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1978 Junho Lee and Naichung Conan Leung
1 Introduction

Let N (d,r) be the number of rational curves in K3 surfaces X that represent
a homology class A € Ho (X,7Z) of self-intersection A% = 2d — 2 and of index!
r. Yau and Zaslow [23] give an ingenious heuristic argument to compute the
generating function for primitive classes and they also expected that the same
formula holds true for classes of arbitrary index. More precisely the Yau—Zaslow
conjectural formula says that, for any positive integer r, we have

SN (dr) ¢ = }1(1—1%)24‘ (1.1)

d>0

Their original approach was pursued by Beauville [1], Chen [4] and Li [16]. In
[2, 3], Bryan and the second author showed that N (d,r) can be computed in
terms of the twistor family Gromov—Witten invariants of the K3 surfaces. They
also proved the Yau-Zaslow formula for primitive classes in K3 surfaces and its
higher genera generalization.

In [14], the first author reproved the Yau-Zaslow formula (1.1) for primi-
tive classes and its higher genera generalization using p,—dimensional family
Gromov—Witten invariants defined in [13] — following the approach of [8], he
computed those invariants by relating the TRR (topological recursion relation)
and the symplectic sum formula of [8] for a suitable degeneration of an elliptic
K3 surface. In this article we explain how to use the same approach to compute
the p,—dimensional family Gromov-Witten invariants for non-primitive classes.
In particular we verify the Yau—Zaslow formula for non-primitive classes of in-
dex two. At present, it is not easy to use this approach to handle classes of
higher indexes, for example, we do not know how to handle relative invariants
with multiplicity greater than 2. An analogous problem for the Seiberg—Witten
invariants was studied by Liu [19].

Notice that N (d,2) is different from the family Gromov-Witten invariant
GW%O due to the multiple cover contributions, as it was explained by Gath-
mann in [5]. This is because the family Gromov-Witten invariants count holo-
morphic maps and each rational curve C' representing the primitive class A/2
contributes 1/23 to GWZX{O, however, the multiple curve 2C' contributes zero to
N (d,2) because it has negative genus. As a result, the Yau Zaslow formula for
non-primitive classes of index two follows directly from the following theorem.

'The index of A is the largest positive integer r such that r~'A is integral. An
index one class is called primitive.
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Yau—Zaslow formula on K3 surfaces for non-primitive classes 1979

Theorem 1.1 Let X be a K3 surface and A/2 € Hs (X;Z) be a primitive
class. Then, the genus g = 0 family GW invariant of X for the class A is given

by .

where B is any primitive class with B> = A?.

)3 Wiy

In the sequel [15], we apply the same technique to enumerate the number of
elliptic curves representing non-primitive classes of index two in K3 surfaces.

The construction of family GW invariants is briefly described in Section 2. We
outline the proof of Theorem 1.1 in Section 3. This proof follows the elegant
argument used by Ionel and Parker to compute the GW invariants of FE(0)
[8]. It involves computing the generating functions for the invariants in two
different ways, first using the TRR formula, and second using the symplectic
sum formula. Section 4 gives the sum formulas of the symplectic sum of E(2)
with E(0) along a fixed fiber. The sum formulas yield relations of family
invariants of E(2) and relative invariants of E(0). We compute those relative
invariants of £(0) in Section 5-7.
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2 Family GW invariants of K3 surfaces

This section briefly describes family GW invariants of K3 surfaces. We first give
the definition of family GW invariants of Kéahler surfaces with p; = dimH 20>1
defined in [13]. Fix a compact Kéhler surface (X,J) and choose the 2p,—
dimensional parameter space

H = Re (H*?(X) ® H**(X)).

Using the Kéhler metric, each o« € H defines an endomorphism K, of T'X by
the equation
(u, Kov) = a(u,v).

Geometry € Topology, Volume 9 (2005)



1980 Junho Lee and Naichung Conan Leung

Since Id 4+ JK, is invertible for each a € H, the equation
Jo = (Id + JK,) ' J(Id + JK,)

defines a family of almost complex structure on X parameterized by a in the
2pgy—dimensional linear space H. The family GW invariants are defined, in the
same manner as the ordinary GW invariants [22, 17], but using the moduli
space of stable (J, a)~holomorphic maps (f,«a):

MWK AT ={ (fra) |85, =0, aeH, [fl= A€ Hy(X;Z)}.  (2.1)

For each stable (J,«) holomorphic map f: (C,j) — X of genus g with k—
marked points, collapsing unstable components of the domain determines a
point in the Deligne-Mumford space ﬂg,k and evaluation of marked points
determines a point in X*. Thus we have a map

st X ev : m:k(X,A, J) — Mgy x XF (2.2)

where st and ev denote the stabilization map and the evaluation map, respec-
tively. If the space (2.1) is compact, it carries a fundamental homology class

-—H
[Mg,k(X7 A’ J) ]
which we can push forward by the map (2.2) to obtain a homology class
_H _
(st x ev), [My (X, A, J)] € Hor(Myy, x X7 Q)

where r = —K - A+ (9—1)+k+p, and K is the canonical class of X. Then,
the family GW invariants are defined by

GW;[I@(XMA’ J)(K‘a ﬁla"' ’ﬁk)
= (st x ev) [Mog(X, A, D)) 0 (K U BF U --- U B)

where £* and 3] are Poincaré dual of x € H, (ﬂg,k;(@) and 3; € H, (Xk; Q),
respectively.

When X is a K3 surface, the family GW invariants reduce to the invariants
defined by Bryan and Leung [2] using the twistor family. In particular, (i) they
are independent of complex structures and (ii) for any two homology classes
A and B of the same index with A%? = B?, there is an orientation preserving
diffeomorphism h: X — X such that h,A = B and

Below, we will often write the family GW invariants of K3 surfaces as simply

GWRG(X) (ks B Br)  or  GWH (ki B B).
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Yau—Zaslow formula on K3 surfaces for non-primitive classes 1981

By dimension count, this invariant vanishes unless

deg(k") + Z deg(f 2(g + k).

Let E(2) — P! be an elliptic K3 surface with a section of self intersection num-
ber —2. Denote by S and F' the section class and the fiber class, respectively.
It then follows from (2.3) that for any class A of index 2 with (A/2)? = 2d — 2,
we have

GWZX-{O = GW%SerF),O'

These are the invariants we aim to compute. We will compute them following
a similar approach of [8, 14] — relating the genus 1 TRR Formula and the
Symplectic Sum Formula [8].

The Sum Formula yields relations between GW invariants and relative GW
invariants of [7]. One can derive a family version of the Sum Formula for the
cases of elliptic surfaces (cf [14]). Here, we introduce relative family invariants
of E(2) and describe the extension of the Sum Formula in Section 3.

First, we define relative family invariants of E(2) for the classes 25 + dF,
d €7Z. Let V = T? be a smooth fiber of F(2) — P! and choose a smooth bump
function p that vanishes in a small J—neighborhood of V' and is 1 everywhere
outside of a 2d—neighborhood of V. Replacing o € H by pa and following
the construction of relative invariants in [7], one can define the moduli space of
‘V-regular’ (J, par)~holomorphic maps (f, pu«)

H,V
M (28 +dF) (2.4)
where s = (s1,---,5;) is a multiplicity vector and f~!(V) consists of marked

points pj, k+1 < j < k41, each with the contact order of f with V' at p;
being s;. Since each s; > 1 and (25 + dF') - [V] = 2, the multiplicity vector s
is either (1,1) or (2). This moduli space also comes with a map

st xevxh : /Vlgks(S+dF) — Mgk+l><E() x V! (2.5)

where ev is the evaluation map of first k marked points into F(2)* and h is
the evaluation map of last I marked points into V!. The moduli space (2.4) is
compact (cf Section 6 of [14]) and hence carries a fundamental class

which we can push forward by the map (2.5) to obtain a homology class

(st x ev x h) [MJGY (28 + dF)] € Hop(Myppr x EQ2)F x V5Q)  (2.6)
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where r = g + k + 1 — 2. The relative family invariants of (E(2),V) is then
defined as

\4 X .
GWQS-I—CZF,Q,S (Ha ﬂh e 7ﬂka C’yl---'yl)

= (st x ev X h), [M:}XS(QS +dF)] n (" U B U~Y) (2.7)

where % = 7 U---UB, 7" =177 U--- U7/, and 7} is the Poincaré dual of
v € H (V;Z) in V.

Similarly, we can define relative family invariants of E(2) for the classes S +
(2d — 3)F, d € Z. In this case, we choose a symplectic submanifold U = T?
of F(2) that represents the class 2F'. Repeating the same arguments as above
then gives relative family invariants of (F(2),U)

GWg+(2d—3)F,g,s(’<ﬂ; By B Cypeoy) (2.8)
where s is also either (1,1) or (2) since each s; > 1 and (S+(2d—3)F)-[U] = 2.
The invariant (2.7) (resp. (2.8)) counts the oriented number of genus g V-
regular (resp. U-regular) (J, ua)—holomorphic maps (f, ua): C — E(2), rep-
resenting the homology class 25 + dF' (resp. S+ (2d — 3)F'), with C € K and
f(x;) € A; such that these have a contact of order s; with V' (resp. U) along
fixed representatives G; of v; in V (resp. U) where K and A; are represen-

tatives of k and f3;. In particular, both relative invariants (2.7) and (2.8) have
the same (formal) dimension and thus vanish unless

deg(k*) + Zdeg(ﬁ;‘) + Zdeg(y;) =2(g+k+1-2).

