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572 Aleksey Zinger

1 Introduction

1.1 Background

Enumerative geometry of algebraic varieties is a field of mathematics that has
been a subject of ongoing research since at least the nineteenth century. Prob-
lems in this field are geometric in nature. It has connections to other fields of
mathematics as well as to theoretical physics. The general goal of enumerative
algebraic geometry is to determine the number of geometric objects that sat-
isfy pre-specified geometric conditions. The objects are often, but not always,
complex curves in a smooth algebraic manifold. Such curves would be required
to represent a given homology class, to have certain singularities, and to satisfy
various contact conditions with respect to a collection of subvarieties. One of
the most well-known examples of an enumerative problem is:

Question A If d is a positive integer, what is the number nd of degree–
d rational curves that pass through 3d−1 points in general position in the
complex projective plane P2?

Since the number of lines through any two distinct points is one, n1=1. A
little bit of algebraic geometry and topology gives n2=1 and n3=12. It is
far harder to find that n4 = 620, but this number was computed as early as
the middle of the nineteenth century; see [16, page 378]. The higher-degree
numbers remained unknown until the early 1990s, when a recursive formula for
the numbers nd was announced; see [7] and [14].

For more than a hundred years, tools of algebraic geometry had been the dom-
inant force behind progress in enumerative algebraic geometry. However, in [5],
Gromov initiated the study of pseudoholomorphic curves in symplectic mani-
folds and demonstrated their usefulness by obtaining a number of important
results in symplectic topology. Since then moduli spaces of stable maps, ie of
the parameterizations of pseudoholomorphic curves, have evolved into a power-
ful tool in enumerative geometry and have become a central object in algebraic
geometry. In particular, these moduli spaces lie behind the derivation of the
recursive formula for the numbers nd in [7] and [14]. The latter work, in fact,
gives a recursive-formula solution to the natural generalization of Question A
to projective spaces of arbitrary dimension:

Question B Suppose n ≥ 2, d, and N are positive integers, and

µ ≡ (µ1, . . . , µN )
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Counting rational curves of arbitrary shape 573

is an N –tuple of proper subvarieties of Pn in general position such that

N∑

l=1

codimC µl = d(n+ 1) + n− 3 +N. (1.1)

What is the number nd(µ) of degree–d rational curves that pass through the
subvarieties µ1, . . . , µN ?

Condition (1.1) is necessary to ensure that the expected answer is finite and
not clearly zero. For straightforward geometric reasons (the same ones as for
the linearity property and the divisor equation in [14, Section 1]), it is sufficient
to solve Question B, as well as other similar questions, for tuples µ of linear
subspaces of Pn of codimension at least two. Thus, the enumerative formulas
given below are stated and proved only for constraints µ that are points in
P2 or points and lines in P3 . However, analogous formulas hold for arbitrary
constraints µ.

Following [5] and [8], moduli spaces of stable maps into algebraic manifolds
became subjects of much research in algebraic geometry. Algebraic geometers
usually denote by M0,N (Pn, d) the stable-map compactification of the space
M0,N (Pn, d) of equivalence classes of degree–d holomorphic maps from P1 with
N marked points into Pn . These spaces are described as algebraic stacks in [3].
While their cohomology is not entirely understood, it is shown in [11] that the
intersections of tautological cohomology classes in M0,N (Pn, d) can be com-
puted via explicit recursive formulas. These cohomology classes include all
cohomology classes that arise through natural geometric constructions. As an
application to enumerative geometry, [11] expresses the number |S1(µ)| of Ques-
tion C in terms of intersections of tautological classes in M0,N (Pn, d) and then
in terms of the numbers nd .

Question C If d is a positive integer, what is the number
∣∣S1(µ)

∣∣ of degree–d
rational curves that have a cusp and pass through a tuple µ of 3d−2 points in
general position in P2?

A similar approach to enumerative geometry of plane curves is taken in [15].
Using relationships derived in [2], [15] expresses the “codimension-one” enu-
merative numbers of rational plane curves, such as those of Questions C–E, in
terms of intersection numbers of tautological classes in M0,N (Pn, d) and the
latter in terms of the numbers nd .

Question D If d is a positive integer, what is the number 1
6

∣∣V(2)
1 (µ)

∣∣ of
degree–d rational curves that have a triple point and pass through a tuple µ
of 3d−2 points in general position in P2?
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574 Aleksey Zinger

Question E If d is a positive integer, what is the number 1
2

∣∣S(1)
1 (µ)

∣∣ of degree–
d rational curves that have a tacnode and pass through a tuple µ of 3d−2 points
in general position in P2?

Questions A and C–E can actually be solved using more classical methods
of algebraic geometry, as is done in [12] and [13]. However, the derivations
in [12] and [13] involve fairly complicated algebraic geometry. In contrast, the
computations in [11] and [15] involve much less algebraic geometry and rely on
known results, obtained via fairly complicated algebraic geometry elsewhere,
including [2], [3], and [8].

The method given in this paper can be used in a straightforward, if somewhat
laborious, manner to express the number of rational curves in a complex pro-
jective space, that have a k–fold point, for example, and pass through a set of
constraints in general position, in terms of intersections of tautological classes
in the moduli spaces of stable rational maps. In Subsection 1.4, we describe in
more detail the scope of the applicability of this method. Its application makes
practically no use of algebraic geometry. The method itself relies on a number
of technical results, only some of which are contained in this paper, and the
rest elsewhere, including [9, 10, 14, 17, 18].

The author would like to thank Tomasz Mrowka and Jason Starr for helpful con-
versations during the preparation of this manuscript and Izzet Coskun, Joachim
Kock, Ravi Vakil, and the referee for comments on early versions of this paper.
The author was partially supported by the Clay Mathematics Institute and an
NSF Postdoctoral Fellowship. Most of this work was completed at MIT.

