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Abstract

While the topological types of normal surface singularities with homology sphere link
have been classified, forming a rich class, until recently little was known about the
possible analytic structures. We proved in [30] that many of them can be realized as
complete intersection singularities of “splice type,” generalizing Brieskorn type.
We show that a normal singularity with homology sphere link is of splice type if and
only if some naturally occurring knots in the singularity link are themselves links of
hypersurface sections of the singular point.
The Casson Invariant Conjecture (CIC) asserts that for a complete intersection surface
singularity whose link is an integral homology sphere, the Casson invariant of that link
is one-eighth the signature of the Milnor fiber. In this paper we prove CIC for a large
class of splice type singularities.
The CIC suggests (and is motivated by the idea) that the Milnor fiber of a complete
intersection singularity with homology sphere link Σ should be a 4–manifold canonically
associated to Σ. We propose, and verify in a non-trivial case, a stronger conjecture
than the CIC for splice type complete intersections: a precise topological description
of the Milnor fiber.
We also point out recent counterexamples to some overly optimistic earlier conjectures
in [28] and [29].
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758 Walter D Neumann and Jonathan Wahl

In the parallel paper [30] we give analytic descriptions in terms of splice di-
agrams for a wide range of topologies of singularities, when the link of the
singularity is a Q–homology sphere. The splice diagrams considered there gen-
eralize the original splice diagrams of [7, 31] in that the numerical weights
around a node need not be pairwise coprime. In this paper we restrict to Z–
homology sphere links. Our splice diagrams will thus always have pairwise
coprime weights around each node, and, by [7], the possible links are classified
by their splice diagrams and are obtained by repeatedly splicing together the
links Σ(p1, · · · , pn) of Brieskorn complete intersections along naturally occur-
ring knots. Even for this restricted class of topologies, only in the simplest
cases does one know what analytic properties such singularities might have, eg,
being a complete intersection or Gorenstein.

In [30], we describe how “most” homology sphere singularity links arise as links
of complete intersection singularities. This occurs when the associated splice
diagram satisfies a certain “semigroup condition.” In that case we give explicit
equations, which we call “splice type,” generalizing the Brieskorn complete
intersections. One may think in terms of an operation of splicing the defining
equations of two singularities which on the boundary corresponds to splicing
the links. Specifically, we have the

Theorem [30] Given a homology sphere link Σ whose splice diagram satisfies
the semigroup condition, there exists a complete intersection singularity of splice
type whose link is Σ.

There is a natural notion of “higher weight terms” for a splice type equation,
and, by definition, the result of adding higher weight terms is still of splice type1

(the effect on the singularity is always an equisingular deformation). Thus, for
example, the splice type singularities corresponding to one-node splice diagrams
are precisely the Brieskorn complete intersection singularities with homology
sphere link and their higher weight deformations.

In an earlier paper [28], we made the over-optimistic

Splice Type Conjecture Any Gorenstein surface singularity with integral
homology sphere link is a complete intersection of splice type.

Implicit in this conjecture was a new necessary condition (the “semigroup con-
dition”) on a splice diagram (and hence on a resolution diagram) in order that

1This differs from [28, 29], where higher order terms were not allowed. We now call
this “strict splice type.”
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Complex surface singularities with integral homology sphere links 759

it come from a Gorenstein singularity. After all, a similar semigroup condi-
tion on the value semigroup of a curve singularity is well known to characterize
the Gorenstein ones. Further, the conjecture would imply that the topology

of a homology sphere link determines a Gorenstein singularity uniquely up to
equisingularity—a kind of “tautness.” (Compare with the equations of plane
curve singularities with given Puiseux pairs.) Indeed, the conjecture is true for
any singularity zn + g(x, y) = 0 with homology sphere link (Corollary 4.2); this
is a statement about writing the irreducible g(x, y) in a certain iterative way.

But a class of examples which may be found in the paper [17] of Némethi, Lu-
engo, and Melle-Hernandez, shows this Conjecture to be false in this generality:

Examples (a) There exists a Gorenstein singularity, not of splice type, whose
link is the Brieskorn sphere Σ(2, 13, 31).

(b) There exists a Gorenstein singularity, not of splice type, whose link is a
homology sphere but which does not satisfy the semigroup conditions.

The above singularities are universal abelian covers of “superisolated” hypersur-
face singularities. We do not know in either case how to write down equations;
in particular, we still know no counterexample to the Splice Type Conjecture
for complete intersections.

We prove our original conjecture under additional assumptions, which clarifies
the situation. A homology sphere link Σ of a normal surface singularity (X, o)
has a number of natural knots, one for each leaf of the splice diagram (or
equivalently, of the resolution graph). For a splice type singularity these knots
are cut out by hyperplane sections. We prove, conversely (see Theorem 4.1 for
a more precise version):

Theorem 1 For a normal surface singularity (X, o) with homology sphere
link, if all the knots associated to leaves of the splice diagram are links of
hypersurface sections of X , then the semigroup condition is fulfilled, and X is
a complete intersection of splice type.

Our study of singularities with homology sphere link originated in our conjec-
ture, formulated in [26]:

Casson Invariant Conjecture Let (X, o) be an isolated complete intersec-
tion surface singularity whose link Σ is an integral homology 3–sphere. Then
the Casson invariant λ(Σ) is one-eighth the signature of the Milnor fiber of X .
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At the time, we verified the Casson Invariant Conjecture for Brieskorn complete
intersections by direct computation. It was a challenge to find other examples,
but having done so, the conjecture was verified in these cases, with the serious
work being calculation of the signature. With the singularities of splice type
we now have an abundance of examples, but even for these the signature cal-
culations are difficult, and we cannot verify the Casson Invariant Conjecture.
Still, the following theorem includes all previously proved cases of the Casson
Invariant Conjecture, except for some cases described by Collin and Saveliev in
[5] (see Remark 8.3).

Theorem 2 The Casson Invariant Conjecture is true for complete intersection
singularities of splice type for which the nodes of the splice diagram are in a
line.

This is proved by reformulating (as in [26]) the Casson Invariant Conjecture in
terms of geometric genus, which is easier than the signature to compute from
defining equations.

Casson Invariant Conjecture (Version 2) Let (X, o) be a complete inter-
section surface singularity with integral homology 3–sphere link Σ. Then the
Casson invariant λ(Σ) equals −pg(X, o) − 1

8C(Σ), where C(Σ) is the charac-
teristic number c2

1 + c2 − 1 of any good resolution of X (this is a topological
invariant).

This version is equivalent to the previous version by formulas of Laufer and
Durfee (see proof of Theorem 6.3). This formulation makes sense for Gorenstein
singularities, but is false in that generality, as seen using some of the examples
above.

Assuming the Splice Type Conjecture for complete intersections (a shaky as-
sumption), one might expect to verify the Casson Invariant Conjecture by direct
calculation with the equations. But we expect things to go in the opposite di-
rection: a proof of the Casson Invariant Conjecture (perhaps symplectic or
gauge-theoretic) might help deduce the form of defining equations. This hap-
pens for instance in the one-node case: we proved in [26] that a Gorenstein
singularity (X, o) with link Σ(p1, · · · , pn) is of splice type, ie, an equisingu-
lar deformation of the corresponding Brieskorn complete intersection, if and
only if the Casson Invariant Conjecture holds for X (equivalently, X has the
same geometric genus as the Brieskorn complete intersection). We remark that
A. Némethi [19] has proved this value of geometric genus for weakly elliptic
singularities, eg, when the link is Σ(2, 3, 6k + 5).
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Part of the interest of the Casson Invariant Conjecture is its suggestion that
the Milnor fiber is a “natural” 4–manifold which is attached to its boundary
Σ, and for which the signature computes the Casson invariant exactly (and not
just mod 2). Specifically, it implies that for a complete intersection singularity
whose link is a homology sphere, analytic invariants like the Milnor number and
geometric genus are determined by the link. (Such results are known to be false
for general hypersurface singularities.) Given the equations of a singularity, it is
relatively easy to calculate the Casson invariant of the link, but it is extremely
hard to calculate the signature of the Milnor fiber (let alone understand its
topology).

We conjecture a topological construction that, when splicing two singularities,
creates the new Milnor fiber out of the old ones, extending the operation of
splicing on the boundaries (see Conjecture 2). This conjecture easily implies
the Casson Invariant Conjecture for splice type singularities (Corollary 6.2).
We succeed in proving it in a non-trivial case:

Theorem 3 For a singularity zn + g(x, y) = 0 with homology sphere link, the
Milnor fiber is formed by the conjectured topological construction.

Though the Casson Invariant Conjecture for this case follows, it had already
been proven in [26] (by a much less conceptual proof), and more recently by
Collin and Saveliev [5] using equivariant Casson invariants and by Némethi and
Nicolaescu [23] in a more general context. It is also a special case of Theorem
2.

In [28, 29] we proposed a more general version of the Splice Type Conjecture:
Any Q–Gorenstein surface singularity with Q–homology sphere link has as uni-

versal abelian cover a complete intersection singularity of splice type (using a
more general notion of splice diagram). Although true surprisingly often, the
examples of [17] mentioned above show this to be false in general, even for
hypersurface singularities.

The converse direction, that equations of splice type lead to abelian covers of
Q–Gorenstein singularities with expected topological type, is the main content
of [30] (in particular, as already mentioned, the equations of splice type of the
current paper give singularities with the expected homology sphere links). This
paper is nevertheless somewhat transverse to [30], since we offer there no guess
as to the topology or the signature of the Milnor fiber of the universal abelian
cover. Though [26] wondered about a generalization of the Casson Invariant
Conjecture for Q–homology sphere links involving the Casson–Walker invariant,
computations for Seifert fibered rational homology spheres by Lescop [15, 16]
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showed the naive generalization fails (see also [4]). Lim’s result [14] suggested
looking at a Seiberg–Witten invariant, and a recent generalization along these
lines of the Casson Invariant Conjecture to Q–Gorenstein Q–homology spheres
has been offered by Némethi and Nicolaescu [21, 22, 23], but is now also known
to be false in the generality stated (see [17]).

We offer now a road map to help readers go through this paper.

Sections 1 and 2 are introductory. In Section 1, we review from [7] the defini-
tion of splice diagrams and the topological description of homology sphere links;
further details are found in the Appendix (Section 9), where we also give an
improved description of the relationship between splice diagrams and plumbing
(or resolution) graphs. We also introduce the important “semigroup condition.”
In Section 2 we associate “splice type equations” to any splice diagram with
semigroup condition; this provides a wealth of examples of complete intersec-
tions with homology sphere links. Modifying the construction provides familiar
equations for complete intersection monomial curves.

Section 3 develops some theory of semigroups and monomial curves that is
needed in the next two sections to prove Theorems 1 and 2. In particular, it
includes a new characterization of complete intersection monomial curves in
terms of one-dimensional analogues of splice type singularities (Theorem 3.1
and its scholium).

Section 4 examines the key property of a splice type singularity: the natural
knots in the link associated to leaves in the splice diagram are obtained by
setting a coordinate equal to 0. We prove (Theorem 4.1, a more precise version
of Theorem 1) that conversely any normal surface singularity with homology
sphere link, and for which the natural knots are hypersurface sections, is in
fact a splice type singularity. Major use is made of Theorem 3.1 concerning the
δ–invariant of certain monomial curves.

Section 5 has as its goal the inductive calculation of the geometric genus pg for
a splice type singularity. Every node v of the splice diagram gives a valuation
(or weight function) ν of the singularity; a key result (Theorem 5.3) states
that the associated graded ring associated to ν is an integral domain, whose
normalization is a Brieskorn complete intersection. Now, pg is the colength of
the “canonical ideal,” given by functions for which every ν–weight is at least
some explicit value. When all the nodes of the splice diagram are on a line, there
is a simultaneous monomial basis for every associated graded (Lemma 5.5). This
reduces the calculation of pg in that case to counting integral lattice points in
some region; an induction now works, yielding the main result, Theorem 5.6.
Theorem 2 is a corollary of this and Theorem 6.3 of the next section.
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The remaining sections 6 to 8 discuss the Milnor Fiber Conjecture and are
largely independent of the preceding sections. Section 6 introduces this conjec-
ture, which describes the conjectured topology of the Milnor fiber of splice type
singularities, and which would imply the Casson Invariant Conjecture. The
discussion leads to Theorem 6.3, which clarifies how the Casson Invariant Con-
jecture relates to splicing. This involves the relationship between signature and
geometric genus, and the key is to understand the behavior of the topological
invariant C(∆) of the link under splicing. This is done in Theorem 6.4, whose
proof, using numerics of splice diagrams, takes up the following section (Section
7).

Section 8 verifies the Milnor Fiber Conjecture for equations of the form zn =
f(x, y), by careful topological construction of the Milnor fiber. This uses a
description of plane curve singularities in terms of splice diagram equations.

Acknowledgements The conjectures and some results of this paper arose
from a visit by the first author to Duke University, and we thank the Duke
Mathematics Department for its hospitality. We also thank the Max-Planck-
Institut für Mathematik in Bonn for its hospitality while some of the work on
this paper was done.

The first author’s research is supported under NSF grant DMS-0083097 and
the second author’s under NSA grant MDA904-02-1-0068.

1 Splice diagrams for integral homology sphere links

For more details on splicing see the Appendix (Section 9).

Recall that a splice diagram is a finite tree with vertices only of valency 1
(“leaves”) or ≥ 3 (“nodes”) and with a collection of integer weights at each
node, associated to the edges departing the node. The following is an example.

◦ ◦

◦
2

NNNNNNN

3ppppppp ◦
5 NNNNNNN
2

ppppppp117

◦ ◦

For an edge connecting two nodes in a splice diagram the edge determinant is
the product of the two weights on the edge minus the product of the weights
adjacent to the edge. Thus, in the above example, the one edge connecting two
nodes has edge determinant 77 − 60 = 17.

The splice diagrams that classify homology sphere singularity links satisfy the
following conditions on their weights:
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• the weights around a node are positive and pairwise coprime;

• the weight on an edge ending in a leaf is > 1;

• all edge determinants are positive.

More general splice diagrams appear for other situations (see, eg, [7, 29, 30]),
but we will only consider splice diagrams satisfying the above conditions here.