3 Outline of computations

Our goal is to compute the ¢ = 0 family invariants of K3 surfaces for the
classes A of index 2. By (2.3), it suffices to compute the invariants of E(2)
for the classes 2(S 4+ dF'). For convenience we assemble them in the generating
functions

My()(t) = > GWI ap, (- )t (3.1)

We further introduce generating functions for invariants of primitive classes, by
the formula

Ng(')(t) = Z GW;idF,g( ) )td7
Py()(t) = > GWe g gymy () 1% (3.2)

Geometry € Topology, Volume 9 (2005)
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It then follows from (2.3) that

Mo(t) — Po(t) = Z (GW%S—I—CZF),O - GW;{+(4d—3)F,O)t2d
d>0

since both 25+ dF and S+ (2d—3)F are primitive with the same square when
d is odd. In this and the following four sections we will show:

1\ 3
Proposition 3.1  My(t) — Py(t) = (5) No(t?).

Let A be any class of index 2 and B be any primitive classes such that A? =
B? = 4(2d — 2). Proposition 3.1 and (2.3) then imply

H H H H
GWao — GWgo = GWslsraryo = GWsiui—syro
3 3
= (%) GWg’idF,O = (%) GW%/Q,O
and hence prove Theorem 1.1 of the introduction.

Below, we outline how we prove Proposition 3.1.

Let ; be the first Chern class of the line bundle £} — ﬂ;{k (X,A) whose
geometric fiber at the point (C; T1, Tk fs a) is T, C. Similarly as for the
ordinary GW invariants, one can use ¢; to impose descendent constraints on
family invariants as follows:

GW;:[k(X7 A)(Tml (ﬁl)? 7ka(ﬂk))
= (st x ev)u( [Mop(X, )] N0 g™ i) 0 (B U UBE).

If the constraint 7,,,(3;) repeats n times and deg(3’) is even, we will use the
notation 7, (5;)".

Recall that V' = T? is a fixed smooth fiber of E(2) — P2. To save notation,
we denote by F' the fundamental class of V. Introduce a generating functions
for the relative invariants of (E(2),V'), by the formula

Mf(z)(t) = Z GWQ‘g’—I—dF,l,(Q) (Cr)t?. (3.3)

As in Proposition 3.1 of [14], we can combine the g = 1 TRR formula with the
composition law (Proposition 3.7 of [13]) to have

My(7(F)) = 3t My — 2 M. (3.4)
Then, in Proposition 4.4 we apply the Symplectic Sum Formula of [8] to obtain

My(7(F)) = My 5 + 4Ga My, (3.5)

Geometry € Topology, Volume 9 (2005)
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My(7(F)?) —2My(pt) = 20Gy MY ) + (16G3 + 8t Gy) My (3.6)
where Ga(t) is the Eisenstein series of weight 2, namely
Gao(t) = > o(d)t? where o(d) => k, d>1 and 0(0) = —5;.
d>0 k|d
Now, eliminate Ml‘f@) in (3.6) by using (3.4) and (3.5) to obtain
My (7(F)?) —2My(pt) = 2 Got My — (64G3 + 2 Gy — 8tGhH) My. (3.7)

Recall that U = T? is a fixed symplectic submanifold of E(2) that represents
the class 2F. Without any further confusion, we will also denote by F' the
fundamental class of U = T2. Introduce a generating function for the relative
invariants of (E(2),U), by the formula

Plyy(t) = > GWE\ 04 51,02y (Cr) 1. (3.8)
The genus 1 TRR formula gives a formula like (3.4)
P (T(2F)) = $tPy — 2 Py. (3.9)

Then, in Proposition 4.5 we apply the sum formula to have formulas like (3.5)
and (3.6)

Pi(r(2F)) = Py + 4Ga B, (3.10)

Py(7(2F)*) —2Pi(pt) = 20Gy Py + (16G5 + 8tGh) Py (3.11)
Similarly, as above, equations (3.9), (3.10) and (3.11) give

Py(1(2F)?) —2Pi(pt) = B Gat Py — (64G5 + Gy — 8tGH) By. (3.12)

Note that the equations (3.7) and (3.12) have the same coefficients. This is true
because all coeflicients of TRR and sum formula depends only on the topological
quantities

(2S+dF)? = (S4(2d—3)F)?, (2S+dF)-F = (S+(2d—3)F)-2F, F* = (2F)%.
Hence, (3.7) and (3.12) give
3[Ma(r(F)?) — Pa(r(2F)?)] — 6 [ M1(pt) — Pi(pt)]
= 20Gat (My — Py)' — (192G3 + 40Go — 24t Gh) (Mo — Py). (3.13)
(

Note that by (2.3) both generating functions M; (pt) -P (pt) and My— Py have
no odd terms. One can also show that the generating function M (7(F)?) —
P5(7(2F)?) has no odd terms (see [15]). Consequently, comparing odd terms
of both sides of (3.13) gives the first order ODE

0=20G,t(My—Py)" — (384G G, + 40G, — 24tG.) (My— By) (3.14)

Geometry € Topology, Volume 9 (2005)
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where G.(t) (resp. Go(t)) is the sum of all even (resp. odd) terms of Ga(t).

On the other hand, it follows from the equation (2.7) of [14] that
d

taNo(tQ) = 2% N (t?) = 48 Go(t?) No(t?) + 2 No(t?). (3.15)

Combining (3.15) with the following relation of certain quasi-modular forms
412 GY(t7) = 32G5(t%) — 40Go(t) Go(t?) + 8Ga(t) — tGh(t) (3.16)
(see Lemma 3.2) says that No(#?) also satisfies the same ODE (3.14). Since the
initial conditions are Ny(0) = 1 (cf [14]) and My(0) — Py(0) = (1/2)3 (cf [5]),
we can conclude that
3
My(t) - Fo(t) = (3)" No(#?).

This completes the proof of Proposition 3.1 and hence of Theorem 1.1 of the
introduction. The main task is, thus, to establish the sum formulas (3.5), (3.6),
(3.10), and (3.11).

We end this section with the proof of (3.16).
Lemma 3.2 4t2GY(t?) = 32G3(t?) — 40G2(t) Ga(t?) + 8G2(t) — tGL(2).

Proof Let Ga(2) = 5¢0(d) q¢ and set

E(z) = —2DG5(22) + 32G%(22) — 40G3(2) G2(22) + 8G3(2) — DGsy(2)
where z € C with Im(z) > 0, ¢ = €* and D = qd% is the logarithmic
differential operator. It then suffices to show that F(z) =0.

Since the Eisenstein series Go(z) of weight 2 satisfies

c(ez +d)
4mi

b
d

az+b
G(20) = d)? Ga(2) —

\ez+d (c2 +d)” Ga ()
one can show by hand that E(z) is a modular form of weight 4 and of level 2 on
the Hecke subgroup I'g(2). The space of such modular forms is a 2-dimensional
vector space with generators

for any ¢ e SL(2,7)
(¢ a)

1 1
Ga(z) = 57 + 10) " o3(d)¢* = 57+ 10g + 90q* + -
d>1

1 1 26
G (2) = [Galz) — 2Ga(22)]" = TR ﬂq2 Lo

where o3(d) = 3 ¢4 k3 (cf [10]). Thus, E(z) can be written as

i+i)+<10a+£)q+"'

B(2) = aGa(2) + b6 () = (55 + 31 5

Geometry € Topology, Volume 9 (2005)
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for some constants a and b. On the other hand, one can also show by hand that
the first two terms in the g—expansion of E(z) vanish. Consequently, a = b =0
and hence E(z) = 0. O

4 Symplectic sum formula

Let E(0) = S?xT? — S? be arational elliptic surface. To save notation, we also
denote by S and F the section class and the fiber class of F(0), respectively.
In this section, we apply the sum formula [8] of the symplectic sum of E(2) and
E(0) to prove the sum formulas (3.5), (3.6), (3.10), and (3.11).

Recall that V = T2 is a fixed fiber of E(2) — S?. For convenience, we use
the same notation V for a fixed fiber of F(0) — S2. Recall that relative GT
(Gromov—Taubes) invariants of (F(0), V) count V-regular maps from possibly
disconnected domain [7]. The sum formula of [8] applies to GT invariants to give
relations between GT invariants and relative GT invariants. The sum formula
also applies to GW invariants. In this case, it gives relations between GW
invariants and (partial) relative GT invariants — these invariants are defined
to count maps each of whose domain component has contact order at least one
with V. We denote such (partial) relative invariants of (E(0),V") for the class
25 + dF with the FEuler characteristic x and the multiplicity vector s by

Gq)XS-I—dF,x,s (C’Yl""ﬂ 3 K3 Bla to 7/8]€) . (41)

Here, s = (s1,---,5;) equals (1,1) or (2), v; € H,(V;Z), k € Ho( M,y 1415 Q)
and (3; € H.(E(0);Z); My 4 is the space of all compact Riemann surface of
FEuler characteristic x with k 4 [ marked points. We will also use the notation
77 if the constraint 7; repeats n times and deg(’y;-‘) is even. By dimension

formula of [7], the (partial) GT invariant (4.1) vanishes unless
deg(k*) + Zdeg(ﬂf) + Zdeg(’y}‘) = 2(4 — %X—i- k+1— 2).