1.2 Outline of the method

The first step in our approach is to describe a subset Z of a moduli space of
stable rational maps, or of a closely related space, such that the cardinality
of Z is a known multiple of the number we are looking for. We would also
like the subset Z to be the zero set of a reasonably well-behaved section s of
a bundle V over a reasonably nice submanifold S of the ambient space M.
For example, in the case of Question C, we might take S to be the subset
of M0,1(P

2, d) consisting of the equivalence classes of maps whose images pass
through the 3d−2 points in P2 and take Z to be the subset of S consisting of
the equivalence classes of maps whose differential vanishes at the marked point.
Alternatively, we can also allow Z to be the preimage under a reasonably well-
behaved map h : S −→ X of a submanifold ∆ of X . For example, in the case
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of Question D, we might take S to be the subset of M0,3(P
2, d) consisting of

the equivalence classes of maps b whose images pass through the 3d−2 points
such that ev1(b) = ev2(b), where ev1 and ev2 are the evaluation maps at the
first and second marked points of M0,3(P

2, d). We could then take

Z = {ev1 × ev3}
−1(∆P2×P2) ∩ S,

where ∆P2×P2 denotes the diagonal in P2 × P2 . In the case of Question E, we
might take the ambient space to be the projectivization of a natural rank-two
bundle over M0,2(P

2, d). However, in practice, we will keep track of the points
on P1 that get mapped to the constraints, ie there will be marked points labeled
by the positive integers 1, . . . ,N , where N is the number of constraints. The
marked points of the domain of a stable map that describe the singularities of
the image curve will be labeled by 1̂, 2̂, etc.

If S is a smooth compact oriented manifold, V −→ S is a smooth oriented
vector bundle of the same rank as the dimension of S , and s̃ : S −→ V is a
smooth section, which is transverse to the zero set in V , then

±
∣∣s̃−1(0)

∣∣ =
〈
e(V ),S

〉
, (1.2)

where ±
∣∣s̃−1(0)

∣∣ is the signed cardinality of the set s̃−1(0). Equation (1.2)
is valid under more general circumstances. In the cases of interest to us, the
ambient M is an oriented stratified topological orbifold and S is a smooth
submanifold of the main stratum M such that S − S is contained in a finite
union of smooth manifolds of dimension less than the dimension of S . Under
these assumption, S determines a homology class in M. Furthermore, if s̃ is a
continuous section of V over S and e(V ) is the restriction of a cohomology class
on M, then equality (1.2) still holds. By (1.2), if s is any continuous section
of V over S such that s|S is transverse to the zero set and Z ≡ s−1(0) ∩ S is
a finite set, then

±
∣∣Z

∣∣ =
〈
e(V ),S

〉
− C∂S(s), (1.3)

where C∂S(s) is the s–contribution of ∂S to the euler class of V . In other
words, C∂S(s) is the signed number of zeros of a small generic perturbation s̃
of s that lie near ∂S . If the behavior of s near ∂S can be understood, it is
reasonable to hope that the number C∂S(s) can be computed, at least in terms
of evaluations of some cohomology classes. On the other hand, in the case of
Question C, S is a tautological class in the appropriate moduli space of stable
maps. Thus, if e(V ) is also a tautological class, 〈e(V ),S〉 is computable, and
we are done. Most of the time, however, we will have to describe 〈e(V ),S〉
as the signed cardinality of a subset Z ′ of a space which is a step closer to
a tautological class than S and apply equation (1.3) with Z ′ . Eventually, we
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will end up with intersections of tautological classes in moduli spaces of stable
rational maps.

The topological setup of the previous paragraph is only slightly more general
than that of [17, Section 3]. However, it is not sufficient for our purposes.
We now present two significant generalizations of this setup. The first is that
equation (1.3) makes sense even if the section s is defined only over S and does
not extend over S −S . In such a case, we can use a cutoff function to define a
new section s′ that vanishes on a neighborhood of S −S and thus extends to a
continuous section over S . The term C∂S(s) is then the signed number of zeros
of a small generic perturbation s̃ of s′ that lie near ∂S . If we can understand
the behavior of s near ∂S and choose the cutoff function carefully, it is again
reasonable to hope that we can determine the number C∂S(s).

The second generalization has a very different flavor. Suppose S and M are
as above and X is a smooth compact oriented manifold. If h : M −→ X
is continuous map such that the restriction of h to every stratum of M is
smooth, then h|S is a pseudocycle in the sense of [10] and [14], ie it determines
an element of H∗(X ; Z). In particular, if ∆ is an immersed compact oriented
submanifold of X such that dimS + dim ∆ = dimX , there is a well-defined
homology-intersection number

〈〈
{h|S}−1(∆)

〉〉
≡

〈〈
h−1(∆),S

〉〉
.

If Y is an immersed compact oriented submanifold of X such that

[Y] = [∆] ∈ H∗(X ; Z), h
(
∂S

)
∩ Y = ∅,

and h is transversal to Y on S , then
〈〈
{h|S}−1(∆)

〉〉
=

〈〈
{h|S}−1(Y)

〉〉
≡ ±

∣∣{h|S}−1(Y)
∣∣. (1.4)

Alternatively, if θ is a small perturbation of h on a neighborhood of S in M,
〈〈
{h|S}−1(∆)

〉〉
= ±

∣∣{θ|S}−1(∆)
∣∣.

Thus, if h : M −→ X is a continuous map as above such that h|S is transversal
to ∆ and Z ≡ {h|S}−1(∆) is a finite set,

±
∣∣Z

∣∣ =
〈〈
{h|S}−1(∆)

〉〉
− C∂S(h,∆), (1.5)

where C∂S(h,∆) denotes the (h,∆)–contribution to the intersection number

〈〈{h|S}−1(∆)〉〉, ie the signed cardinality of the subset of θ−1(∆)∩S consisting
of the points that lie near ∂S for a small generic perturbation θ of h near ∂S .
If the image of a stratum Zi of ∂S under h is disjoint from ∆, then clearly Zi
does not contribute to C∂S(h,∆). If h maps Zi into ∆, on a neighborhood of Zi
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we can view h and θ as vector-bundle sections. Thus, if we can understand
the behavior of h near S , computing C∂S(h,∆) is no different than computing
C∂S(s) in the topological setup presented first. On the other hand, in the cases
of interest to us, we will be able to find a submanifold Y as in (1.4) such that
±|{h|S}−1(Y)| can be expressed as evaluation of tautological classes on S ; see
Subsection 4.1, for example. If S itself is not a tautological class in a moduli
space of rational stable maps, we will have to describe ±|{h|S}−1(Y)| as the
signed cardinality of a subset Z ′ of a space which is a step closer to a tautological
class than S and apply equation (1.3) or (1.5) with Z ′ . Eventually, we will end
up with intersections of tautological classes on moduli spaces of stable rational
maps.