Theorem 1.1 [7] The homology spheres that are singularity links are in one-
one correspondence with splice diagrams satisfying the above conditions.

The splice diagram and resolution diagram for the singularity determine each
other uniquely, and describe how to construct the link by splicing or by plumb-
ing. One method to compute the resolution diagram from the splice diagram
is given in [7]. We describe an easier method in the appendix to this paper
(Section 9), where we also recall the topological meaning of splicing and how
to compute the splice diagram from the resolution diagram for a singularity.

The following notations will be used extensively in this paper.

Notation For a node v and an edge e at v , let dve be the weight on e at
v , and dv the product of the dve over all such e. Let ∆ve be the subgraph of
∆ cut off from v by e. For any pair of vertices v and w , let ℓvw (the linking

number) be the product of all the weights adjacent to, but not on, the shortest
path from v to w in ∆. We also consider ℓ′vw , the same product but excluding
weights around v and w . Thus if v is a node and w is a leaf in ∆ve , then

ℓvwdve = ℓ′vwdv .

Definition 1.2 Semigroup Condition Let ∆ be a splice diagram. We say ∆
satisfies the semigroup condition if, for each node v and adjacent edge e, the
edge-weight dve is in the semigroup

N〈ℓ′vw : w a leaf of ∆ in ∆ve〉 .

Equivalently, the product dv of the edge-weights adjacent to v is in the semi-
group

N〈ℓvw : w a leaf of ∆ in ∆ve〉 .

For instance, in the two-node splice diagram above, let v be the leftmost node
and w the upper right hand leaf. Then ℓvw equals 2 · 3 · 5, while ℓ′vw = 5;
the semigroup condition is satisfied at that node since 7 is in the semigroup
generated by 2 and 5.
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If a splice diagram satisfies the semigroup condition, we will write down com-
plete intersection equations that give a singularity with the given link. We know
of no counterexample to the following optimistic conjecture mentioned in [29].

Conjecture 1 (Complete Intersection implies Semigroup Condition) If a sur-
face singularity with homology sphere link is a complete intersection, then its
splice diagram satisfies the semigroup condition.

For example, consider the splice diagram

◦ ◦
∆ = ◦

p
SSSSSSS

qkkkkkkk ◦
q′ SSSSSSS
p′ kkkkkkkr′r

◦ ◦

with p, q, r and p′, q′, r′ pairwise coprime triples of positive integers satisfying
rr′ > pqp′q′ . Then ∆ satisfies the semigroup condition if and only if

r ∈ N〈p′, q′〉 and r′ ∈ N〈p, q〉.

(Note r is automatically in the semigroup N〈p′, q′〉 if it is greater than or equal
to the conductor (p′ − 1)(q′ − 1).) In particular, the resolution diagram

−2
◦

−2
◦

T =
−7
◦

PPPPPP

nnnnnn
−1
◦

nnnnnn
PPPPPP

−3
◦

−3
◦

gives the splice diagram

◦ ◦
∆ = ◦

2
SSSSSSS

3kkkkkkk ◦
3 SSSSSSS
2 kkkkkkk371

◦ ◦

which does not satisfy the semigroup condition, since 1 is not in the semigroup
generated by 2 and 3. We would therefore expect that there is no complete
intersection singularity with this resolution.

2 Equations associated to a splice diagram

Let ∆ be a splice diagram satisfying the semigroup condition. We will write
down a system of complete intersection equations that give a singularity with
the corresponding link. Associate a variable zw to each leaf w of the splice
diagram. To each node v of the splice diagram, we will associate (δv − 2)
equations, where δv is the valency of the node. If n is the number of leaves,
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then it is easy to check that n− 2 =
∑

(δv − 2) (summed over the nodes of ∆),
so this will give the right number of equations.

Fix a node v . For each leaf w we give the variable zw weight ℓvw (we call
this the v–weight of zw ). For each edge e at v the semigroup condition lets us
write

dv =
∑

w

αvwℓvw , sum over the leaves w of ∆ in ∆ve , with αvw ∈ N. (1)

Equivalently,

dve =
∑

w

αvwℓ′vw , sum over the leaves w of ∆ in ∆ve (2)

We define an admissible monomial (associated to the edge e at the node v)
to be a monomial

∏

w zαvw
w , the product over leaves w in ∆ve , with exponents

satisfying the above equations. Thus an admissible monomial Mve associated
to v has total v–weight dv (and depends on the choice of αvw ).

Next, choose one admissible monomial Mve for each edge at v and consider
δv − 2 equations associated to v by equating to 0 some C–linear combinations
of these monomials:

∑

e

aieMve = 0, i = 1, . . . , δv − 2.

Repeating for all nodes, we get a total of n−2 equations. If the coefficients aie

of the equations are “sufficiently general,” we say that the resulting system of
n − 2 equations is of strict splice type.

Sufficiently general simply means that for every v , all maximal minors of the
(δv − 2) × δv matrix (aie) of coefficients should be non-singular. By applying
row operations to such a matrix (taking linear combinations of the equations)
one can always put the (δv − 2) × δv coefficient matrix in the form











1 0 . . . 0 a1 b1

0 1 . . . 0 a2 b2
...

...
...

...
...

0 0 . . . 1 aδv−2 bδv−2











so we will often assume we have done so. In this way, the defining equations are
sums of three monomials. The “sufficiently general” condition is then aibj −
ajbi 6= 0 for all i 6= j , and all ai and bi nonzero.
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Example 1 Assume ∆ has one node, of valency n. There is no semigroup

condition. There is only one admissible monomial for each edge, namely z
dj

j ,
where dj is the weight on the edge. Our equations are thus of Brieskorn type:

n
∑

j=1

aijz
dj

j = 0, i = 0, . . . , n − 2 .

The “sufficiently general” condition is then the well-known condition (due to
H. Hamm [9]) for the system of n− 2 equations to have an isolated singularity.
Thus, for a splice diagram with one node, “strict splice type” is equivalent to
isolated Brieskorn complete intersection.

Example 2 For the ∆ of the example at the start of Section 1 we associate
variables z1, . . . , z4 to the leaves as follows:

z1 ◦ ◦ z4

∆ = ◦
2

RRRRRRR

3lllllll ◦
5 RRRRRRR
2

lllllll117

z2 ◦ ◦ z3

The admissible monomials for the left node are z2
1 , z3

2 , and z3z4 . The admissible
monomials for the right node are z5

3 , z2
4 , and z1z

4
2 or z3

1z2 (since 11 = α·3+β ·2
has solutions (1, 4) and (3, 1)). Thus the system of equations might be

z2
1 + z3

2 + z3z4 = 0 ,
z5
3 + z2

4 + z1z
4
2 = 0 .

This system is always of “strict splice type” by our comments above.

Equisingular deformations of systems of equations of strict splice type should
come from adding terms of greater or equal weight with respect to the vertex
weights to each equation. If only greater weight is allowed the result always is
an equisingular deformation. We speak of a higher weight deformation and say
the resulting equations are simply of splice type. See [30] for a fuller discussion.

The importance of splice type singularities is indicated by a result:

Theorem 2.1 [30] A system of equations of splice type defines an isolated
complete intersection surface singularity whose link is the homology sphere Σ
defined by the splice diagram ∆, and whose resolution graph is therefore the
corresponding resolution diagram.

Each node v of the splice diagram corresponds to an exceptional curve Ev of
the resolution, and the v–weight of zi is its value for the valuation given by
order of vanishing on Ev .
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768 Walter D Neumann and Jonathan Wahl

Moreover, the curve zi = 0 cuts out in Σ the knot corresponding to the i-th
leaf of ∆.

One could expand the definition of strict splice type singularities to include
(for fixed v) suitable linear combinations of all possible admissible monomials
associated to edges at v . But, up to higher weight deformations, this adds no
generality. Also, if we change our choice of admissible monomials for the edges
at each node, then we only change our splice type singularities up to higher
weight deformation. Thus the concept of splice type is independent of choices
of admissible monomials.

The theorem implies that the embedding dimension of a splice diagram singu-
larity is at most the number of leaves of the splice diagram — but it may be
less. There are even unexpected hypersurface examples.

Example 3 Let ∆ be the splice diagram:

y ◦
q
PPPPPPPPP z◦

p′

nnnnnnnnn

◦
p′′q′ p

◦
p′ pq′′

p′′

p′qr

◦

x ◦
p
nnnnnnnnn w◦

q′

PPPPPPPPP

◦
q′′













 p′′

44
44

44
44

v ◦ u◦

The integers p, q , p′ , q′ , p′′ , q′′ , r are ≥ 2 and satisfy appropriate relative
primeness conditions, as well as edge inequalities

q′ > p′q, q′′ > p′′q′, qr > pq′′ .

Associating variables x, y, z, w, u, v to the leaves in clockwise order starting
from the left as shown, one may write splice equations:

xp + yq = z

zp′ + wq′ = u

up′′ + vq′′ = xr

y + w = v

These define the hypersurface singularity given by

((xp + yq)p
′
+ wq′)p

′′
+ (y + w)q

′′
= xr .
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A variant of the splice diagram yields a more familiar object. Let ∆ be a
splice diagram satisfying the semigroup conditions, and choose a distinguished
leaf w′ , to form a “rooted diagram.” Attach a variable zw to each leaf w 6=
w′ . Now, for each vertex v of ∆, form the same equations as before, except
that one does not consider the edge in the direction of w′ . (One is in general
eliminating more monomials than simply setting zw′ = 0 in our previous splice
diagram equations.) There is now one equation less than there are variables.
Note that the edge-weights in the direction of w′ now play no role and can be
discarded. We claim these equations generate a complete intersection curve,
and this curve is the monomial curve associated to a semigroup Γ′ . To describe
this we first briefly recall some terminology about semigroups (see Section 3 for
more details).

The semigroups arising in this paper are always numeric semigroups, that is
subsemigroups Γ of N = Z≥0 for which N − Γ is finite. The conductor c(Γ)
is the smallest c ≥ 0 so that γ ≥ c implies γ ∈ Γ. The semigroup ring C[tΓ],
or monomial curve associated to Γ, is the graded subalgebra of C[t] generated
by tγ , γ ∈ Γ. Γ is called a complete intersection semigroup if C[tΓ] is a graded
complete intersection.

In our situation of a splice diagram ∆ satisfying the semigroup conditions with
distinguished leaf w′ , the semigroup Γ′ is the semigroup generated by ℓw′w over
all leaves w 6= w′ . We will see in section 3 that:

Fact Γ′ is a complete intersection semigroup and the modified splice equations
described above define the monomial curve C[tΓ

′
].

In terms of Theorem 2.1, the significance of this curve is that if w′ is the i-th
leaf of ∆ then this curve, or an equisingular deformation of it, arises as the
curve cut out by the hyperplane zi = 0.

Example 4 Consider the splice diagram at the beginning of Section 1, and let
w′ be the lower left leaf. In the modified splice diagram, the weights 3 and 11
are removed. Denote the three leaves by wi , i = 1, 3, 4, starting at the upper
left and going counterclockwise; the corresponding variables by zi ; and the two
nodes by v and v′ . Then the equations at v resp. v′ could be z2

1 + az3z4 = 0
and z5

3 + bz2
4 = 0. The semigroup Γ′ is Γ′ = N〈7, 4, 10〉 and, if we choose

a = b = −1, the curve can be parametrized as (z1, z3, z4) = (t7, t4, t10).

A leaf w′ of a splice diagram ∆ always represents a knot in the corresponding
homology sphere, and this knot is a fibered knot (see Section 11 of [7]). If the

Geometry & Topology, Volume 9 (2005)



770 Walter D Neumann and Jonathan Wahl

homology sphere is given as a link of a splice type singularity as above, then
this knot is the link of the curve cut out by a coordinate hyperplane zi = 0
(and the fibration can be given by the usual Milnor fibration zi/|zi|). The first
Betti number of its fiber is the Milnor number of the knot. We recall that even
without the semigroup condition, we have:

Theorem 2.2 [7, Section 11] The Milnor number of the above knot is

1 +
∑

v 6=w′

(δv − 2)ℓvw′ .

If the link is given by splice type equations, then the theory of curve singularities
implies that this number equals the conductor of the above semigroup Γ′ , as
can be confirmed by computation of the conductor (Theorem 3.1).

3 Numerical semigroups and monomial curves

In this section we develop some results about semigroups and their associated
curves that are needed in the proofs of Theorems 1 and 2 of the Introduction.

As mentioned in Section 2, the semigroups we consider are always numeric

semigroups, that is, subsemigroups Γ of N = Z≥0 for which N − Γ is finite.
The semigroup ring C[tΓ], or monomial curve associated to Γ, is the graded
subalgebra of C[t] generated by tγ , γ ∈ Γ. We briefly collect some known facts
and terminology (eg, [6, 10, 11, 35]).

The conductor c(Γ) is the smallest c ≥ 0 so that γ ≥ c implies γ ∈ Γ. Γ
is symmetric when γ ∈ Γ if and only if c(Γ) − 1 − γ /∈ Γ; equivalently, C[tΓ]
is Gorenstein (see [11] Prop. 2.21). Since γ and c(Γ) − 1 − γ cannot both be
in Γ, a symmetric semigroup is maximal with given conductor. Classically an
element of N that is not in Γ is called a gap. The number of gaps is denoted
δ(Γ); clearly

δ(Γ) ≥ c(Γ)/2, with equality if and only if Γ is symmetric.

Γ is called a complete intersection semigroup if C[tΓ] is a graded complete
intersection. A complete intersection semigroup is symmetric. Γ is a complete
intersection semigroup if and only if it has a semigroup presentation of deficiency
one (ie, with one fewer relations than generators; see [10]). If Γ (complete
intersection or not) has a semigroup presentation

Γ = 〈x1, . . . , xn :
∑

j

aijxj =
∑

j

bijxj , i = 1, . . . , r〉
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with aij, bij ∈ N, then the monomial curve is presented as

C[z1, . . . , zn]/
(

∏

j

z
aij

j −
∏

j

z
bij

j , i = 1, . . . , r
)

.

Example Relatively prime p and q generate a complete intersection semi-
group with conductor (p − 1)(q − 1). This semigroup has semigroup pre-
sentation 〈x1, x2 : qx1 = px2〉. Its monomial curve C[tp, tq] is presented as
C[z1, z2]/(z

q
1 − zp

2), with the isomorphism given by z1 7→ tp , z2 7→ tq .