Consider the symplectic sum of F(2) and E(0) along V

E(2) = E(2) #v F(0). (42)
The Gluing Theorem (Theorem 10.1 of [8]) applies for this sum to give relations
between family GW invariants of E(2) for the classes 25 + dF and (partial)
relative family GT invariants of (E(2),V') for the classes 25 + dF'. The latter
count V-regular maps f with possibly disconnected domains such that if f

has a disconnected domain of FEuler characteristic xy with & marked points f
is a pair of V-regular maps (fi, f2) satisfying [f;] = S+ d;F with d; +dy =d
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and the domain of f; lies in My, 5, with x = 4 — 2(g1 + g2) and k = ky + k.
Denote the moduli space of all such pairs (f1, f2) by

-—H,V

Migrg2), (ki ), (1,1 (1 ). (4.3)
The standard corbodism argument (cf proof of Proposition 3.7 of [13]) then
shows that the moduli space (4.3) is corbodant to the product moduli space

M (S +diF) x My, 1)(S + doF)
where the first factor is a relative family GW moduli space of (E(2),V) and the
second is a relative ordinary GW moduli space of (E(2), V). Since E(2) is a K3
surface, the contribution of the second factor to relative ordinary GW invariants
of (E(2),V) vanishes. Consequently, the contribution of the moduli space (4.3)
to (partial) relative family GT invariants also vanishes. This implies that for
the classes 25 + dF the (partial) relative family GT invariants of (E(2),V)
and the relative family GW invariants GW" are the same. Therefore, a family
version of the sum formula of the sum (4.2) for the classes 25 + dF relates
GW™ invariants of E(2) and GWV invariants of (E(2),V).

On the other hand, using Lemma 14.5 of [8] and routine dimension count one
can show that there is no ‘contribution from the neck’ (cf Section 12 of [8]).
Moreover, ‘rim tori’ [7] of E(2)-side disappear under the symplectic sum (4.2)
— that enables us to work with summed relative invariants. Combined with
these observations, the Gluing Theorem then yields a considerably simple sum
formulas (4.4) below: Let {v;} be a basis of H,(V;Z) and {v'} be its dual
basis with respect to the intersection form of V. For a vector of nonnegative
integers m = (mq,--- ,my) with > m; is either 2 or 1, we set

C’Ym = C,Y;M._ my C’Ym* = C(,Y4)m4,,,(,yl)m1 N and m! = H ml'

Yy

For a multiplicity vector s = (s1,--- ,s;), either (1,1) or (2), let |s| =[] s;. We
are now ready to write a sum formula of the symplectic sum (4.2)

GWiSsary (T(F)",pt*~")

|s| -
= Z ﬁ GWQ‘;/S'-I—ChF,gl,S (C'Ym) G(D;/S-i—dQF,XQ,S (C’Ym*;T(F)k?ptg k) (44)

where the sum is over all s = (s1,---,s;) which is either (1,1) or (2), vectors
m = (m;) as above with Y. m; =1(s), d=dy + dy and g = g1 — 3x2 + I(s).

Similarly, one can also derive a sum formula for the case of family invariants
of E(2) for the classes S + (2d — 3)F, d € Z. Recall that U = T? is a fixed
symplectic submanifold of E(2) that represents the class 2F. We also denote
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by U a fixed fiber of E(0) — S? and consider the symplectic sum of F(2) with
E(0) along U
E(2) = E(Q2) #0 E(0). (45)

Since both U and V are fibers of E(0), relative GW invariants of (E(0),V)
and (E(0),U) are in fact the same. Thus, the (partial) relative GT invariants
of (E(0),V) and (E(0),U) are also the same invariants, ie G®Y = G®Y. On
the other hand, U C E(2) represents 2F on E(2), while U C E(0) represents
F on E(0). With these observations, repeating the same arguments as above
for the symplectic sum (4.5) gives a sum formula like (4.4)

GW:S'HJr(de?))F,g (r(2F)F,pt=F)

E _
= Z ﬁGWng(zdr:s)F,gl,s (Cy) G35y pnns (Crpe s T(E)E, pt97F). (4.6)

Remark 4.1 Once and for all, we fix an (ordered) basis {pt,v1,72, F} of
H,(V;Z) = H.(U;Z) and its (ordered) dual basis { F,y2, —y1,pt } with respect
to the intersection form of V' = U where {v1,72} is a basis of H; (V;Z) o
H,(U;Z) = Hi(E(0); Z) with ;-2 = 1. Then, in the sum formulas (4.4) and
(4.6) the splitting of diagonal for contact constraints C,,, is given as follows:

e if m =(2,0,0,0) then v, = pt? and 7+ = F?,
e if m=1(1,0,0,1) then 7, = pt- F and 7y« = pt - F,
e if m=1(0,1,1,0) then v, =71 - 72 and Ypx = (—71) - V2.

Using the sum formula (4.4), one can derive relations between invariants GW"
and GWV.

Lemma 4.2 Let GWV be the relative family invariants of (E(2),V). Then,

(a) GWzvs+dFo(1,1) (Cp2) = GW%MF,Oa
(b) GW. 25+dF,1, 1,1) (Cv ) = GWZ‘./SerF,l,(l )(Cpt-F)
(

(C) GW2‘f9+dF,1, 1,1) Cpt F) GW27:lS'+dF,1 (pt) % derd GW2S+d1Fo dp U(d2)
1 2

Proof (a) By the sum formula (4.4), Remark 4.1 and Lemma 7.1 a, we have

GW%+dF,O = Z %GWX?MIF,O,(LU(CF?) G‘P¥S+d2F,4,(1,1)(Cpt2)
d=di+d2

= % GWz‘g’erF,o,(Ln (CFQ)'
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(b) Note that the sum formula (4.4) also holds for one dimensional constraints.
The sum formula (4.4), Remark 4.1 and Lemma 7.1b,c,d,e thus give

GW%‘+dF,1 (L* (71), L (72))

Vv 1% .
= Z GWzS+d1F,1,(1,1)(Cpt-F) G‘I)2S+d2F,4,(1,1)(Cpt'F771772)
d=di1+d2

+ Z GW2‘g’+d1F,1,(1,1) (vaz) Gq’¥s+d2F,4,(1,1) (C(fm)-w%% ’72)
d=d1+d2

+ Y 2GWs, 4019 (CF) GYs 4o (2) (Coti 11, 72)
d=d1+d>

L iV v .
+ Y $GOWIs k001 (Cr2) GRYs 4 (11 (Cori 115 72)
d=d1+d2

= GW2‘g’+dF,1,(1,1)(Cpt~F) - GWz‘g’erF,l,(l,l)(Cvmz)

where ¢: V < FE(2) is the inclusion map. Since F(2) is simply connected, the
left hand side of the first equality vanishes and hence this shows (b).

(¢) We have

GWz%erF,l (pt)

= Z GW2‘g’+d1F,1,(1,1)(Cpt'F) G(I);/S+d2F,4,(1,1)(Cpt'Fipt)
d=d1+d>

+ Z 2 GWz‘g’+d1F,1,(2) (CF) Gq’¥5+d2F,2,(2) (Cpt?pt)
d=d1+d>

+ Z %GWQ‘ngle,o,(Ln(CF?)G‘I’gs+dgp,2,(1,1)(Cpt2;pt)
d=d1+d>

= GWysyap1.1.1)(Cprr) + 2 Y GWI g podao(d)

d=d1+d2

where the first equality follows from the sum formula (4.4) and Remark 4.1,
and the second follows from Lemma 7.1 f,g.h. O

The sum formula (4.6) also gives relations between invariants GW7’ and GWVY.

Lemma 4.3 Let GWU be the relative family invariants of (E(2),U). Then,

(a) %GWAS[’]Jr(deS)F,O,(l,l) (Cpz) = GW;{+(2d73)F,O )
(b) GWsl*]+(2d—3)F,1,(1,1) (Crine) = GWg-f—(Qd—?))F,l,(l,l) (Cpt.r) -
(c) GW5[’]+(2d—3)F,1,(1,1) (Cpt.r)
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= GW;i(zd—s)m (pt) -2 X GW;{+(2d1—3)F0 dyo(dz).
’ d=d1+d> ’

The proof of this lemma is identical to the proof of Lemma 4.2.
Now, we are ready to show the sum formulas (3.5) and (3.6).
Proposition 4.4 Let M and MV be the generating functions defined in (3.1)
and (3.3), respectively. Then,
(a) Mi(7(F)) = MYy + 4 Mo Go,
(b) Ma(r(F)?) = 2M(pt) + 20 My 5 Go + Mo (16G3 + 8tG).