In Subsection 2.2, we describe our topological assumptions on S , M, and the
behavior of s or h near ∂S . These assumptions imply that the sets s−1(0)∩S
and {h|S}−1(∆) are finite. Roughly speaking, we require that ∂S be contained
in a finite union of smooth manifolds Zi such that near each Zi the section s or
the map h can be approximated by a polynomial map between vector bundles
over Zi . The polynomial map may contain terms of negative degree. Proposi-
tions 2.18A and 2.18B of Subsection 2.3 give an inductive procedure for com-
puting the contribution from each space Zi to C∂S(s) or to C∂S(h,∆) in good
cases. The two propositions describe how to set up a finite tree with topological
intersection numbers assigned to the nodes and with integer weights assigned
to the edges. The root of the tree is assigned the first term on the right-hand
side of (1.3) or (1.5). The number on the left-hand side of (1.3) or (1.5) is a
weighted sum of the numbers at the nodes. The weight of the number assigned
to a node is the product of the weights assigned to the edges between the node
and the root.

Remark The method presented in Subsection 2.2 is an improvement over
that of Section 3 in [17] even for the basic topological setup of the second
paragraph of this subsection. In particular, its use does not require applications
of the Implicit Function Theorem (IFT) to describe a neighborhood of ∂S in S .
The complexity of applying the IFT increases rapidly with the dimension of
the boundary strata, as a comparison between [17, Subsection 5.4] and [19,
Subsection 2.3] suggests.

In order to apply the topological method of this paper to enumerative problems,
we use Lemma 3.4 and Proposition 3.5. The former is a rather elementary re-
sult in complex geometry and implies that various bundle sections over smooth
strata of moduli spaces of stable rational maps are transverse to the zero set.
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The latter depends on the explicit construction of the gluing map in [18] and de-
scribes the behavior of these bundle sections near the boundary of each stratum.
In many cases, Proposition 3.5, combined with Lemma 3.4, implies that natural
submanifolds S of moduli spaces of stable rational maps, or of closely related
spaces, that are needed for counting singular rational curves are well-behaved
near ∂S and that the behavior near ∂S of various natural vector-bundle sec-
tions over S can be approximated by polynomials.

1.3 Computed examples

We now describe the main enumerative results derived in this paper using the
computational method outlined above. These are the enumerations of triple-
pointed and of tacnodal rational one-component curves in P3 and of rational
one-component cuspidal curves in Pn that pass through a collection of con-
straints in general position. The reason we choose these examples is that they
illustrate all aspects of our method and lead to new results. The numerical
values of some low-degree numbers can be found at the end of the paper. Note
that our low-degree numbers pass the standard classical checks; see Section 8.

We start by giving a formula describing the number of cuspidal curves in Pn .
This is actually the least interesting example of the three mentioned, as it should
have really been done in [20]. However, the solution to this example is easier
to state and explain than the answers to the two other primary examples.

Theorem 1.1 Suppose n ≥ 2, d ≥ 1, N ≥ 0, and µ = (µ1, . . . , µN ) is an
N –tuple of proper subvarieties of Pn in general position such that

N∑

l=1

codimC µl = d(n+ 1) − 2 +N.

The number of rational cuspidal degree–d curves that pass through the con-
straints µ is given by

∣∣S1(µ)
∣∣ =

2k≤n+2∑

k=1

(−1)k−1(k − 1)!

n+2−2k∑

l=0

(
n+ 1

l

)〈
alb0 ηb0,n+2−2k−l,Vk(µ)

〉
.

We now explain the notation involved in the statement of Theorem 1.1. The
compact oriented topological manifold Vk(µ), which in general may be an orb-
ifold, consists of unordered k–tuples of stable rational maps of total degree d.
Each map comes with a special marked point (i,∞). All these marked points
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are mapped to the same point in Pn . In particular, there is a well-defined
evaluation map

evb0 : Vk(µ) −→ Pn

which sends each tuple of stable maps to the value at (any) one of the special
marked points. We also require that the union of the images of the maps in
each tuple intersect each of the constraints µ1, . . . , µN . In fact, the elements
in the tuple carry a total of N marked points, y1, . . . , yN , in addition to the
k special marked points. These marked points are mapped to the constraints
µ1, . . . , µN , respectively. Roughly speaking, each element of Vk(µ) corresponds
to a degree–d rational curve in Pn , which has at least k irreducible components,
and k of the components meet at the same point in Pn . The precise definition
of the spaces Vk(µ) can be found in Subsection 3.1.

The cohomology classes ab0 and ηb0,l are tautological classes in Vk(µ). In fact,

ab0 = ev∗b0 c1(OPn(1)
)
.

Let V
′
k(µ) be the oriented topological orbifold defined as Vk(µ), except without

specifying the marked points y1, . . . , yN mapped to the constraints µ1, . . . , µN .
Then, there is well-defined forgetful map,

πk : Vk(µ) −→ V
′
k(µ),

which drops the marked points y1, . . . , yN and contracts the unstable compo-
nents. Let

η′b0,l ∈ H2l(V
′
k(µ))

be the sum of all degree–l monomials in

ψ(1,∞), . . . , ψ(k,∞),

where ψ(i,∞) is the first chern class of the universal cotangent line bundle for the

marked point (i,∞) ∈ P1 . Since V
′
k(µ) is a collection of unordered k–tuples,

a priori ψ(i,∞) may not be well defined as an element of V
′
k(µ). However, it

is easy to see that every symmetric polynomial in ψ(1,∞), . . . , ψ(k,∞) is well
defined. We put

ηb0,l = π∗kη
′b0,l ∈ H2l(Vk(µ)).