Let (∆, w′) be a finite rooted tree (tree with one vertex singled out as “root”),
whose root vertex w′ is of valency 1. We visualize it with the root vertex at the
top, so “downward” means in the direction away from the root. We assume also
that ∆ has positive integer weights on all edges other than the root edge and
that the weights on the downward edges at each non-root vertex are pairwise
coprime. For example, one obtains such a tree if one picks some leaf w′ of a
splice diagram as root, and then forgets all “far weights” of the edges of the
splice diagram (from the point of view of w′ ); equivalently, one forgets the “near
weights” around each node.

In such a tree, the numbers ℓw′v for v 6= w′ are still defined (product of weights
on edges directly adjacent to the shortest path from w′ to v). We define the
semigroup of (∆, w′) to be the semigroup

sg(∆) = sg(∆, w′) := N〈ℓw′w : w is a leaf of ∆〉

(we use the shorter sg(∆) if the root vertex is clear). Each non-root vertex of
∆ cuts off a collection of subtrees below it. We say that (∆, w′) satisfies the
semigroup condition if the weight on the root edge of every such subtree is in
the semigroup of the subtree.

Define an invariant µ(∆, w′) by

µ(∆) = µ(∆, w′) := 1 +
∑

v 6=w′

(δv − 2)ℓw′v.

Theorem 3.1 Let (∆, w′) be a weighted rooted tree as above and Γ = sg(∆).
Then

2δ(Γ) ≤ µ(∆),

with equality if and only if (∆, w′) satisfies the semigroup condition, in which
case Γ = sg(∆) is a complete intersection semigroup. (It follows that the same
result holds with 2δ(Γ) replaced by c(Γ).)
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If (∆, w′) satisfies the semigroup condition we will describe the complete in-
tersection equations; these equations will be associated to the nodes of ∆. We
assign a variable zj to each leaf wj of ∆. The equations will generate the kernel

of the map C[z1, . . . , zm] → C[tΓ] given by zj 7→ t
lw′wj .

For a node v of the tree and a leaf wj below it let l′vwj
be the product of weights

adjacent to the path from v to wj , excluding weights adjacent to v . For each
downward edge e at v the semigroup condition tells us that the weight pe is
a non-negative integer linear combination pe =

∑

j αj l
′
vwj

, summed over the

leaves below v . We choose such an expression and denote by Me =
∏

j z
αj

j ∈
C[z1, . . . , zm] the corresponding monomial. Then:

Scholium If (∆, w′) satisfies the semigroup condition in the above theorem
then the equations associated to node v are the equations that equate the
monomials Me for the different downward edges at v .

If we replace each of these equations Me = Me′ by an equation Me = aee′Me′

with aee′ ∈ C∗ then we obtain the same monomial curve.

Remark 3.2 Delorme’s Proposition 9 in [6] implies that every complete in-
tersection semigroup arises as in Theorem 3.1. Already in the three-generator
case the minimal tree defining the semigroup need not be unique.

Example If gcd(a, b) = gcd(a, c) = gcd(c, d) = 1 then the tree

◦

◦

◦

ad ���� ◦

c;;;;

◦

a ���� ◦

b;;;;

satisfies the semigroup condition and leads to the complete intersection mono-
mial curve

C[z1, z2, z3]/(z
a
1 − zb

2, z
d
2 − zc

3)
∼= C[tbc, tac, tad].

Exchanging a with c and b with d gives a different tree for the same semigroup.

Proof of Theorem 3.1 and Scholium The second part of the scholium is

an easy induction once the rest is proved, replacing zj 7→ t
ℓw′wj for j > 1 by

zj 7→ λjt
ℓw′wj for suitable λj ∈ C∗ . So we will just prove the theorem and first

part of the scholium.
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Let ∆1, . . . ,∆n be the subtrees cut off by the bottom vertex w0 of the root edge
of ∆ and let pi be the weight on the root edge of ∆i . Write Γi = sg(∆i, w0),
P = p1 . . . pn and Pi = P/pi . Then

Γ = P1Γ1 + · · · + PnΓn,

the semigroup consisting of all integers of the form
∑

Piγi , γi ∈ Γi . Moreover,

µ(∆, w′) =
n

∑

i=1

(Piµ(∆i, w0) − 1) + (n − 1)P + 1.

By Lemma 3.3 below, the desired results now hold for ∆ if they are true for
each ∆i . The proof is thus an induction, with the induction start being the case
that ∆ consists of only a root edge and sg(∆) is the one-generator semigroup
N.

Lemma 3.3 Suppose Γi are semigroups for i = 1, . . . , n, and p1, . . . , pn are
pairwise coprime positive integers. Write P = p1 . . . pn and Pi = P/pi . Let

Γ = P1Γ1 + · · · + PnΓn.

Then:

(1) 2δ(Γ) ≤
∑n

i=1 Pi(2δ(Γi) − 1) + (n − 1)P + 1.

(2) If equality holds in (1) then pi ∈ Γi for i = 1, . . . , n.

(3) c(Γ) ≤
∑n

i=1 Pi (c(Γi) − 1) + (n − 1)P + 1.

(4) If pi ∈ Γi for i = 1, . . . , n then equality holds in (3).

(5) If each Γi is symmetric then the three statements are equivalent: equality
in (1); equality in (3); pi ∈ Γi for i = 1, . . . , n.

(6) Assuming pi ∈ Γi for each i, then Γ is symmetric resp. a complete
intersection if and only if each Γi is symmetric resp. complete intersection.

(7) If pi ∈ Γi for each i then one obtains a presentation for Γ by adjoining
to the disjoint union of presentations for the Γi the n− 1 relations w1 =
· · · = wn , where wi is an expression for pi in the presentation of Γi .

Proof We shall prove the case n = 2. The case of general n follows from this
case by an easy induction.

To prove (1) we count gaps in Γ. A gap γ of Γ = p2Γ1 + p1Γ2 is either

(i) one of the (p1 − 1)(p2 − 1)/2 gaps of p2N + p1N,

or it is of the form γ = p2α + p1β for some α, β ∈ N. In this case we will see
that either:
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(ii) β is the smallest β ∈ Γ2 in its congruence class mod p2 , and α /∈ Γ1 , or

(iii) 0 ≤ α < p1 , and β /∈ Γ2 .

Indeed, if we can express γ in the form γ = p2α + p1β with α, β ∈ N, then we
can do so with 0 ≤ α < p1 . If this expression does not satisfy condition (iii)
then β ∈ Γ2 . In this case decrease β by some multiple of p2 (maybe zero) to
make it the smallest β ∈ Γ2 in its congruence class mod p2 , and simultaneously
increase α by the same multiple of p1 to keep γ = p2α + p1β . Since γ is a gap
of p2Γ1 + p1Γ2 , we must have α /∈ Γ1 , so the expression now satisfies condition
(ii).

Now there are exactly p2δ(Γ1) pairs (β, α) satisfying condition (ii) and p1δ(Γ2)
pairs satisfying condition (iii), so there are at most (p1−1)(p2−1)/2+p2δ(Γ1)+
p1δ(Γ2) gaps of Γ = p2Γ1 + p1Γ2 . This number can be written 1

2

(

p2(2δ(Γ1) −
1) + p1(2δ(Γ2) − 1) + p1p2 + 1

)

, so part (1) is proven.

This proof shows that we have equality in part (1) if and only if every element
γ = p2α + p1β satisfying condition (ii) or (iii) is a gap of Γ and there is no
overlap between cases (ii) and (iii). Suppose now p1 /∈ Γ1 . Then if every
p2α + p1β satisfying (ii) is a gap of Γ, there is an overlap: (α, β) = (p1, 0)
in condition (ii) shows that p1p2 is a gap of Γ, whence p2 /∈ Γ2 , so p1p2 also
has an expression with (α, β) = (0, p2) satisfying condition (iii). Thus p1 /∈ Γ1

implies inequality in part (1). Similarly for p2 /∈ Γ2 , so part (2) is proved.

For statement (3), we show that i ≥ 0 added to the right hand side of the
inequality of part (3) gives an element of Γ. The sum of the last two terms of

p2c(Γ1) + p1c(Γ2) + (p1 − 1)(p2 − 1) + i

is in the semigroup generated by p1 and p2 , say p1α + p2β ; so the whole
expression equals

p2(c(Γ1) + β) + p1(c(Γ2) + α),

which by definition of conductors is clearly in Γ.

For statement (4), suppose p1 ∈ Γ1 and p2 ∈ Γ2 , but

p2c(Γ1) + p1c(Γ2) + (p1 − 1)(p2 − 1) − 1 = p2λ + p1π, for some λ ∈ Γ1, π ∈ Γ2.

Modulo p1 this equation says c(Γ1) − 1 ≡ λ, so

c(Γ1) − 1 = λ + p1t, for some integer t.

Inserting this in the previous equation gives

c(Γ2) − 1 = π + p2(−1 − t).
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Since one of t and −1− t is ≥ 0 and λ, p1 ∈ Γ1 and π, p2 ∈ Γ2, one gets either
c(Γ1) − 1 ∈ Γ1 or c(Γ2) − 1 ∈ Γ2 , a contradiction.

Part (5) is now immediate: (2) and (4) show

(equality in (1)) ⇒ (p1 ∈ Γ1 and p2 ∈ Γ2) ⇒ (equality in (3)),

and if the Γi are symmetric then c(Γ) ≤ 2δ(Γ) and c(Γi) = 2δ(Γi), so equality
in (3) implies equality in (1).

Part (6) is proved in [6]. (In this paper we use only that Γ is a complete
intersection if both Γ1 and Γ2 are; this follows from part (7).)

For part (7), let Γ1 = 〈x1, . . . , xn : s1, . . . , sk〉 and Γ2 = 〈y1, . . . , ym : r1, . . . , rℓ〉
be commutative semigroup presentations of Γ1 and Γ2 ; let p1 = v(x1, . . . , xn)
and p2 = w(y1, . . . , ym) be expressions for p1 and p2 in these semigroups.
Suppose p2γ1 + p1γ2 = p2γ

′
1 + p1γ

′
2 equates two elements of Γ = p2Γ1 + p1Γ2 ,

with γ1, γ
′
1 ∈ Γ1 and γ2, γ

′
2 ∈ Γ2 . Let γ1 = g1(x1, . . . , xn) be an expression

for γ1 ∈ Γ1 in terms of the generators (and hence for p2γ1 in p2Γ1), and
similarly γ′

1 = g′1(x1, . . . , xn), γ2 = g2(y1, . . . , ym), γ′
2 = g′2(y1, . . . , ym). Then

the relation to be verified in Γ = p2Γ1 + p1Γ2 is g1 + g2 = g′1 + g′2 (abbreviating
g1(x1, . . . , xn) = g1 etc.), and we must show this follows from the relations of
Γ1 and Γ2 and the additional relation v = w .

With no loss of generality γ1 ≥ γ′
1 in N. Then, working in N, we have p2(γ1 −

γ′
1) = p1(γ

′
2 − γ2), so γ1 − γ′

1 = sp1 and γ′
2 − γ2 = sp2 for some s in N. In

particular, the equations g1 = sv + g′1 and g′2 = sw + g2 hold in Γ1 and Γ2 ,
so they must follow from the relations of these semigroups. Thus, using the
additional relation v = w , we deduce g1 + g2 = sv + g′1 + g2 = sw + g′1 + g2 =
g′1 + g′2 , as desired.

3.1 Normal form monomials

The material of this subsection will be needed in Section 5 for the proof of
Theorem 2.

Suppose now that (∆, w′) satisfies the semigroup condition and put Γ = sg(∆).
We wish to describe a monomial basis for the corresponding complete intersec-
tion curve C[z1, . . . , zm]/(relations). That is, we want “normal form” mono-
mials in z1, . . . , zm so that each tγ with γ ∈ Γ is the image of exactly one

monomial under the map C[z1, . . . , zm] → C[tΓ] given by zj 7→ t
ℓw′wj . We will

do this by systematically trying to eliminate variables with small index.
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We assume that the tree ∆ is drawn so that the indices i = 1, . . . ,m of the
leaves increase from left to right. For any node v and outward edge e at v let
∆ve be the subtree below v with root vertex v and root edge e.

If M is a monomial, let Mve be the submonomial of M determined by the vari-
ables corresponding to leaves of ∆ve . This monomial represents tα ∈ C[tsg(∆ve)]
for some α. We will say M is in normal form if for every v and e as above so
that e is not the rightmost edge at v , α − pe /∈ sg(∆ve).

If M is not in normal form at some (v, e) then we could replace Mve in M
by M ′

veMe′ where e′ is the rightmost edge at v , M ′
ve is a monomial represent-

ing tα−pe ∈ C[tsg(∆ve)] and Me′ is a monomial representing tpe′ ∈ C[tsg(∆ve′ )].
Since tpe ∈ C[tsg(∆ve)] and tpe′ ∈ C[tsg(∆ve′ )] become equal in C[tsg(∆)], this
does not change the value of M . It is easy to see this process must even-
tually stop. A simple induction shows that it yields a unique normal form
for M . Normal form monomials thus provide the desired monomial basis of
C[z1, . . . , zm]/(relations).

The following example will be important in Section 5.

Example 5 Let

∆ = ◦

◦p1

��
��

�� pn

??
??

??

◦ . . . ◦

so Γ is the semigroup generated by the Pi = P/pi . The monomial curve

(tP1 , tP2 , · · · , tPn)

is the complete intersection curve singularity defined by the equations

zpi

i − zpn
n = 0, i = 1, · · · , n − 1.

The conductor c(Γ) is

P
(

n − 1 −
∑

(1/pi)
)

+ 1.

The monomial basis described above is

{zα1

1 . . . zαn
n : αi < pi for all i = 1, . . . , n − 1}.
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More generally, applied to a tree of the form

∆ =◦

FF
FF

FF
FF

◦p1

xx
xx

xx
xx

pk1
q1

EE
EE

EE
EE

EE
EE

E

◦ . . . ◦

◦pk1+1

xx
xx

xx
xx

>
>

>
>

>
>

>
>

◦ . . . ◦

◦
pkr+1

��
��

� pn

33
33

3

◦ . . . ◦

which satisfies the semigroup condition, the above procedure will again give the
monomial basis

{zα1

1 . . . zαn
n : αi < pi for all i = 1, . . . , n − 1}.

