge. The 2{complex arising in
Theorem 1.2 is the Davis{Moussong geometric realization of the Coxeter sys-
tem given by L.

In addition to hexagonal complexes, there are also many squared complexes
with isolated flats. For instance, if L is a hyperbolic, prime, alternating link
then �1(S3−L) is the fundamental group of a nonpositively curved squared 2{
complex X whose universal cover has the Isolated Flats Property. This squared
2{complex was constructed by Dehn [13] and was shown to be nonpositively
curved by Weinbaum [44]. The Isolated Flats Property for these 2-complexes
follows from [24].

More generally, Aitchison has shown that every �nite volume cusped hyper-
bolic 3{manifold deformation retracts onto a compact 2{complex that admits
a piecewise Euclidean metric with nonpositive curvature [1]. The universal cover
of this 2{complex has the Isolated Flats Property by [24]. The 2{complexes
arising in Aitchison’s construction typically have irregularly shaped cells.
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Nonpositively curved 2-complexes with isolated flats 209

Wise encountered spaces with isolated flats while investigating the Z�Z conjec-
ture for CAT(0) groups. This conjecture states that, if a group acts properly
and cocompactly by isometries on a CAT(0) space, then either the group is
word hyperbolic or it contains a Z � Z subgroup. The Z � Z conjecture has
been proved by Bangert{Schroeder in the case that the CAT(0) space is a
real analytic manifold [5], however the general conjecture seems quite di�cult.
In fact, a theorem of Kari{Papasoglu [27] strongly indicates that the Z � Z
conjecture may be false even for CAT(0) squared complexes.

Wise noticed that, in the presence of the Isolated Flats Property, the situation is
much simpler, since one can then prove that all flats are periodic. Consequently
the Z�Z conjecture is true in this setting ([46, Proposition 4.0.4], for a complete
proof see [24]).

Theorem 1.3 (Wise) Let G act properly, cocompactly, and isometrically
on a CAT(0) space with the Isolated Flats Property. Then either G is word
hyperbolic, or G contains a subgroup isomorphic to Z� Z.

The Z � Z conjecture was previously established by Ballmann{Brin in the
special case that the CAT(0) space is a hexagonal 2-complex [4].

Sela has conjectured that the Isolated Flats Property is closely related to limit
groups (or fully residually free groups), which arise in the study of the elemen-
tary theory of free groups. In particular, he has conjectured that each limit
group acts properly and cocompactly on a CAT(0) space with the Isolated
Flats Property [40].

1.2 Hyperbolicity relative to flats

The Relatively Thin Triangle Property and the Relative Fellow Traveller Prop-
erty arise from an intuitive notion that spaces with the Isolated Flats Property
are �{hyperbolic \relative to flats."

For instance, a triangle is �{thin if each side lies in a �{neighborhood of the
union of the other two sides. A geodesic space is �{hyperbolic if every geodesic
triangle in the space is �{thin. In Section 6, we introduce the notion of a
geodesic triangle being �{thin relative to a flat. The idea is that each side of
the triangle lies in a �{neighborhood of the union of the other two sides and
some flat, as illustrated in Figure 1. A space has the Relatively Thin Triangle
Property if there is a constant � such that every geodesic triangle is either
�{thin in the standard sense or �{thin relative to some flat.
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Figure 1: A triangle which is �{thin relative to a flat

A lemma due to Morse states that in the hyperbolic plane any pair of quasi-
geodesics with common endpoints asynchronously fellow travel. Theorems of
Gromov and Masur{Minsky ([21, Proposition 7.2.A] and [31, Lemma 7.2]) to-
gether show that this fellow traveller property is equivalent to �{hyperbolicity.
In Section 6, we introduce the more general notion of a pair of quasigeodesics
that fellow travel relative to flats. The idea is that the curves alternate be-
tween two types of behavior: \tracking" close together and travelling near a
common flat, as illustrated in Figure 2. A nonpositively curved space has the
Relative Fellow Traveller Property if every pair of quasigeodesics with common
endpoints fellow travels relative to flats.
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Figure 2: A pair of paths which fellow travel relative to flats

1.3 Historical background

Several results analogous to Theorem 1.1 have previously been shown for certain
nonpositively curved manifolds. In [26], Kapovich and Leeb considered a class
of nonpositively curved manifolds with isolated flats in which the flat subspaces
are separated by regions of strict negative curvature. In that setting they proved
that the Relatively Thin Triangle Property holds.
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Epstein showed that an analogue of the Relative Fellow Traveller Property
holds for real hyperbolic space Hn with a disjoint family of open horoballs re-
moved [16, Theorem 11.3.1]. Lang generalized Epstein’s result to manifolds with
pinched sectional curvature −a2 � � � −1 for 1 � a < 2 in [28]. Farb proved a
result in the same spirit using a slightly di�erent metric on the neutered space
[17, Lemma 4.5]. Additionally, we remark that the Relative Fellow Traveller
Property is similar to Farb’s bounded coset penetration property. This simi-
larity is exploited in [25] in the proof of the relative hyperbolicity theorem for
groups acting on spaces with isolated flats.

Kapovich{Leeb and Epstein’s results mentioned above provide additional ex-
amples of spaces with the Isolated Flats Property which also have either the
Relatively Thin Triangle Property or the Relative Fellow Traveller Property. In
light of these results, it seems likely that the hypothesis that X is 2{dimensional
can be dropped from Theorem 1.1.

1.4 Applications of Theorem 1.1

Thus far, the main application of the Relatively Thin Triangle Property and
the Relative Fellow Traveller Property has been to extend results from the
�{hyperbolic setting to the setting of CAT(0) spaces with the Isolated Flats
Property. By way of example, we list below several immediate consequences
of Theorem 1.1 whose proofs make use of either the Relatively Thin Triangle
Property or the Relative Fellow Traveller Property.

Suppose a group G acts properly and cocompactly by isometries on a CAT(0)
space X . In [24], the author shows that in the presence of the Isolated Flats
Property and the Relative Fellow Traveller Property the boundary at in�nity
of X is an invariant of the group G. Recall that the boundary @X of X is the
space of geodesic rays emanating from a �xed basepoint with the compact-open
topology. Together with Theorem 1.1 we have the following consequence in the
2{dimensional setting.

Theorem 1.4 (Boundary is well-de�ned) Suppose a group G acts properly
and cocompactly by isometries on two CAT(0) spaces X and Y . Suppose
further that X is a piecewise Euclidean 2{complex with the Isolated Flats
Property. Then any equivariant quasi-isometry X ! Y induces an equivariant
homeomorphism @X ! @Y .

The previous theorem was established in the word hyperbolic setting by Gromov
in [21]. Croke and Kleiner showed in [11] that this theorem does not extend to
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the general CAT(0) setting by constructing two homeomorphic nonpositively
curved 2{complexes whose universal covers have nonhomeomorphic boundaries.
Julia Wilson has since shown that Croke and Kleiner’s construction actually
provides a continuous family of homeomorphic 2{complexes whose universal
covers are pairwise nonhomeomorphic [45].1

A second consequence of Theorem 1.1 deals with quasiconvex subgroups. A
subspace Z of X is quasiconvex if there is a constant � so that every geodesic
in X connecting two points of Z lies inside an �{neighborhood of Z . If � is a
proper, cocompact action of a group G by isometries on a CAT(0) space X ,
then a subgroup H � G is quasiconvex with respect to � if for some x 2 X ,
the orbit Hx is a quasiconvex subspace of X .

In [24] the author shows that in the presence of the Isolated Flats Property
and the Relative Fellow Traveller Property the notion of a subgroup H �
G being quasiconvex does not depend on the choice of action � or on the
choice of CAT(0) space X . Together with Theorem 1.1, we have the following
consequence for 2{dimensional complexes.

Theorem 1.5 (Quasiconvexity is well-de�ned) Let � and � be two proper,
cocompact actions of a group G by isometries on CAT(0) spaces X and Y .
Suppose further that X is a piecewise Euclidean 2{complex with the Isolated
Flats Property. For each subgroup H � G, the following are equivalent.

(1) H is quasiconvex with respect to �.

(2) H is quasiconvex with respect to � .

(3) The inclusion H ,! G is a quasi-isometric embedding.

The previous theorem was established by Short for word hyperbolic groups in
[41]. The author shows in [24] that this result does not extend to the general
CAT(0) setting.

In a subsequent article [25], the author will use Theorem 1.1 to prove the
following result, which provides a precise group theoretic manifestation of the
intuitive notion that a space with isolated flats is hyperbolic \relative to flats."

Theorem 1.6 (Isolated Flats ) Relatively Hyperbolic) Suppose a group G
acts properly and cocompactly by isometries on a CAT(0) 2{complex with
the Isolated Flats Property. Then G is hyperbolic relative to the collection of
maximal virtually abelian subgroups of rank two.

1The author has been informed that Kleiner has unpublished work related to the
article [12] in which he proves Theorem 1.4 without the 2{dimensional hypothesis.
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The previous theorem is stated using Gromov and Bowditch’s terminology for
relative hyperbolicity [21, 7]. Using the terminology of Farb [17], the conclu-
sion is that the group in question is relatively hyperbolic with bounded coset
penetration. The proof of Theorem 1.6 uses the fact that a 2{complex with
isolated flats has the Relatively Thin Triangle Property.

Theorem 1.6 together with a result of Rebbechi [38] has the following immediate
consequence.

Theorem 1.7 (Isolated Flats ) Biautomatic) Suppose G acts properly and
cocompactly by isometries on a CAT(0) 2{complex with the Isolated Flats
Property. Then G is biautomatic.

It is unknown whether a group acting properly and cocompactly on an arbi-
trary CAT(0) space is necessarily biautomatic (or even automatic). Previously,
biautomaticity has been proven only for CAT(0) complexes built from a small
number of allowed shapes of polyhedral cells. For instance, Gersten{Short es-
tablish biautomaticity for 2{complexes built of squares and three shapes of
triangles (speci�cally the 2{complexes of type A1 � A1 , A2 , B2 , and G2 ) in
[19, 20]. Niblo{Reeves establish biautomaticity for CAT(0) cube complexes in
[35]. The main di�erence between Theorem 1.7 and these previous results is
that Theorem 1.7 allows convex polygonal cells of arbitrary shapes.

Finally we mention that Theorem 1.6 and a result of Tukia [42] show that the
Tits Alternative holds for 2{complexes with isolated flats.

Theorem 1.8 (Isolated Flats ) Tits Alternative) Suppose G acts properly
and cocompactly on a CAT(0) 2{complex with the Isolated Flats Property.
Then G satis�es the Tits Alternative. In other words, every subgroup of G is
either virtually abelian or contains a free subgroup of rank two.

Again it is unknown whether the previous theorem remains true if the Isolated
Flats Property is dropped from the hypothesis.

If the hypothesis that X is 2{dimensional can be dropped from Theorem 1.1, as
conjectured in the previous subsection, then the results listed above will apply
to any CAT(0) space with the Isolated Flats Property.

1.5 Summary of the sections

We begin with a few sections of background material. In Section 2 we de�ne
CAT(0) spaces, and review several of their important properties. In Section 3,
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we discuss piecewise Euclidean complexes and their relation to nonpositive cur-
vature by way of the Link Condition. In Section 4, we review de�nitions and
basic results about diagrams, reduced maps, and the Combinatorial Gauss{
Bonnet theorem, following the development of McCammond{Wise [32].

In Section 5, we give a de�nition of the Isolated Flats Property which is catered
to the 2{dimensional setting. We also give Wise’s proof of the Flat Triplane
Theorem, which has not previously appeared in the literature. In Section 6, we
state the Relatively Thin Triangle Property and the Relative Fellow Traveller
Property. In the 2{dimensional setting, we use the Flat Triplane Theorem to
show that each of these properties implies the Isolated Flats Property, thus
establishing the implications (2) ) (1) and (3) ) (1) of Theorem 1.1.

The reverse implications (1) ) (2) and (1) ) (3) are more di�cult and re-
quire a deeper analysis of the structure of disc diagrams corresponding to 2{
complexes with isolated flats. In Section 7, we introduce the notion of a diagram
which is ru�ed along a boundary path. Such a diagram has the property that
every point of the given boundary path is either close to a vertex with strictly
negative curvature or close to some other part of the boundary. This notion
generalizes the fact that in the negatively curved setting the fat part of any
reduced disc diagram is �lled with vertices at which the curvature is negative.
We use the Combinatorial Gauss{Bonnet Theorem to relate ru�ed diagrams
to the usual notion of �{thin triangles.

In Section 8, we study preflats in reduced disc diagrams. Preflats in a diagram
D ! X correspond to flats in X . We prove two results about preflats, which
play a key role in the proof of Theorem 1.1. The �rst is Proposition 8.2,
which states roughly that if a geodesic segment occurs in the boundary path
of a nonpositively curved disc diagram, then either the diagram is ru�ed along
the geodesic or the geodesic is close to a large preflat. The second result is
Proposition 8.7 which states that in the presence of the Isolated Flats Property,
preflats in disc diagrams are surrounded by ru�es.

In Section 9, we use the ideas developed in the previous two sections to prove
the implication (1) ) (2) of Theorem 1.1. The idea of the proof is that a
triangular diagram either contains a large preflat surrounded by ru�es, or it is
ru�ed along one side. In the �rst case, the triangle is thin relative to a flat,
and in the second case, the triangle is thin in the standard sense.

In Section 10 we turn our attention to the remaining implication (1) ) (3)
of Theorem 1.1. In this section we prove the \quadratic divergence" theorem
mentioned above. Cooper, Lustig, and Mihalik use an analogous exponential
divergence theorem in their proof that quasigeodesics track close to geodesics
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in a �{hyperbolic space [2, Proposition 3.3]. The main result of Section 10
is a similar fellow travelling result for 2{complexes with isolated flats in the
presence of ru�es.

In order to prove (1) ) (3), it will be useful to understand the structure of the
convex hull of a union of preflats in a disc diagram. In Section 11, we examine
in detail the convex hull of a union of two preflats and also the convex hull of the
union of one preflat and a point. We show that in the presence of the Isolated
Flats Property, the convex hull of the two objects in question is essentially just
the union of those objects together with a path of shortest length connecting
them.

Section 12 contains the main part of the proof of (1) ) (3). In the isolated flats
setting, we study disc diagrams with a geodesic segment along the boundary.
We consider the convex hull of the union of that geodesic and all the preflats
that come near the geodesic. We show that the boundary of this convex hull
contains a path which fellow travels the geodesic relative to flats. We also show
that this convex hull is surrounded by ru�es in the diagram.

In Section 13 we complete the proof of Theorem 1.1. We consider a disc diagram
whose boundary consists of a geodesic and quasigeodesic. Once one removes the
convex hull constructed in the previous section, one obtains a diagram which
satis�es the hypothesis of the ru�ed fellow travelling result from Section 10.
We conclude that any geodesic and quasigeodesic with common endpoints fellow
travel relative to flats.

Finally, we establish the Relative Fellow Traveller Property by considering the
general case of a pair of quasigeodesics with common endpoints. We derive
the general case from the special case by comparing each quasigeodesic with
the geodesic connecting its endpoints and piecing together the two sequences
of flats associated to each such pair.
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2 CAT(0) spaces

In this section, we review some de�nitions and several well-known results about
CAT(0) spaces. We refer the reader to Bridson{Haefliger [10] for proofs of
the results listed in this section, as well as for historical information about the
origins of these ideas. We give precise theorem numbers for the corresponding
statements in [10] when they do not have a common name that can be found
in the index of that book.

A geodesic in a metric space X is an isometric embedding of an interval of R
into X . A metric space X is geodesic if every pair of points in X is connected
by at least one geodesic. If p and q are points in a geodesic space, we use the
notation [p; q] to denote a particular choice of geodesic segment connecting the
points p and q .