In Subsection 3.1, we give a definition of ηl that does not involve the projection
map πk . The algorithm of [11] for computing intersections of tautological classes
in M0,N (d,Pn) applies, with no change, to computing the intersection numbers
involved in the statement of Theorem 1.1.

We will call top intersections of tautological classes on M0,k(P
n, d) and on

closely related spaces, such as Vk(µ) and projectivizations of natural vector
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bundles over Vk(µ), level 0 numbers. All such numbers can be computed using
the algorithm of [11]. Counts of rational curves with s basic singularity con-
ditions will be called level s numbers. Every level s number, with s > 0, can
be written in the form (1.3) or (1.5) such that the middle term is a level (s−1)
number. For example, the number |S1(µ)| of Theorem 1.1 is a level 1 number.

Counts of rational curves with a triple point or a tacnode are level 2 numbers.
Indeed, the sets of such curves are subsets of the space of one-component ra-
tional curves with a node. Counts of such curves are level 1 numbers, since the
next level down are the rational curves that pass through the given constraints;
see the first paragraph of Subsection 1.2. Thus, the first two theorems below
express level 2 numbers in terms of level 1 numbers. After stating them, we
give some clarification on the notation involved and then state several lemmas
that express the relevant level 1 numbers in terms of level 0 numbers.

Theorem 1.2 Let d, p, and q be nonnegative integers such that 2p + q =
4d − 3. The number of rational one-component degree–d curves that have a
triple point and pass through a tuple µ of p points and q lines in general

position in P3 is 1
6 |V

(2)
1 (µ)|, where

∣∣V(2)
1 (µ)

∣∣ =
∣∣V(1)

1 (µ+H0)
∣∣ +

〈
ab0,V(1)

1 (µ+H1)
〉

+
〈
16ab0 + 8ηb0,1,S1(µ)

〉

+ 2
∣∣V(1)

2 (µ)
∣∣ −

〈
(12 − d)a2b0 + 8ab0ηb0,1 + 2η2b0,1,V(1)

1 (µ)
〉
− 2

∣∣S2(µ)
∣∣.

Theorem 1.3 Let d, p, and q be nonnegative integers such that 2p+q =
4d−3. The number of rational one-component degree–d curves that have a
tacnodal point and pass through a tuple µ of p points and q lines in general

position in P3 is 1
2 |S

(1)
1 (µ)|, where

∣∣S(1)
1 (µ)

∣∣ =
〈
6a2b0 + η2b0,1,V (1)

1 (µ)
〉

+
〈
4ab0 +

1

2
ηb0,1,V (1,1)

2 (µ)
〉

+ 7
∣∣S2(µ)

∣∣

−
〈
20ab0 + 19ηb0,1,S1(µ)

〉
− 2

∣∣V(1)
2 (µ)

∣∣.

We define the spaces V
(1)
k (µ) as follows. Let V

(1)
k (µ) be the space of k–tuples

of stable maps as in the construction of the space Vk(µ), but with the fol-
lowing exceptions. Every element of each k–tuple lies in the main stratum of
the appropriate moduli space of stable maps, ie the domain of the map is P1 .
Furthermore, one of the elements of each k–tuple b carries a special marked
point, labeled by 1̂, and the value of the map at this point is evb0(b). In the
space V

(1,1)
2 (µ) each of the two components carries a special marked point, one

of which is labeled by 1̂ and the other by 2̂. Furthermore, evb1(b) = evb2(b) for
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all 2–tuples b in V
(1,1)
2 (µ). The spaces V

(1)
k (µ) and V

(1,1)
2 (µ) are the closures

of the spaces V
(1)
k (µ) and V

(1,1)
2 (µ) in the unions of the appropriate products

of moduli spaces of stable rational maps. We denote by S∗
∗ (µ) the subspace of

V∗
∗ (µ) consisting of tuples of maps with the simplest possible additional nat-

ural singularity. For example, the differential of every element of S1(µ) vanishes
at (1,∞). The set S2(µ) is described in detail by Lemma 1.5. Figure 1 de-
picts the images of typical elements of these spaces as well as of V

(1;0,1)
2,(0,1)

(µ),
which appears in a relationship between level 1 numbers; see the remark fol-
lowing the proof of Lemma 5.8. We give formal definitions of all these spaces
in Subsections 4.1, 4.4, and 5.1. Finally, µ + Hr denotes the (N + 1)–tuple
of constrains (µ1, . . . , µN ,H

r), where Hr is a generic linear subspace of Pn of
complex dimension r .

S1 S2 V
(1)
1 V

(1)
2 V

(1,1)
2

V
(1;0,1)
2,(0,1)

Figure 1: Images of typical elements of S∗ and V∗
∗

Lemma 1.4 Suppose d, p, and q are nonnegative integers such that 2p+q =
4d−3 and µ is a tuple of p points and q lines in general position in P3 . The
number of rational connected two-component degree–d curves that pass through
the constraints µ and such that one of the components of each curve has a
node and the other component is attached at the node of the first component

as depicted in Figure 1 is 1
2 |V

(1)
2 (µ)|, where

∣∣V(1)
2 (µ)

∣∣ =
∣∣V2(µ+H0)

∣∣ +
〈
ab0,V2(µ+H1)

〉
+ 3

∣∣V3(µ)
∣∣

−
〈
(12 − d)a2b0 + 4ab0ηb0,1 + 2ηb0,2 − η2b0,1,V2(µ)

〉
.

Lemma 1.5 Suppose d, p, and q are nonnegative integers such that 2p+q =
4d−3 and µ is a tuple of p points and q lines in general position in P3 . The
number of rational connected two-component degree–d curves that pass through
the constraints µ and have a tacnodal point is given by

|S2(µ)| =
〈
6a2b0 + 4ab0ηb0,1 + ηb0,2,V2(µ)

〉
− 3

∣∣V3(µ)
∣∣.