Proof (a) We have

GW;EMFJ (T(F ))
= Z GWQ‘ngle,l,(l,l)(CptF) G(I)¥5+d2F,4,(1,1) (Cpt-F?T(F))
d=dq+d2
+ Z 2GW2‘./S+d1F,1,(2) (Cr) G(I);/SerQF,o,(z)(Cpt?T(F))
d=d1+d2
+ Z %GWX?MIF,O,(LU(CF?) G@XSerQF,Z,(l,l)(Cth;T(F))'
d=d1+d2
= GWQ‘g+dF,1,(2)(CF) + Z 2GW;§+d1F,0,(1,1)(CF2)U(d2)
d=d1+d2
= GW2‘g’+dF,1,(2)(CF) + Z 4GW§:[9+d1F,00'(d2) (4.7)
d=d1+d2

where the first equality follows from the sum formula (4.4) and Remark 4.1,
the second equality follows from Lemma 7.2 and the third equality follows
from Lemma 4.2a. Then, (a) follows from (4.7) and definition of generating
functions.

(b) The sum formula (4.4) and Remark 4.1 give
GW%HFQ (T(F)?)

= Z %GWQ‘g‘+d1F,2,(1,1)(CPt2) G‘I)gs+d2F,4,(1,1)(CF2§T(F)2)
d=d1+d2

+ > 2GWys, g, mi2.2) (Cpt) Gy g, 10,2 (Crs T(F)?)
d=d1+d2

+ Z GW2‘f9+d1F,1,(1,1) (Cpt-F) Gq’¥s+d2p,2,(1,1) (Cpt-F§ T(F)2)
d=dq+d2
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+ Z GWZ‘A/SerlF,l,(l,l)(C’Yl"Yz)G(I);/SergF,Z,(l,l)(C(*'h)-'yz;T(F)Q)
d=d1+d2

+ Y 2GWyg 4 e 0)(CR) G5 g,y () (Cpts T(F)?)
d=d1+d2

+ Y $GWysi 001 (Cr2) GRYs, gm0 11y (Cpez T(F)?) (4.8)
d=d1+d2

By Lemma 7.3, the right hand side of (4.8) becomes
1% 1%
GW2S+dF,1,(1,1) (Cpt~F) + GW2S+dF,1,(1,1) (C"/l'w)
+ Z 20 GWQ‘{SLFle,l,(Q) (CF) U(dQ)

d=dq+d2
+ Y %GWQ‘@M’O,(M)(CFQ)( 3 160(k:1)a(k:2)+12d20(d2)).
d=d1+d> k1+ko=d2

This can be further simplified by using Lemma 4.2 to give

2GWIE g (pt) + > 20GW35, 4y (2 (Cr) - 0(dy)
d=d1+d2

+ Y Gng%le,o( 3 16a(k1)a(k:2)+8d20(d2)). (4.9)
d=d1+d2 k1+ko=d2

Thus, (b) follows from (4.8), (4.9) and definition of generating functions. D

The same computation shows (3.10) and (3.11):

Proposition 4.5 Let P and PY be the generating functions defined in (3.2)
and (3.8), respectively. Then,

(a) Pi(r(2F)) = Py + 4R G2,

(b) Po(r(2F)?) = 2Pi(pt) + 20 Py Gy + Py (16G3 + 8tGh).

5 GW invariants of F(0)

In order to complete the proof of the sum formulas (3.5), (3.6), (3.10), and
(3.11), we need to compute the (partial) Gromov—Taubes invariants of E(0)
that appeared in Section 4. Those invariants are expressed in terms of the
relative invariants of E(0). The aim of this section is to compute various GW
invariants of F(0) which we use in later sections to compute the required relative
invariants.
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Recall that S and F denote the section class and the fiber class of E(0),
respectively. We always denote the genus ¢ GW invariants of F(0) for the
class A by

@A,g (ﬁa ﬂ17 o 7/8k)

where k € Hy (Mg ;; Q) and 3; € H.(F(0);Z). Note that by dimension count
this invariant vanishes unless

deg(k™) + Y deg(B}) = 2(A-(2F)+g—1+k)
where £* and 37 are Poincaré dual of x and (;, respectively.
We start with the genus 0 GW invariants for the trivial homology class. The
lemma below directly follows from Proposition 1.2 of [11].
Lemma 5.1 Let ® denote the GW invariants of E(0). Then,
Doo(k;B1, -+ ,Bn) =0unlessn =3 and Poo(B1,02,0) = /( )QTU@U@
E(0
where (3F denote the Poincaré dual of 3; € H.(E(0);Z).

Recall that V 22 T? is a fixed fiber of E(0) — S%. We always denote the genus
g relative GW invariants of (F(0),V) for the class A with the multiplicity
vector s by

BY g (R By, B Oy
where s = (s1,---,s) with > s; = A-[V] = A-F and v; € H(V;Z). By
dimension formula of [7], this relative invariant vanishes unless
deg(k™) + Zdeg(ﬁ;‘) + Zdeg(’y}‘) =2(A-2F)+g—-1+k+1—-A-F)
where « is the Poincaré dual of ~;.
Recall that {1,772} is a basis of H1(V;Z) = H,(FE(0);Z) with 71 - y2 = 1 and

F' also denotes the fundamental class of V.

Lemma 5.2 [8, 18, 14] Let ® and ®" denote the GW invariants of E(0) and
the relative GW invariants of (E(0),V), respectively. Then,

(a) Pso(pt) = (I’g,o,(l)(cpt) = (I’g,o,(l)(pt?CF) =1,
(b) ®s0(v1,72) = ‘I)L‘q/,o,u)(%?cw) = @307(1)(71,’72;01?) =1,
() Psiara(T(F),pt) = (I)ngdF,l,(l)(T(F);Cpt)

= (I)g—i-dF,l,(l)(T(F)’pt; Cr) = 20(d),
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(d) Pstar(pt®) = 2do(d) 5 ®g,qp, (0t Cp) = do(d),

(€) Psvar(pt,n,72) = Py gy ) (P13 Cy) = do(d);
(I)g+dF,1,(1)(71’72;CPt) =0,

(f) ®4r1(S) = 20(d).

We will often use the following simple observations:

Remark 5.3 Consider F(0) = S? x T? with a product complex structure.
Since there is no nontrivial holomorphic map from S? to 72, any nontrivial
holomorphic map f: S? — E(0) should represent a class aS, a > 1, with its
image a section. Thus, the image of such maps can’t pass through generic two
points, a generic geometric representative of v or s and a generic point, or a
generic section and a generic point. Combined with the Gromov Convergence
Theorem [21, 20, 9], this observation gives vanishing results of certain genus 0
invariants. For example, (I)as+dF70( . ) = ddo <I>a570( . ) and

(I)aS,O(ptv’Yla : ) = (DaS,O(Saptv : ) = (I)aS,O(S> S, - ) = 0.

Fix a product complex structure on E(0) and let f: S? — E(0) be a holo-
morphic map representing a class aS, a > 1. Then f is a branched cover-
ing of some section Sy of F(0) and since the normal bundle of Sy is trivial
HY(f*TE(0)) = H'(: & f*T'Sp) = 0. This shows that the linearization Ly
of the holomorphic map equation at f has a trivial cokernal. With this obser-
vation, we will use the product complex structure of E(0) for computation of
both absolute and relative GW invariants for the following cases:

Lemma 5.4 Let ® and ®" denote the GW invariants of E(0) and the relative
GW invariants of (E(0),V), respectively. Then, we have

(a) 2(1)250(2)( T(F); Cpt) = (bgso(z)(pth(F);CF) =1,
(b) (I)g,o,(l)( T(F )’CF) = (I)SO( (F)) = (I);/S,o,(z)(T(F)Z?CF) =0

Proof (a) Fix a product complex structure on E(0) and let V;,V5,V be
distinct fibers and p be a point in V. Denote by

Moz(z) (E(0),28)(V1,Va,p) C Mo3(E(0),25) (5.1)

the cut-down moduli space that consists of all maps (f,C;x1,ze,x3) satisfying
(i) the contact order of f with V at z3 is 2 and (i) f(x;) € Vi, i = 1,2,
and f(z3) = p. This space is smooth of expected complex dimension 1 with
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no boundary stratum; by stability each map in the space (5.1) has a smooth
domain. Moreover, each map f in the space (5.1) has no non-trivial automor-
phism and the linearization L; has a trivial cokernal. Therefore, the invariant
@5570’(2) (T(F),F;Cp) is equal to the (homology) Euler class of the relative
cotangent bundle £; over the cut-down moduli space (5.1) whose fiber over
(f,Csxy,29,23) is Ty C.

Note that each map f in (5.1) is a 2-fold branched covering of the fixed section
Sp = P! containing the point p. Let py,ps, and p3 be distinct points of P! and
P = {p3}. Then the space (5.1) can be identified with

Mg (B1,2) (p1,p2) C Mos(P',2) (5.2)

the space of degree 2 stable maps f: (Pl,xl,mg,xg) — (IP’l,P) satisfying (i)
the contact order of f with ps at x3 is 2, and (ii) f(x;) = p; for i = 1,2.
Under this identification, the relative cotangent bundle £; over the space (5.1)
becomes the relative cotangent bundle, still denoted by L1, over the space (5.2);
this bundle £; has a fiber T} P! at f.