De�nition 2.1 CAT(0) Let X be a geodesic metric space. A geodesic tri-
angle �(p; q; r) in X is the union of three geodesic segments [p; q], [q; r], and
[p; r] in X . A comparison triangle � = �(p; q; r) for � is a triangle in the
Euclidean plane E2 such that

d(p; q) = d(p; q); d(q; r) = d(q; r); and d(p; r) = d(p; r);

as illustrated in Figure 3. A point x 2 [p; q] is a comparison point for x 2 [p; q]
provided that d(p; x) = d(p; x). Comparison points are de�ned similarly for
points on the other sides [q; r] and [p; r].

Let � be a triangle in X , and let � be a comparison triangle for �. We say
that � satis�es the CAT(0) inequality if for all points x; y 2 � and comparison
points x; y 2 � we have

d(x; y) � d(x; y):
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Figure 3: A comparison triangle and a pair of comparison points for the CAT(0)
inequality

If every geodesic triangle in X satis�es the CAT(0) inequality, then X is called
a CAT(0) space. The space X has nonpositive curvature if for each x 2 X there
is an � > 0 so that B(x; �) is CAT(0).

De�nition 2.2 Angles Let X be a nonpositively curved space, and let γ :
[0; s] ! X and γ0 : [0; s0] ! X be geodesic segments with p = γ(0) = γ0(0).
The angle ∠(γ; γ0) between γ and γ0 is de�ned by the formula

∠(γ; γ0) = lim
t!0

2 arcsin
1
2t
d
(
γ(t); γ0(t)

�
:

The above limit exists by [10, Proposition II.3.1]. When X is CAT(0), then
geodesic segments are uniquely determined by their endpoints. In this case, if
x 6= p and y 6= p, then the angle between the segments [p; x] and [p; y] will
frequently be denoted ∠p(x; y).

Note that the preceding de�nition agrees with the usual Euclidean angle be-
tween geodesic segments in the Euclidean plane E2 .

De�nition 2.3 Comparison angles Let �(p; q; r) be a geodesic triangle in a
CAT(0) space and let �(p; q; r) be a comparison triangle for �. The interior
angle of � at p, denoted ∠p(q; r), is called the comparison angle between q
and r at p.

Theorem 2.4 ([10], II.1.7(4)) Let X be a CAT(0) space. The angle between
two sides of a geodesic triangle � in X with distinct vertices is no greater than
the corresponding comparison angle in �.

Theorem 2.5 (Convexity of the CAT(0) metric) Let γ and γ0 be two geo-
desic segments in a CAT(0) space X , each parametrized from 0 to 1 propor-
tional to arclength. Then for each t 2 [0; 1] we have

d
(
γ(t); γ0(t)

�
� (1− t) d

(
γ(0); γ0(0)

�
+ t d

(
γ(1); γ0(1)

�
:
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Theorem 2.6 (Cartan{Hadamard Theorem) Let X be a complete metric
space which is connected and simply connected. If X has nonpositive curvature,
then X is a CAT(0) space.

A map f : Y ! X between metric spaces is a local isometry if for every y 2 Y
there is an � > 0 such that the restriction of f to B(y; �) is an isometry onto
its image. A local geodesic in a metric space X is a local isometry from an
interval of R into X .

The following two results are consequences of the Cartan{Hadamard Theorem.

Theorem 2.7 ([10], II.4.13) Fix two points x0 and x1 in a complete, non-
positively curved metric space X . Then any homotopy class of paths between
x0 and x1 in X is represented by a unique local geodesic.

Theorem 2.8 ([10], II.4.14) Let f : Y ! X be a local isometry between two
complete, connected nonpositively curved spaces. Then any lift of f to a map
~f : ~Y ! ~X between their universal covers is an isometric embedding.

3 Piecewise Euclidean 2{complexes

In this section, we collect de�nitions and basic results about piecewise Euclidean
2{complexes. For a more thorough development of these ideas see [10].

De�nition 3.1 A convex Euclidean polyhedron P is the convex hull of a �nite
set of points in Euclidean space En . The dimension of P is the minimal
dimension of an a�ne subspace E � En containing P . If P is contained
in one of the closed half-spaces determined by some hyperplane H � En , then
H \ P is called a face of P . We also consider P itself to be a face of P . Note
that a face F of P is itself a convex polyhedron. The vertices of P are its
0{dimensional faces.

De�nition 3.2 A piecewise Euclidean complex is a complex X formed from
a disjoint union of convex Euclidean polyhedra by gluing isometric faces by
isometries. A metric graph is a one dimensional piecewise Euclidean complex.

Note that a piecewise Euclidean complex X has a natural cell structure whose
cells are the polyhedra of X . A piecewise Euclidean complex has a natural
pseudometric where the distance between two points is the in�mum of the
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lengths of paths connecting them. According to the following theorem due to
Bridson, in many complexes of interest this in�mum is actually realized by a
geodesic path.

Theorem 3.3 [8] If a connected, piecewise Euclidean complex X has only
�nitely many isometry types of cells, then X is a complete geodesic metric
space.

De�nition 3.4 Link Let X be a piecewise Euclidean 2{complex, and let
v be a vertex of X . The link Lk(v;X) of v in X is the space of all germs of
geodesics in X based at v . The radial projection onto Lk(v;X) is the function

� : X − fvg ! Lk(v;X)

sending each point x to the germ of the geodesic [v; x]. If X has only �nitely
many isometry types of cells, then by [10, Theorem I.7.39], the function d given
by

d
(
�(x); �(y)) = ∠v(x; y)

is a metric on Lk(v;X). Under this metric each link Lk(v;X) has a natural
structure as a metric graph with one edge for each corner of a 2{cell incident
at v . The length of each edge is equal to the angle of the corresponding corner.

De�nition 3.5 A locally geodesic loop of length L in a metric space X is a
local isometry C ! X where C is a metric circle of length L.

De�nition 3.6 Link condition A piecewise Euclidean 2{complex X satis�es
the link condition if for every vertex v 2 X(0) , every locally geodesic loop
C ! Lk(v;X) has length at least 2� .

The following theorem is due to Gromov [21, x4.2]. Ballmann provided a proof
in the locally �nite case [3], and Bridson in the general case [8].

Theorem 3.7 Let X be a piecewise Euclidean 2{complex with �nitely many
isometry types of cells. Then X has nonpositive curvature if and only if it
satis�es the link condition.

Corollary 3.8 Let X be a nonpositively curved, piecewise Euclidean 2{
complex with �nitely many isometry types of cells. Then any subcomplex Y
of X is also nonpositively curved (using the induced path metric on Y ).

Corollary 3.9 Let X be a piecewise Euclidean CAT(0) 2{complex, and let
Y be a connected subcomplex. Suppose that, for every vertex v 2 Y (0) , the link
Lk(v; Y ) has diameter at most � . Then the inclusion Y ,! X is an isometric
embedding (using the induced path metric on Y ).
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4 Diagrams and curvature

In this section we review some background on diagrams and curvature, including
the Combinatorial Gauss{Bonnet Theorem. Diagrams are planar 2{complexes
which often allow one to more clearly visualize and reason about combinatorial
homotopies of paths. The early sections of [32] contain a concise and elegant
development of many of the ideas in this section.

De�nition 4.1 Combinatorial maps and complexes A map Y ! X between
CW complexes is combinatorial if its restriction to each open cell of Y is a
homeomorphism onto an open cell of X . A CW complex is itself combinato-
rial if the attaching map of each cell is a combinatorial map (possibly after
subdividing the given cell structures).

Notice that a convex Euclidean polyhedron is a combinatorial complex. Con-
sequently a piecewise Euclidean complex is also combinatorial.

Convention 4.2 A piecewise Euclidean 2{complex is cocompact if it is co-
compact as a combinatorial 2{complex. More precisely, the 2{complex X is
cocompact if the group of combinatorial isometries acts on X with a compact
quotient.

Note that cocompactness of a piecewise Euclidean 2{complex is a stronger
notion than cocompactness of the underlying metric space. For instance, the
Euclidean plane equipped with a Penrose tiling is not a cocompact 2{complex
even though the underlying metric space E2 is cocompact.

De�nition 4.3 A diagram D is a �nite connected combinatorial 2{complex
equipped with a �xed combinatorial embedding in the 2{sphere which misses
at least one point. A simply connected diagram is a disc diagram.

A subdiagram E of D is a subcomplex such that the embedding E ,! S2

factors as E ,! D ,! S2 where D ,! S2 is the given embedding of D into the
sphere. Figure 4 shows a disc diagram and a subdiagram which is not simply
connected.

Disc diagrams are often called van Kampen diagrams, particularly in the con-
text of group presentations. Some authors reserve the term disc diagram for
a diagram which is homeomorphic to a disc and use singular disc diagram for
a contractible diagram. The author prefers the present terminology, as con-
tractible diagrams occur with much higher frequency in applications and seem
to be more natural objects than diagrams with the topology of a disc.
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Figure 4: A disc diagram and a darkened subdiagram which is not simply connected

In practice, we often suppress mention of the embedding of a diagram into the
sphere. However the boundary cycles of a diagram (de�ned below) will typically
be di�erent for di�erent embeddings of the diagram into the sphere. The issue
is that the diagram may have cut points.

De�nition 4.4 Boundary cycles Let D ,! S2 be a diagram with its given
combinatorial embedding in the sphere. Since D is connected, its complement
in S2 has a �nite number of components R1; : : : ; Rk , each homeomorphic to
an open disc. Without loss of generality, we may assume that S2 has a cell
structure with a single 2{cell ei for each region Ri . A choice of orientation
for S2 determines a collection of boundary cycles of D so that the boundary
cycle corresponding to the region Ri is the attaching map of the 2{cell ei . If D
contains at least one 1{cell, then each boundary cycle is a combinatorial map
Ci ! D where Ci is a subdivided circle.

De�nition 4.5 Reduced maps Let D be a disc diagram and � : D ! X
a combinatorial map. A pair of (not necessarily distinct) 2{cells C1 and C2

in D which meet along a 1{cell e is a cancelable pair with respect to � if the
boundary cycles of C1 and C2 beginning with e (in the same direction) are
not identical in D , but are sent to identical paths in X by �. Figure 5 shows
a cancelable pair of 2{cells. The map � is reduced if D does not contain a
cancelable pair of 2{cells. We will often refer to a reduced map D ! X with
domain a disc diagram as a reduced disc diagram.

The following theorem concerning the existence of reduced disc diagrams was
discovered by van Kampen [43] and independently by Lyndon [29]. For a com-
plete proof, see for instance [32, Lemma 2.17].
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aa

bbb

ccc

ddd

Figure 5: A combinatorial map which is not reduced because it contains a cancelable
pair of 2{cells

Theorem 4.6 If X is a combinatorial 2{complex and P ! X is a combina-
torial closed path which is nullhomotopic in X , then there exists a reduced disc
diagram D ! X so that P ! X is the boundary path of D .

We will often refer to the reduced disc diagram D ! X obtained in the pre-
ceding theorem as a reduced disc diagram for P .

In the following theorem we show that nonpositive curvature pulls back under
reduced disc diagrams. We emphasize that the metric constructed on the disc
diagram is unrelated to any metric inherited from the given embedding of the
diagram in the plane R2 (see Figure 6).

A B

D C

A

B C

D

A

BC

D

Figure 6: A reduced map from a disc diagram to a nonpositively curved squared 2{
complex. The diagram on the left inherits a CAT(0) metric in which the eight 2{cells
are Euclidean squares.

Proposition 4.7 Let � : D ! X be a reduced disc diagram, such that X is
a nonpositively curved piecewise Euclidean 2{complex. Then D is a CAT(0)
space.
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Proof Since D is connected and simply connected, we just need to show that
D is nonpositively curved. Since � is combinatorial, D has a natural piecewise
Euclidean structure obtained by pulling back the Euclidean metrics on each cell
of the image.

We will now show that for each vertex v 2 D(0) , the induced map

�� : Lk(v;D)! Lk
(
�(v);X

�
is a local isometry. If not, then �� folds a pair of edges together. In other
words, there is a pair of distinct oriented edges e1 and e2 in Lk(v;D) with the
same initial vertex which map to the same oriented edge under �� . But such a
pair of edges in Lk(v;D) corresponds to two distinct corners of of a cancelable
pair of 2{cells of D , contradicting the fact that � is reduced. Hence for every
vertex v 2 D(0) the map �� is a local isometry.

Thus if C ! Lk(v;D) is a locally geodesic loop, then the composition C !
Lk(v;D) ! Lk

(
�(v);X

�
is a locally geodesic loop of the same length. Hence

C has length at least 2� , and we see that D has nonpositive curvature.

De�nition 4.8 Curvature Let D be a piecewise Euclidean diagram. The
curvature at a vertex v of D , denoted �(v), is de�ned by the formula

�(v) = 2� − � �
(
Lk(v;D)

�
−

X
e2Edges(Lk(v;D))

kek ,

where � denotes Euler characteristic and kek denotes the length of the edge e.
We occasionally use the notation �D(v) to emphasize the speci�c diagram D
in which the curvature is measured. An alternate way to interpret curvature
is to formally place an angle of size � at each corner of the complement of D
in S2 as illustrated in Figure 7. Then the curvature at v is equal to 2� minus
the angle sum of all the corners at v including these \exterior" corners.

We now have two distinct notions of nonpositive curvature in a piecewise Eu-
clidean diagram. The following lemma gives a simple correspondence between
these two ideas.

Lemma 4.9 Let D be a piecewise Euclidean diagram. Then D has non-
positive curvature if and only if the curvature at each interior vertex of D is
nonpositive.

Proof Notice that the link of an interior vertex is always a circle. The proof
now follows immediately from the de�nition of curvature at a vertex and the
Link Condition for D .
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Figure 7: Formally place an angle of size � at each corner of S2 −D . The curvature
at a vertex is 2� minus the angle sum of all corners at v including these \exterior"
corners.

The Combinatorial Gauss{Bonnet Theorem is based on Lyndon’s Curvature
Formula [30], and was proved for piecewise Euclidean disc diagrams indepen-
dently by Gersten and Pride [18, 37]. It has since been generalized to arbitrary
combinatorial 2{complexes by McCammond{Wise [32].

Theorem 4.10 (Combinatorial Gauss{Bonnet) Let D be a piecewise Eu-
clidean diagram. Then X

v2D(0)

�(v) = 2� �(D):

5 Isolated Flats and the Flat Triplane Theorem

De�nition 5.1 A CAT(0) 2{complex X has the Isolated Flats Property if
there is a function  : R+ ! R+ such that for every pair of distinct flat planes
F1 6= F2 in X and for every k � 0, the intersection Nk(F1) \ Nk(F2) of k{
neighborhoods of F1 and F2 has diameter at most  (k).

The de�nition of the Isolated Flats Property given above is catered to the two
dimensional setting, and as such, is slightly simpler than the de�nition used in
[24] and [25]. This simpli�cation is due to the fact that several phenomema
present in higher dimensions are absent in the 2{dimensional setting. For
instance, in general a space with the Isolated Flats Property could contain
subspaces of the form Ek �K where K is a nontrivial compact set.

We note the following immediate consequence of the Isolated Flats Property,
which will be useful in the sequel.
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Proposition 5.2 Let X be a CAT(0) space with the Isolated Flats Property.
Then for every k � 0, each flat disc in X of radius at least  (k) lies in a
k{neighborhood of at most one flat.

The Flat Plane Theorem states that a proper, cocompact CAT(0) space is
�{hyperbolic if and only if it does not contain an isometrically embedded flat
plane.2 Wise has proved an analogous result for two-complexes with the Isolated
Flats Property. His Flat Triplane Theorem shows that in the two-dimensional
case, the Isolated Flats Property is equivalent to an absence of triplanes. Since
this useful result has not appeared in the literature, we provide Wise’s proof
in this section for the sake of completeness. For related results regarding the
presence of triplanes in nonpositively curved 2{complexes, see [46, 47].

De�nition 5.3 A triplane is the space formed from three closed half-planes
by gluing their boundary lines (by isometries) to a common line. Notice that a
triplane is a piecewise Euclidean CAT(0) 2{complex.