Lemma 1.6 Suppose d, p, and q are nonnegative integer such that 2p+ q =
4d− 3 and µ is a tuple of p points and q lines in general position in P3 .
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(1) The number of rational connected two-component degree–d curves, with
the components arranged in a circle as in Figure 1, that pass through the
constraints µ and have one of the nodes on a generic hyperplane is given by

1

2

〈
ab0,V (1,1)

2 (µ)
〉

=
〈
ab0,V2(µ+ {H1 : H2})

〉
−

〈
4a2b0 + ab0ηb0,1,V2(µ)

〉
.

(2) Furthermore,

1

2

〈
ηb0,1,V (1,1)

2 (µ)
〉

=
〈
ηb0,1,V2(µ+ {H1 : H2})

〉
+

∣∣V2(µ+H0)
∣∣

+
〈
ab0,V2(µ+H1)

〉
+ d

〈
a2b0,V2(µ)

〉
− 3

∣∣V3(µ)
∣∣.

Lemma 1.7 Suppose d, p, and q are nonnegative integers such that 2p+ q =
4d− 3 and µ is a tuple of p points and q lines in general position in P3 .

(1) The number of rational degree–d curves that pass through the constraints
µ and have a cusp on a generic hyperplane is given by

〈ab0,S1(µ)〉 =
〈
6a3b0ηb0,1 + 4a2b0η2b0,1 + ab0η3b0,1,V1(µ)

〉
−

〈
4a2b0 + ab0ηb0,1,V2(µ)

〉
.

(2) Furthermore,

〈ηb0,1,S1(µ)〉 =
〈
4a3b0ηb0,1 + 6a2b0η2b0,1 + 4ab0η3b0,1 + η4b0,1,V1(µ)

〉
−

∣∣V3(µ)
∣∣.

Lemma 1.8 Suppose d, p, and q are nonnegative integers and µ is a tuple
of p points and q lines in general position in P3 .

(1) If 2p+ q = 4d− 1, the number of rational one-component degree–d curves

that pass through the constraints µ and have a node is 1
2 |V

(1)
1 (µ)|, where

|V
(1)
1 (µ)| =

〈
(2d − 6)a2b0 − 4ab0ηb0,1 − η2b0,1,V1(µ)

〉
+

∣∣V2(µ)
∣∣.

(2) If 2p+ q = 4d− 2, the number of rational one-component degree–d curves
that pass through the constraints µ and have a node on a generic hyperplane

is 1
2〈ab0,V (1)

1 (µ)〉, where

〈ab0,V(1)
1 (µ)〉 =

〈
(2d− 6)a3b0 − 4a2b0ηb0,1 − ab0η2b0,1,V1(µ)

〉

+
〈
a2b0,V1(µ+H1)

〉
+

〈
ab0,V2(µ)

〉
.

(3a) If 2p + q = 4d − 3, the number of rational one-component degree–d
curves that pass through the constraints µ and have a node on a generic line

is 1
2〈a

2b0,V (1)
1 (µ)〉, where

〈a2b0,V(1)
1 (µ)〉 = 2

〈
a3b0,V1(µ+H1)

〉
−

〈
4a3b0ηb0,1 + a2b0η2b0,1,V1(µ)

〉
+

〈
a2b0,V2(µ)

〉
.
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(3b) Furthermore,

〈
ab0ηb0,1,V(1)

1 (µ)
〉

=
〈
ab0ηb0,1,V1(µ+H0)

〉
+

〈
a2b0ηb0,1,V1(µ+H1)

〉

+ d
〈
a3b0ηb0,1,V1(µ)

〉
−

〈
4a2b0 + ab0ηb0,1,V2(µ)

〉

〈
η2b0,1,V(1)

1 (µ)
〉

=
〈
η2b0,1,V1(µ+H0)

〉
+

〈
ab0η2b0,1,V1(µ+H1)

〉

+
〈
4a3b0ηb0,1 + d · a2b0η2b0,1,V1(µ)

〉
−

∣∣V3(µ)
∣∣.

Every term on the right-hand side of each expression in Lemmas 1.4–1.8 is a
level 0 number, ie it is a top intersection of tautological classes in a product
of moduli spaces of stable maps and thus is computable via the explicit for-
mulas of [11]. We define the space V2(µ + {H1 : H2}) in the same way as
V2(µ+H1+H2), with the only exception that we require H1 and H2 to lie on
different elements of the tuple b.

Remark If one were to derive a completely general recursive formula for count-
ing rational curves with singularities, no separate formula would be necessary
for generalizations of Lemma 1.6 part (2), Lemma 1.7 part (2), and Lemma 1.8
part (3b). Using [11], one can express all classes η∗∗,∗ on products of moduli
spaces of stable rational maps in terms of subspaces of possibly other products
of moduli spaces of stable rational maps that consist of stable maps sending
their marked points to various constraints in Pn . In many cases, using Propo-
sition 3.5, one can thus express evaluations of the classes η∗∗,∗ on a space S of
maps that represent curves with certain singularities in terms of the numbers
of singular curves that pass through various constraints. Furthermore, the level
of the latter numbers will be no higher than that of S .

We prove Theorems 1.2 and 1.3 in Sections 4 and 5. In particular, we describe
the structure of the spaces V

(1)
1 (µ) and V

(1,1)
2 (µ) in Subsection 4.2 and conclude

that they define a homology class in a compact oriented stratified topological
orbifold. Since S1(µ) is shown to be an oriented topological manifold in [17,
Subsection 5.4], it follows that all the terms on the right-hand side of the formu-
las in the two propositions are well-defined. In Subsections 4.1 and 5.1, we write

V
(2)
1 (µ) and S

(1)
1 (µ) in the form (1.5) and (1.3), respectively, and express the

first term on the right-hand side in terms of evaluations of tautological classes

on V
(1)
1 (µ) and on related spaces. Lemmas 1.5 and 1.7 are proved in [17]. The

first statement of Lemma 1.8 is a special case of [20, Theorem 1.1]. The remain-
ing statements of Lemma 1.8 and Lemmas 1.4 and 1.6 are proved in Section 6.
In Subsections 7.1 and 7.2, we show that our method recovers the formulas of [6]
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and [15] solving Questions D and E, which are the P2 analogues of the problems
addressed by Theorems 1.2 and 1.3. We conclude by proving Theorem 1.1 in
Subsection 7.3, where we construct a tree of contributions and thus illustrate a
point made at the end of Subsection 1.2.