For each map f in the space (5.2), choose local holomorphic coordinates z
centered at x1 and w centered at p;. Then, there is a local expansion f(z) =
Y op>1 Ok 2%, The leading coefficient a; is the 1-jet of f at z; modulo higher
order terms. Thus, we have a global section

a] € El (53)

over the space (5.2). The zero set of this section consists of degree two branched
coverings (]P’l,xl,mg,xg,) — (Pl,pl,pg,pg) with the ramification indexes (2,1,2)
at marked points (z1,z9,x3). Since there is only one such map, the (homology)
Euler class of the bundle £1 over the space (5.2) is one. Consequently, we have

2(1);/5,07(2) (T(F);Cpt) = (I);/S,o,@) (T(F)uF; Cpt) =1

By the same arguments as above, the invariant @;/SO @) (pt,T(F);C’F) is the

number of degree two branched coverings (Pl, 1, T, 333) — (]P’l,pl,pg,pg) with
the ramification indexes (1,2,2). Since the number of such maps is 1, we have

Bl (o) (1, T(F); Cr) = 1.

(b) Similarly, as above, one can show that the invariant ®Y ) (T(F),F;CF)
is the Euler class of the relative cotangent bundle

Ly — (Moffz(l)(plg)(pl,m)) Vv
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with a section defined similarly as in (5.3). The zero set of this section is empty
since there is no degree 1 map P! — P! with ramification indexes (2,1,1).
Thus, we have

(I)L‘?/,O,(l)(T(F)SCF) = ‘I’g,o,u)(T(F),F; Cr) = 0.
Repeating the same argument, we also have

Dg0(7(F)) = ®g0(7(F),F?) = 0.
Similarly, the invariant ®J @) (T(F)?;CF) is the Euler class of the bundle

Ly &Ly — <M52’(2)(P172)(p17p2)) xV

with a section defined similarly as in (5.3). The zero set of this section is empty
since there is no degree 2 map P! — P! with ramification indexes (2,2,2).
Thus, the invariant ®} @) (T(F)? Cp) is trivial. O

6 GW invariants of F(0) with 7(F) constraints

The aim of this section is to prove:

Lemma 6.1 Let ® denote the GW invariants of E(0). Then,

(a) Pago(T(F)% pt) = 1,

(b) ®aso(T(F)%,71,72) = 2,

(¢) Pogtar(T(F)* pt) = 240(d),
(d) Posyar1(T(F)% pt?) = 16do(d).

One can prove Lemma 6.1 applying the genus 0 and 1 TRR formulas for the
descendent constraint 7(F'). In fact, these TRR formulas consist of:

(1) the relation between the tautological class ¥ (see below) and some bound-

ary strata of the Deliegn-Mumford space Mgy,

(2) the relation between 7(F) constraint and ¢ (F') constraint.

The relation (1) is also called TRR formula and the relation (2) follows from
relations between generalized correlators (Theorem 1.2 of [11]). In our case,
the computation using TRR formulas for 7(F') is quite complicated, so we will
separate the computation into two steps: we first use (1) to compute relevant
GW invariants of E(0) with ¢ (F') constraints and then apply (2) to those
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invariants with ¢ (F') constraints to compute invariants with 7(F') constraints
shown in Lemma 6.1.

In the next section, we apply the Symplectic sum formula of [8] to the invari-
ants in Lemma 6.1 to compute the (partial) Gromov-Taubes invariants that
appeared in the proof of Proposition 4.4. After various preliminary lemmas, we
give the proof of Lemma 6.1 at the end of this section.

Let 1; be the first Chern class of the relative line bundle L; over ﬂg,k whose
geometric fiber at the point (C;w1,---,2;) is T;,. When g = 0,1, there are
relations between the class 1) and some boundary strata of ﬂg,k (cf section 4 of
[6]). Combining with the composition law of GW invariants [22], those relations
give the TRR formulas for GW invariants of E(0) with ¢ (F') constraint: Let
{H,} and {H“} be bases of F(0) dual by the intersection form. For [ =
B1® - ® B, in [H(FE(0);Z)]*" and an unordered partition of 7 = (m1,m2) of
{1,--- ,n} with m # 0, we set By, = f, ® --- ® f, where m; = {l1,--- , 1}
and [; < --- <. We then have
Pao(V(F), B, Brg2)

=1 ZZ @Al,O(F7 ﬂﬂ'luHa) @AQ,O(HQ7/87T27/871+17/871+2) (61)

¢A,1(¢(F)7ﬂ17'” 7/811)
= Zi@A,O(Faﬁlv“' ’ﬁanaaHa)

+ ZZ (I)Al,O(Fa ﬁwl)Ha) @Ag,l(Haaﬁﬂ'Q) (62)

where the sum is over A = A; + A, and partitions 7 as above, and the sign
depends on the permutation (71,72) and the degree of ;. In particular, if
deg(;) are all even for 1 < i < n the sign is positive.

From now on, we always denote the fundamental class of E(0) by 1.

Lemma 6.2 Let ® denote the GW invariants of E(0). Then,
(a) Psiar1(V(F),pt) = 20(d),

) Pso(0(F), S F?) =1,

) Pso(v(F),pt, F1) =1,

d) Pgiar1(V(F)%,S) = 40(d),

) ®aso(Y(F)?,pt, F?) = 2,

) Pari(V(F),S,1) = 0.
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Proof (a) It follows from the genus 1 TRR formula (6.1) and Remark 5.3
that

Cgiar1 (V(F),pt) = Y 57640 Pso(F,pt, Ho, H*) + 50(F,pt) Papa (1, pt)
[e%

+ ®s0(F?, pt) Pap(S). (6.3)

The first term in the right hand side vanishes by Remark 5.3. The second
term also vanishes since @dF’l(pt,-) = 0. The last term equals 20(d) by
Lemma 5.2 a,f. Thus, (a) follows from (6.3).

(b) We have
Dgo(Y(F), S, F?) = 0o(F,S,1) @go(pt, F?) = 1

where the first equality follows from the genus ¢ = 0 TRR formula (6.1) and
the second equality follows from Lemma 5.1 and Lemma 5.2 a.

(¢) We have
(I)S,O(d)(F)vpt’Fv 1) = @S,O(F27pt) (I)O,O(Sv Fa 1) =1

where the first equality follows from the genus g = 0 TRR formula (6.1) and
the second equality follows from Lemma 5.1 and Lemma 5.2 a.

(d) It follows from the genus g =1 TRR formula (6.2) that

Csrara (V(F)*,S) = Y o5 svaro(F,O(F), S, Ha, H)
+ EalZ ®a,0(F, S, Ha) @y 1 (H*, O (F))
+ iz D,,0(F (F), Ho) @ap1 (H, S)
T f:z D 4,0(F,¢(F), S, Ho) ®ay 1 (HY)

where the sum is over all decompositions Ay + Ay = S+ dF'. The first term in
the right hand side vanishes by Remark 5.3. The second term becomes

Do (F, S, 1) Psrara (pt, ¥(F)).

This equals 20 (d) by Lemma 5.1 and (a). The third term vanishes since Mg 3 =
{pt} and the last term becomes

s0(F?0(F), S) Dara (S).
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This equals 20(d) by (b) and Lemma 5.2f. Thus, we have (d).

(e) The genus 0 TRR formula (6.1) and Lemma 5.1 give

Dos.0(U(F)?,pt, F?) = Y ®g0(F,¢(F),pt, Ha) Bso(H®, F?)
+ > @g0(F,pt, Ha) Bso(H®, ¢(F), F?)
+ Y Os0(F¢(F), Ha) ®s0(H, pt, F?).

The first term in the right hand side becomes
Dgo(F,Y(F),pt,1) @sp(pt, F?).
This equals 1 by (c¢) and Lemma 5.2 a. The second term becomes
Do (F2,pt) @go(S,v(F), F?).
This equals 1 by Lemma 5.2a and (b). Since Moz = {pt}, the last term

vanishes. Thus, we have (e).

(f) The genus g =1 TRR formula (6.2) and Remark 5.3 give

Cap1 (V(F),8,1) = Y 31620 Poo(F, S, 1, Hy, H)

67

+ > @00(F, S, Ha) ®ara (H 1)
«

+ > @0o(F, 1, Hy) ®apa (H®, S)
«

+ > @00(F, 1,8, Ha) @ap1 (H).
«

The first term in the right hand side vanishes by Lemma 5.1. The second term
becomes

(PO,O (Su F7 ]-) @dF,l (pt7 ]-) .
This vanishes by the fact ®gx (pt, ) = 0. The third term becomes
Do (F,1,5) Par1(F,S).

This also vanishes by the fact <I>dp71(pt, ) = (0. The last term vanishes as well
by Lemma 5.1. Thus, we have (f). O
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Observe that by Lemma 5.1, Remark 5.3 and the dimension count the invariant
® 4.0(F, B) vanishes unless A = S and B = pt and that by Lemma 5.2 a and
the Divisor Axiom we have ®go(F,pt) = 1. This observation together with
Theorem 1.2 of [11] gives

Dpg(T(F), ) = Pag(¥(F), ) + Pa_gq(1,-). (6.4)

Lemma 6.3 Let ® denote the GW invariants of E(0). Then,
(a) Pgo(r(F),F,S) =1,
(b) ®so((F),pt, F,1) =1.