(However, with a different ordering of the variables the monomial basis for this
example can be considerably more complicated.)

4 The semigroup condition

Let (X, o) be a normal surface singularity whose link Σ is an integral homology
sphere. Each leaf of the splice (or resolution) diagram gives a knot in Σ, unique
up to isotopy. A key point in the proof in [30], that splice diagram equations
give integral homology sphere links, is to show that the variable zi associated
to a leaf cuts out the corresponding knot in Σ. In other words, the curve Ci

given by zi = 0 is irreducible, and its proper transform Di on the minimal
good resolution is smooth and intersects transversely the exceptional curve
corresponding to the leaf of the splice diagram. We show that the existence of
such functions implies the semigroup condition on the splice diagram.

Theorem 4.1 Let (X, o) be a normal surface singularity whose link Σ is an
integral homology sphere. Assume that for each of the t leaves wi of the splice
diagram ∆ of Σ, there is a function zi inducing the end knot as above. Then

(1) ∆ satisfies the semigroup condition

(2) X is a complete intersection of embedding dimension ≤ t
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(3) z1, · · · , zt generate the maximal ideal of the local ring of X at o, and X
is a complete intersection of splice type with respect to these generators.

Proof Let (Y,E) → (X, o) be the minimal good resolution, z = z1 a function
as above, C ⊂ X the irreducible Cartier divisor defined by z = 0, D ⊂ Y its
proper transform, and E1 ⊂ Y the exceptional curve (which intersects D in
one point) corresponding to the leaf of the splice diagram.

Let V be the value semigroup of C . The orders of vanishing of the functions
z2, · · · , zt at D ∩ E1 generate a subsemigroup Γ ⊂ V which we can compute
from ∆ as follows. For each exceptional curve Ei , let aij be the order of
vanishing of zj on Ei , so, as a divisor, (zj) =

∑

i aijEi + Dj . The equations
z−1
j (0) · Ek = 0 imply that aij is the ij–entry of the matrix (−Ei · Ej)

−1 ; so
aij = ℓij (see Theorem 9.1). Thus Γ is the semigroup generated by ℓ1j , j ≥ 2.

Theorem 3.1 implies 2δ(Γ) ≤ µ(∆, w1), where µ(∆, w1) is described there and
δ(Γ) denotes the number of gaps of Γ. But, by Theorem 2.2, µ(∆, w1) is also
equal to the µ–invariant µ(C) of the curve C . Now µ(C) = 2δ(V ) (since we
do not know a priori that the curve is Gorenstein, we must appeal to Buchweitz
and Greuel [2] for this). Since the inclusion Γ ⊂ V implies δ(V ) ≤ δ(Γ), we
conclude that 2δ(V ) = 2δ(Γ) = µ(∆, w1). Thus Γ = V , and, by Theorem 3.1
again, Γ = V is a complete intersection semigroup. This implies that C is a
positive weight deformation of the monomial curve C[tγ : γ ∈ Γ] (eg, Teissier’s
appendix to [36] or [32]) and in particular is itself a complete intersection (with
maximal ideal generated by the images of z2, · · · , zt ). It follows that (X, o) is
a complete intersection (with maximal ideal generated by z1, . . . , zn ). Finally,
repeating the argument at every leaf gives all the semigroup conditions.

It remains to show that, using the functions z1, · · · , zt above, we can find splice
equations for the singularity. This will proceed as follows: for each node v of
valency δ = δv , we will write down appropriate monomials in the zi which have
the same weight at the node (ie, order of vanishing along the corresponding
exceptional curve), and conclude there are δ−2 independent linear dependence
relations among these monomials, mod higher weight terms.

Let Ev be the exceptional curve corresponding to the node v and let E1, . . . , Eδ

be the exceptional curves with intersect Ev , corresponding to edges e1, . . . , eδ

at v . Choose a monomial Mi of weight dv associated to each edge ei at v
(their existence is guaranteed by the semigroup condition). On the exceptional
curve Ev these monomials all vanish to order dv . If we go to an adjacent node
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v′ of the splice diagram, as in

...
v

◦

p1
MMMMMMMM

pδ−1qqqqqqqq
pδ qδ′ v′

◦

q1
qqqqqqqq

qδ′−1 MMMMMMMM ...

then the order of vanishing of Mi is p1 . . . pδ−1q1 . . . qδ′−1 for i 6= δ and the
order of vanishing of Mδ is pδqδ′ . In particular, at the exceptional curve cor-
responding to v′ , Mδ vanishes to order D more than the other Mi ’s, where
D is the edge determinant of edge eδ . Now in the (unreduced) maximal splice
diagram (see the Appendix; Section 9) we have a node for every exceptional
curve and all edge determinants are 1. Thus we see that on each exceptional
curve Ei that intersects Ev , the Mj with j 6= i vanish to a common order
and Mi vanishes to one higher order. Thus, if we fix one of the neighboring
exceptional curves, say Eδ , then each ratio Mi/Mδ for i 6= δ gives a function
on Ev that has a pole of order 1 at the point Ev ∩ Eδ , a simple zero at the
point of intersection Ev ∩Ei , and no other poles or zeros. It follows that there
are δ − 2 linearly independent relations among the Mi up to higher order at
Ev , as desired.

This gives us a collection of higher weight perturbations of equations of strict
splice type and they are the complete intersection description of (X, o) since
they give the appropriate complete intersection curves when intersected with
zj = 0.

It is a Riemann-Roch problem to determine if a singularity with homology
sphere link has functions z with the properties described above. However, it is
not even known if there is any function at all giving an irreducible divisor on
X ; this is certainly not the case for a general hypersurface singularity [13].

We give an application of the above theorem. We will show in Section 8 that
if a surface singularity of the form zn = g(x, y) has homology sphere link, then
there is a splice type singularity with the same topology (and this singularity is
analytically equivalent to one given by an equation of the form zn = f(x, y)).
This leaves open the question whether the original singularity zn = g(x, y) is
an equisingular deformation of the strict splice type singularity zn = f(x, y)
and is hence of splice type.

Corollary 4.2 Any surface singularity with homology sphere link given by an
equation zn = g(x, y) is a splice type singularity.
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Proof We just sketch the proof. If the splice diagram for the plane curve
g(x, y) = 0 is

◦
p1
◦ 1 p2

q1
◦

q2

1 pk
◦

qk

1
//

◦ ◦ ◦

then it is known (see, eg, [32]) that curves corresponding to ends of this splice di-
agram are cut out by polynomials (namely certain “approximate roots” gi(x, y)
of g(x, y)). It is easy to check that the functions gi(x, y) then cut out curves
in the surface zn = g(x, y) corresponding to the ends of its splice diagram

◦
p1
◦n p2

q1
◦

q2

n pk
◦

qk

n ◦

◦ ◦ ◦

so Theorem 4.1 applies.

5 Geometric genus and Theorem 2

In this section we will prove Theorem 2, that the Casson Invariant Conjecture
holds for a splice type singularity when the nodes of the splice diagram are in
a line. We will do this by computing geometric genus pg , to prove Version 2
of the Casson Invariant Conjecture in the Introduction. The equivalence of the
two versions of the Casson Invariant Conjecture will be proved in Theorem 6.3.

Let (X, o) be a germ of a normal surface singularity, with analytic local ring
O . Consider a good resolution π : (Y,E) → (X, o), ie, the exceptional fiber
E =

⋃

Ei is a union of smooth curves intersecting transversely, no three through
a point. By local duality, one may compute the geometric genus in two ways:

pg(X) = dim H1(OY ) = dim H0(U,KU )/H0(Y,KY ),

where U = X−{o} = Y −E , and K denotes canonical line bundle (or its sheaf
of sections).

If (X, o) is Gorenstein, let ω be a nowhere-0 holomorphic two-form on U .
Define the canonical ideal J of O by

J = {f ∈ O : fω is regular on Y }.

Then clearly
pg(X) = dim O/J.

Let Eα, α = 1, . . . , t be those exceptional curves which either have positive
genus, or intersect at least three other curves. Let G be the union of the re-
maining curves (the “strings” in the resolution). The blowing-down Y → Y ′ of
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G gives a space with only cyclic quotient singularities (if Y is the minimal good
resolution then Y ′ is the “log-canonical resolution”); since these singularities
are rational, regular forms in a punctured neighborhood automatically extend
regularly on a resolution. Therefore, f ∈ J if and only if fω extends regularly
over the t particular curves Eα . Let να be the valuation on O given by order
of vanishing along Eα , and let kα − 1 denote the order of the pole of ω along
that curve. We conclude that

J = {f ∈ O : να(f) ≥ kα − 1, α = 1, 2, . . . , t}.

In our case we can improve kα − 1 to kα .

Proposition 5.1 Let (X, o) be the germ of a Gorenstein surface singularity,
whose link is a rational homology sphere. Let (Y,E) → (X, o) be the minimal
good resolution, and let E1, · · · , Et be the exceptional curves of valency ≥
3. Let kα be the coefficient of Eα in the divisor −(K + E), and να the
corresponding valuation of the local ring O of X . Then the geometric genus of
X is the colength of the ideal

J = {f ∈ O : να(f) ≥ kα, α = 1, . . . , t}.

Proof By the preceding discussion, the statement to be proved is

H0(Y,KY ) = H0(Y − G,KY + E).

We will do this in two steps:

H0(Y,KY ) = H0(Y,KY + E) = H0(Y − G,KY + E).

Since the link of X is a Q–homology-sphere, the exceptional curve E is the
transverse union of smooth rational curves Ei , no three through a point, with
contractible dual graph. It follows that h1(OE) = 0. (Proof: write E = E1+F ,
where E1 is a component of E that meets the rest F of E in a single point;
the surjection OE → OF has kernel OE1

(−F ) = O(−1), so the claim follows
by induction on the number of components of E .)

Denote KY ⊗ OE(E) by KE (called the dualizing sheaf in [1], Section II.1).
Serre duality implies that, for any line bundle L on E , H1(E,L) is dual to
H0(E,L∗⊗KE) (eg, [1], Theorem II(6.1)). Taking L trivial we see h0(KE) = 0.
The adjunction sequence 0 → KY → KY + E → KE → 0 (called “residue
sequence” in [1], Section II.1) now gives 0 → H0(KY ) → H0(KY + E) →
H0(KE) = 0, proving the first equality H0(KY ) = H0(KY + E).

The second equality H0(Y,KY + E) = H0(Y − G,KY + E) holds generally,
without the condition on the link. In fact, if G is any union of components of
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E and L any divisor supported on E , then it is easy to see that H0(Y,L) =
H0(Y − G,L) so long as L · Gi ≤ 0 for each component of G (for a stronger
statement see [8]), so we must just show that that (K + E) · Gi ≤ 0 for all i.
But Gi is a smooth rational curve, so (K + E) ·Gi equals −2 plus the number
of intersections of Gi with the other curves of E . This result is −1 if Gi is an
end curve of the graph, or 0 otherwise. In either case, the condition is fulfilled,
and our result follows.

While the ki are determined from the resolution graph (see Proposition 7.1),
in some cases they can be computed directly from the equations defining O .

Proposition 5.2 Let

C[z1, . . . , zs]/(f1, · · · , fs−2)

define an isolated complete intersection surface singularity at the origin. For
an exceptional curve E1 in a resolution, with valuation ν = ν1 , consider the
filtration defined by In = {f : ν(f) ≥ n}. Assume that the associated graded
of this filtration is a complete intersection integral domain, with the zi inducing
homogeneous generators, and defined by the ν–leading forms fj, j = 1, · · · , s−
2. Then the invariant k1 is computed as

k1 =

s−2
∑

j=1

ν(fj) −

s
∑

i=1

ν(zi).

Proof We may interpret

ω = dz1 ∧ · · · ∧ dzs/df1 ∧ · · · ∧ dfs−2.

On the associated graded, this gives a two-form of total weight

Σν(zi) − Σν(fj).

In terms of local coordinates in a neighborhood of a general point of E1 , one
finds the order of the pole of ω is one more than the weight, as desired.

If our singularity is a complete intersection of splice type and E1 corresponds
to a node v of the splice diagram, then, in the terminology of the preceding
section, ν(zi) is the v–weight of zi , so ν(zi) is the product of splice diagram
weights adjacent to the path from node v to leaf i. It is easy to see that the
formula of the above proposition is then equivalent to that of Proposition 7.1.

Geometry & Topology, Volume 9 (2005)



Complex surface singularities with integral homology sphere links 783

Example 6 The last two propositions give a well-known result for a weighted
homogeneous complete intersection: the geometric genus is the sum of the
dimensions of the graded pieces of weight less than or equal to k1 above. In
particular, let V (p1, . . . , pn) (with pi pairwise relatively prime) be a Brieskorn
complete intersection, defined by

zpi

i + aiz
pn−1

n−1 + biz
pn
n = 0, i = 1 . . . , n − 2 .

Let P = p1 · · · pn, Pi = P/pi . Then

k1 = (n − 2)P − ΣPi = P (n − 2 − Σ(1/pi)).

Using the monomial basis zi1
1 · · · zin

n with ik < pk, k = 1, · · · , n − 2, one com-
putes

pg(V (p1, . . . , pn)) = #{(i1, i2, · · · , in) ∈ (Z≥0)
n :

n
∑

k=1

(ik + 1)/pk < n − 2;

ik < pk, k = 1, · · · , n − 2}.

To extend this calculation to singularities corresponding to more complicated
splice diagrams, we need one monomial basis which works for every filtration
defined by a node of the splice diagram.

Suppose we have a complete intersection (X, p) of splice type corresponding to
a splice diagram ∆. For convenience of notation we will assume equations of
strict splice type (no higher order terms); the identical proofs will handle the
general case. Let ν be the valuation associated to the node v of ∆ (see Theorem
2.1). Let the edges around v be e1, . . . , en with weights dvei

= pi , i = 1, . . . , n
at v . For each node v′ of ∆ the equations have the form

∑

ae′Mv′e′ = 0,
sum over the edges e′ at v′ , where Mv′e′ is an admissible monomial at v′ and
ae′ ∈ C. If v′ 6= v and e′ is the edge on the path from v′ to v we will call Mv′e′

a near monomial at v′ for v . Thus there is one near monomial for v associated
to each node other than v .