1.4 General remarks

Given the claims made in the abstract and at the end of Subsection 1.1, the
reader may wonder why this paper is so long, why the notation is so involved,
and why a more general case is not done. Doing a more general case, instead
of the examples we work out, may in fact shorten this paper. However, the
additional notation needed to describe a general case is likely to completely
obscure the computational method presented here.

The topological part of our method consists of Propositions 2.18A and 2.18B.
The somewhat involved notation of Subsection 2.2 formally states what it means
to take the leading term(s) of a section along the normal direction to a submani-
fold. Proposition 3.5 gives power-series expansions for all relevant vector-bundle
sections near all boundary strata of moduli spaces of stable rational maps. De-
scribing the terms involved in the power-series expansions requires quite a bit
of notation. However, as we will see in later sections, very few boundary strata
actually matter in our computations, and the expansions of Proposition 3.5
corresponding to such strata are rather simple. In practice, it is best to draw
a tree of these simple strata along with all the relevant topological data; then
deriving formulas such as those of Theorems 1.2 and 1.3 becomes a nearly-
mechanical task.

The sections and linear maps between vector bundles that we introduce in Sub-
section 3.2 are described in an analytic way. Nevertheless, it is likely that
the numbers of zeros of these and related linear maps have an algebraic in-
terpretation, and that the same is true of our entire computational approach.
Furthermore, there seem to be some general properties that remain to be ex-
plored. For example, finding any difference between our formulas for |S1(µ)| in
Theorem 1.1 and for the genus-one correction term CR1(µ) in [20, Theorem 1.1]
requires a rather careful comparison of the two. One may also notice some sim-
ilarity between the expressions for various level 1 numbers in Lemmas 1.4–1.8.
A topological property of the number of zeros of an affine map in a simple case
is described in [19, Corollary 4.7].

We conclude this introductory section by describing some classes of enumerative
problems definitely and likely solvable by the method described in this paper.
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Suppose C is a one-component curve in Pn , or in another algebraic manifold M .
Let u : C̃ −→ C be a normalization of C , ie C̃ is a smooth connected complex
curve and u : C̃ −→ M is a holomorphic map such that the image of u is C̃
and u is one-to-one outside of a finite set of points of C̃ . If p̃ is a point in C̃ ,
let σu(p̃) be the nonnegative integer such that the first σu(p̃) derivatives of u
at p̃ vanish, but the derivative of order σu(p̃) + 1 does not vanish at p. For
example, if σu(p̃) = 0, du|ep 6= 0, ie p is a smooth point of the branch of the
curve C corresponding to p̃. If σu(p̃) = 1,

du|ep = 0, but D
(2)ep u ≡ Ddu|ep 6= 0,

where D denotes the covariant differentiation with respect to some connection
in TM . In other words, the branch of the curve C at p corresponding to p̃ has
a cusp at p. If p is a point of C , we denote by σ0(p) the set of branches of C
at p; in particular, |σ0(p)| = |u−1(p)|. For each i ∈ σ0(p), let σ(p; i) = σu(p̃i)
if p̃i is the point in C̃ such that u maps a small neighborhood of p̃i into the
branch i at p. Let σ0(p) =

⊔
σ0,k(p) be the partition such that

D
(σu(epi)+1)epi

u ‖ D
(σu(epj)+1)epj

u ⇐⇒ i, j ∈ σ0,k(p) for some k.

For example, if σ0(p) = σ0,1(p) = {p̃1, p̃2} and σ(p; 1) = σ(p; 2) = 0, the curve
C has a tacnode at p. We take

σ(p) = (σ0(p), {σ0,k(p)}, {σ(p; i)}).

The infinite set {σ(p) : p ∈ C} describes the singularities of the curve C .
However, for all but finitely many points p in C , σ0(p) = {i} is a single-element
set and σ(p; i) = 0. Thus, we say that the curve C has the set of singularities

{σ(α) : α = 1, . . . , N}, where σ(α) =
(
σ0(α), {σ0,k(α)}, {σ(α; i)}

)
,

if there are distinct points p1, . . . , pN of C such that for all α and some iden-
tification of σ0(α) with the set of branches of C at pα , σ(α) = σ(pα). The
method of this paper can be used to determine the number of one-component
rational curves in a projective space that have any one-element set of singu-
larities of the form

{(
σ, {σ}, {σ(i)}

)}
. In other words, the curves are to have

one |σ|–fold singular point and the branches of the curves are to have cusps
of the orders {σ(i)}. In particular, we are not imposing any tacnodal kind
of condition. The singular point of the curves may be required to fall on a
subvariety.

Some types of singularities that cause problems for this method are the flex,
two nodes, two cusps, and the tacnode. The reason is that the expansions of
bundle sections given in Propositions 3.5 are not sufficiently fine in the cases
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when the boundary stratum involves curves of very low, but positive, degree.
For example, one of the strata of the space of one-component degree–d rational
curves with one marked point y1 consists of two-component curves, one of
which has degree one and carries the marked point y1 . Every element of this
stratum has a flex at y1 , ie is a zero of a certain bundle section s. However,
Proposition 3.5 does not give a sufficiently fine description of the behavior of s
near this stratum. On the other hand, a simple dimension-counting argument
shows that such a boundary stratum cannot occur if the dimension n of the
projective space is two. If we would like to count one-component curves that
have two cusps, or two nodes, or a tacnode, the problem stratum is the one
consisting of two-component curves, one of which is a double line and carries
two marked points. Again, a dimension-counting argument shows that this
boundary stratum does not occur unless n is at least 6, 4, or 5, respectively.
Indeed, among the examples worked out in this paper are the enumerations of
tacnodal rational curves in P2 and P3 .