Proof (a) It follows from (6.4), the fact Mo s = {pt} and Lemma 5.1 that
Pgo(T(F),F,S) = @g0(¢(F),F,S) + ®o0(L,F,S) = 1.

(b) We have
(PS,O(T(F)7pt7F7 ]-) = @S,O(w(F)vquu 1) + @0,0(17pt7F7 ]-) =1L

where the first equality follows from (6.4) and the second equality follows from
Lemma 6.2 ¢ and Lemma 5.1. D

Note that for B € Hy(FE(0); Z) the dot product B-F € Hy(E(0);Z) corresponds
under Poincaré duality to the cup product in cohomology. The generalized
Divisor Axiom (Lemma 1.4 of [11]) thus yields

Pag(T(F),B,") = (B-A)Pay(r(F),-) + (B-F)®a4(pt,-). (6.5)
Combining this relation with (6.4) then gives

(I)A,g(w(F)>B>')
= (B-A)Paqy((F), ) + (B-F)®a,4(pt,-) + (B-S)Pa_g4(1,-). (6.6)

Lemma 6.4 Let ® denote the GW invariants of E(0). Then,

(a) ®so(¥(F),1,7,7%) =1,

(b) Pogiar1 (V(F)?, pt) = 120(d),

(c) Pgiar1(V(F)?,1,pt) = 4o(d),

(d) Pogiar1(V(F), 7(F),pt?) = 14do(d),
(e) Psiara(V(F),1,pt?) = 2do(d).
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Proof (a) It follows from the genus 0 TRR formula (6.1), Lemma 5.1 and
Lemma 5.2 b that

2@5,0(1/)(1:‘)71’71772) = Q(I)O,O(Falvs) (DS,O(F>71772) =2

(b) The genus g =1 TRR formula (6.2) and Remark 5.3 give

Dosar (Y(F)*, pt)
= 3" L Ga0 ®aso (P (F)?, pt, Hy, HY)

07

+ ZZ @Al,O(vat7 HO!) (I)AQvl (Ha’d}(F)?)

(%

+ 3% 204, 0(F(F), Ha) ® a1 (H%(F), pt)

(%

+ ) 2@, 0(FY(F),pt, Ho) ®a, 1 (H 4(F))

(%

+ ZZ D, 0(F,p(F)? Hy) ®ay1 (H®, pt)

«

+ ZZ (I)Al,O(Fvw(F)Qaptha) (I)A%l (Ha)

where the sum is over all decompositions Ay + As = 25 + dF'. The first term
in the right hand side vanishes by Remark 5.3. The second term becomes

D50 (F?, pt) Psyara (S, Y(F)?).

This equals 40(d) by Lemma 5.2a and Lemma 6.2d. The third term vanishes
since Mo 3 = {pt}. The fourth term becomes

2 (DS,O (Fv w(F)?ptv 1) (I)SerF,l(ptv w(F)) .

This equals 40(d) by Lemma 6.2c,a. Since dimg WOA = 1, the fifth term
vanishes. The last term becomes

Bos0(F?, ¢ (F)?, pt) Papa(S).

by dimension count and Remark 5.3. This equals 40(d) by Lemma 6.2e and
Lemma 5.2f. Thus, we have (b).

(¢) The genus g =1 TRR formula (6.2) gives

O rar1(V(F)?1,pt)
= > o1 Pswaro(FU(F), Lpt, Ho, HY)
e
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4 ZZ Pa,0(F, 1, Hy) aya (H, ¥(F), pt)

«

+ Z Z ‘I)A1,0(Fapt7 Hoz) (I)A271(Ha’¢(F)’ 1’)

[e%

+ 30N @, o(F, (), Hy) By (HY, 1, pt)

[e%

+ 30" @, 0(F 1, pt, Ha) @ay0 (HO, 9(F))
T iZ D, 0(FY(F),1,Hy) ®ay 1 (H®, pt)
+ iZ D, 0(F,(F),pt, Ha) Pa, 1 (H, 1)
* iZ ©,.0(F¢(F), 1,pt, Ho) ® 4,1 (H) (6.7)

where the sum is over all decompositions Ay + As = 25+ dF'. The first term in
the right hand side of (6.7) vanishes by Remark 5.3. The second term becomes

(I)O,O (Fa 17 S) ‘I)S+dF,1(F7¢(F),pt) (68>

since ®gp1(pt,-) = 0. The first factor of (6.8) is 1 by Lemma 5.1 and the
second factor is 20(d) by the Divisor Axiom (6.6) and Lemma 6.2 a. Thus the
second term in the right hand side of (6.7) is 20(d). The third term vanishes
by Lemma 5.1 and Lemma 6.2 f;

DN a0(Fpt, Ha) ®ay 1 (H (F), 1)

= P50 (F?pt) Para (S, 9(F),1) = 0.

The fourth term vanishes since Mg 3 = {pt}. The fifth term vanishes by routine
dimension count and Remark 5.3. The sixth term and the seventh term vanish
by routine dimension count and the fact ®4r 1 (pt, ) = 0. The last term in the
right hand side of (6.7) becomes

@S,O(F27¢(F)7lvpt) (I)dF,l(S)'

This equals 20(d) by Lemma 6.2 ¢, the Divisor Axiom (6.6) and Lemma 5.2 f.
Therefore, we have (c).

(d) The genus g =1 TRR formula (6.2) gives

Oosar (Y(F),7(F), pt?)
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= Y 3 Posraro(F,7(F),pt*, Ho, H*)
«

= > > 20u,0(Fpt, Ho) ®ag1 (H, 7(F), pt)

[e%

= 35 @4, 0(Fr(F), Ha) @y (H pt?)

[e%

= > 204, 0(F, 7(F),pt, Hy) @, (H®, pt)
e
= > ®a,0(F.pt* Ho) D a1 (HY, 7(F))
e
= Z Z (I)Al,O (F27 T(F),th, Ha) @AQ,l (Ha)
(0%
where the sum is over all decompositions A7 + Ay = 25 + dF'. The first term
of the right hand side vanishes by Remark 5.3. The second term becomes
2 (DS,O (F27 pt) (DSerF,l (Sv T(F)>pt) .
This equals 8d o(d) by Lemma 5.2 a, the Divisor Axiom (6.5) and Lemma 5.2 ¢,d;
Dgyap (S, 7(F),pt) = d@siap (7(F),pt) + Csiari(pt®) = 4do(d).
The third term becomes
(DS,O (Fa T(F)v S) (I)SerF,l(Fath) = 2d0(d)

This equals 2do(d) by Lemma 6.3a and Lemma 5.2d. The fourth term be-
comes

2050(F,7(F),pt,1) Psar (pt?).
This equals 4do(d) by Lemma 6.3b and Lemma 5.2d. The last two terms
vanish by Remark 5.3. Thus, we have (d).

(e) It follows from (6.4) and ®qp1(pt,-) =0 that
P rap1 (T(F),1,pt?) = Pgyari(Y(F),1,pt?).
By the genus ¢ = 1 TRR formula (6.2) and Remark 5.3, this becomes

> 31 Psrara (F1,pt% Ho, HY) + Y ®00(F, 1, Ha) P pari (H, pt?)
« (0%

+ ZQ(PS,O(Fupt7 HO!) (I)dF,l(Ha7 ]-7pt) + ZQ(I)S,O(Fu 17pt7HOz) (I)dF,l(Ha7pt)
e

[e%

+ Y Bso(F,pt?, Ha) ®apa (H*, 1) + > @50(F,1,pt%, Ha) Papa (H®).
e

[e%
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The first term vanishes by Remark 5.3. The second term becomes 2do(d) by
Lemma 5.1 and Lemma 5.2d. The third term and the fourth term vanishes
since Pyp 1 (pt,-) = 0. The last two terms vanish by Remark 5.3. Thus, we
have (e). O

Now, we are ready to prove Lemma 6.1.

Proof of Lemma 6.1 (a) The relation (6.4) gives
@2S,O(T(F)Q7Pt) = Oo50(¢V(F), 7(F),pt) + ®s0(1,0(F),pt) + ‘130,0(12,1715)-
This equals 1 by the fact My 3 = {pt} and Lemma 5.1.

(b) By (6.4) we have

D250 (T(F)* 71,72)

= Dog0(V(F)*,7.72) + 2Ps0(1L,0(F),71,72) + Poo(1%71,72)-
Then, (b) follows from the fact dimc M4 = 1, Lemma 6.4 a and Lemma 5.1.

(c) It follows from (6.4) that

Dogar,1 (T(F)%, pt)

= Pogiar1 (V(F)?,pt) + 3®giap1 (1, 0(F)?,pt) + 3®4p1 (1%, ¢(F),pt).
Now, Lemma 6.4b,c and the fact ®g4p;1(pt, ) = 0 show (c).

(d) Using (6.4) yields

Pograr (T(F)?, pt?)