Fix a basepoint x on the singular line of a triplane T . Let Tr denote the closed
ball in T of radius r around X . Notice that Tr looks like three half discs of
radius r with their straight boundary sides glued together.

Theorem 5.4 (Flat Triplane Theorem) Let X be a proper, cocompact piece-
wise Euclidean 2{complex. The following are equivalent:

(1) X has the Isolated Flats Property.

(2) There is a universal bound L on the diameter of the intersection of any
two distinct flat planes in X .

(3) X does not contain an isometrically embedded triplane.

The proof of Theorem 5.4 uses the following variant of the Arzel�a{Ascoli the-
orem, which is proved in [10, Lemma II.9.34]. The statement given here is
slightly stronger than the one given by Bridson and Haefliger. This additional
strength follows immediately from their proof.

Lemma 5.5 Let Y be a separable metric space with basepoint y0 , and let
X be a proper, cocompact metric space. If for each n 2 N there is an isomet-
ric embedding �n : B(y0; n) ,! X then there exists an isometric embedding
� : Y ,! X .

2The Flat Plane Theorem was proved for Riemannian manifolds by Eberlein [14].
Gromov stated the theorem for general CAT(0) spaces in [21, x4.1]. Heber and Bridson
independently provided proofs in this general setting [23, 9].
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Furthermore, if we assume the existence of a compact set K such that for
each n the point �n(y0) lies in K , then we may take � to be a pointwise limit
of a subsequence f�nig of the original sequence of embeddings.

The proof of Theorem 5.4 also uses the Flat Strip Theorem [10], which states
the following.

Theorem 5.6 (Flat Strip Theorem) Let X be a CAT(0) space, and let
γ : R ! X and γ0 : R ! X be geodesic lines in X . If there is a constant K
such that d

(
γ(t); γ0(t)

�
� K for all t 2 R, then the convex hull of γ(R)[γ0(R)

is isometric to a flat strip R� [0; L] � E2 .

Proof of Theorem 5.4 The implications (1) ) (2) ) (3) are immediate.
We now show that (3) implies (2). Suppose for each k > 0 there is a pair of
distinct flat planes Ek 6= Fk whose intersection Ik has diameter at least k .
Since Ek and Fk are convex, their intersection Ik is isometric to a convex
polygonal region (possibly unbounded) in the Euclidean plane. Since X is a
cocompact 2{complex, it has only �nitely many isometry types of cells (see
Convention 4.2). So there are �nitely many possible turning angles on the
boundary of Ik . Thus there is a positive number � (independent of k) so that
every positive turning angle on @Ik is at least � . It follows that there are at
most 2�=� turns on the boundary of Ik . Thus for each m > 0, there is an n > 0
so that @In contains a straight line segment γm of length m. This segment
lies in two distinct flat discs Dm and D0m of diameter m which intersect in a
half disc. Notice that Dm [ D0m with its induced path metric is isometric to
the space Tm (in the notation of De�nition 5.3). But for every point v 2 Tm ,
the link Lk(v; Tm) has diameter � , so Tm ,! X is an isometric embedding by
Corollary 3.9. Since X contains an isometrically embedded copy of Tm for each
m > 0, it follows from Lemma 5.5 that X contains an isometrically embedded
triplane.

We have shown that (2) and (3) are equivalent. Now we show that (2) and (3)
together imply (1). Suppose X does not have the Isolated Flats Property. Then
there exists a constant R > 0 such that for every k 2 N there are distinct flats
Ek and Fk in X with geodesic segments γk � Ek and γ0k � Fk , each with
length greater than k such that the Hausdor� distance between their images is
at most R.

Consider the sequence of segments γk . By composing with a suitable isometry,
we may assume that the midpoint xk of each segment γk lies inside a given
compact set K . Then Lemma 5.5 implies that there is a subsequence γki that
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converges pointwise to a geodesic γ . Applying Lemma 5.5 to the sequence of
embedded flat planes Eki gives a further subsequence of integers fmig such
that the flat planes Emi converge to a flat plane E containing the geodesic γ .
Letting x0k denote the midpoint of γ0k , we see that d(xk; x0k) � 3R, since the
endpoints of γk and γ0k are within 3R of each other. So x0k lies in the closure
K 0 of a 3R{neighborhood of K , which is compact, since X is proper.

Continuing as above, we eventually obtain a sequence of integers fnig such
that Eni and Fni converge to isometrically embedded flat planes E and F
containing geodesic lines γ and γ0 . Furthermore, we may assume that the
Hausdor� distance between the images of γ and γ0 is at most R. If E and F
are actually the same flat plane, then the intersections Eni \ Fni must have
arbitrarily large diameter, contradicting (2). So we may assume that E 6= F .

By Theorem 5.6, we conclude that the convex hull S of Im(γ) [ Im(γ0) is
isometric to a flat strip R � [0; L] � E2 . Since E , F , and S are convex, any
intersection of them is also convex. It now follows that E \ S and F \ S are
substrips SE = R � [0; s] and SF = R � [t; L] respectively. We now have two
cases, depending on whether these substrips intersect.

Case 1 Suppose s < t. Then E and F are disjoint planes connected by a
flat strip. Letting U = E [ F [ S , we see that for every point v 2 U the link
Lk(v; U) has diameter � . So the inclusion U ,! X is an isometric embedding
by Corollary 3.9. Since U contains an isometrically embedded triplane, we are
done.

Case 2 Suppose s � t. Then E \ F is a closed convex set of the plane
containing a line. It follows that E \ F is either a half-plane, or a (possibly
degenerate) strip R� [0; s − t]. Let U = E [ F . As in the previous case, U is
isometrically embedded in X since every link Lk(v; U) has diameter � . Since
U contains a triplane, we are done.

6 Hyperbolicity relative to flats

In this section we give precise de�nitions of the Relative Fellow Traveller Prop-
erty and the Relatively Thin Triangle Property. We show that in the 2{
dimensional setting, each of these properties implies the Isolated Flats Property,
establishing the implications (2) ) (1) and (3) ) (1) of Theorem 1.1.

De�nition 6.1 Relatively Thin Triangle Property A geodesic triangle in a
space is �{thin relative to the flat F if each side of the triangle lies in a �{
neighborhood of the other two sides and the flat F , as illustrated in Figure 8.

Geometry & Topology, Volume 8 (2004)



228 G Christopher Hruska

��

��
��
��
��

��

����
����
����
����

����
����
����
����

Figure 8: A triangle which is �{thin relative to a flat

A space X has the Relatively Thin Triangle Property if there is a constant �
so that each triangle in X is either �{thin in the usual sense or �{thin relative
to some flat.

It is not hard to see that any 2{complex with the Relatively Thin Triangle
Property must also have the Isolated Flats Property.

Theorem 6.2 (Relatively Thin Triangle Property ) Isolated Flats Property)
Let X be a proper, cocompact, piecewise Euclidean CAT(0) 2{complex sat-
isfying the Relatively Thin Triangle Property. Then X also has the Isolated
Flats Property.

Proof Assume by way of contradiction that X does not have the Isolated
Flats Property. Then by Theorem 5.4, X contains an isometrically embedded
triplane T . Let us parametrize T as

T =
�

(x; y; i)
�� x; y 2 R; y � 0; and i 2 f1; 2; 3g

}.
(x; 0; j) � (x; 0; k):

Now consider the triangle �n with vertices

a = (0; n; 1) b = (−2n; n; 2) c = (2n; n; 3)

illustrated in Figure 9. Notice that for any �xed � , each side of �n only
intersects the �{neighborhood of the union of the other two sides near the
corners of the triangle. This intersection consists of two segments whose lengths
are bounded by a constant which does not depend on the value of n. So for
large values of n, the triangle �n is not �{thin.

But if n is su�ciently large, each side of �n lies in a �{neighborhood of at
most one flat in X . Since the three sides of �n lie in three distinct flats, it is
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a

b

c

Figure 9: A fat triangle which does not lie close to a single flat. The two paths from b
to c are quasigeodesics which are only close together near their endpoints.

clear that �n is not �{thin relative to any single flat in X . So X does not
have the Relatively Thin Triangle Property.

De�nition 6.3 A (�; �){quasigeodesic in a metric space X is a function
� : [a; b]! X for some real interval [a; b] satisfying

1
�
d(s; t)− � � d

(
�(s); �(t)

�
� �d(s; t) + �

for all s; t 2 [a; b]. A map � : [a; b] ! X is a quasigeodesic if there exist
constants � and � such that � is a (�; �){quasigeodesic.

In hyperbolic geometry, quasigeodesics with common endpoints satisfy an asyn-
chronous fellow traveller property. This fact was established for the hyperbolic
plane by Morse [33] and for Hn by Efromovich{Tihomirova [15]. Gromov gen-
eralized the fellow traveller property to the following result about �{hyperbolic
spaces.

Theorem 6.4 ([21], Proposition 7.2.A) Let � and � be a pair of (�; �){
quasigeodesics with common endpoints in a �{hyperbolic space X . Then the
Hausdor� distance between Im(�) and Im(�) is at most L, where L depends
only on the constants � , �, and �.
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The concept of a pair of paths which fellow travel relative to flats generalizes
the asynchronous fellow travelling described above. Roughly speaking, the idea
is that the two paths alternate between tracking close together and travelling
near a common flat as illustrated in Figure 10.
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Figure 10: A pair of paths which fellow travel relative to flats

De�nition 6.5 Fellow travelling relative to flats A pair of paths

� : [0; a]! X and �0 : [0; a0]! X

in a CAT(0) space L{fellow travel relative to a sequence of flats (F1; : : : ; Fn)
if there are partitions

0 = t0 � s0 � t1 � s1 � � � � � tn � sn = a

and
0 = t00 � s00 � t01 � s01 � � � � � t0n � s0n = a0

so that for 0 � i � n the Hausdor� distance between the sets �
(
[ti; si]

�
and �0

(
[t0i; s

0
i]
�

is at most L, while for 1 � i � n the sets �
(
[si−1; ti]

�
and

�0
(
[s0i−1; t

0
i]
�

lie in an L{neighborhood of the flat Fi .

We will frequently say that paths L{fellow travel relative to flats if they L{
fellow travel relative to some sequence of flats.

De�nition 6.6 A CAT(0) space X satis�es the Relative Fellow Traveller
Property if for each choice of constants � and � there is a constant L =
L(�; �;X) such that (�; �){quasigeodesics in X with common endpoints L{
fellow travel relative to flats.

In the 2{dimensional setting, it is easy to show that the Relative Fellow Trav-
eller Property implies the Isolated Flats Property using the same counterexam-
ple as the proof of Theorem 6.2. The converse requires substantially more work
and occupies most of the present article.
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Theorem 6.7 (Relative Fellow Traveller Property ) Isolated Flats Property)
Let X be a proper, cocompact piecewise Euclidean CAT(0) 2{complex. If X
has the Relative Fellow Traveller Property, then X also has the Isolated Flats
Property.

Proof Suppose X contains a triplane T . As in the proof of Theorem 6.2,
consider the triangle �n with vertices

a = (0; n; 1) b = (−2n; n; 2) c = (2n; n; 3)

illustrated in Figure 9. Notice that the union [b; a] [ [a; c] is a quasigeodesic
when parametrized by arclength. Furthermore, the associated constants of this
quasigeodesic are independent of n.

Also note that for each L, the geodesic [b; c] intersects the L{neighborhood of
the quasigeodesic only near their common endpoints. But [b; a][ [a; c] does not
lie in a C{neighborhood of any flat for any constant C which does not depend
on n. So X does not have the Relative Fellow Traveller Property.

7 Ru�ed boundaries and thin triangles

In the previous section, we established the implications (2) ) (1) and (3) ) (1)
of Theorem 1.1. The remainder of this article is devoted to proving (1) ) (2)
and (1) ) (3), which we will establish in Theorems 9.1 and 13.1 respectively.

Our objective for the next two sections is to establish some diagrammatic tools
that will be useful in the proofs of these two theorems. In this section we
introduce the notion of a diagram which is ru�ed along a certain part of its
boundary. This notion generalizes the fact that in the �{hyperbolic setting,
every point of a piecewise Euclidean diagram is either close to a point of negative
curvature or lies near the boundary of the diagram. As a consequence, every
�{hyperbolic diagram is \ru�ed" throughout its interior.

When studying the Isolated Flats Property, one frequently encounters diagrams
with the property that negative curvature is distributed evenly along a certain
portion of the boundary of the diagram except in places where the diagram is
very thin. Such a diagram is ru�ed along that boundary path.

Diagrams which are ru�ed along part of their boundary have many features
in common with �{hyperbolic diagrams. For instance, we will see in Propo-
sition 7.7 that a triangular diagram which is ru�ed along one side must be
�{thin. In this section, we also prove results which describe various ways that
ru�es can be inherited by a subdiagram.
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De�nition 7.1 Ru�ed Let D be a nonpositively curved piecewise Euclidean
diagram with boundary cycles C1; : : : ; Cn . Suppose C1 is a concatenation of
two paths � and � . Then the pair (D;�) is (R; �){ru�ed for positive constants
R and � provided that for each point �(t), the open ball B = B

(
�(t); R

�
in D

satis�es one of the following two properties:

(R-1) B contains a vertex v with curvature �D(v) � −� , or

(R-2) B intersects the image of at least one of the curves C2; : : : ; Cn; or � .

The pair (D;C1) is (R; �){ru�ed provided that for each point C1(t), the open
ball B = B

(
C1(t); R

�
in D satis�ed one of the following two properties:

(R 0-1) B contains a vertex v with curvature �D(v) � −� , or

(R 0-2) B intersects the image of at least one of the curves C2; : : : ; Cn .

Remark 7.2 Note that if (D;�) or (D;C1) is (R0; �0){ru�ed, then it is also
(R; �){ru�ed for any R � R0 and any positive � � �0 .

The following lemma follows immediately from the de�nition of ru�ed.

Lemma 7.3 (Subdiagrams) Consider a subdiagram D0 of a nonpositively
curved piecewise Euclidean diagram D . Suppose there are boundary cycles
C and C 0 of D and D0 respectively so that C is a concatenation �� and
C 0 is a concatenation ��0 , as illustrated in Figure 11(a). If the pair (D;�) is
(R; �){ru�ed then so is the pair (D0; �).

Similarly suppose C is a boundary cycle of both D and D0 as in Figure 11(b).
If (D;C) is (R; �){ru�ed, then (D0; C) is also (R; �){ru�ed.

�

C

(a) (b)

�

�0

Figure 11: (a) A diagram and a darkened subdiagram which share a boundary arc �
(b) A diagram and a darkened subdiagram which share an entire boundary cycle
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The following lemma says that under many circumstances a concatenation of
ru�ed boundary arcs is also a ru�ed boundary arc. In general the constants
associated to the ru�es depend on the number of segments being concatenated.
The issue is that one way for a boundary arc to be ru�ed is for the arc to be
very short. If each arc in the concatenation is known to be su�ciently long,
then ru�ing constants are obtained which do not depend on the number of
concatenated segments.

Lemma 7.4 (Concatenations) Let C be a boundary cycle of a nonposi-
tively curved piecewise Euclidean diagram D . Suppose C is a concatenation
�1 � � ��n� such that (D;�i) is (R; �){ru�ed for each i and � = �1 � � ��n is a
local geodesic in D .

Suppose further that any (global) geodesic in D connecting two points of Im(�)
lies inside Im(C). Then

(1) (D;�) is (nR; �){ru�ed.

(2) If each �i has length at least 2R, then (D;�) is (2R; �){ru�ed.

(3) If each �i has length at least 2R and � has image a single point, then
(D;C) is (2R; �){ru�ed.

The requirement that any geodesic in D connecting two points of Im(�) lies
inside Im(C) is satis�ed if D is a disc diagram and � is a geodesic boundary
component, as shown in Figure 12(a), or alternately if D is an annular diagram
and C is a locally geodesic boundary component as in Figure 12(b).