Theorem 5.3 The associated graded ring R of (X, p) with respect to the
filtration associated to ν is a reduced and irreducible complete intersection,
defined by the same equations as (X, p) but with the coefficients of all near
monomials for v set to zero (so only the equations associated to the node v
remain unchanged). Its normalization is the Brieskorn complete intersection
V (p1, · · · , pn).

We will need a specific basis of the graded ring R.
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Proposition 5.4 Choose an edge e at v and picture the edge e as horizontal,
with v on the left. Cut the edge e at its midpoint and use this midpoint as
root of the resulting trees ∆L

e on the left and ∆R
e on the right (so these are

rooted trees and ∆L
e contains v). Let ML

e and MR
e be monomial bases for the

monomial curves of ∆L
e and ∆R

e , constructed as in subsection 3.1. Then the
set of monomials ML

e M
R
e = {M1M2 : M1 ∈ ML

e ,M2 ∈ MR
e } forms a C–basis

of the associated graded ring R. The integer kv is given by

kv = dve(C
L − 1) +

dv

dve
(CR − 1)

(

= pj(C
L − 1) + Pj(C

R − 1) if e = ej

)

where CL and CR are the conductors of the semigroups sg(∆L
e ) and sg(∆R

e ).

Proof of Theorem 5.3 and Proposition 5.4 Let ν ′ be the valuation asso-
ciated to v′ . If zw is the variable associated to a leaf w then one checks easily
that

ν(zw)

ν ′(zw)
=

ℓv′v

dv′
De′

1
. . . De′

k

where:

• ℓv′v is, as usual, the product of weights adjacent to the path from v′ to
v ;

• dv′ is the product of edge weights at v′ ;

• e′1, . . . , e
′
k are the edges that are on the path from v′ to v but not on the

path from w to v ;

• for any edge e, De is the product of the edge weights on e divided by the
product of edge weights directly adjacent to e (so De > 1 by the edge
determinant condition).

Thus ν(zw)/ν ′(zw) takes its minimum value (namely ℓv′v/dv′ ) if and only if
w is beyond v′ from the point of view of v . It follows that the admissible
monomials at v′ all have the same ν–weight except for the near monomial for
v , which has higher ν–weight. Hence, the ideal defining the associated graded
ring R contains polynomials obtained from our equations by setting coefficients
of near monomials equal to zero. We will show these generate an ideal whose
quotient is an integral domain of dimension 2, hence yield the full associated
graded.

For convenience of notation we will take e = en for this proof. We may assume
(see Section 2) that the equations associated to the node v are

Mei
+ aiMen−1

+ biMen = 0, i = 1, . . . , n − 2.
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For each j = 1, . . . , n, let ∆j be the tree cut off away from v at the midpoint
of ej (so ∆n = ∆R

e ). By the Scholium to Theorem 3.1, the equations for the
associated graded R that correspond to nodes in ∆j give a complete intersection

description of the monomial curve C[X
sg(∆j)
j ]. Let φj : C[zw, w a leaf of ∆j] →

C[X
sg(∆j)
j ] be the corresponding homomorphism. Then φj(Mej

) = cjX
pj for

some cj ∈ C∗ . Together these homomorphisms φj give a homomorphism φ of
R to the Brieskorn complete intersection defined by the equations

ciX
pi

i + cn−1aiX
pn−1

n−1 + cnbiX
pn
n = 0, i = 1, . . . , n − 2 . (3)

Let z1, . . . , zk be the variables corresponding to nodes of ∆ in ∆L
e and let

zk+1, . . . , zN be the remaining variables, corresponding to nodes in ∆R
e . The

graded equations corresponding to nodes in ∆L
e are equations for the complete

intersection curve defined by ∆L
e except for additional terms biMen (in the

equations corresponding to node v). The procedure of subsection 3.1 to put a
monomial in normal form will therefore change a monomial M in the variables
z1, . . . , zk into a linear combination of monomials of the form M ′Mα

en
, α ≥

0, with M ′ ∈ ML
e . Thus, given any monomial in z1, . . . , zN , we first apply

the graded equations corresponding to nodes in ∆L
e to put anything involving

z1, . . . , zk in ML
e –normal form (at the expense of adding factors Men ), and

then apply the graded equations corresponding to nodes in ∆R
e to put anything

involving zk+1, . . . , zN into MR
e –normal form. It follows that the set ML

e M
R
e

is a C–spanning set for the graded ring R. On the other hand, one can check
that the set

{φ(M1M2) : M1 ∈ ML
e ,M2 ∈ MR

e } ⊂ C[X1, . . . ,Xn]/(relations (3))

is linearly independent (we will not give a detailed proof of this, since it is imme-
diate in the case below to which we apply this proposition). Hence ML

e M
R
e is

a monomial basis for R. Moreover, since φ is birational, φ is the normalization
of R. Finally, the calculation of kv is straightforward, using either Proposition
5.2 or Proposition 7.1.

Note that the monomial basis given by the above proposition depends on the
choice of edge and also on the ordering of the variables. Although the propo-
sition gives the same monomial basis for the valuations corresponding to the
two ends of the edge, if we take a different node we will have to take a different
edge and will in general get a different monomial basis. However, to apply this
proposition to compute the geometric genus of (X, p) we shall need the same
monomial basis for all the valuations. This turns out to be possible for splice
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diagrams of the type

◦ ◦

∆ =
... ◦

p1

JJJJJJJJJ

pk1ttttttttt
q1 q′

1 ◦

pk1+1
















pk2

11
11

11
11

1
q2 __ __

q′r−1

◦

pkr−1+1
















pkr

11
11

11
11

1
qr q′r ◦

pN
ttttttttt

pkr+1 JJJJJJJJJ ...

◦ . . . . . . ◦

◦ ◦ ◦ ◦

We number the nodes and edges of this diagram v0, . . . , vr and e1, . . . , er from
left to right. The valuation for node vi will be denoted νi .

For the edge e = ei joining nodes vi−1 and vi we divide the variables z1, . . . , zN

into two groups, ordered as follows:

zki
, zki−1, . . . , z1,

zki+1, zki+2, . . . , zN

We apply the above proposition for this particular edge e. Example 5 gives the
monomial bases

ML
e = {zα1

1 . . . z
αki

ki
: 0 ≤ αi < pi for i = 2, . . . , ki}

MR
e = {z

αki+1

ki+1 . . . zαN

N : 0 ≤ αi < pi for i = ki + 1, . . . ,N − 1}

for the two semigroups in question, so we get:

Lemma 5.5 For each valuation νi of the above ∆,

M := {zα1

1 . . . zαN

N : 0 ≤ αi < pi for i = 2, . . . ,N − 1}

is a monomial basis for the associated graded ring R.

We continue to consider the edge e = ei of ∆ with left end node v = vi−1 . We
can consider ∆L

e and ∆R
e also as splice diagrams, and then ∆ is the result of

splicing them at their root leaves.

Theorem 5.6 The geometric genus pg(∆) of the splice type singularity de-
termined by ∆ is given inductively by

(1/4)CLCR + pg(∆
L
e ) + pg(∆

R
e )

where CL , CR are the conductors of the semigroups sg(∆L
e , w′) and sg(∆R

e , w′)

The following is a corollary of this and of Theorem 6.3 in the next section.

Corollary 5.7 The Casson Invariant Conjecture holds for the splice type sin-
gularity determined by the above splice diagram ∆
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Proof of Corollary The above theorem reduces this to an induction. The
induction step is provided by Theorem 6.3, since CL and CR are the Milnor
numbers of the knots corresponding to the root leaves of ∆L

e and ∆R
e (Theorem

2.2).

Proof of Theorem 5.6 The canonical ideal of the singularity (X, p) consists
of those f for which νj(f) ≥ kvj

for j = 0, . . . , r . Using the linearly independent
monomials of the above lemma, the geometric genus thus equals the number of
elements M of

M = {zα1

1 . . . zαN

N : 0 ≤ αi < pi for i = 2, . . . ,N − 1}

satisfying

νi(M) < kvi
for some i = 0, . . . , r . (4)

We will call this condition “condition K(vi).” So we want to count the M ∈ M
for which condition K(v) holds for some node v .

Let e = ei . For a monomial M = zα1

1 . . . zαN

N , write M = MLMR with ML =

zα1

1 . . . m
αki

ki
and MR = z

αki+1

ki+1 . . . zαN

N . The monomial M is in M if and only

if ML and MR are normal form monomials for the semigroups sg(∆L
e ) and

sg(∆R
e ).

Denote the nodes at the left and right end of e = ei by v = vi−1 and v′ = vi

and the associated valuations by ν = νi−1 and ν ′ = νi . Denote

ℓe(ML) :=

ki
∑

j=1

αjℓw′wj
, ℓe(MR) :=

N
∑

j=ki+1

αjℓw′wj

where w′ is the root vertex of ∆L
e or ∆R

e and ℓw′wj
is computed in ∆L

e or

∆R
e . (Thus ℓe(ML) and ℓe(MR) are the values in the semigroups sg(∆L

e ) and
sg(∆R

e ) corresponding to the monomials ML and MR .) Then

ν(M) = dveℓe(ML) + (dv/dve)ℓe(MR).

By Proposition 5.4 condition K(vi−1) can thus be written

dve(ℓe(ML) − CL + 1) + (dv/dve)(ℓe(MR) − CR + 1) < 0 (5)

By symmetry, condition K(vi) can be written

(dv′/dv′e)(ℓe(ML) − CL + 1) + dv′e(ℓe(MR) − CR + 1) < 0. (6)

Denote

Xi := ℓe(ML) − CL + 1 Yi := ℓe(MR) − CR + 1 ,
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so (5) and (6) can be written

K(vi−1) : dveXi + (dv/dve)Yi < 0,

K(vi) : (dv′/dv′e)Xi + dv′eYi < 0.
(7)

Note that Xi 6= 0 since ℓe(ML) is in the semigroup sg(∆L
e ) with conductor CL .

Similarly Yi 6= 0. We will count the monomials M ∈ M that satisfy condition
K(v) for some node v by subdividing into the following cases.

(1) Xi < 0 and Yi < 0 (so K(vi−1) and K(vi) hold),

(2) Yi > 0 and K(vj) holds for some j ≤ i − 1,

(3) Xi > 0 and K(vj) holds for some j ≥ i,

(4) Yi > 0 and K(vj) holds for some j ≥ i and fails for all j ≤ i − 1.

(5) Xi > 0 and K(vj) holds for some j ≤ i − 1 and fails for all j ≥ i,

These cases cover all possibilities. We shall show that cases (4) and (5) are
empty and that Cases (1), (2), (3) are mutually exclusive and lead to the three
terms on the right in the theorem.

(1) The number of monomials ML in normal form with ℓe(ML) < CL−1 is the
number of elements bounded by CL in the semigroup sg(∆L

e ). This is exactly
CL/2. Similarly for MR , so the set of M ∈ M with both ℓe(ML)−CL +1 < 0
and ℓe(MR) − CR + 1 < 0 contributes the (1/4)CLCR of the theorem.

(2) The inequality ℓe(MR) − CR + 1 > 0 says ℓe(MR) ≥ CR , so there exists
a unique monomial MR in normal form with such a value of ℓe(MR). That
is, if we put α = ℓe(MR) − CR then there is no constraint on α ≥ 0 for a
corresponding MR to exist. Consider the monomials MLMR and MLzα , which
are normal form monomials for the splice diagrams ∆ and ∆L

e respectively. A
simple calculation, which we omit, shows that MLMR satisfies condition K(vj)
for ∆ with j ≤ i − 1 if and only if MLzα satisfies K(vj) for ∆L

e . Thus the
monomials M = MLMR satisfying (2) are in one-one correspondence with the
monomials that count pg(∆

L
e ).

(3) By symmetry, these monomials count pg(∆
R
e ).

(4) One calculates that

Yi = (dvi
/q′iqi+1)Yi+1 + (dvi

/qi)

ki+1
∑

j=ki+1

1

pj
(αj + 1 − pj)

(we are using the explicit weights dvie = q′i etc. from the picture of ∆). Since
αj < pj for j = ki + 1, . . . , ki+1 , the sum on the right is non-positive so Yi > 0
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implies Yi+1 > 0. Thus, if we are in case (4) we can, by increasing i if necessary,
assume that Yi > 0 and K(vj) holds for j = i and fails for j = i − 1. By (7)
we then have

dv/d
2
ve > −Xi/Yi, d2

v′e/d
′
v < −Xi/Yi .

Thus dv/d
2
ve > d2

v′e/d
′
v , whence dvdv′/(dvedv′e) > dvedv′e , contradicting the

edge determinant condition. Thus case (4) cannot happen, and by symmetry
the same holds for case (5).

It remains to show that cases (2) and (3) are mutually exclusive (Case (1) is
clearly disjoint from (2) and (3)). But if both (2) and (3) hold then K(vi) must
fail. Since K(vj) holds for some j > i and Yi > 0, the same argument as in
(4) leads to a contradiction.

6 Milnor fibers

Suppose Σ is the link of an isolated singularity at 0 of a complete intersection
surface X = f−1(0), where f is a map f = (f1, . . . , fn−2) : (Cn, 0) → (Cn−2, 0).
The Milnor fiber is the manifold F := f−1(δ)∩B(ǫ) where B(ǫ) is a sufficiently
small ball about 0 and δ is a general point of Cn−2 very close to the origin.
It is a smooth simply-connected piece of complex surface with boundary Σ;
it has a symmetric intersection pairing on the second homology group, whose
rank b2(F ) is usually denoted by µ. The Casson Invariant Conjecture says that
when Σ is a homology sphere, sign(F ) should equal 8λ(Σ), where λ(Σ) is the
Casson invariant.

The Casson invariant of Σ is not hard to compute, and the hurdle in confirming
this conjecture for any particular example is to understand F well enough to
compute sign(F ). This has been done for Brieskorn complete intersections.
Thus, the conjecture could be verified in this case—a one-node splice diagram
(see [26], which also proves a few other cases).