= ®ogyar1 (V(F),7(F),pt?) + ®siar (L 0(F),pt?) + ®apq(12,pt?).
This equals 16do(d) by Lemma 6.4d,e and the fact ®qp;(pt,-) = 0. O

7 Relative Gromov—Taubes invariants of F(0)

The aim of this section is to compute the (partial) relative Gromov—-Taubes
invariants G®Y of (E(0),V) that appeared in Section 4, thereby completing
the proof of the sum formulas (3.5), (3.6), (3.10), and (3.11). Applying the
Symplectic Sum Formula of [8], we will compute those invariants.

The (partial) Gromov-Taubes invariants G®Y of (£(0),V) defined in (4.1)
can be expressed in terms of the relative invariants ®" of (E(0),V). When the
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multiplicity vector s = (2), the invariants G®Y for the classes 25 +dF, d € Z,
count V-regular maps from a connected domain and hence

14
G‘I’25+dFX @ = Pasiarg 2 where g=1-— 3X- (7.1)

When s = (1,1), the invariants G®! for the classes 25 + dF decompose as a
sum of two invariants; one is the invariant that counts V-regular maps from a
connected domain, and the other is the invariant that counts pairs of V -regular
maps (f1, f2), each from a connected domain and having contact order 1 with
V. Denote the latter invariants by 7®". Then, we have

v v v
GPogiary,1,1) = T®osrary,11) T Postarg, 1) Where g=1-— sx- (7.2)

For =05®---®8, € [H* (E(O))]®n and an ordered partition © = (my,m2) of
{1,---,n}, weset B, =, ®---® [, where m; = {l,---,l;}. It then follows
that

T‘I)gsmp,x,u 1) (Crings B)
v
==+ Z ®S+d1Fgl,(l C’Yﬂﬁwl) ®S+d2ng,(l ( ’7376772) (73)

where the sum is over all x = (2—2¢1) + (2 —2g2), d = dy + d2, and partitions
m = (m,m2) as above, and the sign depends on the permutation (71, 72) and
the degrees of ;. In particular, if deg((;) are all even the sign is positive.

The following lemma computes the invariants G®" appeared in the proof of
Lemma 4.2. The proof of this lemma easily follows from (7.2), (7.3), Remark 5.3,
and Lemma 5.2.

Lemma 7.1 Let GOV be the invariants of (E(0),V) defined in (4.1). Then,

(a) G‘I’¥5+dF,4,(1,1) (Cth) = ddo

(b) G@¥S+dﬂ4,(1,1) (Cpr.rim2) = bdo,

(c) Gq’¥s+dﬂ4,(1,1) (Clr1)22i7:72) = ~0ao,
(d) G‘I’XSMFQ( )(Cpt;’h,’m) = 0,

(¢) G‘I)2S+dF,2,(1,1) (Cprei1,72) = 0,

(f) G‘I)XSersz( 1 )(CptF?pt) = ddo;

(8) G®¥S+dF2( )(Cpt?pt) =0,

(h) G@¥S+dF,2,(1,1) (Cpt23pt) = 2do(d).

Geometry € Topology, Volume 9 (2005)



Yau—Zaslow formula on K3 surfaces for non-primitive classes 2005

The following lemma lists the invariants G®" that entered in the proof of
Proposition 4.4a and is an immediate consequence of (7.2), (7.3), Remark 5.3,
Lemma 5.2, and Lemma 5.4.

Lemma 7.2 Let G®V be the invariants of (E(0),V) defined in (4.1). Then,
(a) G@¥S+dF,4,(1,1) (Cprr;T(F)) = 0,
(b) G‘I’¥S+dm( )(Cpt?T(F)) = 5 0d0;

(c) G<I>25+dF2( )(Cth;T(F)) = 4do(d).

Lastly, Lemma 7.3 below computes the invariants G®" that appeared in the
proof of Proposition 4.4 b. In order to prove this lemma, we will apply the Sym-
plectic Sum Formula of [8] to the GW invariants of E(0) in shown Lemma 6.1
by writing F(0) as a symplectic sum

E(0) = E(0) #y E(0) (7.4)

and by splitting constraints in various ways. In this case, there is also no
contribution from the neck (cf Lemma 16.1 of [8]) and hence we have the
following sum formulas: Let {v;} be a basis of H.(V;Z) and {7’} be its dual
basis with respect to the intersection form of V. For 0 = 61 ® --- ® 8, in
[H.(E(0);Z)]®" and n = nj + na, we set

ﬂ/zﬂl®"'®ﬁn1 and ﬂ//:ﬂn1+l®"'®ﬂn~
For 7(F)™ and m = my + ma, we set
7 = 7)™ and 71" = 7(F)™.

Then, for such splitting of constraints 8 = 8’ ® 3" and 7(F)™ = 7’ -7" the sum
formula of the symplectic sum (7.4) for the class S 4+ dF becomes

P targ (B, T(F)™)
Z Z(I)Serngl ﬁ 7. C 1) <I>S+d2F92( )(C,Yi; ",T") (7.5)
where the sum is over all d = d; +ds and g = g1 + g2. Similarly, the sum

formula of the sum (7.4) applied to the class 25 + dF with the splitting of
constraints =3 ® 3" and 7(F)™ =7 7" gives

Postarg (8, T(F)™)
= Z Z % ‘I’gs+d1F,gl,(1,1)(5lvT/? C m]') T‘I’;/SMQF,XQ,(LM (Cw'-wi?ﬁ”ﬁ”)

1,J
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* Z Z 2 25+d1F917(1 1) (8.7 C, %) 25+daF,ga,(1,1) (Chiqis B, 7")

7.7

+ Z ZQ(I)ZSerngl,(Z (ﬁ ™ C ) 25+ds F,g2,(2) (Cwiiﬁ/””)

+ Z 3 T35y iy (11) (8575 Criony) @351 aygo, (1,1) (Coiis 875 7)

(7.6)

where the sum is over all d = d; + ds, and g = g1 + 2 — %XQ for the first
term, g = g1 + go + 1 for the second term, g = g1 + go for the third term and
g=2-— %Xl + g9 for the last term.

Lemma 7.3 Let GOV be the invariants of (E(0),V) defined in (4.1). Then
(a) G‘I’¥S+dF4( 1 )(CF25T(F)2) =0,
(b) Gq’¥s+dF,2,(2) (CF?T(F)Q) =0,

(c) G(I);/S+dF,2,(1,1) (Cpt-F?T(F)Q) = ddo

(d) G@V25+dF,2,(1,1)(C( ~1)y29 ;T(F ?) = ddo
) 2
)

(e G(I)XSerFO( )(Cpt?T(F)

(f G@;fswm( ) (Cpzs T(F)?) = ) % d160(d1)a(d2) + 12do(d).
1+d2=

Proof (a) Using (7.2), (7.3), Remark 5.3, and Lemma 5.4 b gives
GOy apa 1) (CrosT(F)?) = 2640 ®50(Cr; 7(F)) ®5,0(Cr; 7(F)) = 0.
(b) By (7.1), Remark 5.3 and Lemma 5.4b we have
G(I);/S+dF,2,(2)(CF;T(F)2) = 0o ¢¥S,o,(2)(CF§T(F)2) = 0.
(c) Tt follows from the sum formula Remark 4.1 that

\% \%
Psiarn (T(F)’) = D, ®iamom(Cot) P5apm ) (Crim(F)?).
di+do=d
By Remark 5.3 and Lemma 5.2 a, the right hand side of this becomes
1% 2
O\ ar 1) (CrsT(F)?).
Similarly, the sum formula (7.5), Remark 5.3 and Lemma 5.4 b yields

‘I’S+dF1 Z ‘I’s+d1F1(1 ( (F); Cpt) ‘I’¥+d2F,o,(1) (CF;T(F))
di+d2=
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+ Z (I)ngle,O,(l)(T(F)?CF) (I)ngsz,l,(l)(Cpt;T(F))
di+do=d

= 0.
Thus, we have
(I)g-i-dF,l,(l)(CF;T(F)Q) = (I)S+dF,1(T(F)2) = 0. (7.7)
This together with (7.3) and Lemma 5.4 b then implies that
T(I)XSerF,Z,(l,l)(CF'Pt;T(F)Q) = (I)g+dF,1,(1)(CF;T(F)2) ‘I’g,o,(l)(cpt)
+ 2@L‘€/,0,(1)(CF?T(F)) (I)g+dF,1,(1)(CPt;T(F))
= 0. (7.8)
On the other hand, applying the sum formula (7.6) we obtain
‘1)2570(1”577(}7)2) = %@XS,O,(Ll)(Pt;Cpt?) T¢¥S,4,(1,1)(CF2§T(F)2)
+ 2 (I);/S,O,(Q) (pt; Cpt) (I)XS,O,(Q) (CF? T(F)Q)
+ Ty, 1.1y (Pt Corr) ®hg 0 1.1y (Croprs T(F)?).
By Remark 5.3, (7.2) and Lemma 7.1f, the right hand side of this can be
simplified as
(I);/S,O,(l,l) (CF-pt§ T(F)Z)'
Consequently, we have

(I);/S,O,(l,l) (Crope; T(F)?) = ®as0(pt, 7(F)?) = 1 (7.9)

where the second equality follows from Lemma 6.1a. Now, (c) follows from
(7.2), Remark 5.3, (7.8) and (7.9):

G@¥S+dF,2,(1,1) (Cpt-F§ T(F)Q)
= T(I);/SerF,Q,(l,l)(Cpt'F?T(F)Z) + 0do q’gs,o,(l,l)(cpt-FST(F)Q)

== 5d0.