�1

�2

�3

�4

�n

�n�3�2�1

(a) (b)
�

�

Figure 12: (a) A disc diagram such that the concatenation �1 � � ��n is a geodesic
boundary arc (b) An annular diagram such that the concatenation �1 � � ��n� is a
locally geodesic boundary component

Proof If every �i has length less than 2R, then every point of Im(�) is within
a distance nR of an endpoint of �, and hence (D;�) is (nR; �){ru�ed. On
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the other hand, suppose some �i has length at least 2R, and xi is a point
on Im(�i) at least a distance R from both ends of �i . Then the ball B =
B(xi; R) intersects Im(�) only in the interior of Im(�i). If B does not contain
a vertex with curvature � −� , then B intersects Im(�) or some other boundary
component of D . Every point of Im(�) is within a distance (n − 1)R of such
a point xi . Therefore (1) holds.

If each �i has length at least 2R, then each contains a point xi at least a
distance R from both ends of Im(�). Therefore, every point of Im(�) is within a
distance R of such a point xi . Claim (2) now follows immediately. Furthermore,
if � has image a single point, then that point is also within a distance R of
some xi , giving (3).

De�nition 7.5 Triangular A piecewise Euclidean CAT(0) disc diagram �
is triangular if its boundary cycle is a concatenation of three geodesics �, � ,
and γ . These geodesics are the sides of the triangle, and their endpoints are
its corners.

Lemma 7.6 Let � be a geodesic triangle in a CAT(0) space X . Suppose one
of the sides of � lies in a �{neighborhood of the union of the other two sides.
Then � is 2�{thin.

Proof Let a, b, and c be points lying on sides �, � , and γ respectively so
that d(a; b) and d(a; c) are each less than � . Then b lies in a 2�{neighborhood
of both � and γ . Similarly, c lies in a 2�{neighborhood of both � and � . The
result now follows from the convexity of the CAT(0) metric in X .

The following proposition says that a triangular diagram which is ru�ed along
one side is �{thin for some � . The proof uses the Combinatorial Gauss{Bonnet
Theorem to bound the total amount of negative curvature inside the triangle.

Proposition 7.7 (Thin triangles) Let � be a piecewise Euclidean CAT(0)
triangular diagram with sides �, � , and γ . Suppose R and � are positive
constants so that (�; �) is (R; �){ru�ed. Then there is a constant � = �(R; �)
so that � is �{thin.

Proof By Theorem 4.10, the sum of the curvatures at all the vertices of �
is exactly 2� . But by Lemma 4.9 the only positive curvature in � occurs at
its three corners since � is nonpositively curved. Furthermore, the curvature
at each corner is at most � . So the sum of all positive curvatures in � is at
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most 3� . It follows that the sum of all negative curvatures in � has magnitude
at most � .

If � lies in an R{neighborhood of the union of � and γ , then by Lemma 7.6
setting � = 2R completes the proof. Otherwise, let [x; y] be the maximal
subsegment of � which lies outside the open R neighborhood of � [ γ . Setting
m =

�
d(x; y)

�
2R
�
, we can choose points x1; : : : ; xm on [x; y] so that the open

balls Bi = B(xi; R) are disjoint. But each ball contains negative curvature
with magnitude at least � . So there can be at most �=� such balls. Therefore
d(x; y) is bounded in terms of R and � . The conclusion now follows from
Lemma 7.6.

Figure 13 illustrates a diagram D which is ru�ed along a boundary arc � and
a subdiagram D0 so that �, � , and �0 form a geodesic triangle. If the side � is
su�ciently short, then the following lemma states that D0 is ru�ed along �0 .
As in the proof of Proposition 7.7, the reason is that the Combinatorial Gauss{
Bonnet Theorem provides a bound on the total amount of negative curvature
inside the triangle.

�

�0�

γ

γ0
D0

Figure 13: If (D;�) is ru�ed and � is short, then (D0; �0) is also ru�ed.

Lemma 7.8 Given positive constants R, � , and � , there is a constant R0 =
R0(R; �; �) such that the following property holds. Let D be a piecewise Eu-
clidean CAT(0) disc diagram whose boundary cycle is a concatenation �γ . Let
D0 and � be subdiagrams of D with disjoint interiors such that � is trian-
gular with sides �, � , and �0 and such that the boundary cycle of D0 is a
concatenation �0γ0 as illustrated in Figure 13. If (D;�) is (R; �){ru�ed and
� has length at most � , then (D0; �0) is (R0; �=2){ru�ed.

Proof If � has length at most � , then we are done since �0 then has length
at most 2� , and hence (D0; �0) is trivially (�; �){ru�ed. Thus we may assume
that the length of � is more than � .
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Let x be the common endpoint of � and �0 . For

1 � i � m =
�
(‘(�) − �)

�
2R
�
;

let xi be the point on Im(�) at a distance (2i − 1)R from x. Then the open
balls Bi = B(xi; R) are pairwise disjoint. Since ‘(�) � 2mR+ � and ‘(�) � � ,
it follows that the image of � does not intersect any Bi . Therefore, if Bi
intersects Im(γ), it must also intersect Im(γ0). Since (D;�) is (R; �){ru�ed, if
Bi does not intersect Im(γ0), then Bi contains a vertex yi with �D(yi) � −� . If
yi is in the interior of D0 , then �D0(yi) = �D(yi). Similarly, if yi 2 �− Im(�0),
then ��(yi) = �D(yi). If yi lies on the image of �0 , it is a vertex in both �
and D0 satisfying

�D(yi) = ��(yi) + �D0(yi):

Call Bi de�ant if it contains a vertex yi 2 � with ��(yi) � −�=2. As in the
proof of Proposition 7.7, the triangular diagram � contains negative curvature
with total magnitude at most � . So at most 2�=� of the Bi ’s are de�ant. Each
nonde�ant ball Bi either intersects Im(γ0) or contains a vertex yi 2 D0 with
�D0(yi) � −�=2.

Now �x any point p0 2 Im(�0). Since the endpoints of � and �0 are at most �
apart, p0 is within a distance � of some point p 2 Im(�). But p is within
� + 3R of the center xi of some ball Bi . This xi is within a distance 4R�=�
of the center xj of some nonde�ant ball Bj . Thus p0 is within a total distance
2� + 4R + (4R�=�) of either the image of γ0 or some vertex yj 2 D0 with
�D0(yj) � −�=2. In other words, (D0; �0) is (R0; �=2){ru�ed, where R0 =
2� + 4R + (4R�=�).

8 Preflats in reduced disc diagrams

Let � : D ! X be a reduced disc diagram where X is a piecewise Euclidean
CAT(0) 2{complex. When X contains flat planes, we will frequently be in-
terested in examining the preimages under � of these various planes. These
preimages of flats are especially useful in the presence of the Isolated Flats
Property since distinct flats in X have only a small intersection.

Each component of such a preimage is composed of various topological discs and
isolated edges glued together in a treelike fashion as illustrated in Figure 14. It
is frequently more convenient to deal with these discs individually rather than
considering the entire preimage as a unit. We call each such disc a preflat. The
following de�nition makes this notion more precise.
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Figure 14: A reduced disc diagram � : D ! X and the preimage under � of some flat
plane F in X . The preimage shown is disconnected and contains exactly �ve preflats.

De�nition 8.1 Preflat Let � : D ! X be a reduced disc diagram where
X is a CAT(0) 2{complex with the Isolated Flats Property. A preflat P is
the closure of a connected component of the interior of �−1(E) for some flat
plane E in X .

In this section we see that both the presence and the absence of preflats in
disc diagrams provides a source of ru�es. In Proposition 8.2 we show that if a
geodesic segment occurs along the boundary of a reduced disc diagram D ! X ,
then either the diagram is ru�ed along the geodesic or some preflat in X comes
close to the geodesic. So in this case, the absence of preflats provides ru�es.
In contrast, we see in Proposition 8.7 that in the presence of the Isolated Flats
Property preflats themselves are surrounded by ru�es.

Proposition 8.2 Let X be a proper, cocompact piecewise Euclidean CAT(0)
2{complex. For each M0 > 0, there are positive constants R = R(M0;X) and
�0 = �0(M0;X) so that the following property holds for any positive � � �0 .

Let � : D ! bX be a reduced disc diagram where bX is a subdivision of X .
Suppose the boundary cycle of D decomposes as a concatenation of two paths
γ and � such that � � γ is a geodesic in bX . Then either

(1) the pair (D; γ) is (8R; �){ru�ed, or

(2) some preflat P with inscribed radius at least M0 intersects the R{
neighborhood of Im(γ), while �(P ) is not contained in the (R + M0){
neighborhood of Im(� � γ).

The proof of the preceding proposition uses several lemmas which we will state
and prove before giving the proof of the proposition. Before we get to these
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lemmas, let us reflect for a moment on why it is useful to allow subdivisions
of X in the statement above. The complex X has a �xed cell structure such
that the group of combinatorial isometries of X acts cocompactly. In practice,
we need to consider disc diagrams arising from nullhomotopies of piecewise
geodesic loops in X which do not respect the given cell structure of X . In
general, a subdivision of X is required to ensure that a particular piecewise
geodesic loop lies inside the 1{skeleton of X . We emphasize that the constants
R and �0 obtained in the proposition depend only on the cell structure of X
and not on the particular subdivision bX in question.

Our �rst lemma does not use the Isolated Flats Property or even nonpositive
curvature.

Lemma 8.3 Let X be a proper, cocompact, piecewise Euclidean 2{complex.
For every m > 0 there is an n = n(m;X) so that if B is a flat disc in X of
radius n, then the central subdisc B0 of radius m lies in some flat plane of X .

Proof Our argument is a combinatorial version of the diagonal argument in
the proof of Lemma 5.5. Suppose, by way of contradiction, that there is a
number m > 0 so that for each integer n � m there is a flat disc Bn of
radius n whose central subdisc B0n of radius m does not lie entirely within
any flat plane of X . Consider the sequence of embeddings Bn ,! X . By
composing each embedding with a suitable isometry of X , we may assume that
the center pn of every disc Bn lies in a common �nite subcomplex K .

We proceed by induction to construct a sequence

∅ = C0 � C1 � C2 � � � �
of subcomplexes of X and a sequence

N = S0 � S1 � S2 � � � �
of in�nite sets such that Ci lies inside each disc of the family fBn j n 2 Si g and
such that the union

S
iCi is a flat plane. Suppose Si−1 and Ci−1 have already

been constructed. Since X has �nitely many isometry types of 2{cells, the cells
of X have a universally bounded radius. It follows that for each su�ciently large
n 2 Si−1 there is a 2{cell inside Bn − Ci−1 which is a minimal distance Ri−1

from the center pn . The chosen 2{cells all lie in a bounded (hence compact)
closed neighborhood of K . So there is an in�nite set Si � Si−1 such that for
n 2 Si the chosen 2{cells coincide in a single cell ei . Let Ci = Ci−1 [ ei .
Notice that for n 2 Si the disc of radius Ri in Bn centered at pn is contained
in Ci . Furthermore, as i tends to in�nity, the radii Ri become arbitrarily large.
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It follows that the union
S
i Ci is a flat plane E . If we choose ni 2 Si , then

Bni is a disc of radius ni whose central subdisc of radius Ri lies in the flat
plane E , which is a contradiction.

The following lemma gives a lower bound on the size of certain turning angles
occuring when a geodesic passes through a vertex.

Lemma 8.4 Let X be a proper, cocompact piecewise Euclidean CAT(0) 2{
complex. For each R � 0, there is a positive constant � = �(R) with the
following property.

Let x, y , and z be distinct vertices of X such that y lies on the geodesic [x; z],
and suppose that each of the distances d(x; y) and d(y; z) are less than R. Let
� : X − fyg ! Lk(y;X) be the radial projection onto Lk(y;X). Then any
immersed path in Lk(y;X) connecting �(x) and �(z) which has length strictly
greater than � actually has length at least � + � .

Proof Since X is proper and cocompact we can bring the points x, y , and z
into a �xed compact set K = K(R) by applying a combinatorial isometry.
But K contains only �nitely many vertices. So for each R, only �nitely many
choices of x, y , and z concern us. Consequently it su�ces to prove the result
for a �xed triple of points x, y , and z .

Since Lk(y;X) is a �nite metric graph, it contains only �nitely many immersed
paths which connect �(x) and �(z) and which have length less than 2� . Thus
the paths with length greater than � have a minimum length as desired.

Recall that the Monodromy Theorem from complex analysis states that an
analytic continuation of an analytic function along a curve depends only on
the homotopy class of the curve in question [39]. The next lemma is an easy
consequence of the Monodromy Theorem.

Lemma 8.5 Let S be a simply connected nonpositively curved surface which
is locally isometric to the Euclidean plane E2 . Then S admits a local isometry
into E2 .

Proof By hypothesis, each point x 2 S is contained in an open disc Dx which
admits an isometric embedding into E2 . Fix a speci�c embedding of a single
disc Dp . For each overlapping disc Dq , we can compose the given embedding
Dq ,! E2 with an isometry of E2 to make it agree with the chosen embedding

Geometry & Topology, Volume 8 (2004)



240 G Christopher Hruska

Dp ,! E2 on the overlap Dp\Dq . This procedure provides an analytic function
Dp[Dq ,! E2 extending the original map Dp ,! E2 . Continuing in this fashion,
a map S ! E2 can be de�ned by taking an analytic extension of the original
embedding Dp ,! E2 along various paths. By the Monodromy Theorem, these
continuations �t together to give a globally de�ned local isometry S ! E2 .

The following lemma roughly states that if a geodesic occurs as part of the
boundary of a disc diagram, then either the diagram is ru�ed along the geodesic
or some point of the geodesic has a neighborhood isometric to a Euclidean half-
disc.

Lemma 8.6 Let X be a piecewise Euclidean CAT(0) 2{complex, and let
� : D ! X be a reduced disc diagram. Suppose the boundary path of D is a
concatenation �γ where γ is a geodesic in D . Let p = γ(t) be an arbitrary
point in the image of γ . If we let B = B(p;R), then either

(1) B contains a vertex with negative curvature, or

(2) B intersects the image of �, or

(3) B is isometric to a Euclidean half-disc.

Proof Suppose conditions (1) and (2) fail for B . Then the curvature at every
vertex of B is zero. So B is locally flat. In other words, each vertex of �B has
a neighborhood isometric to a Euclidean disc, while each vertex of @B has a
neighborhood isometric to a Euclidean half-disc.

Since B is a metric ball in a CAT(0) space, B is a convex subspace of D . So B
is simply connected, and hence admits a local isometry into the Euclidean plane
by Lemma 8.5. Since �B is convex, this local isometry is actually an isometry
from B to a convex set in the Euclidean plane. Now B is easily seen to be
isometric to a flat Euclidean half-disc of radius R.

We are now ready to prove Proposition 8.2.

Proof of Proposition 8.2 By Lemma 8.3, we can choose R = R(M0;X)
su�ciently large that for any flat disc of radius R in X the central subdisc
of radius 2M0 lies in a flat plane. If some ball B = B

(
γ(t); 2R

�
in D is

isometric to a Euclidean half-disc, then B maps isometrically to X under �.
Furthermore, B contains a Euclidean disc of radius R whose central subdisc
of radius 2M0 intersects the R{neighborhood of γ but is not contained in the
(R +M0){neighborhood of γ , as illustrated in Figure 15. By our choice of R,
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2M0

R

2R

γ(t) γ

Figure 15: The inner disc intersects the R{neighborhood of γ but is not contained in
the (R +M0){neighborhood of γ .

this subdisc lies in some preflat P . Since B maps isometrically to X under �, it
follows that �(P ) is not contained in the (R+M0){neighborhood of Im(��γ).

We will now assume that no such ball is isometric to a flat half-disc. By
Lemma 8.6, each ball B

(
γ(t); 2R

�
either intersects the image of �, or con-

tains a vertex v with negative curvature. It remains to �nd a positive constant
�(M0;X) so that (1) holds.

Let v be a vertex in the interior of D with �(v) < 0. Then 2� + j�(v)j is the
length of some locally geodesic loop ‘ in Lk

(
�(v); bX� since � is a reduced map.