Many types of curves with multiple components and with first-order tangency
conditions to disjoint subvarieties can be counted as well. In fact, as the results
described in Subsection 1.3 indicate, counting one-component singular curves
involves counting multiple-components curves with simpler singularities. We
plan to elaborate more on what types of curves can be counted and why in
a later paper. Finally, due to the explicit nature of the gluing maps used, it
should be possible to sharpen the expansions of Propositions 3.5 along the few
problem strata that appear in more general cases. If so, every enumerative
problem, in the sense described above, will be solvable.

Remark This paper concerns counting curves in Pn , but our method may
apply to counting curves with singularities in some other Kahler manifolds
as well. Our aim is to express curve counts in terms of top intersections of
tautological classes on moduli spaces of stable rational maps. Thus, in order to
obtain actual numbers we make use of:

Fact 0 Top intersections of tautological classes on M0,k(P
n, d) are computable.

It is essential for the method itself that the moduli spaces M0,k(P
n, d) have the

expected structure. This is due to

Fact 1 If u : P1 −→ Pn is a holomorphic map, then

H1(P1;u∗TPn ⊗OP1(−1)) = 0.

In order for our method to apply to a Kahler manifold M , Fact 1 needs to hold
with Pn replaced by M for maps up to the relevant “degree”, ie the homology
class of the curves to be counted. Additional positivity conditions, dependent
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on the type of singularities involved, need to be satisfied as well. For example,
in order to count curves with a cusp in Pn , we rely on

Fact 2 If u : P1 −→ Pn is a nonconstant holomorphic map, then

H1(P1;u∗TPn ⊗OP1(−2)) = 0.

Theorem 1.1 is valid with Pn replaced by M as long as Facts 1 and 2 hold with
Pn replaced by M for maps of degree up d.

2 Topology

2.1 Monomials maps

This section contains details of the topological aspects of the computational
approach of this paper. We describe the setting in the next subsection and
state and justify the reductive method for computing boundary contributions
in Subsection 2.3. The present subsection collects a few basic facts that are
used elsewhere in this section. The key statements here are Definition 2.1 and
Propositions 2.3A and 2.3B.

We denote by R+ the set of nonnegative reals. Let β : R
+

−→ [0, 1] be a
smooth cutoff function such that

β(t) =

{
0 if t ≤ 1,

1 if t ≥ 2;
and β′(t) > 0 if t ∈ (1, 2).

If δ > 0, let βδ ∈ C∞
(
R

+
; R

)
be given by βδ(t) = β

(
δ−

1
2 t

)
. We also denote by

βδ the natural extension of βδ to Cn :

βδ
(
z
)

= βδ
(
|z|

)
,

where |z| =
√

|z1|2 + . . .+ |zn|2 if z =
(
z1, . . . , zn

)
∈ Cn . We write Bδ(0,C

n)
for the open ball of radius δ about 0 in Cn . Let Yn be the union of the n
codimension-one coordinate subspaces Ck × {0} × Cn−1−k in Cn .

Definition 2.1 Suppose m and n are positive integers and A = (a)ij is an
m× n integer matrix. Then:

(1) A function ρ : Cn − Yn −→ Cm − Ym is a degree-A monomials map if

ρ
(
z1, . . . , zn

)
=

(
z
a1,1

1 . . . z
a1,n
n , . . . , z

am,1

1 . . . z
am,n
n

)

for all
(
z1, . . . , zn

)
∈ Cn − Yn .
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(2) A degree–A monomials map ρ is nondegenerate if rk ρ ≡ rkA = m.

(3) If m = n, a nondegenerate degree–A monomials map ρ is positive (or
negative) if all components of the vector A−11 are positive (or negative).

(4) If m = n, a nondegenerate degree–A monomials map ρ is neutral if it is
neither positive nor negative.

In (3) above, 1 denotes the column vector of length n consisting of all ones. If
m = n, let det ρ denote the determinant of the square matrix A.

Definition 2.2 Suppose n is a positive integer, A is an n× n nondegenerate
integer matrix, and A1 and A2 are row vectors of length n. Let ρ, ρ1 , and ρ2

be monomials maps of degrees A, A1 , and A2 , respectively.

(1) If ρ is a positive monomials map, ρ1 >ρ ρ2 if A1A
−11 < A2A

−11.

(2) If ρ is a negative monomials map, ρ1 >ρ ρ2 if A1A
−11 > A2A

−11.

Remark The notions of nondegenerate, positive, negative, and neutral of De-
finition 2.1 are invariant under every reordering of coordinates on the domain
and/or the target space. The same is true of the partial-order relation intro-
duced by Definition 2.2. We describe geometric consequences of these proper-
ties below.

Proposition 2.3A If ρ : Cn−Yn −→ Cn−Yn is a degree–A neutral monomials
map and K is a compact subset of Cn − Yn , there exists δ∗ = δ∗(A,K) ∈ R+

such that (
Bδ∗(0,C

n) − Yn
)
∩ ρ−1(R+ · K) = ∅.

Proposition 2.3B Suppose ρ : Cn − Yn −→ Cn − Yn is a degree–A positive
(or negative) monomials map and K is a precompact open subset of Cn − Yn .
Then:

(1) The set ρ−1(R+ · K) is closed in Cn − {0}.

(2) For every δ∗ ∈ R+ , δ ∈ (0, δ∗), and δ+ ∈ (δ1/2,∞), there exists

ǫ = ǫ(A, δ∗, δ, δ+,K) ∈ R+

such that for all t ∈ (0, ǫ), the map

t−1βδρ :
(
B2δ∗1/2(0,Cn) − Yn

)
∩

{
t−1βδρ

}−1
(K) −→ K
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is a smooth covering projection of oriented order |det ρ| (−|det ρ|). Further-
more, (

B2δ∗1/2(0,Cn) − Yn
)
∩

{
t−1βδρ

}−1
(K) ⊂ Bδ+(0,Cn).

(3) If ρ1 and ρ2 are monomials maps of degrees A1 and A2 such that ρ1 >ρ ρ2 ,
for every ǫ ∈ R+ , there exists δ = δ(A,A1,A2, ǫ) such that

∣∣ρ2(z)
∣∣ ≤ ǫ

∣∣ρ1(z)
∣∣

for all z ∈
(
Bδ(0,C

n) − Yn
)
∩ ρ−1(R+ · K).