(d) We have
Dos 0 (71,72, T(F)?)
=3 (I)XS,O,(l,l) (71,725 Cpe2) T@XSA,(LD (Cpa; 7(F)?)
+ 2 q’gs,o,(z) (71,72; Cpt) @5/5707(2) (Cp;T(F)?)
+ T(I)g&‘l,(l,l) (71’72? CNF) (I);/S,O,(Ll) (CF~pt§ T(F)2)
+ T0554.0,1) (1723 Crinz) ®35.0,1,1) (Clmn) e 7(F)?)
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= q)gS,O,(l,l)(CF'pt;T(F)Z) + @XS,O,(l,l)(C(*'Yl)"YQ;T(F)Q)'

where the first equality follows from the sum formula (7.6) and the second fol-
lows from Remark 5.3, (7.2) and Lemma 7.1 b,c. This together with Lemma 6.1 b
and (7.9) shows

\%4
@25,0,(1,1)(0(—%)725T(F)Q) = L
On the other hand, (7.3) and dimension count give
\%4
T(I)QSerF,Z,(l,l)(C(_’Yl)"72;T(F)2) = 0.
Consequently, we have
G‘P¥S+dF,2,(1,1) (C(*'Yl)"YQ ) T(F)Q)

= T@¥S+dF,2,(1,1)(C(—v1)-v2?T(F)2) + ddo (I);/S,O,(l,l)(o(—"ﬂ)"m;T(F)2)
= d40-

(e) Using the sum formula (7.6), we have
Posar1 (pt, T(F)?)
= ) 3 P51 (P T(F); Cp2) T®Ys g b4 1.1 (Cros 7(F)?)

di+do=d
v . 1% .
+ ) 20564 2y (06 T(F); Cpt) Yy aymro. 2y (Crs 7(F)?)
di+do=d
v . 1% .
+ Z Bys. g r0.11) (P T(F); Cprr) T(I)25'+d2F,2,(1,1)(Cpt'F’T(F)2)
di+do=d
Vv . 1% . 2
+ Z (I)QSerlF,O,(l,l) (ptv T(F), Cpt-F) (I)ZSergF,O,(l,l) (Cpt-F, T(F) )
di+do=d
Vv . 1% . 2
Y 2Phs,a,m0) (PLT(F) COF) @y gyp o) (Cot T(F)?)
di+do=d
Vv . 1% )
+ > T g (P T(F); Corr) sy 4,001 (Corrs T(F)?)
di+do=d
Vv . 1% .
T Z %T®2S+d1F,4,(1,1) (pt’T(F)’CW) (I)ZSerQF,l,(l,l)(Cpt277_(F)2)-
di+do=d

(7.10)

The first term in the right hand side vanishes by (7.3) and Lemma 5.4b. The
second term vanishes by Lemma 5.4 b. The third and the fourth terms vanish
by Remark 5.3. The fifth term becomes

2 @¥S+dF,1,(2) (Cpt§ T(F)2)
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by Remark 5.3 and Lemma 5.4 a. The sixth term becomes

1% )
T®5514r2,1,1) (pt, 7(F); Cpt.r)
by Remark 5.3 and (7.9). The last term vanishes by (7.3) and Lemma 5.4b.
Thus, together with Lemma 6.1 ¢, we have

240(d) = 2Pyg, gpy (2)(Cots T(F)?) + T3, gpa 1.1y (Pt 7(F); Cpror) . (7.11)

On the other hand, it follows from (7.3), Remark 5.3, Lemma 5.2a,c and
Lemma 5.4 b that

T(I)XSerF,Q,(l,l)(pt’T(F)?Cpt~F) = (I)L‘G/,o,u)(cpt) (I)g+dp71,(1)(pt77(F); CF)
+ (I)g+dF,1,(1) (T(F)§ Cpt)q)g,o,u) (pt; CF)
+ DY ar (1) (P Cot) ©5 0 (1) (T(F); Cr)
= 40(d). (7.12)
Then, (e) follows from (7.1), (7.11) and (7.12);
Gy aro,2) (Cot T(F)?) = @hgyap ) (Cors T(F)?) = 100(d).
(f) The sum formula (7.6) gives
Dosrar (pt?, 7(F)?)
= Z %(I);/SerlF,l,(l,l)(th;CPtQ) T@¥S+d2,4,(1,1)(CF2§T(F)Z)

di+do=d
Vv 1%
+ Y 2856 g o) (P17 Cpt) Pl a0, 2 (Crs T(F)?)
di+do=d
\%4 . \% .
+ ) om0 P Corr) T®Ys g0 1.1y (Cotri T(F)?)
di+do=d
\%4 . \% .
+ Z @2S+d1F,O,(1,1)(pt2’CptF) ‘I)2S+d2F,o,(1,1)(Cpt-FvT(F)Q)
di+do=d
1% 1%
+ Y 2®5g gm0, (P17 OF) Phs gy (o) (Cots T(F)?)
di+do=d
1% 2, 1% . 2
+ Z T‘I’25+d1F,2,(1,1) (pt ant'F) (1)2S+d2F,0,(1,1)(Cpt~FvT(F) )
di+do=d
1% . 1% .
+ Z %T(I)25+d1F,4,(1,1)(pt27CF?)(1)25+d2F,1,(1,1)(CPt2’T(F)Z)' (7.13)
di+do=d

The first two terms in the right hand side vanish by Lemma 5.4 b, while the
next three terms vanish by Remark 5.3. Thus, by Lemma 6.1 d and Remark 5.3,
the equation (7.13) becomes

16do(d) = T@¥S+dF,2,(1,1)(pt23Cpt-F) ¢¥5,o,(1,1)(0pt-F§T(F)2)
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+ %T‘I);/SA,(LU (th; CF?) (I);/SerF,l,(l,l) (Cpt?; T(F)Z)' (7.14)

By (7.3) and Lemma 5.2a,d, the first 7®" invariant in the right hand side
becomes

T(I);/SerF,Z,(l,l) (pt*; Cpr.r)
= @go,(l)(cpt) (I)g+dF,1,(1)(pt25 Cr) + 2 (I)g-l—dF,l,(l) (pt; Cpt) (I)g,o,(l)(pt? Cr)
= 4do(d). (7.15)
By (7.3) and Lemma 5.2 a, the second T®" invariant becomes
Ty 4 11y (Pt Cr2) = 2984 ) (0t Cr) @5 1) (Pt CF) = 2. (7.16)
Then, by (7.14), (7.15), (7.9) and (7.16) we have
Oy ap 11y (Cp2i T(F)?) = 12da(d). (7.17)

On the other hand, the sum formula (7.5) and Remark 5.3 give
Dsyara(T(F)?)

v v
= Z (I)S—l—le,l,(l)(pt; Cpt) (I)S+d2F,1,(1)(CF§T(F)2)
di+do=d

+ ‘I)L‘g/,o,(n(pt? CF) ‘I’g+F,2,(1)(Cpt?T(F)2)' (7.18)
The first term of the right hand side vanishes by (7.7) and hence by Lemma 5.2 a,
the equation (7.18) becomes

Pstdr2 (T(F)Q) = (I)g+F,2,(1) (Cpt§ T(F)2)~ (7.19)

Splitting constraints in a different way, the sum formula (7.5) and Remark 5.3
give

Dgyar2(1(F)?)

= (I)g+dF,2,(1) (pt, T(F); Cpt) ‘I’g,o,a) (CF; T(F))

+ Y P e L T(F); Cr) @Y, gm0y (Cos 7(F)). (7.20)
di+do=d

The first term of the right hand side vanishes by Lemma 5.4b. Thus, by
Lemma 5.2 ¢ the equation (7.20) becomes

Cgiara(T(F)?) = > 4o(di)o(dy). (7.21)
di+do=d
Relating (7.19) and (7.21), we have

@¥+F,2,(1)(Cpt;T(F)2) = Z do(di)o(ds). (7.22)
di+do=d
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Consequently, (7.3), Remark 5.3, (7.22) and Lemma 5.2 a,c show that

T(I);/SerF,O,(l,l) (Cpt?S T(F)Z)
=2 (I)ngdF,Z,(l) (Cpt5 T(F)Q) ‘I’g,o,(l)(cpt)

+ Y 20,01 1) (Coti T(F)) Dy gy 1,1y (Coti T(F))
di+do=d

= Y 160(dr)o(dy). (7.23)

di+do=d

Thus, we have

G‘I)gsmF,o,(Ll) (Cpt2; T(F)Q)
- T(I);/SerF,O,(Ll)(Cth;T(F)Q) + (I);/S-i-dF,l,(l,l)(Cth;T(F)Q)
= > 160(d)o(dy) + 12do(d)

di+do=d

where the first equality follows from (7.2) and the second follows from (7.17)
and (7.23). O
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