If �(v) is not a vertex of X , then ‘ has length n� for some integer n > 2. On
the other hand, if �(v) is a vertex of X , then, since X has only �nitely many
isometry types of cells, there is a positive constant �1 , depending only on the
space X , such that ‘ has length at least 2� + �1 . In either case, we see that
�(v) � −�1 .

Now suppose v is a vertex on γ with �(v) < 0. We may assume that �(v)
is a vertex of X since otherwise �(v) would be a negative multiple of � . Let
x and y be points on γ at a distance 4R on either side of v , or the endpoints
of γ if v is too close to one of the ends. If either x or y is within 2R of �,
then v is within 6R of �. Otherwise, there are vertices z and w with negative
curvature so that d(x; z) and d(y;w) are each less than 2R. If either z or w
is in the interior of D , then its curvature is less than −�1 , and hence v is
within 6R of a vertex with curvature less than −�1 . Now suppose that both z
and w lie on γ . If either point does not map under � to a vertex of X , then
the curvature at that point is at least � as above, so v is within a distance 6R
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of a point with curvature at most −� . Finally assume that both z and w map
under � to vertices of X . Since v also maps to a vertex of X , and the distances
from v to z and w are each at most 6R, then the curvature at v has magnitude
at least �2(R;X) by Lemma 8.4.

We have now shown that every vertex with negative curvature either in the
interior of D or on γ is within 6R of either � or a vertex with negative curvature
of magnitude at least

�0 = minf�1; �2g > 0:

Since every point on γ is within 2R of either � or a vertex with negative
curvature (which does not lie on �), the pair (D; γ) must be (8R; �0){ru�ed.
The result now holds for any positive � � �0 .

The second proposition of this section is the following result, stating roughly
that in the presence of the Isolated Flats Property preflats are surrounded by
ru�es. More speci�cally, if the interior of a preflat is removed from a disc
diagram, then the resulting diagram will be ru�ed along the new boundary
cycle.

Proposition 8.7 Let X be a proper, cocompact piecewise Euclidean CAT(0)
2{complex with the Isolated Flats Property. There are positive constants R(X)
and �(X) satisfying the following property. Let � : D ! bX be a reduced disc
diagram where bX is a subdivision of X , and let D0 = D−�P for some preflat P
in D . Then the pair (D0; @P ) is (R; �){ru�ed.

The proof of this proposition has many similarities with the proof of Proposi-
tion 8.2. Before giving this proof, we will state and prove some related lemmas
describing important properties of preflats. First we need to de�ne the notion
of a corner of a subdiagram.

De�nition 8.8 Let D be a disc diagram, and let S be a subdiagram. Let
v be a vertex of D . A corner of S at v is a set of corners of 2{cells of S
whose closure corresponds to an entire connected component of Lk(v; S) for
some 0{cell v . An exterior corner of S in D is a set of corners of 2{cells of
D−S whose closure corresponds to a connected arc in Lk(v;D) which intersects
Lk(v; S) only at the endpoints of the arc. The angle of a corner is the sum of
the angles of its elements.

The �rst basic property of preflats that we need is their convexity, which is
established in the following lemma.
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Lemma 8.9 Let X be a piecewise Euclidean CAT(0) 2{complex, let � : D !
X be a reduced disc diagram, and let E be any flat plane in X . Then each
component of �−1(E) is a convex subspace of D . Furthermore, each preflat P
is also convex in D .

Proof It su�ces to show that every exterior corner of �−1(E) in D has angle
at least � , since then �−1(E) is locally convex. Let v be a vertex in @�−1(E),
let I be a closed interval of R, and let I ! Lk(v;D) be a local isometry such
that the intersection Im(I) \ Lk

(
v; �−1(E)

�
consists of only the endpoints of

Im(I). Let Lk(v;D) ! Lk
(
�(v);X

�
be the map induced by �. Then the

composition I ! Lk(v;D) ! Lk
(
�(v);X

�
is a local isometry whose image

intersects Lk
(
�(v); E

�
only at its endpoints. Notice that Lk

(
�(v); E

�
has di-

ameter � . So I has length at least � , since otherwise there would be a locally
geodesic loop C ! Lk

(
�(v);X

�
of length less than 2� contradicting the Link

Condition for X (Theorem 3.7). It now follows easily that every exterior corner
of �−1(E) in D has angle at least � .

The next lemma is quite similar to Lemma 8.6. We will show that each preflat
is either surrounded by ru�es or adjacent to a large Euclidean half-disc.

Lemma 8.10 Let � : D ! X be a reduced disc diagram where X is a piece-
wise Euclidean CAT(0) 2{complex, and let P be a preflat. Let D0 = D − �P ,
and let p be any point on @P . If B0 is the open ball of radius R in D0 centered
at p, then either

(1) B0 contains a vertex with negative curvature in D0 , or

(2) B0 intersects @D , or

(3) B0 is isometric to a flat half-disc of radius R.

Proof Suppose conditions (1) and (2) fail for B0 . Then each vertex on the
interior of B0 has a neighborhood isometric to a Euclidean disc.

Now choose an arbitrary vertex v in B0 \ @P . By Lemma 8.9, every exterior
corner of P in D has angle at least � . Since the curvature �D0(v) is zero, v must
have a neighborhood in B0 isometric to a Euclidean half-disc. Furthermore,
@P intersects B0 in a collection of disjoint segments which are geodesic in B0

as well as in D . In particular, note that P does not lie entirely inside the open
ball B of radius R in D centered at p.

By Lemma 8.5 if B0 is simply connected, it admits a local isometry into the
Euclidean plane. Recall that any metric ball in a CAT(0) space is convex.
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We will show that B0 is contractible inside D0 , and hence lifts isometrically to
the universal cover ~D0 , where it is a metric ball in a CAT(0) space, and must
therefore be convex and contractible.

Suppose B0 is not contractible in D0 . Notice that �1(D0) is cyclic generated by
the boundary cycle of D . So B0 must contain a simple loop ‘ which encloses P .
Since B0 � B , it follows that ‘ also lies inside B , which is contractible. There-
fore P lies entirely within B , which is a contradiction. It now follows that
B0 lifts isometrically to a convex subspace of ~D0 , and therefore B0 is itself
CAT(0). Being simply connected and locally flat, B0 admits a local isome-
try to the plane, which must actually be an isometric embedding since B0 is
CAT(0).

Since B0 and P are both convex in D , their intersection is connected. Therefore
B0 is isometric to a Euclidean half disc of radius R.

To complete the proof of Proposition 8.7 we need to show that in the presence
of the Isolated Flats Property, the third case of the preceding lemma cannot
occur.

Proof of Proposition 8.7 By Theorem 5.4, we can choose R su�ciently
large that X does not contain an isometrically embedded copy of the space TR
(in the notation of De�nition 5.3). Choose � > 0 so that for each vertex
v 2 X(0)

(1) every combinatorial reduced path in Lk(v;X) with length greater than �
actually has length at least � + � , and

(2) every locally geodesic loop in Lk(v;X) with length greater than 2� ac-
tually has length at least 2� + � .

Such a � exists since X has �nitely many isometry types of 2{cells.

Now �x a reduced disc diagram � : D ! bX where bX is a subdivision of X ,
and let D0 = D − �P for some preflat P in D . Notice that if v is a vertex in
D0 − @D with �D0(v) < 0, then by our choice of � in fact �D0(v) � −� . Thus
by Lemma 8.10, either (D0; @P ) is (R; �){ru�ed or there is some point p 2 @P
so that the ball B = B(p;R) in D0 is isometric to a Euclidean half disc.

Notice that � maps the boundary edge of B isometrically to a geodesic segment
in a flat plane E of X . Furthermore, �−1(E) does not have a local cut point
anywhere along @B , since otherwise �−1(E) would fail to be convex, contra-
dicting Lemma 8.9. It follows that �(B) intersects E only along its boundary
edge. But then X contains an isometrically embedded copy of the space TR ,
which is a contradiction.
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9 2{complexes with isolated flats have the Relatively
Thin Triangle Property

In this section we show that the Isolated Flats Property implies the Relatively
Thin Triangle Property, establishing (1) ) (2) of Theorem 1.1. The proof
combines the two main propositions from the previous section about preflats
and ru�es.

Theorem 9.1 Let X be a proper, cocompact piecewise Euclidean CAT(0)
2{complex. If X satis�es the Isolated Flats Property, then X also satis�es the
Relatively Thin Triangle Property.

Lemma 9.2 Let X be a proper, cocompact piecewise Euclidean CAT(0) 2{
complex with the Isolated Flats Property. There are positive constants � and �
such that the following property holds. Let �(x; y; z) be a geodesic triangle
in X . Form a subdivision bX of X such that the sides of � lie in the 1{skeleton
of bX . Let � : D ! bX be a reduced disc diagram for �. Suppose D contains
a preflat P which maps into a flat F under �. If P has inscribed radius at
least �, then the triangle � is �{thin relative to the flat F .

Proof To show that � is �{thin relative to F for some � , it su�ces to show
that each side of D lies in a �{neighborhood of the union of the other two sides
and P . If we let D0 denote D − �P , then Proposition 8.7 provides constants R
and � so that (D0; @P ) is (R; �){ru�ed.

Suppose the boundary of P has length L. For each i with

1 � i � m = bL=2Rc;

let xi be a point on @P so that the balls Bi = B(xi; R) in D0 are pairwise
disjoint. Call Bi de�ant if it contains a vertex v with �D0(v) � −� . By the
Combinatorial Gauss{Bonnet Theorem, the negative curvature inside D0 has
total magnitude at most � . So at most �=� of the Bi are de�ant, and each
nonde�ant Bi intersects @D .

We will now show that if P has a su�ciently large inscribed radius, then each
of the three sides of the triangular diagram D intersects at least one of the Bi .
For each side of D which intersects some ball Bi , the set of all such balls
intersecting that side is a contiguous string of nonde�ant balls. Thus the set of
all balls Bi decomposes into alternate strings of de�ant and nonde�ant balls,
each string of nonde�ant balls containing at most �=� balls.
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If no side of D intersects any ball Bi then every Bi is de�ant as in Figure 16(a).
In this case, we see that @P has length less than � = 2R(�=�+1), which bounds
the inscribed radius of P .

(a) (b)

(d)(c)

�

s0

t0

s0

Figure 16: (a) No sides of D intersect the balls Bi (b) One side of D intersects the
Bi (c) Two sides of D intersect the Bi (d) Three sides of D intersect the Bi . Only
in this last case can the preflat have an arbitrarily large inscribed radius.

If exactly one side s of D intersects the balls Bi , let s0 be the shortest sub-
segment of s containing

S
i(s \ Bi). The two ends of s0 are connected by a

path � which travels around the \nonde�ant" side of @P as illustrated in Fig-
ure 16(b). Since � has length at most �+4R, the geodesic s0 also has length at
most �+ 4R. So the inscribed radius of P is bounded by some constant which
depends only on � and R.

If exactly two sides s and t of D intersect the balls Bi , then as before, let s0

(resp. t0 ) denote the shortest subsegment of s (resp. t) containing[
i

s \Bi
�

resp.
[
i

t \Bi
�
:

As in the previous case, the endpoints of s0 and t0 are separated by a distance
of at most �+ 4R, as shown in Figure 16(c). So again we have a bound on the
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inscribed radius of P .

Thus we see that for arbitrarily large inscribed radii, each side of D intersects
some ball Bi . For each side s, let s0 be the subsegment de�ned as above. It
is clear that the endpoints of these three segments come in pairs each of which
is a distance at most � + 4R apart as in Figure 16(d). It now follows easily
that the triangular diagram D is (� + 4R){thin whenever its inscribed radius
is larger than some constant � depending only on the space X .

Proof of Theorem 9.1 Choose a geodesic triangle � in X , and let D ! bX
be a reduced disc diagram with bX a subdivision of X . By the previous lemma,
we have constants � and � so that if D contains a preflat P with inscribed
radius at least �, then � is �{thin relative to some flat F .

Suppose D does not contain such a preflat. Then by Proposition 8.2, there
are constants R and � , depending on �, so that for each side s of D the pair
(D; s) is (R; �){ru�ed. But then Proposition 7.7 gives that D is �0{thin for
some constant �0 depending only on R and � .

10 The fellow travelling of quasigeodesics and ru�ed

geodesics

Our objective for the rest of this article is to prove Theorem 13.1, which states
that CAT(0) 2{complexes with the Isolated Flats Property also have the Rel-
ative Fellow Traveller Property. In this section, we prove Proposition 10.4,
which is a special case of Theorem 13.1. Let D be a CAT(0) disc diagram
whose boundary is a concatenation of a geodesic and a quasigeodesic. Prop-
osition 10.4 states that the geodesic and quasigeodesic track close together
provided that D is ru�ed along the geodesic.

Note that the conclusion of Proposition 10.4 is stronger than the conclusion
of Theorem 13.1, where we only get that two paths fellow travel relative to
flats. Recall that a �{hyperbolic disc diagram is ru�ed throughout. In partic-
ular if such a diagram contains a geodesic on its boundary, then the diagram
will be ru�ed along that geodesic. So from Proposition 10.4 we recover a
2{dimensional version of Theorem 6.4 which states that quasigeodesics and
geodesics in a �{hyperbolic space asynchronously fellow travel.

In fact the structure of our argument in this section is inspired by Cooper,
Lustig, and Mihalik’s proof in [2] of this fellow traveler theorem for �{hyperbolic
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spaces. Their strategy is to �rst prove an \exponential divergence" theorem [2,
Theorem 2.19] which roughly states that geodesics diverge at an exponential
rate in a �{hyperbolic space. They then use the fact that this divergence is
superlinear to prove the fellow traveller property in [2, Proposition 3.3].

The main tool used in our proof of Proposition 10.4 is Proposition 10.3, which
is essentially a \quadratic divergence" theorem analogous to the exponential
divergence result alluded to above.

At this point, it may be useful to compare our divergence theorem to some re-
lated results in the literature. A divergence function for a geodesic space in the
sense of [2] is, roughly speaking, a function that provides a lower bound on the
rate of divergence of all pairs of geodesic rays in the space. The details of the
de�nition are such that Euclidean space does not admit an unbounded diver-
gence function. Papasoglu shows in [36] that a space admitting an unbounded
divergence function admits an exponential divergence function, and is hence
� -hyperbolic by [2]. Since a space with isolated flats (that truly contains flats)
fails to be � -hyperbolic, it cannot admit a quadratic divergence function in this
sense. The main distinction between Papasoglu’s result and Proposition 10.3 is
that we restrict the type of geodesic rays considered. Proposition 10.3 roughly
says that a pair of \ru�ed" geodesics must diverge at least quadratically. How-
ever, the proposition makes no conclusion about arbitrary pairs of rays.

The proof of Proposition 10.3 uses the notion of a broom, which is a type of disc
diagram that occurs when two geodesics have a common initial segment and
then separate from each other. After establishing Proposition 10.3, the proof of
[2, Proposition 3.3] can be applied almost verbatim to prove Proposition 10.4.

De�nition 10.1 A broom B is a piecewise Euclidean CAT(0) disc diagram
whose boundary is a composition ��γ where � and � are geodesics, as illus-
trated in Figure 17. The handle of B is the intersection � \ � . The tip of B
is the common endpoint of � and � . The height of B is the minimum of the
lengths of � and � . The branching angle of B is the angle between � and � at
the point where they �rst separate (in the degenerate case where either � or �
is equal to the handle, then the branching angle is de�ned to be zero). The
outer path of B is the boundary path γ .

Lemma 10.2 (Linear divergence of brooms) Let B be a broom of height at
least M , branching angle at least � , a handle of length at most N , and an
outer path γ . Then

‘(γ) � (M −N)�=2:
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γ

�

�

handle

branching
angle

tip

outer
path

height

Figure 17: Two pictures of a broom with geodesic sides � and � . On the right, the
di�erent parts of the broom are labeled.