Now suppose the equations fi(z1, . . . , zn) = 0, i = 1, . . . , n − 2, are of splice
type as above, corresponding to a splice diagram ∆. Thus the curve zj = 0
cuts out in Σ the knot Kj corresponding to the j -th leaf of ∆. The link
(Σ,Kj) is a fibered link whose fiber Gj can also be seen as the Milnor fiber of
the singularity at 0 of the complete intersection curve (f1, . . . , fn−2, zj)

−1(0).
The topology of this fiber and its embedding in Σ can be described by gluing
together Milnor fibers of appropriate links in the splice components of Σ (see
[7]).
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We shall describe a conjectural iterative description of F in terms of the Milnor
fibers of simpler complete intersection surface singularities and fibers Gj as
above lying in their boundaries.

Thus consider Σ as the splice Σ = Σ1
K1 K2 Σ2 of two homology spheres

determined by cutting ∆ at an edge to form two rooted diagrams. It is easy to
see that these two diagrams ∆1 and ∆2 also satisfy the semigroup condition so
Σ1 and Σ2 are both complete intersection singularity links given by equations
of splice type. They thus have Milnor fibers, which we shall call F1 and F2 ,
with ∂Fi = Σi .

Let G1 ⊂ Σ1 be the fiber for the knot (Σ1,K1). This is the Milnor fiber
described in the paragraph before Theorem 2.2, so it is topologically determined
by the rooted diagram ∆1 and b1(G1) is computed as in that theorem.

We may push the embedding G1 → F1 inside F1 by a normal vector-field
to obtain a proper embedding G1 → F1 (that is, an embedding with ∂G1 =
G1∩∂F1 , transverse intersection) and then extend to an embedding G1×D2 →
F1 of a tubular neighborhood of G1 . We similarly construct an embedding
D2 × G2 → F2 .

Denote
F o

1 := F1 − (G1 ×
◦
D2), F o

2 := F2 − (
◦
D2 × Gi),

so ∂F o
1 is the union of G1×S1 and the exterior (complement of an open tubular

neighborhood) of the knot K1 ⊂ Σ1 , and similarly for ∂F o
2 .

Conjecture 2 (Milnor Fiber Conjecture) F is homeomorphic to the result
F of pasting:

F := F o
1 ∪G1×S1 (G1 × G2) ∪S1×G2

F o
2 ,

where we identify G1 × S1 with G1 × ∂G2 and S1 × G2 with ∂G1 × G2 .

By Milnor [18] and Hamm [9], F , F1 , F2 are simply connected 4–manifolds
which are homotopy equivalent to 2–complexes and thus have reduced homol-
ogy only in dimension 2. We show that F has the nice properties we would
like F to have.

Theorem 6.1 ∂F = Σ and F is simply connected and homotopy equivalent
to a 2–complex. Moreover,

H2(F ) ∼= H2(G1 × G2) ⊕ H2(F1) ⊕ H2(F2)

=
(

H1(G1) ⊗ H1(G2)
)

⊕ H2(F1) ⊕ H2(F2).
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with maps induced by inclusions, so

sign(F ) = sign(F1) + sign(F2) .

Corollary 6.2 The Milnor Fiber Conjecture (Conjecture 2) implies the Casson
Invariant Conjecture for complete intersection singularities of splice type.

Proof The theorem and Conjecture 2 imply that signature of Milnor fiber
is additive under splicing. The Casson invariant is additive for splicing. The
Casson Invariant Conjecture is known for Brieskorn complete intersections (the
one-node case).

Proof of Theorem 6.1 The fact that ∂F = Σ is immediate from the con-
struction. For the rest of this proof it is convenient to have a different descrip-
tion of F .

Consider Gi embedded in Σi and let Ni ⊂ Σi = ∂Fi be a tubular neighborhood
of Gi in Σi , so Ni

∼= Gi × I . Note that ∂(G1 ×G2) = (G1 ×K2) ∪ (K1 × G2),
so we can also embed N1 in ∂(G1 × G2) as G1 × I ⊂ G1 × K2 , and similarly
for N2 . We claim:

F ∼= F1 ∪N1
(G1 × G2) ∪N2

F2. (8)

Indeed, to turn our previous description of F into this one, connect the proper
embedding Gi ⊂ Fi to the embedding Gi ⊂ ∂Fi by a “strip” Gi×I and remove
a tubular neighborhood of this strip from F o

i and glue it onto G1 ×G2 instead.
The result of removing it from F o

i is something homeomorphic to Fi , while,
when glued to G1 ×G2 it is just a collar on part of the boundary and does not
change the homeomorphism type of G1 × G2 .

Consider, therefore, F as in equation (8). By shrinking slightly the regions
Ni along which the Fi are glued to G1 × G2 we can make them disjoint in
∂(G1×G2) without changing the homotopy type (or even homeomorphism type)
of F1 ∪N1

(G1 ×G2)∪N2
F2 . Then (G1 ×G2)∩ (F1 ∪F2) consists of the disjoint

union of N1 and N2 . The Meyer-Vietoris sequence for the decomposition (G1×
G2)

⋃

(F1 ∪ F2) then easily yields that the inclusions induce an isomorphism

H2(F ) ∼= H2(G1 × G2) ⊕ H2(F1) ⊕ H2(F2)

as desired.

The fact that F is simply connected is an easy application of the Van Kampen
theorem. The fact that F is homotopy equivalent to a 2–complex can be seen
by replacing G1 and G2 by one-dimensional spines S1 and S2 say, replacing
F1 and F2 by 2-dimensional spines T1 and T2 , and then gluing S1 × S2 to T1

and T2 by means of mapping cylinders of appropriate maps Si → Ti .
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Recall that the geometric genus pg(X, o) of a singularity is dimH1(Y,O), where
Y → X denotes a resolution of the singularity. In general, it is not topologically
determined by the link of X , but the Casson Invariant Conjecture says that
it should be for complete intersection singularities with homology sphere links.
The following theorem says what the Casson Invariant Conjecture implies about
the behavior of various invariants under splicing. Item (3) of this theorem
provided part of the motivation for the above construction of F for the Milnor
Fiber Conjecture.

Theorem 6.3 Let X be a complete intersection with homology sphere link,
with Milnor fiber F ; and suppose its link is spliced from links of two singularities
X1,X2 , with Milnor fibers F1, F2 . Assume the Casson Invariant Conjecture for
X1 and X2 . Then the following statements are equivalent:

(1) The Casson Invariant Conjecture holds for X .

(2) We have sign(F ) = sign(F1) + sign(F2).

(3) With G1 , G2 as above, we have b2(F ) = b2(F1)+ b2(F2)+ b1(G1)b1(G2) ,
where bi is Betti number.

(4) The geometric genus satisfies pg(X) = pg(X1)+pg(X2)+ 1
4b1(G1)b1(G2).

Moreover, these invariants of X are then topologically determined by the link.

Proof The equivalence of (1) and (2) has already been discussed, so we prove
the equivalence of (2), (3), and (4).

Formulas of H. Laufer and A. Durfee imply that the geometric genus of X, and
the signature and second Betti number µ of the Milnor fiber, are explicitly
related by topological invariants of the link (see, eg, [34].) Let Y → X denote
a good resolution, and c2

1 and c2 the characteristic Chern numbers of Y (also
known as K · K and χ(Y ), where χ is topological Euler characteristic). Then
these Chern numbers are determined by the resolution dual graph, and their
sum c2

1 + c2 is independent of the resolution, hence depends only on the link.
We define

C(∆) = c2
1 + c2 − 1,

the notation indicating that this number depends only on the splice diagram
∆. Then the aforementioned formulas may be written

µ = 12pg + C(∆) (Laufer)

3 sign(F ) = −2µ − C(∆) (Durfee)
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(In general Durfee’s formula has an extra 3b1(Y ) on the right, which vanishes
in our case.) Eliminating µ, these formulas imply

sign(F ) = −8pg − C(∆) ,

proving the equivalence of the two formulations of the Casson Invariant Con-
jecture in the Introduction (for complete intersections). Moreover, it follows
that the equivalence of (2), (3), and (4) of Theorem 6.3 reduce to the formula
of the following theorem, which will therefore complete the proof.

Theorem 6.4 In the above notation, even if ∆ does not satisfy the semigroup
condition we have

C(∆) − C(∆1) − C(∆2) = −2b1(G1)b1(G2).

This theorem involves computing c2
1 and c2 of the resolution in terms of the

splice diagram, which is of interest in its own right, so we devote the next
section (Section 7) to its proof.

If any one of the analytic invariants sign(F ), µ, and pg(X) is a topological
invariant, then they all are, by the above formulas. The Casson Invariant
Conjecture gives a topological description of pg and sign(F ).

Suppose (X, o) is a complete intersection surface singularity whose homology
sphere link has one node; thus, its link is Σ(p1, · · · , pn). The Casson Invariant
Conjecture for X is equivalent to the assertion that pg(X) = pg(V (p1, · · · , pn)).
But this latter condition is well-known to be equivalent to the statement that
X admits an equisingular, simultaneous resolution degeneration to V (see, eg,
[33] (6.3) for a convenient proof). In other words, we could conclude that X is
a splice type singularity, as was mentioned in the Introduction. We suspect a
similar result is true in the general case. But, even in case X is a hypersurface
singularity with link Σ(p, q, r), we do not know a proof. As we mentioned in the
Introduction, there are a few very non-trivial cases worked out by A Némethi
[19].

7 Canonical divisor of a resolution

This section is devoted to proving Theorem 6.4. We start by computing the
rational canonical divisor for an arbitrary resolution of an isolated surface sin-
gularity.
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Suppose we have a good resolution of an isolated surface singularity. Denote the
exceptional curves by Ei , i = 1, . . . , n. For each i let δi be the number of inter-
section points of Ei with other Ej ’s and let E0

i be Ei with these intersection
points removed. Denote χi = χ(E0

i ) = χ(Ei) − δi (χ is Euler characteristic).

Let K be the (rational) canonical divisor, defined by the adjunction formula

K · Ei = −χ(Ei) − Ei · Ei.

Let D := −K − E, where E =
n

∑

i=1

Ei

and suppose D =

n
∑

i=1

kiEi.

Then the adjunction formula becomes D.Ej = χ(Ej) − δj = χj , so

ki = −
∑

ℓijχj, where (ℓij) = (−Ei · Ej)
−1 (matrix inverse).

Now K = −D − E =
∑

i

(−ki − 1)Ei =
∑

i

(

∑

j

ℓijχj − 1
)

Ei

so

K · K =

(

∑

i

(

∑

j

ℓijχj − 1
)

Ei

)

·

(

∑

k

(

∑

l

ℓklχl − 1
)

Ek

)

=
∑

i,j,k,l

ℓijℓkl(Ei · Ek)χjχl −
∑

i,k,l

ℓkl(Ei · Ek)χl −
∑

i,j,k

ℓij(Ei · Ek)χj

+
∑

i,k

Ei · Ek

= −
∑

j,l

ℓjlχjχl +
∑

i

χi +
∑

i

χi +
(

∑

i

Ei · Ei + 2
∑

i<j

Ei · Ej

)

= −
∑

i,j

ℓijχiχj + 2χ(
⋃

i

Ei) +
∑

i

Ei · Ei .

We note that our notation ki and ℓij is consistent with the notation in the
Appendix (Section 9). Summarizing:

Proposition 7.1 For any good resolution of an isolated surface singularity
the divisor D = −K − E is given by

D =
∑

kiEi with ki = −
∑

j

ℓijχj
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where (ℓij) = (−Ei · Ej)
−1 (matrix inverse). Also,

c2
1 + c2 = −

∑

i,j

ℓijχiχj + 3c2 +
∑

Ei · Ei .

To apply this to prove Theorem 6.4 we now restrict to the case of a singularity
with homology sphere link given by a splice diagram ∆. Then χi = 2−δi which
vanishes except at nodes and ends of the plumbing graph, so we only need to
know ℓij when i and j index nodes or ends. By Theorem 9.1, this is as follows.
If i 6= j then ℓij is the product of the splice diagram weights adjacent but not
on the path from i to j in ∆. If i = j then:

• If i is a node then ℓii is the product of weights at that node.

• If i is a leaf adjacent to a node with weights p0, . . . , pn with p0 on the
edge to i then ℓii = ⌈p1 . . . pn/p0⌉.

A simple matrix calculation shows that −ℓii is the weight one would have to put
on a new vertex attached to vertex i by a new edge, to get an extended plumbing
diagram of determinant 0 (this is computed in [7] and gives an alternative proof
of the description of ℓii).

Now let C(T ) denote c2
1 + c2 − 1 computed for a plumbing graph T . We want

to compute the effect of splicing on C . So suppose that the splice diagram ∆
is the result of splicing diagrams ∆1 and ∆2 and let T , T1 , and T2 be the
resolution graphs for these splice diagrams. Let I1 and I2 be index sets for the
nodes and leaves of T1 and T2 with 0 ∈ I1 and 1 ∈ I2 representing the leaves
at which we splice.

Let T 1 be the result of extending T1 at vertex 0 by a vertex with weight
−ℓ00(T1) and similarly for T 2 . Let T be the result of attaching T 1 to T 2 by
an edge joining the new vertices. Then in [7] it is shown that T results from
T by a sequence of (−1)–blow-downs of vertices of valency 2 followed by one
0–absorption. Suppose the number of blow-downs is r . Then the blow-downs
and 0–absorption remove (r+2) vertices, so

c2(T ) = c2(T ) − (r + 2) = c2(T1) + c2(T2) − r − 1.

Moreover each blow-down increases
∑

Ei ·Ei by 3 and the 0–absorption does
not change it, so

∑

T

Ei · Ei =
∑

T1

Ei · Ei − ℓ00 +
∑

T2

Ei · Ei − ℓ11 + 3r .
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Thus

C(T ) = −
∑

i,j∈I

ℓijχiχj + 3c2(T ) +
∑

T

Ei · Ei − 1

= −
(

∑

i,j∈I1

ℓijχiχj − ℓ00 − 2
∑

i∈I1−{0}

ℓ0iχi +
∑

i,j∈I2

ℓijχiχj − ℓ11−

− 2
∑

j∈I2−{1}

ℓ1jχj + 2
∑

i∈I1−{0}
j∈I2−{1}

ℓijχiχj

)

+ 3
(

c2(T1) + c2(T2) − r − 1
)

+
∑

T1

Ei · Ei +
∑

T2

Ei · Ei − ℓ00 − ℓ11 + 3r − 1

= −
∑

i,j∈I1

ℓijχiχj + 2
∑

i∈I1−{0}

ℓ0iχi −
∑

i,j∈I2

ℓijχiχj

+ 2
∑

j∈I2−{1}

ℓ1jχj − 2
∑

i∈I1−{0}

ℓi0χi

∑

j∈I2−{1}

ℓj1χj

+ 3c2(T1) + 3c2(T2)

+
∑

T1

Ei · Ei +
∑

T2

Ei · Ei − 4 ,

where the last equality uses the fact that for i ∈ I1 −{0} and j ∈ I2 −{1} one
has ℓij = ℓi0ℓ1j .