Proof Let � and � be the geodesic sides of B . Let �(0) = �(0) = p be the
tip of B , let q be the other end of the handle, let x be the common endpoint
of � and γ , and let y be the common endpoint of � and γ . Let � be the
geodesic triangle with vertices q , x, and y , and let � be a comparison triangle
in the Euclidean plane with vertices q , x, and y . Let � denote the angle at the
vertex q of �.

Since � and � each have length at least M , we can set x0 = �(M) and
y0 = �(M), and let x0 and y0 be the corresponding comparison points on �.
By the Law of Cosines,

d(x0; y0) � d(x; y):

Using the fact that sin(�) � �=2 whenever 0 � � � �=2, we conclude that

‘(γ) � d(x; y)
= d(x; y)

� d(x0; y0)

� 2(M −N) sin(�=2)

� (M −N)�=2
� (M −N)�=2:

The following proposition is a quadratic divergence theorem analogous to the ex-
ponential divergence theorem for �{hyperbolic spaces [2, Theorem 2.19]. Brid-
son and Haefliger reformulated this exponential divergence theorem as an ex-
ponential lower bound on the length of any path that a geodesic stays far away
from [10, Proposition III.H.1.6]. The precise statement of our quadratic diver-
gence result is closer to the form given by Bridson and Haefliger.
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Proposition 10.3 (Quadratic divergence) For each choice of positive con-
stants R and � , there is a quadratic function Q : R+ ! R so that the following
property holds. Let D be any piecewise Euclidean CAT(0) disc diagram whose
boundary is a concatenation �γ , where γ is a geodesic, and (D; γ) is (R; �){
ru�ed. Then for any point p 2 Im(γ), we have

‘(�) � Q
(
d(p; Im�)

�
:

Proof Fix a point p 2 Im(γ), and let r = d(p; Im�). For convenience, replace
� with minf�; �g. We will show the existence of a quadratic function Q(r)
independent of our choice of diagram D . For any point q 2 D , let Sh(q)
denote the shadow of q on �, ie, the set of points �(t) such that the geodesic
from p to �(t) passes through q . Notice that each shadow is connected.

Set Q(r) = 0 for r < 2R. Henceforth we assume that r � 2R. For 1 � i � k =
br=2Rc, let xi be a point of Im(γ) with d(p; xi) = (2i − 1)R. Notice that the
open balls Bi = B(xi; R) are pairwise disjoint and do not intersect the image
of �, as illustrated in Figure 18. Since (D; γ) is (R; �){ru�ed, Bi contains a
point yi with �(yi) � −� .

pγ

r

�

Figure 18: The length of � is bounded below by a quadratic function of r .

Since �(yi) � −� , we can �nd a pair of geodesics �i and �0i starting at p and
passing through yi , where they separate with an angle of � . Since geodesics
are extendible to the boundary in any CAT(0) disc diagram, we may assume
that the given geodesics continue until they eventually hit points zi and z0i on
the image of �.

Notice that the subdiagram Bi of D bounded by �i , �0i , and Sh(yi) is a broom
with height at least 2Rk , branching angle at least � , a handle of length at most
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2Ri, and outer path Sh(yi). Applying Lemma 10.2 to Bi gives that

‘
(
Sh(yi)

�
� R(k − i)�:

If we knew that the shadows of the yi had pairwise disjoint interiors, then we
would be done, since the sum of their lengths satis�es

kX
i=1

‘
(
Sh(yi)

�
� R�

kX
i=1

(k − i) = R�k(k − 1)
�

2,

which is a quadratic function of k = br=2Rc, as desired. However, shadows are
not in general disjoint.

If two distinct shadows intersect, then one of them is a subset of the other,
say Sh(yi) � Sh(yj). Subdividing Bj along the geodesics �i and �0i gives a
decomposition of Bj into three brooms: Bi and two others Cj and C 0j which
branch at yj and have branching angles adding up to at least � , as shown in
Figure 19. Applying Lemma 10.2 to these three brooms separately, we see that

‘
(
Sh(yj)

�
� R(k − i)� + ‘

(
Sh(yi)

�
:

Repeatedly subdividing brooms in this manner until they all have disjoint in-
teriors shows that, in fact,

‘(γ) � R�k(k − 1)
�

2;

as desired.

p
yj yi

Cj

Bi

C0j

Figure 19: Two shadows that intersect

Proposition 10.4 (Ru�ed Fellow Traveller Property) Given positive con-
stants R, � , �, and �, there is a constant L such that the following property
holds. Let D be any piecewise Euclidean CAT(0) disc diagram whose bound-
ary is a concatenation �γ , where γ is a geodesic and � is a (�; �){quasigeodesic
parametrized by arclength. Suppose also that (D; γ) is (R; �){ru�ed. Then
the Hausdor� distance between Im(�) and Im(γ) is less than L.
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Proof We follow the proof of [2, Proposition 3.3] almost verbatim. Let Q
be the quadratic function guaranteed by Proposition 10.3 corresponding to the
ru�ing constants R and � . Fix a disc diagram D as in the statement of the
proposition. Let

r = sup
x2Im γ

�
d(x; Im�)

}
;

and choose a point x 2 Im(γ) where this supremum is achieved. Then

Im(�) \B(x; r) = ∅:

Let y and z be points on Im(γ) at a distance r from x, and let y0 and z0 be
points on Im(γ) at a distance 2r from x (or the endpoints of γ if these are
closer to x than 2r). Choose points u and v on Im(�) such that d(y0; u) � r
and d(z0; v) � r , as in Figure 20. Notice that(

[y0; u] [ [z0; v]
�
\B(x; r) = ∅:

Following a path by way of y0 , x, and z0 , we see that d(u; v) � 6r . However,
since � is a (�; �){quasigeodesic parametrized by arclength, we have that the
length of � from u to v is at most 6�r + �. Hence there is a path � of length
at most 4r + 6�r + � from y to z which stays outside B(x; r). Furthermore,
� together with [y; z] bounds a subdiagram D0 of D such that

(
D0; [y; z]

�
is

(R; �){ru�ed by Lemma 7.3. But Proposition 10.3 says that � has length at
least Q(r). Therefore r is bounded above by some constant L0(R; �; �; �), and
we see that Im(γ) � NL0

(
Im(�)

�
.

u

� r

y0 y x z

v

� r

z0

r

Figure 20: The Ru�ed Fellow Traveller Property

Now suppose that Im(�) * NL0

(
Im(γ)

�
. Then each component of Im(�) −

NL0

(
Im(γ)

�
is a path �0 with endpoints u and v at a distance L0 from points

y and z on Im(γ). Suppose � is a map [0; a] ! D , and �0 = �
��[t0; t1]. Then

each point of Im(γ) is within L0 of some point of �
(
[0; t0]

�
[ �

(
[t1; a]

�
by

the �rst part of the proof. So there must be some point x on Im(γ) which is
within L0 of some point u0 on �

(
[0; t0]

�
and also within L0 of some point u1 on

�
(
[t1; a]

�
. Thus d(u0; u1) � 2L0 , and we see that the length of � from u0 to u1
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is at most 2L0�+ �, which bounds the length of �0 . It now follows that every
point on �0 is at most a distance L from Im(γ), where L = L0 +L0�+ �=2.

11 Convex hulls involving preflats

Recall that we need to prove Theorem 13.1 in order to complete the proof of
Theorem 1.1. Our strategy for proving Theorem 13.1 is to �rst consider the
special case of a geodesic and quasigeodesic with common endpoints.

This special case consists of showing that a quasigeodesic stays close to the
union of a geodesic and the flats that come near the geodesic. In order to prove
this special case, it will be useful to understand in detail the structure of the
convex hull of the union of two flats and also the convex hull of the union of
a point and a flat. In the present diagrammatic setting, it su�ces to examine
the convex hulls of the corresponding objects inside a reduced disc diagram.

In Proposition 11.1 we give a detailed examination of the convex hull of the
union of a preflat P and a point x outside the preflat. We determine that
this convex hull lies in a �{neighborhood of the union of P and the shortest
geodesic connecting it to x. We also conclude that the portion of the convex
hull close to the preflat is surrounded by ru�es.

We then examine the convex hull of the union of two preflats. In Proposi-
tion 11.2 we consider the case of two disjoint preflats, while in Proposition 11.3
we consider the case of two intersecting preflats. In each case, our conclusion
is similar to the conclusion of Proposition 11.1. We determine that the convex
hull lies in a �{neighborhood of the union of the two preflats and a shortest
geodesic connecting them. We also conclude that the portion of the convex hull
close to either preflat is surrounded by ru�es.

Proposition 11.1 Given a proper, cocompact piecewise Euclidean CAT(0)
2{complex X with the Isolated Flats Property, there are positive constants
�1(X), and �1(X) such that the following property holds for any positive � � �1

and � � �1 .

Let � : D ! bX be a reduced disc diagram, where bD is a subdivision of X .
Let P be a preflat in D , let x be a point in D − P , and let H be the convex
hull of P [ fxg.
Then x 2 @H , and the boundary path γ of H beginning and ending at the
point x is a local geodesic in D0 = D − �P (when considered as a map with
domain an interval, rather than as a map S1 ! @H ). This local goedesic is a
concatenation �0!���1 such that, as illustrated in Figure 21(a),
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(1) � is a subpath of the boundary cycle of P ,

(2) Im(�) and Im(!) each lie in N�(P ),

(3) (D − �H;!��) is (�; �){ru�ed, and

(4) the Hausdor� distance between Im(�0) and Im(�1) is at most � .

�0

�1
�

!

�P

�1

�0

�x

(a) (b)

�

Figure 21: (a) The convex hull of a point and a preflat (b) The paths �0 , �1 and �
bound a triangular diagram which is �{thin.

Proof We �rst check that x 2 @H . Notice that, away from x, the boundary
cycle C of H is a local geodesic in D0 . Recall that preflats are convex by
Lemma 8.9. If x =2 @H then C and @P are homotopic local geodesics in D0 ,
which are therefore identical. But this is absurd since C encloses x and @P
does not. So x 2 @H as desired.

Let γ denote the boundary cycle of H considered as a path which starts and
ends at x (as opposed to C which is a map S1 ! H ). We have seen that γ is
a local geodesic. We now check that Im(γ) intersects @P in a single connected
arc. If Im(γ) \ @P = ∅, then γ is a local geodesic in D . But D is simply
connected, so γ must be a geodesic, which contradicts the fact that γ is a closed
nonconstant loop. So Im(γ)\ @P consists of a �nite (positive) number of arcs.
Suppose there were more than one such arc. Then γ would contain a subpath
which does not involve x and which intersects @P only at the endpoints of the
subpath. Such a subpath would be a geodesic in D , contradicting the convexity
of P .

We have now determined that γ is a concatenation �0��1 such that � is the
maximal subpath of γ lying inside @P , and such that �i is a geodesic in D
connecting x and P . Let � be the path so that the boundary cycle of P
is a concatenation �� , as shown in Figure 21(b). By Proposition 8.7, there
are global constants R(X) and �(X) so that (D0; �) is (R; �){ru�ed. The
three D0{geodesics �0 , � , and �1 bound a triangular diagram �, which is a
subdiagram of a subdivision of D0 . By Lemma 7.3, we have that (�; �) is also
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(R; �){ru�ed. Furthermore, we see by Proposition 7.7 that � is �{thin for
some constant � = �(R; �). So there are points yi 2 Im(�i) with d(y0; y1) < � .
Therefore, �0 is a concatenation �0! and �1 is a concatenation ��1 such that
(2) and (4) are satis�ed.

It remains to verify (3). We already know that (D − �H; �) is (R; �){ru�ed.
We now show that (D − �H) is (R0; �0){ru�ed for some global constants R0

and �0 . Let a be the common endpoint of � and � , let b be the common
endpoint of � and �1 , and let c be a point on Im(�) within a distance � of b.
The points a, b, and c are the vertices of a triangular subdiagram of � which
has � and a portion of � as two sides and with a third side [b; c] of length less
than � . Lemma 7.8 now shows that (D − �H;�) is (R0; �=2){ru�ed for some
constant R0 depending only on R, � , and � . By a nearly identical argument,
we see that (D − �H;!) is also (R0; �=2){ru�ed. Since D − �H is now known
to be ru�ed along each of ! , � , and � , Lemma 7.4 shows that (D − �H;!��)
is (3R0; �=2){ru�ed. Setting �1 = �=2 and �1 = maxf�; 3R0g gives (4) for any
positive � � �1 and � � �1 , as desired.

Proposition 11.2 Given a proper, cocompact piecewise Euclidean CAT(0)
2{complex X with the Isolated Flats Property, there are positive constants
�2(X), and �2(X) such that the following property holds for any positive � � �2

and � � �2 .

Let � : D ! bX be a reduced disc diagram, where bX is a subdivision of X .
Let P0 and P1 be disjoint preflats in D . Let H be the convex hull of P0 [P1 .

Then the boundary cycle C ! D of H is a local geodesic in D0 = D−
(�P0[�P1

�
which is a concatenation

!0�0�0�0!1�1�1�1

such that, as illustrated in Figures 22(a) and (b),

(1) �i is a subpath of the boundary cycle of Pi ,

(2) Im(�i) and Im(!i) each lie in N�(Pi),

(3) (D − �H;!i�i�i) is (�; �){ru�ed, and

(4) either

(a) the Hausdor� distance between Im(�0) and Im(�1) is at most � , or

(b) P0 and P1 correspond to distinct flats in X , and each �i has image
a single point xi .
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P0 P1

�0

�0

!0 �1

�1

!1

�0 �1 P0

�1

P1 �1

�0 !1

�0

�0

!0 �1

(a) (b)

�0 �1

�0
�0 �1 �0 �0 �1

�0

�1

(c) (d)

�1

�1

Figure 22: The convex hull of two disjoint preflats P0 and P1 . In (a), the Hausdor�
distance between �0 and �1 is at most � . In (b), each �i has image a single point.
In (c) and (d) the quadrilateral bounded by �0 , �0 , �1 , and �1 is �{thin. The two
pictures indicate the two possible shapes of a thin quadrilateral.

Proof Since the present proof is extremely similar to the proof of Proposi-
tion 11.1, we omit the redundant details. The only new idea occurs during the
veri�cation of (4). By an argument similar to the one in the previous proof, we
obtain a �{thin quadrilateral Q with sides �0�0�1�1 as shown in Figures 22(c)
and (d). Recall that �{thin quadrilaterals have two possible shapes: either �0

and �1 come close together, or �0 and �1 come close together. This dichotomy
accounts for the two distinct shapes in Figure 22 and described in the statement
of condition (4).

We need to verify the assertion in (4) that if P0 and P1 correspond to the same
flat in X then the Hausdor� distance between Im(�0) and Im(�1) is at most � .
It su�ces to consider the following situation. Suppose P0 and P1 correspond to
the same flat in X , and there exist points xi 2 Im(�i) so that for each i; j the
distances d

(
xi; Im(�j)

�
are less than � . In order to complete the proof of (4),

we need to bound the distance d(x0; x1). We can then set the constant �2 to
be at least as large as this distance.

For the sake of notation, suppose x0 is within a distance � of points pj 2 Im(�j)
and x1 is within a distance � of points qj 2 Im(�j), as shown in Figure 23. In
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Q1

Q2

Q‘

x1

x0

b‘−1

b‘ = q1

b2

b1

b0 = p1a0 = p0

a1

a2

a‘−1

...

a‘ = q0

P0 P1

Figure 23: The preflats P0 and P1 map to the same flat in X . The darkened diagram
is a geodesic quadrilateral Q with corners p0 , p1 , q0 , and q1 . This quadrilateral has
been subdivided into ‘ smaller quadrilaterals Qk .

order to bound d(x0; x1), it su�ces to bound the quantity

‘ =

$
min

�
d(p0; q0); d(p1; q1)

}
4�

%
:

If one of the distances d(pj ; qj) is less than 4� , then ‘ = 0 and we are done.
Otherwise, let a0; : : : ; a‘ be equally spaced points on �0 so that a0 = p0 and
a‘ = q0 . Similarly, let b0; : : : ; b‘ be equally spaced points on �1 so that b0 = p1

and b‘ = q1 . By our choice of ‘, for 0 � k � ‘− 1 we have

d(ak; ak+1) � 4� and d(bk; bk+1) � 4�: (�)

Furthermore ak , ak+1 , bk , and bk+1 are the vertices of a quadrilateral dia-
gram Qk as shown in Figure 23.

We �rst rule out the degenerate case that Qk is not a single line segment. Note
that by Theorem 2.5, the distances d(ak; bk) and d(ak+1; bk+1) are each less
than 2� . If the four corners of Qk were colinear, then by (�) the geodesics
[ak; ak+1] and [bk; bk+1] would intersect, contradicting the fact that �0 and �1

are disjoint paths.
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Consequently, each Qk contains some vertex with negative curvature. For if not,
then by Corollary 3.9 the diagram Qk would map isometrically to X under �.
But that would mean that Qk maps into the same flat that the preflats P0

and P1 map to, which is absurd.

By Theorem 4.10, the quadrilateral Q with vertices p0 , p1 , q0 , and q1 has
total curvature 2� . The only vertices in Q that could possibly have positive
curvature are these four corners. At each of these, the curvature is at most � .
So the positive curvature in Q totals at most 4� . As a result, the negative
curvature in Q has total magnitude at most 2� . So the curvature at each
negatively curved vertex of Q has magnitude at most 2� .

We now show that by our choice of ‘, each vertex with negative curvature in Q
intersects at most two of the quadrilaterals Qk . Suppose Qk−1 , Qk , and Qk+1

share a common point z . Then z is a cut point of Qk at which the sides [ak; bk]
and [ak+1; bk+1] meet. But by the triangle inequality, these sides cannot meet,
since their lengths are each less than 2� and we also have (�).

Except along the paths [a0; b0] and [a‘; b‘], every point of negative curvature
in Q has curvature with magnitude at least  , for some constant  depending
only on X . So there are at most 2�= points of negative curvature within the
quadrilaterals Q2; : : : ; Q‘−1 , which shows that ‘ � (4�= ) + 2.

Proposition 11.3 Given a proper, cocompact piecewise Euclidean CAT(0)
2{complex X with the Isolated Flats Property, there are positive constants
�3(X) and �3(X) such that the following property holds for any positive � � �3

and � � �3 .

Let � : D ! bX be a reduced disc diagram, where bX is a subdivision of X .
Let P0 and P1 be preflats in D with a nonempty intersection. Let H be the
convex hull of P0 [ P1 .

Then the boundary cycle C ! D of H is a local geodesic in D0 = D−
(�P0[�P1

�
,

which can be expressed as a concatenation

!0�0�0!1�1�1 � � �!2m−1�2m−1�2m−1

such that, as illustrated in Figure 24(a),

(1) �i is a subpath of the boundary cycle of P(i mod 2) ,

(2) Im(�i) and Im(!i) each lie in N�(P(i mod 2)), and

(3) (D − �H;!i�i�i) is (�; �){ru�ed.
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(a)

!3

�2

P1

�4

!4
�3 �3

�2

�1 !2

P0

P0 \ P1

P1

P0�4
!5

P1

�5

!0

�0

�1

�0
!1

P0

�5

(b)

Figure 24: (a) The convex hull of the union of two intersecting preflats (b) The
darkened triangles are �{thin.

Proof The key idea is to observe that the triangles shown in Figure 24(b)
are �{thin. Using this observation, the proof is essentially the same as the
proof of Proposition 11.1 without the additional complications that arose in
the proof of Proposition 11.3. Since the details are nearly identical, we omit
the veri�cation.

It is important to note that condition (3) does not in general imply that (D −
�H;@H) is (R; ){ru�ed for constants R and  depending only on the 2{
complex X . Although the boundary cycle of H is a concatenation of the paths
!i�i�i for 0 � i � 2m − 1, Lemma 7.4 can be applied only if one has either a
lower bound on the lengths of the concatenated paths or an upper bound on
the number of these paths. In general we do not have control over either of
these quantities.

12 The Flat Closure Lemma

Recall that we will prove Theorem 13.1 by �rst considering the special case of
a geodesic and quasigeodesic with common endpoints, and then deriving the
general case of two quasigeodesics from this special case.

This section is devoted to a proof of the following proposition, which will be
used in the next section in the proof of Theorem 13.1. The reader should
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imagine that the diagram D in the statement of this proposition is a reduced
disc diagram such that γ is a geodesic and � a quasigeodesic, although for
the purposes of this section we do not need the path � to have any special
properties.

The name Flat Closure refers to the fact that we construct a subdiagram of D
containing all preflats that come within a certain distance of the geodesic �.

Proposition 12.1 (Flat Closure) Let X be a proper, cocompact CAT(0)
2{complex with the Isolated Flats Property. There are positive constants L,
K and � such that the following property holds.

Let � : D ! bX be any reduced disc diagram where bX is a subdivision of X
such that the boundary path of D is a concatenation �γ where � � γ is a
geodesic in X . Then there is a path � in D with the same endpoints as �
and γ satisfying the following three conditions:

(I) � is a geodesic in D� , where D� is the subdiagram of D bounded by �
and �,

(II) � � γ and � � � L{fellow travel relative to flats, and

(III) (D�; �) is (K; �){ru�ed.

Proof We begin by carefully choosing several constants which will be nec-
essary for the construction of � . First let � = �(X) be the largest of the
three constants �1(X), �2(X), and �3(X) guaranteed by Propositions 11.1,
11.2, and 11.3 respectively. By the Isolated Flats Property, there is a constant
M(�;X) � 6� such that for any two flat planes E1; E2 in X , the intersection
N�(E1) \ N�(E2) has diameter less than M . Using M0 = 2M , choose con-
stants R(M0;X) and �0(M0;X) satisfying the conclusion of Proposition 8.2.
Let � = minf�0; �1; �2; �3g, where �1 , �2 , and �3 are the constants given by
Propositions 11.1, 11.2 and 11.3.

The next step is the construction of � , which proceeds as follows. Let P be
the set of all preflats in the diagram D which intersect NR(Im γ), where R
is some positive constant to be determined in the course of the proof. Form
a subdiagram D0 from D by removing the interior of

S
P2P P . In that sub-

diagram, let � be the local geodesic homotopic to � (rel. endpoints). Notice
that � cuts D into two subdiagrams D� and Dγ which intersect along � as
shown in Figure 25. Notice that Dγ is the convex hull of Im(γ) [

(S
P2P P

�
.

Condition (I) follows easily from the fact that Dγ is convex.
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Figure 25: The path � cuts D into two subdiagrams D� and Dγ that meet along � .

Claim 1 � is a concatenation

�0�1�1�1�1�2�2�2�2 � � � �n�n�n�n;
as shown in Figure 26, such that for some sequence of flats (E1; : : : ; Ek) and
some constant �0(X), the following properties hold for all i:

A(i): Im(� � �i) � N�(Ei), and (D�; �i) is (�; �){ru�ed.

B(i): Im(� � �i) � N�(Ei), and (D�; �i) is (�; �){ru�ed.

C(i): Im(� � �i) � NR+M

(
Im(� � γ)

�
, and (D�; �i) is (�0; �=4){ru�ed.

D(i): Im(� � �i+1) � N�(Ei+1), and (D�; �i+1) is (�; �){ru�ed.

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����
����

����
����
����
����

�0

�1

�1

�1

�1

�2

�2

�3

�3

�3

γ

�

�2 �2 �3

Figure 26: The path � stays close to the union of the preflats in P and Im(γ).

Proof of Claim 1 For each preflat P 2 P , the preimage �−1(P ) consists of a
�nite number of closed intervals. Consider the collection of all such intervals for
all choices of P 2 P . In general, these intervals intersect each other in a com-
plicated fashion. To simplify matters, let

�
[ai; bi]

�� 1 � i � n
}

be a minimal
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subcollection of these intervals with the same union as the original collection.
Then for each i, the path �

(
[ai; bi]

�
lies in some Pi . By the minimality of the

collection, no interval is contained within another, and there are no nonempty
triple intersections among the intervals. We may assume that the intervals are
ordered so that

a1 < a2 < � � � < an

and
b1 < b2 < � � � < bn:

Our strategy is to verify properties A(i), B(i), C(i), and D(i) by examining
in detail the path that � follows between two consecutive intervals [ai; bi] and
[ai+1; bi+1]. We will have two cases depending on whether these intervals in-
tersect or are disjoint. The second case breaks into two cases depending on
whether the associated preflats Pi and Pi+1 intersect or are disjoint. The dis-
joint preflats case further subdivides into two cases depending on whether these
preflats satisfy Condition (4a) or (4b) of Proposition 11.2.

We will also examine in detail what happens to � between the initial point
�(0) and the �rst interval [a1; b1], as well as an identical case at the terminal
end of � . We also consider the degenerate case when the set of intervals [ai; bi]
is empty. This degenerate case arises precisely when P = ∅.

To summarize, we have the following situations to examine:

Case 0
�

[ai; bi]
}

= ∅.

Case 1 Between �(0) and [a1; b1] (and similarly between [an; bn] and the ter-
minal point of �).

Case 2 Between two consecutive intervals such that Pi \ Pi+1 = ∅ and these
preflats satisfy Condition (4a) of Proposition 11.2.

Case 3 Between two consecutive intervals such that Pi \ Pi+1 = ∅ and these
preflats satisfy Condition (4b) of Proposition 11.2.

Case 4 Between two disjoint consecutive intervals such that Pi \ Pi+1 6= ∅.

Case 5 Between two intersecting intervals such that Pi \ Pi+1 6= ∅.

Our examination of these cases will establish properties A(i), B(i), C(i), and
D(i) for all values of i.

Case 0 We �rst consider the degenerate case in which the collection of intervals�
[ai; bi]

}
is empty. In other words, the image of � does not intersect any Pk .

Then � is a local geodesic in the simply connected diagram D . It follows that
� is a global geodesic which, therefore, coincides with γ . Since � and � are
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�0

�1

!

�

�

γ

� �

γ

x0 x0

x1

(c)(b)(a)

P1

�(0)

Figure 27: (a) The convex hull of the preflat P1 and the point �(0) (b) The path �
intersects �1 . (c) The path � intersects �� .

homotopic in D0 , it follows that D and D0 are equal. In other words, there
are no preflats intersecting NR

(
Im(γ)

�
. Setting �0 = � = γ , we see that C(0)

follows from Proposition 8.2, using �0 = 8R. Since n = 0, all other properties
in the statement of Claim 1 are vacuous.

Case 1 Let H denote the convex hull of �(0) [ P1 . By Proposition 11.1, we
see that the boundary cycle of H is a local geodesic in D − �P1 except at the
point �(0). Furthermore, by our choice of � and � this boundary cycle is a
concatenation �0!���1 as shown in Figure 27(a), satisfying

(1) � is a subpath of the boundary cycle of P1 ,

(2) Im(�) and Im(!) each lie in N�(P1),

(3) (D − �H;!��) is (�; �){ru�ed, and

(4) the Hausdor� distance between Im(�0) and Im(�1) is at most � .

If we set �0 = �0 and �1 = ! , then D(0) follows easily from (2) and (3), since
D� is a subdiagram of D − �H .

It remains to verify C(0). Recall that P1 intersects the R{neighborhood of
Im(γ). Let � be a geodesic from P1 to Im(γ) with length at most R. Since P1

and Im(γ) each lie inside the convex subdiagram Dγ , it follows that Im(�) also
lies inside Dγ . Therefore Im(�) intersects the image of one of the paths �1 , � ,
and � . If Im(�) intersects Im(�1) as in Figure 27(b), then Im(�) passes within
a distance � of the common endpoint x0 of �0 and ! . So d(x0; Im γ) � R+ � .
On the other hand, if Im(�) intersects the image of �� as in Figure 27(c), then
by the convexity of the metric, the common endpoint x1 of �1 and � lies within
a distance R of Im(γ). So again, d(x0; Im γ) � R + � . Thus, in either case,
Im(�0) � NR+M

(
Im(γ)

�
, since M � � .
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We now only have to �nd a constant �0 so that (D�; �0) is (�0; �=4){ru�ed.
Let x2 be the point on Im(γ) which is closest to x0 , as illustrated in Fig-
ure 28, and let � be the triangular subdiagram of D with corners �(0), x0 ,
and x2 . Let bD = D� [�, and let bγ be the subsegment of γ connecting �(0)
and x2 . Recall that by construction any preflat in D intersecting NR

(
Im(γ)

�
lies inside the subdiagram Dγ . The composition bD ,! D ! X gives a natural
notion of a preflat in bD with the property that every preflat of bD lies inside a
preflat of D . So any preflat in bD intersecting NR

(
Im(bγ)

�
lies inside the subdi-

agram �. But � lies inside NR+2M

(
Im(bγ)

�
, so we see that any preflat P in bD

intersecting NR
(
Im(bγ)

�
lies inside NR+2M

(
Im(bγ)

�
. Therefore, �(P ) lies inside

NR+2M

(
Im(� � bγ)

�
. By our choice of R, � , and M0 = 2M , Proposition 8.2

implies that ( bD; bγ) is (8R; �){ru�ed. Since [x0; x2] has length at most R+ � ,
it follows from Lemma 7.8 that (D�; �0) is (�0; �=2){ru�ed for some constant
�0(R; �; �), which completes the proof of C(0).

x2bγ

�

�

γ

�(0)

x0

bD

Figure 28: The darkened subdiagram bD consists of the union of D� and the triangular
diagram � with vertices �(0), x0 , and x2 .

Case 2 Suppose Pi \ Pi+1 = ∅, and the preflats in question satisfy Con-
dition (4a) of Proposition 11.2. Let H denote the convex hull of Pi [ Pi+1 .
Then the boundary cycle of H is a local geodesic in D −

(�Pi [ �Pi+1

�
freely

homotopic to @D . By our choice of � and � , the cycle @H is a concatena-
tion !0�0�0�0!1�1�1�1 satisfying the conclusion of Proposition 11.2 including
Condition (4a), as illustrated in Figure 22(a). Since D� is a subdiagram of
D − �H , Conditions B(i) and D(i) follow easily if we set �i = �0 , �i = �0 and
�i+1 = !1 .

It remains to verify C(i). Recall that Pi and Pi+1 each intersect the R{
neighborhood of Im(γ). For each j 2 f0; 1g let �j be a D{geodesic from Pi+j
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to Im(γ) with length at most R, and let Cj denote the path !j�j�j . As in
Case 1, the image of �j is inside the convex subdiagram Dγ , so it must intersect
the image of at least one of the paths C0 , C1 , or �1 .

Suppose Im(�j) intersects Im(Cj+1) for some j 2 Z2 , as in Figure 29(a). Since
H is convex, it follows that Im(�0) � N�

(
Im(�j)

�
. But �j has length at most R,

so �0 has length at most R + 2� and Im(�0) � B(zj ; R+ �), where zj is the
point where the images of γ and �j intersect. Since �i = �0 , it now follows
immediately that (Dγ ; �0) is (�+R=2; �=4){ru�ed. Since M � � , we now have
C(i), using �0 = � +R=2.

�0
�1

x0
x1

(b)

γ γ

�0

(a)

�1

Pi+1

Pi Pi

Pi+1

Figure 29: (a) The path �1 intersects C0 . (b) For each j 2 Z2 , the path �j intersects
either Cj or �1 .

On the other hand, suppose for each j 2 Z2 that Im(�j) intersects either �1
or Cj , as in Figure 29(b). Then as in Case 1, the convexity of the metric gives
that the endpoints x0 and x1 of �0 lie within a distance R + � of points y0

and y1 respectively on Im(γ) as shown in Figure 30. The proof of C(i) now
follows from an argument which is essentially the same as that used in the proof
of C(0) in Case 1 above.