The above simplifies to

C(T ) = C(T1) + C(T2) − 2
(

−
∑

i∈I1−{0}

ℓ0iχi + 1
)(

−
∑

j∈I2−{1}

ℓ1jχj + 1
)

= C(T1) + C(T2) − 2µ(T1, 0)µ(T2, 1),

where µ(Ti, i) is the Milnor number for the knot represented by vertex i in the
homology sphere represented by Ti , that is, the first Betti number of its fiber
(it is a basic result of [7] that

∑

i∈I1−{0}(ℓ0iχi) is the Euler characteristic of the
fiber in question). This completes the proof of Theorem 6.4.

8 Plane curves and their cyclic covers

Let (X, o) be a hypersurface singularity at the origin given by an equation
in the form zn + g(x, y) = 0 and suppose that its link is a homology sphere.
The Casson Invariant Conjecture was proved in this case in [26] by a somewhat
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subtle calculation. In this section we will show that the Milnor Fiber Conjecture
(Conjecture 2) holds for these singularities, giving a more conceptual proof of
the Casson Invariant Conjecture in this case. We must first explain how these
hypersurface singularities fit the format of equations of splice type. In [26]
we point out that if the link of zn + g(x, y) = 0 is a homology sphere, then
g(x, y) = 0 defines an irreducible plane curve singularity at the origin o ∈ C2 .
We therefore need to start by discussing how plane curve singularities in general,
and irreducible plane curve singularities in particular, fit into the framework of
our conjectures.

8.1 Non-minimal splice diagrams and plane curve singularities

Theorem 2.1 gives a general sufficient condition for a knot in a homology sphere
to be realizable as the link of a germ (Y, o) ⊂ (X, o) of a curve cut out by a
single equation in a complete intersection surface. This has content also for
non-minimal splice diagrams. For example, the splice diagram

◦ ◦
∆ = ◦

2
SSSSSSS

3kkkkkkk ◦
2 SSSSSSS
1 kkkkkkk35

◦ ◦

is a non-minimal version of

◦
◦

2
TTTTTTT

3jjjjjjj
5 ◦

◦

so it represents the Seifert fibered homology sphere Σ(2, 3, 5) (Poincaré’s do-
decahedral space). The upper right vertex of ∆ represents a particular knot
in this homology sphere (a (3, 2)–cable on the degree 5 fiber of Σ(2, 3, 5)).
Since ∆ satisfies the semigroup condition, Theorem 2.1 tells us that this knot
in Σ(2, 3, 5) is the link of a complex curve singularity (Y, o) cut out by a sin-
gle equation in (V (2, 3, 5), o). In fact, the splice type equations for ∆ can be
chosen as z2

1 + z3
2 + z5

3 = 0, z1 + z2
3 + z4 = 0, and the curve is then cut out by

z4 = 0. Eliminating z4 , the curve is cut out by the equation z1 + z2
3 = 0 in

V (2, 3, 5) = {(z1, z2, z3) : z2
1 + z3

2 + z5
3 = 0}.

When X is non-singular, that is, for a link of a plane curve singularity, the next
proposition implies that we can always do the analogous thing. That is, for any
irreducible plane curve singularity we will find strict splice type equations for X
(= C2 ) so that the curve Y cut out by a coordinate function has the topology
of the given plane curve. Corollary 4.2 then says that the original plane curve
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singularity is a higher weight deformation of the one given by strict splice type
equations.

Proposition 8.1 The splice diagram of any plane curve singularity satisfies
the semigroup condition.

Proof It is easy to see that the semigroup condition for the splice diagram
of a reducible plane curve singularity follows from the semigroup condition for
each of the subdiagrams for the irreducible branches of the plane curve. Thus
we may assume that the germ (C2, Y, o) is an irreducible germ. In this case the
result is well known (see, eg, Teissier’s appendix to [36]) but we give a proof
in our language for completeness. By [7] the singularity is given by a splice
diagram of the form:

◦
p1
◦ 1 p2

q1
◦

q2

1 pk◦
qk

1
//

◦ ◦ ◦

where gcd(pi, qi) = 1 for each i and the positive edge determinant condition
holds (pi > qiqi−1pi−1 for each i > 1). Since this diagram may have arisen as
a subdiagram of a diagram for a plane curve with several branches, we cannot
assume that it is a reduced diagram, so some of the qj may equal 1.

The only non-trivial cases of the semigroup condition for this diagram are:

pj+1 ∈ Sj := N〈q1q2 . . . qj, p1q2 . . . qj, . . . , pj−1qj , pj〉

for each j = 1, . . . , k − 1. Since pj+1 > pjqjqj+1 ≥ pjqj it suffices to show
that the conductor µj of this semigroup satisfies µj ≤ pjqj . Proposition 3.3 of
section 3 implies µj = qj(µj−1 − 1)− pj + pjqj + 1 (or use Theorem 2.2 and its
following paragraph). The desired inequality is now a trivial induction.

This gives a new way to find an equation for a plane curve singularity of given
topology: start with the equations of splice type and then eliminate variables
to obtain an equation in C2 . To describe this in detail, let us assign variables
to the leaves of our splice diagram as follows:

z0 ◦
p1
◦ 1 p2

q1
◦

q2

1 pk
◦

qk

1
◦ zk+1

◦ ◦ ◦
z1 z2 zk

The only admissible monomial for the outgoing edge to the right at the j -th
node is zj+1 . Thus the general system of equations of strict splice type can be
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written

z2 = a1z
q1

1 + a0z
p1

0

z3 = a2z
q2

2 + g2(z0, z1)

. . . . . . . . .

zk = ak−1z
qk−1

k−1 + gk−1(z0, . . . , zk−2)

zk+1 = akz
qk

k + gk(z0, . . . , zk−1),

where gj(z0, . . . , zj−1) is a multiple of an admissible monomial for the left edge
at the j -th node, that is, a monomial of the form zα0

0 . . . z
αj−1

j−1 with

α0q1 . . . qj−1 + α1p1q2 . . . qj−1 + · · · + αj−2pj−2qj−1 + αj−1pj−1 = pj.

We now successively substitute each of the above equations into the next to put
them in the form:

z2 = a1z
q1

1 + a0z
p1

0

z3 = a2(a1z
q1

1 + a0z
p1

0 )q2 + g2(z0, z1) =: f2(z0, z1)

. . . . . . . . .

zk+1 = akfk−1(z0, z1)
qk + gk(z0, z1, . . . , fk−2(z0, z1)) =: fk(z0, z1).

In terms of new coordinates, x := z0 , y := z1 , Z2 := z2 − a1z
q1

1 + a0z
p1

0 , . . . ,
Zk := zk − fk−1(z0, z1), Zk+1 := zk+1 − fk(z0, z1) these equations become

Z2 = Z3 = · · · = Zk = Zk+1 = 0,

so our surface is the (x, y)–plane. Our plane curve is the curve cut out by the
coordinate equation zk+1 = 0 which is fk(x, y) = 0 in our new coordinates.
Thus, if we write f = fk , the equation of the plane curve is f(x, y) = 0.

We now address what the Milnor Fiber Conjecture says for this type of example.
Our surface germ is a nonsingular point, and the Milnor fiber for a non-singular
point is a disk, so the conjecture postulates a particular decomposition of D4 .
Although it is rather trivial, it will be needed in the discussion of hypersurfaces
of the form zn = g(x, y). We will therefore reserve the notations G1 etc. of
Conjecture 2 for that case and use primes (as in G′

1 etc) to distinguish the
ingredients involved in the present discussion.

Suppose therefore that we have decomposed our splice diagram as the splice of
two diagrams:

◦
p1
◦ 1 p2

q1
◦

q2

1 pr
◦

qr

1
// ◦

pr+1
oo

qr+1

1 pk◦ 1
qk

◦

◦ ◦ ◦ ◦ ◦
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The left diagram represents a plane curve whose Milnor fiber we will denote by
G′

1 ⊂ S3 = ∂D4 . The right diagram is a non-reduced diagram for the trivial
knot in S3 so its Milnor fiber is G′

2 = D2 ⊂ S3 = ∂D4 .

Let (F ′
1)

o be the result of removing from D4 a tubular neighborhood of G′
1

pushed inside to a proper embedding G′
1 ⊂ D4 . Let (F ′

2)
o be the result of

removing a tubular neighborhood of a proper embedding D2 ⊂ D4 . Note that
(F ′

2)
o ∼= S1 × D3 . The Milnor Fiber Conjecture says that the result of the

pasting:
(F ′

1)
o ∪ (G′

1 × D2) ∪ (F ′
2)

o (9)

should be D4 . This is indeed clear, since, starting with (F ′
1)

o , the first pasting
clearly gives D4 back, while the second just pastes a collar onto a portion of
the boundary of this D4 .

8.2 The hypersurface z
n + g(x, y) = 0

As already mentioned, if the link of zn +g(x, y) = 0 is a homology sphere, then
g(x, y) = 0 defines a plane curve singularity at (0, 0) ∈ C2 which is irreducible.
Its splice diagram therefore has the form

◦
p1
◦ 1 p2

q1
◦

q2

1 pk
◦

qk

1
//

◦ ◦ ◦
where gcd(pi, qi) = 1 for each i and the positive edge determinant condition
holds (pi > qiqi−1pi−1 for each i > 1). Moreover, given an irreducible plane
curve singularity as above, we showed in [26] that the hypersurface singularity
defined by

zn + g(x, y) = 0

has homology sphere link if and only if n is relatively prime to all the pi and
qi , and the splice diagram for the link of this singularity is then:

◦
p1
◦n p2

q1
◦

q2

n pk
◦

qk

n ◦

◦ ◦ ◦

(10)

We now show that the splice diagram equations for this splice diagram reduce
to the equation zn = f(x, y), with f as in the previous subsection (Corollary
4.2 below shows that the original zn = g(x, y) is an equisingular deformation
of this). We assign variables to the leaves of the splice diagram (10) as follows:

x = z0 ◦
p1

◦ n p2

q1
◦

q2

n pk
◦

qk

n
◦ z

◦ ◦ ◦
y = z1 z2 zk
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The only admissible monomial for the outgoing edge to the right at the j -th
node is zj+1 if j < k and zn if j = k . Thus the general system of equations of
strict splice type can be written

z2 = a1z
q1

1 + a0z
p1

0

z3 = a2z
q2

2 + g2(z0, z1)

. . . . . . . . .

zk = ak−1z
qk−1

k−1 + gk−1(z0, . . . , zk−2)

zn = akz
qk

k + gk(z0, . . . , zk−1),

where the gj(z0, . . . , zj−1) are as before.

We again successively substitute each of these equations into the next to elimi-
nate the variables z2, z3, . . . , zk . To be precise, we first make these substitutions
to put the equations in the form:

z2 = a1z
q1

1 + a0z
p1

0

z3 = f2(z0, z1)

. . . . . . . . .

zk = fk−1(z0, z1)

zn = fk(z0, z1).

Recall our notation f = fk . In terms of new coordinates, x = z0 , y = z1 , z ,
Z2 := z2 − a1z

q1

1 + a0z
p1

0 , . . . , Zk := zk − fk−1(z0, z1), these equations become

Z2 = Z3 = · · · = Zk = 0; zn = f(x, y).

We are now ready to prove the main result of this section.

Theorem 8.2 Let (X, o) be a hypersurface singularity at the origin given by
an equation in the form zn + g(x, y) = 0 with homology sphere link. Then the
Milnor Fiber Conjecture is true for (X, o).

Proof Suppose that we have a splice decomposition corresponding to the fol-
lowing decomposition of our splice diagram as the splice of two diagrams:

◦
p1
◦n p2

q1
◦

q2

n pr
◦

qr

n
// ◦

pr+1
oo

qr+1

n pk◦n
qk

◦

◦ ◦ ◦ ◦ ◦

We wish to show that the Milnor fiber F for zn = g(x, y) is obtained by the
construction F o

1 ∪N1
(G1 × G2) ∪N2

F o
2 of Conjecture 2, where F1 and F2 are

Milnor fibers for the two splice components, G1 and G2 are fibers in the links
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of the two splice components for the knots along which we splice, and F o
i is the

result of removing a tubular neighborhood of a properly embedded Gi in Fi .

In [24] (see also [12]) it is shown that the Milnor fiber F is obtained by taking
a Milnor fiber G ⊂ S3 = ∂D4 for g , pushing it inside D4 so that it is properly
embedded (that is, ∂G = G∩∂D4 ), and then taking the n–fold branched cyclic
cover of D4 , branched along this embedding of G.

We need to understand the placement of G with respect to the decomposition
of D4 of equation (9). On taking the n-fold branched cover we will see that we
get the desired decomposition of F .

According to [7] the fiber G decomposes according to the splice diagram into
qr+1 . . . qk parallel copies of the Milnor fiber G′

1 of the plane curve given by

◦
p1
◦ 1 p2

q1
◦

q2

1 pr
◦

qr

1
//

◦ ◦ ◦
and one copy of the Milnor fiber of the plane curve corresponding to

◦ ◦
pr+1

qr+1

1 pk
◦ 1

//
qk

◦ ◦
punctured qr+1 . . . qk times.

We can position G with respect to the decomposition of equation (9) so that it
lies completely in (G′

1 ×D2)∪ (F ′
2)

o . It then intersects (G′
1 ×D2) in qr+1 . . . qk

parallel copies of G′
1 . Its intersection with (F ′

2)
o is obtained as follows. First

make the fiber G′ of the knot represented by the right arrowhead of the splice
diagram:

◦
pr+1

oo 1 pr+2

qr+1
◦qr+2

1 pk◦
qk

1
//

◦ ◦ ◦

properly embedded in D4 and transverse to the properly embedded version of
the fiber D2 of the unknot represented by the left arrowhead. Then remove the
tubular neighborhood of the latter. Using [24], the n–fold cyclic cover of D4

along G′ is the Milnor fiber for the surface singularity with diagram:

◦ ◦
pr+1 n pr+2

qr+1
◦qr+2

n pk◦
qk

n ◦

◦ ◦ ◦

Moreover, the embedded D2 ⊂ D4 lifts in this cover to copy of the fiber for the
knot represented by the left-most vertex.

It follows that the decomposition of equation (9) lifts to give the desired de-
composition of F , as desired.
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In the context of the above result it is worth mentioning that Némethi and
Mendris recently showed [20] that for a singularity zn = f(x, y) with homol-
ogy sphere link (even rational homology sphere link) the Milnor fibration is
topologically determined by the link of the singularity.

Remark 8.3 The results of this section give a proof of the Casson Invariant
Conjecture (CIC) for these examples, also proven in [26, 5, 23]. Saveliev and
Collin [5], using equivariant Casson invariant, give an iterative generalization of
these examples but their approach implies more: Let ∆ be any splice diagram
satisfying the semigroup condition and w a leaf of ∆. We allow, as in this
section, the weight on the edge to w to be 1. For n ∈ N let ∆n(w) be the
diagram obtained by multiplying the weight furthest from w on each edge by n.
We assume n is chosen coprime to all the unchanged weights at each node, so
∆n(w) is again a splice diagram. Then if CIC is valid for splice type singularities
for ∆, then the same holds for ∆n(w).

9 Appendix: Splicing and plumbing

In this appendix we recall the classification of Z–homology sphere singular-
ity links in terms of splice diagrams and describe how to recover a resolution
diagram from the splice diagram.

We start with Seifert fibered manifolds. For the following results see [27]. Let
Σ be a Seifert fibered homology 3–sphere other than S3 . Then it has at least
3 singular fibers and the degrees p1, . . . , pr of these singular fibers are pairwise
coprime. Conversely, given a set {p1, . . . , pr} of pairwise coprime integers pi > 1
with r ≥ 3, there is a unique Seifert fibered homology sphere Σ(p1, . . . , pr) up
to orientation with these singular fiber degrees. Moreover, Σ(p1, . . . , pr) has a
unique orientation for which it is a singularity link, so we give it this orientation.
It is, in fact, the link of the Brieskorn complete intersection

V (p1, . . . , pr) := {(z1, . . . , zr) ∈ Cn : ai1z
p1

1 +· · ·+airz
pr
r = 0 for i = 1, . . . , r−2},

for a sufficiently general matrix (aij) of coefficients. By Hamm [9], “sufficiently
general” means that all (r − 2) × (r − 2) minors should be non-singular.

We represent the homology sphere Σ(p1, . . . , pr) by the splice diagram:

◦ . . . . . . ◦

◦
prhhhhhhhhhhh

pr−1

VVVVVVVVVVV
p2

hhhhhhhhhhh
p1 VVVVVVVVVVV

◦ ◦
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Each of the singular fibers of Σ(p1, . . . , pr) represents a knot in Σ(p1, . . . , pr)
which we represent in a splice diagram by adding an arrowhead to the corre-
sponding edge. Thus

◦ ◦
2 &&MMMMMM
3

88qqqqqq5

represents the link in Σ(2, 3, 5) consisting of the degree 2 and 3 singular fibers.
Non-singular fibers are represented by adding new arrows at the central vertex
weighted by 1, so

◦ ◦

◦
2 KKKKKK
3

ssssss
5

KKKKKK

1
yyssssss

◦

represents the knot in Σ(2, 3, 5) consisting of one non-singular fiber.

There are Seifert fibrations of the 3–sphere with 2 or less singular fibers. For
instance, S3 can be fibered by copies of the (p, q) torus knot, with one p–fold
singular fiber and one q–fold singular fiber, so the splice diagram

◦

◦
p KKKKKK
q

ssssss1
oo

◦

is the diagram for the (p, q) torus knot in S3 . Similarly

◦ ◦
1 &&MMMMMM
1

88qqqqqqq

represents a pair of parallel (1, q) torus knots (unknotted curves which link each
other q times).

If K1 ⊂ Σ1 is a knot in a homology sphere and K2 ⊂ Σ2 is another, then
we form the splice of Σ1 to Σ2 along K1 and K2 as follows. Let Ni be a
closed tubular neighborhood of Ki in Σi for i = 1, 2 and let Σ′

i be the result
of removing its interior, so ∂Σ′

i = T 2 . The splice is the manifold

Σ = Σ′
1 ∪T 2 Σ′

2 ,

where the gluing matches meridian in Σ1 to longitude in Σ2 and vice versa.
(“Meridian” and “longitude” in Σ′

1 are the simple curves in ∂Σ′
1 = T 2 that

are null-homologous respectively in the removed solid torus N1 or in Σ′
1 .) We

denote the splice by

Σ = Σ1
K1 K2 Σ2 .

Geometry & Topology, Volume 9 (2005)



Complex surface singularities with integral homology sphere links 805

We represent splicing in terms of splice diagrams by gluing the diagrams at the
arrowheads that represent the knots along which we are splicing. For instance,

◦ ◦

◦
2

NNNNNNN

3ppppppp ◦
2 NNNNNNN
3

ppppppp77

◦ ◦

represents the splice of two copies of Σ(2, 3, 7) along the knots represented by
the degree 7 fibers.

By [7], the splice diagrams that classify homology sphere singularity links are
precisely the splice diagrams with pairwise coprime positive weights around each
node and with positive edge determinants (recall that the edge determinant is
the product of the two weights on the edge minus the product of the weights
adjacent to the edge).

The splice diagram can be computed very easily from a resolution diagram for
the singularity. We describe this in detail in the appendix of [30] so we will not
repeat it here. Briefly, the splice diagram is obtained from the dual resolution
graph for the singularity by replacing each string in the resolution graph by a
single edge (ie, we eliminate vertices of valence 2); each splice diagram weight is
the absolute value of the determinant of the intersection matrix for the subgraph
of the resolution graph cut off at the corresponding node in the direction of the
corresponding edge.

We will also need an “unreduced” version of the splice diagram: The maximal

splice diagram is the version of the splice diagram we get from the resolution
graph if we do not first eliminate vertices of valency 2, and we include edge
weights at all vertices — also the leaves. For example, the resolution graph

−2
◦

−2
◦−1

◦
RRRRRR

llllll
−17
◦

−1
◦

llllll
RRRRRR

−3
◦

−3
◦

−2
◦

gives maximal splice diagram and splice diagram

◦ ◦
◦

2
11RRRRRR

3
5

llllll
7 1 ◦ ◦

2
28llllll

5
9
RRRRRR111

◦ ◦
2 5

◦

◦ ◦
and ◦

2
SSSSSSS

3kkkkkkk ◦
5 SSSSSSS
2 kkkkkkk117

◦ ◦

respectively (this is Example 12.1 in [30]).

An algorithm to recover the resolution diagram from the splice diagram is given
in [7]. Here we describe an easier method that arose from conversations with
Paul Norbury (developed independently by Pierrette Cassou-Nogues [3], whose
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terminology of “maximal splice diagram” we have adopted—we called it “ad-
joint diagram”).

To compute the resolution graph from the splice diagram we will give algorithms
to:

• compute the maximal splice diagram from the splice diagram, and

• compute the resolution graph from the maximal splice diagram.

We will need the following properties of the maximal splice diagram, which are
proved in greater generality in section 12 of [30] (Theorem 12.2 and Lemma
12.5).

Theorem 9.1 (1) For any pair of vertices v and w of the maximal diagram
let ℓvw be the product of the weights adjacent to, but not on, the shortest path
from v to w in ∆′ . Then the matrix L := (ℓvw) is the inverse matrix of −A(T ).

(2) Every edge determinant for the maximal splice diagram is 1.

(3) The edge-weight adjacent to a leaf v of the maximal splice diagram is equal
to ⌈a/b⌉ where a is the product of edge-weights adjacent to and just beyond
the nearest node to v and b is the remaining weight adjacent to that node.

We remark that part (3) is valid also for the valency 2 vertices between the leaf
and its nearest node. For example, for the right-most leaf of the above example
5 = ⌈22/5⌉ = ⌈9/2⌉.

9.1 Maximal splice diagram from splice diagram

We describe how to recover the string of vertices and weights of the maximal
splice diagram between any two vertices of a splice diagram. Suppose first both
vertices are nodes with weights as follows,

... ◦

a1

LLLLLLLLLLa2

RRRRRRRRRR

arllllllllll
b c ◦

d1

ssssssssss d2

mmmmmmmmmm

ds QQQQQQQQQQ ...

and put a =
∏r

1 ai , d =
∏s

1 dj . If one of the vertices (say the right one) is a
leaf instead of a node then we put d = 1. The desired string of vertices and
weights between our two nodes will only depend on a, b, c, d, so we replace the
above diagram by:

a◦ b c ◦d
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Consider the following infinite linear graph:

1◦3 1◦2 1◦1 2◦1 3◦1

We are going to refine this by adding vertices on this line until our vertices
a◦b

and
c◦d

appear on it. Vertices
x◦

y
are ordered along the line by

size of x/y . Thus such a vertex either is already a vertex of the linear graph, or
it falls on an existing edge. In the latter case we subdivide the edge as follows:

α ◦
β γ

◦ δ
7→

α◦
β α+γ

◦
β+δ γ

◦ δ

We repeat this process until both our desired vertices appear, and then the
portion of the linear graph between them is what we were seeking.

For example, suppose our initial splice diagram is:

◦ 2RRRRRR ◦2
llllll

◦ 7 11 ◦
◦ 5

llllll ◦3

RRRRRR

To create the string for the middle edge we start with:

10◦ 7 11◦ 6

and apply the above procedure. We mark the positions of these vertices, until
they are found, by ∨ .

1 ◦ 1 10∨7 11∨6 2 ◦ 1

1◦ 1 10∨7 3◦ 2 11∨6 2◦ 1

1 ◦ 1 4 ◦ 3 10∨7 3 ◦ 2 5 ◦ 3 11∨6 2 ◦ 1

1◦1 4◦3 7◦5 10∨7 3◦2 5◦3 7◦4 11∨6 2◦1

1 ◦ 1 4 ◦ 3 7 ◦ 5 10• 7 3 ◦ 2 5 ◦ 3 7 ◦ 4 9 ◦ 5 11∨6 2 ◦ 1

1 ◦ 1 4 ◦ 3 7 ◦ 5 10• 7 3 ◦ 2 5 ◦ 3 7 ◦ 4 9 ◦ 5 11• 6 2 ◦ 1

Thus the final string is:

10
•

7 3
◦

2 5
◦

3 7
◦

4 9
◦

5 11
•

6

Similarly, the 3–weighted edge expands from
22◦3 8◦1 as follows:

7 ◦ 1 22∨3 8 • 1

7◦1 22∨3 15◦2 8•1

7◦1 22•3 15◦2 8•1

Geometry & Topology, Volume 9 (2005)



808 Walter D Neumann and Jonathan Wahl

A shortcut is available in the above procedure: to compute the string for the
central edge we did not need to create the (4, 3)– and (7, 5)–vertices, since the
edge determinant on the edge from (10, 7) to (3, 2) is already 1.

With this comment, the other three edges are immediate and the maximal splice
diagram is:

◦ 18
2UUUUUUU ◦17

2
iiiiiii

◦
7 3

◦
2 5

◦
3 7

◦
4 9

◦
5 11

◦
◦ 3

5
iiiiiii ◦3

15

UUUUUUU 2 8 ◦

9.2 Resolution graph from maximal splice diagram

We must recover the self-intersection weights ev := avv at vertices. The matrix
equation LA(T ) = −I gives equations that will do this. We use the notation
w–v to mean vertices w and v are connected by an edge. Then for any vertex
w′ adjacent to v , the vw′ entry of this matrix equation gives:

ev =
−1

ℓvw′





∑

{w:w–v}

ℓww′





Note that the product of the weights just beyond w′ from v cancel in this
formula, so they may be replaced by 1 for the calculation. For example, for the
above maximal splice diagram we get the resolution graph:

−2
◦

−2
◦−1

◦
UUUUUUU

iiiiiii
−5
◦

−2
◦

−2
◦

−2
◦

−2
◦

iiiiiii
UUUUUUU

−5
◦

−2
◦

−2
◦

9.3 Proof of the procedure of 9.1

The procedure in [7] implies that the string of the maximal splice diagram
between the two vertices in question only depends on a, b, c, d. Consider the
resolution graph

−1
◦

−2
◦

−2
◦

−3
◦

−2
◦

−2
◦

−2
◦

−2
◦

−1
◦ (11)

with associated maximal splice diagram:

◦s 1◦
s−1

◦2 1◦1 2◦1 3◦1 4◦ ◦1 t◦ (12)

This is a piece of the infinite linear graph we used above, and we choose s and t
large enough that our desired vertices will lie in this piece. Now we repeatedly
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blow up on edges of the linear resolution graph. An easy calculation shows that
blowing up on an edge:

e1

◦
e2

◦ 7→
e1−1
◦

−1
◦

e2−1
◦

has the effect:

α ◦
β γ

◦ δ 7→ α ◦
β α+γ

◦
β+δ γ

◦ δ

on the associated maximal splice diagram. Thus we need only show that our
desired vertices eventually appear in this procedure. But this is a standard fact
about Farey sequences (alternatively, one can observe that we are describing the
standard procedure to resolve the plane curve singularity (xa + yb)(xc + yd)).

This same argument applies to see how to fill in the maximal splice diagram
between a node and a leaf, even if the edge weight at the leaf is unknown. The
leaf will be the rightmost vertex of the above string (12) with t chosen as small

as possible to accommodate our desired vertex
a ◦ b

. Thus, the t that we

choose is ⌈a/b⌉ (if t = 1 the initial resolution string (11) is
−1
◦

−2
◦

−2
◦ ).

Note that this blow-up procedure gives an alternative way to compute the self-
intersection weights along the string, making the calculation of subsection 9.2
only necessary at nodes.
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[9] H A Hamm, Exotische Sphären als Umgebungsränder in speziellen komplexen
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