Case 3 Suppose Pi \ Pi+1 = ∅, and the preflats in question satisfy Con-
dition (4b) of Proposition 11.2. As in Case 2, let H be the convex hull of
Pi [ Pi+1 . Then by our choice of � and � , the cycle @H is a concatenation
!0�0�0�0!1�1�1�1 satisfying the conclusion of Proposition 11.2 including Con-
dition (4b), as illustrated in Figure 22(b). In particular, note that the map
� : D ! X sends the preflats Pi and Pi+1 to distinct flats Ei and Ei+1 in X ,
and each path �j has image a single point xj . Conditions B(i) and D(i) follow
as in Case 2 if we set �i = �0 , �i = �0 , and �i+1 = !1 .

Since �i = �0 has length zero, the requirement that (D�; �i) be ru�ed is satis�ed
vacuously. Therefore, in order to prove C(i), it su�ces to show that the distance
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x0 x1

y1y0 bγ

�

�

γ

bD

Figure 30: The shaded subdiagram bD consists of the union of D� with the quadrilateral
diagram � with corners x0 , x1 , y1 , and y0 .

in X between �(x0) and Im(� � γ) is at most R + M . As in Case 2, for each
j 2 Z2 , let �j denote a geodesic of length at most R connecting Pi+j with
Im(γ), and let Cj denote the path !j�j�j .

γ γ

�1�0

x1

x0x0

�1

(a) (b)

y

Pi Pi+1 Pi Pi+1

Figure 31: (a) The path �1 intersects C0 . (b) For each j 2 Z2 , the path �j intersects
Cj .

Suppose for some j 2 Z2 that Im(�j) intersects Im(Cj+1) as shown in Fig-
ure 31(a). Then there is a point y 2 Im(�j) with

y 2 N�(Pi) \ N�(Pi+1);

and d(y; Im γ) � R. But

x0 2 N�(Pi) \ N�(Pi+1):

By our choice of M , the intersection N�(Ei) \ N�(Ei+1) has diameter less
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than M . So d
(
�(x0); �(y)

�
�M , and hence

d
(
�(x0); Im(� � γ)

�
� R+M:

On the other hand, if for each j 2 Z2 , the image of �j intersects Im(Cj) in
some point yj as shown in Figure 31(b), then by convexity of the metric, it
follows that x1 is within a distance R of Im(γ). Since x0 and x1 each lie
in N�(Pi) \ N�(Pi+1), it follows that d

(
�(x0); �(x1)

�
� M , and hence that

d
(
�(x0); Im(� � γ)

�
� R+M .

Case 4 Suppose the intervals [ai; bi] and [ai+1; bi+1] are disjoint and the cor-
responding preflats Pi and Pi+1 intersect. As in the previous case, the path �i
will have image a single point, and the map � : D ! X sends the preflats to
distinct flats in X . Conditions B(i), C(i), and D(i) follow almost exactly as
in Case 3.

Case 5 The only di�erence between this case and the previous case is that
the intervals [ai; bi] and [ai+1; bi+1] intersect. In this case, an argument similar
to the one given in Case 3 shows that � maps their intersection [ai+1; bi] into
NR+M

(
Im(� � γ)

�
. The paths �i , �i , and �i can be chosen to all have image

the same single point, which can be any point in the intersection [ai+1; bi].
Conditions B(i), C(i), and D(i) now follow as before.

This completes the proof of Claim 1

Notice that Claim 1 establishes that � satis�es (II). It also gives a subdivision
of � into subpaths such that D� is ru�ed along each subpath. In order to
conclude that D� is ru�ed along � , we need to apply Lemma 7.4 which deals
with concatenations of ru�ed boundary paths. In that lemma, one can bound
the constants associated to the ru�es if one has either an upper bound on the
number of segments being concatenated or a lower bound on the lengths of the
concatenated segments. In Claim 1, we have control over neither of these two
quantities.

Our strategy for establishing (III) is to replace � with a smoother path �� which
tracks close to � , using the following claim.

Claim 2 There are universal constants L(X) and K(X) and a path �� in D
with the same endpoints as � so that

(�I) �� is a geodesic in �D� , where �D� is the subdiagram of D bounded by ��
and �,

( �II) the paths � � �� and � � γ L{fellow travel relative to some sequence of
flats, and
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( �III) (D0�; ��) is (K; �=4){ru�ed.

The path �� will be a concatenation of long paths along each of which �D� is
ru�ed. The idea is to mimic the construction of � , this time using only those
preflats that come close to Im(γ) and also extend far away from Im(γ). When
some of the preflats involved intersect each other, this modi�cation is not quite
enough to prove Claim 2, but it is close in spirit to the modi�cation we actually
use in the proof of that lemma.

Proof of Claim 2 We use the subdivision of � provided by Claim 1 as a
foundation for our construction of �� . For each i, let us call the path �i�i�i
nonwandering if the image of � � (�i�i�i) in X lies inside the (R + 2M){
neighborhood of Im(� � γ) and call it wandering otherwise. The idea is that
wandering paths correspond to \tall" preflats and nonwandering paths corre-
spond to \short" preflats. An interval [r; s] � Z is a maximal nonwandering
interval if it is a maximal interval such that for each i in [r; s], the path �i�i�i is
nonwandering. The path �� is formed from � by cutting out each part of � cor-
responding to a maximal nonwandering interval and replacing it with a path �
which is described below. The path � \smooths" out the nonwandering part
of � . More precisely, for each maximal nonwandering interval [r; s] replace the
subpath �r−1�r−1�r � � � �s�s�s+1 of � with a path � constructed as follows.

Case 1 Suppose the preflats Pr−1 and Ps+1 are disjoint. Let H be the convex
hull of Pr−1[Ps+1 . Then � is de�ned to be the subpath of @H connecting �r−1

with �s+1 , as shown in Figure 32. As in the proof of Cases 2 and 3 from Claim 1,
the path � is a concatenation ��� so that Im(�) � N�(Pr−1), Im(� � �) �
NR+M

(
Im(� � γ)

�
, and Im(�) � N�(Ps+1). Furthermore, (D − �H;�) and

(D − �H;�) are (�; �){ru�ed and (D − �H; �) is (�0; �=4){ru�ed.

�

�r−1 �s+1

Pr−1 Ps+1

Figure 32: The new path �� follows � from �r−1 to �s+1 .

Case 2 Suppose the preflats Pr−1 and Ps+1 intersect. Let H be the convex
hull of Pr−1 [ Ps+1 . Then the boundary path of H is a concatenation

!0�0�0 � � �!2m−1�2m−1�2m−1
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satisfying the conclusion of Proposition 11.3. We may assume that �r−1 is a
subpath of �0 and that �s+1 is a subpath of �2i−1 for some i. As shown in
Figure 33, let � denote the path which starts at the end of �r−1 and follows the
rest of �0 and then follows �0 . Let � denote the path which follows !1 and then
follows @Ps+1 until it reaches the �rst endpoint of �2i−1 . Let � be the constant
path with image the common endpoint of � and � . Then Im(�) � N�(Pr−1),
Im(� � �) � NR+M

(
Im(� � γ)

�
, and Im(�) � N�(Ps+1). Furthermore, (D0�; �)

and (D0�; �) are each (�; �){ru�ed, and (D0�; �) is (�0; �=4){ru�ed.

�

�s+1

�r−1
�

�

Figure 33: The new path �� follows � = ��� from �r−1 to �s+1 .

It now follows that in either case, we may relabel the subpaths of �� and the
preflats fPig so that �� is a concatenation

�0�1�1�1�1 � � � �k�k�k�k
satisfying the following properties

(1) ( bD�; �i) is (�; �){ru�ed and Im(� � �1) � N�(Ei),

(2) ( bD�; �i) is (�; �){ru�ed and Im(� � �i) � N�(Ei),

(3) ( bD�; �i) is (�; �){ru�ed and Im(� � �i) � N�(Ei),

(4) ( bD�; �i) is (�0; �=4){ru�ed and Im(� � �i) � NR+M

(
Im(� � γ)

�
, and

(5) (�i�i�i) has endpoints in NR+M

(
Im(� � γ)

�
but its image does not lie

entirely inside NR+2M

(
Im(� � γ)

�
.
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Clearly the paths � � �� and � � γ L{fellow travel relative to the sequence
(E1; : : : ; Ek) of flats, where L = R+M . Since the pairs (D0�; �i), (D0�; �i), and
(D0�; �i) are each (�; �){ru�ed, it follows from Lemma 7.4 that (D0�; �i�i�i) is
(6�; �){ru�ed. Furthermore, by (5) it is clear that (�i�i�i) has length at least
2M , which is at least 12� by our choice of M . A computation similar to the
proof of Lemma 7.4 now easily shows that (D0�; ��) is (K; �=4){ru�ed, where
K = 2M + 2� , completing the proof of Claim 2.

Replacing � with �� and � with �=4 completes the proof of Proposition 12.1.

13 2{complexes with isolated flats have the Relative
Fellow Traveller Property

In this section, we are �nally ready to prove the following theorem.

Theorem 13.1 A proper, cocompact piecewise Euclidean CAT(0) 2{complex
with the Isolated Flats Property satis�es the Relative Fellow Traveller Property.

Recall that the Relative Fellow Traveller Property deals with the fellow trav-
elling of a pair of quasigeodesics with common endpoints. The proof uses the
following special case in which we consider a geodesic and quasigeodesic with
common endpoints. This special case is an easy consequence of Propositions
10.4 and 12.1.

Proposition 13.2 Let X be a proper, cocompact CAT(0) space with the Iso-
lated Flats Property. Then for each �xed � and � there is a constant R(�; �;X)
so that any geodesic and (�; �){quasigeodesic in X with common endpoints R{
fellow travel relative to flats.

The proof of Proposition 13.2 uses the following standard technical result, which
allows one to ignore the local pathologies of a quasigeodesic by approximat-
ing it with a piecewise geodesic path. For a proof of this lemma, see [10,
Lemma III.H.1.11].

Lemma 13.3 (Taming quasigeodesics) Let X be a geodesic space. Given
any (�; �){quasigeodesic � in X , one can �nd a continuous path �0 satisfying
the following properties:

(1) � and �0 have the same endpoints,
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(2) �0 is piecewise geodesic,

(3) �0 is a (�0; �0){quasigeodesic when parametrized by arclength, where �0

and �0 depend only on � and �, and

(4) the Hausdor� distance between the images of � and �0 is less than �+ �.

Proof of Proposition 13.2 Let � be a (�; �){quasigeodesic in X , and let γ
be the geodesic connecting its endpoints. Let �0 be a tame (�0; �0){quasigeodesic
as in Lemma 13.3. Let γ be the geodesic connecting the endpoints of �0 . Notice
that �0 and γ0 both lie in the 1{skeleton of some subdivision bX of X . Since the
concatenation �0γ is a nullhomotopic loop in X , Theorem 4.6 gives a reduced
disc diagram � : D ! bX for this loop. Let ~�0 and ~γ be paths in D so that
� � ~�0 = �0 and � � ~γ = γ . Since � is distance nonincreasing, it follows that ~γ
is a geodesic and ~�0 is a (�0; �0){quasigeodesic parametrized by arclength.

Let � be a path in D with the same endpoints as ~�0 and ~γ satisfying the
conclusion of Proposition 12.1. Then applying Proposition 10.4 to the subdi-
agram D� bounded by � and ~�0 , we see that the Hausdor� distance between
the images of � and ~�0 is at most N = N(�; �;X). Since ��� and γ L{fellow
travel relative to flats for some L depending only on X , it follows that γ and �
R{fellow travel relative to flats, where R depends only on �, �, and X as
desired.

We are now ready to prove Theorem 13.1 using the special case proved in
Proposition 13.2 and the Isolated Flats Property.

Proof of Theorem 13.1 We need to show that given constants � and � we
can �nd a constant L so that any pair of (�; �){quasigeodesics � and �0 with
common endpoints L{fellow travel relative to flats. So �x a pair � and �0 of
such quasigeodesics, and let γ denote the geodesic connecting the endpoints of
�.

By Proposition 13.2, we know that the paths � and γ and the paths �0 and γ
each R{fellow travel relative to some sequence of flats, where R = R(�; �;X).
The main di�culty with pasting together these two facts is that the sequences
of flats involved may not be the same. In fact, the sequences of flats for each
pair are not even well-de�ned. For instance, if a pair of paths travels for a
su�ciently short distance in some flat, then that flat can be inserted or deleted
from a sequence of flats without a�ecting whether the paths fellow travel relative
to the sequence.
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To circumvent the di�culties alluded to above, we construct a canonical se-
quence of flats using only properties of γ so that each of the given pairs fellow
travels relative to the constructed sequence. Furthermore, the partition of γ in
De�nition 6.5 will be canonical, so that the two pairs can be pasted together co-
herently. It will then follow that � and �0 fellow travel relative to the canonical
sequence of flats.

By the Isolated Flats Property, there is a constant K = K(R;X) such that
given any pair of flat planes E1 and E2 in X the intersection NR(E1)\NR(E2)
has diameter less than K . Let us call a flat plane E in X an essential γ{flat if
Im(γ) intersects the R{neighborhood of E in a segment � of length at least K .
In this case, the segment � will be called a maximal flat segment of γ . Removing
the subsegment of length K=2 from each end of � gives a shorter segment �
called a shortened flat segment of γ . Notice that any two distinct shortened flat
segments �1 and �2 of γ are disjoint, since otherwise there would be a pair of
distinct flats E1 and E2 whose R{neighborhoods intersect in a set of diameter
at least K .

Our canonical sequence of flats will be the essential γ{flats, and the canonical
partition of γ will consist of the shortened flat segments of γ alternating with
the segments of γ that connect two consecutive shortened flat segments. We
need to verify that γ and � actually fellow travel relative to this canonical data
using the given (non-canonical) sequence of flats and our given (non-canonical)
partition of γ

Our argument consists of two directions. First we show that each flat of our
given sequence appears in the canonical sequence, unless it is very small. Then
we show that every flat of the canonical sequence which does not correspond
to a flat of our given sequence may be added to that sequence without creating
problems.

For the �rst direction, suppose the quasigeodesic � contains a subpath � whose
endpoints x and y lie within a distance R of points w and z in the image of γ ,
and suppose further that the image of � lies in an R{neighborhood of some
flat E . Finally suppose the segment [w; z] lies in an R{neighborhood of E .

If the distance from w to z is less than K , then the distance from x to y is less
than K + 2R. An easy computation using the de�nition of quasigeodesic then
shows that Im(�) has diameter less than �2(K + 2R) + 2��. So in this case,
Im(�) lies inside a R1{neighborhood of [w; z], where R1 = R+�2(K+2R)+2��.
Similarly, since the diameter of [w; z] is less than K , it follows that [w; z] lies
in a R2{neighborhood of Im(�), where R2 = R+K . So the Hausdor� distance
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between Im(�) and [w; z] is less than R0 = maxfR1; R2g. On the other hand,
if d(w; z) � K , then [w; z] lies inside a unique maximal flat segment of γ .

Now for the second direction, suppose � contains a subpath � with endpoints
x0 and y0 such that � is within a Hausdor� distance R from a subpath [w0; z0]
of γ . Suppose further that [w0; z0] lies in an R{neighborhood of some flat
plane E . Then Im(�) lies in a 2R{neighborhood of E .

It is now clear that we can choose partitions

0 = t0 � s0 � t1 � s1 � � � � � tn � sn = a

and
0 = t00 � s00 � t01 � s01 � � � � � t0n � s0n = a0

of the domains of γ and � respectively, so that the subpaths γ
��[si−1; ti] are

precisely the collection of all shortened flat segments of γ . Furthermore, the
Hausdor� distance between γ

(
[ti; si]

�
and �

(
[t0i; s

0
i]
�

is at most R00(�; �;X),
while the sets γ

(
[ti−1; si]

�
and �

(
[t0i−1; s

0
i]
�

lie in a 2R{neighborhood of a unique
essential γ{flat Ei .

Since the partition of γ and the sequence of essential γ{flats described above
is independent of the choice of �, it follows that � and �0 L{fellow travel
relative to the sequence of flats (E1; : : : ; En) for some constant L depending
only on �, �, and X .
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