The rest of this subsection is devoted to proving these propositions. Note that

detDρ
∣∣
(z1,...,zn)

= (det ρ)zA1−1
1 . . . zAn−1

n , (2.1)

where Aj =
∑i=n

i=1 ai,j . Thus, Im ρ contains an open subset of Cn if (and
only if) ρ is nondegenerate in the sense of (2) of Definition 2.1. Since ρ is
a rational function in complex variables, it follows that Im ρ is a dense open
subset of Cn if ρ is nondegenerate. Since ρ is given by monomials, Im ρ is in
fact all of Cn − Yn . Thus

ρ : Cn − Yn −→ Cn − Yn

is a local diffeomorphism. By Lemma 2.8, this map is in fact a covering projec-
tion of order |det ρ|.

Remark The proof of Lemma 2.8 does not rely on Lemmas 2.4–2.6 or Corol-
lary 2.7. We postpone its proof until the very end of this subsection in order
to focus on the main aspects of the proof of Propositions 2.3A and 2.3B.

Denote by Ỹn the union of all the n codimension-one coordinate subspaces
Rk × {0} × Rn−1−k in Rn . Let Ỹ ∗

n = Ỹn ∩ S
n−1 . We identify Cn − Yn with

R+ × (Sn−1 − Ỹ ∗
n ) × (S1)n

by the map

Cn − Yn −→ R+ × (Sn−1 − Ỹ ∗
n ) × (S1)n,

z = (z1, . . . , zn) 7−→

(
|z|,

(|z1|, . . . , |zn|)

|z|
,
( z1
|z1|

, . . . ,
zn
|zn|

))
.

With respect to this decomposition,

ρ(r, ϕ, θ) =
(
f(r, ϕ), g(r, ϕ), h(θ)

)
,

where
(
f(r), g(r)

)
= ρ(r) ∈ Rn and

h
(
eiθ1 , . . . , eiθn

)
= ρ

(
eiθ1 , . . . , eiθn

)
∈ (S1)n ⊂ Cn.

Proposition 2.3A follows immediately from:
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Lemma 2.4 If ρ is a neutral monomials map, for every compact subset K of
Sn−1 − Ỹ ∗

n , there exists δ ∈ R+ such that for all r ∈ (0, δ), {g(r, ·)}−1(K) = ∅.

Proof We use the variables s1, . . . , sn to denote the standard Euclidean co-
ordinates on the target space Rn , as well as the corresponding component
functions of (f, g). Let

Ã =




a2,1 − a1,1 . . . a2,n − a1,n
...

...
an,1 − a1,1 . . . an,n − a1,n


 .

It is sufficient to show that, for some i = 2, . . . , n,

lim sup
r→0

{ si(r)
s1(r)

: |r| < r
}

= 0 or lim inf
r→0

{ si(r)
s1(r)

: |r| < r
}

= ∞.

This condition is equivalent to

lim sup
t→−∞

{
±

n∑

j=1

(ai,j−a1,j)tj : tj ∈ (−∞, t)
}

= −∞

⇐⇒

{
ai,j − a1,j ≥ 0 for all j = 1, . . . , n

or ai,j − a1,j ≤ 0 for all j = 1, . . . , n.
(2.2)

Note that the two lines above are equivalent because A is assumed to be nonde-
generate. If (2.2) is not satisfied by any i = 2, . . . , n, for every nonzero vector
x ∈ Rn−1 there exists a vector c ∈ Rn such that

xtÃc > 0 and c1, . . . , cn ≥ 0.

This means that the image of Ãt contains no nonzero vector with all components
of the same sign. Thus

there exists (x1, . . . , xn) in ker Ã − {0} such that x1, . . . , xn > 0. (2.3)

Let Ãbj be the matrix obtained from Ã by removing the j th column. Since ρ

is nondegenerate, det Ãbj 6= 0 for some j . Then, by Cramer’s Rule,

xj′ =
(−1)j+j

′−1 det Ãbj′
det Ãbj (−xj) =

(−1)j
′
det Ãbj′

(−1)j det Ãbj xj for all j′. (2.4)

Since ρ is neutral,

(−1)j
′
det Ãbj′

(−1)j det Ãbj ≤ 0

for some j′ . Thus (2.4) contradicts (2.3).
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Lemma 2.5 If ρ is a positive or negative monomials map, then for every
r ∈ R+ , the map

g(r, ·) : Sn−1 − Ỹ ∗
n −→ Sn−1 − Ỹ ∗

n , given by θ 7−→ g(r, θ),

is a local diffeomorphism.

Proof We assume that n ≥ 2; otherwise, there is nothing to prove. Suppose
g(r, ·) is not a local diffeomorphism at r = (r1, . . . , rn) ∈ Rn− Ỹn . Then, there
exists c ∈ Rn − {0} such that

n∑

j=1

rjcj = 0 and
n∑

j=1

(
ai,j − a1,j

)
r−1
j cj = 0 for all i = 2, . . . , n. (2.5)

The first equation above is equivalent to the condition c ∈ TrS
n−1 . The second

equation means that the ratio of the ith and the first Euclidean components
of the function (f, g) does not change in the direction of c at r . The n condi-
tions (2.5) are equivalent to A(1)

(
r2

)
c′ = 0 ∈ Rn , where:

A(1)
(
r2

)
≡ A(1)

(
r21, . . . , r

2
n

)
=




r21 . . . r2n
a2,1 − a1,1 . . . a2,n − a1,n

...
...

an,1 − a1,1 . . . an,n − a1,n




This equation has a nonzero solution only if detA(1)
(
r2

)
= 0. However,

detA(1)
(
r2

)
=

n∑

j=1

(−1)j−1
(
det Ãbj)r2j .

Since ρ is positive or negative, all the elements of the set
{
(−1)j−1 det Ãbj}

have the same sign. Thus, detA(1)
(
r2

)
does not vanish on Rn−{0}. It follows

that the differential of g(r, ·) is an isomorphism everywhere on Sn−1 − Ỹ ∗
n .

Let Y ∗
n = Yn ∩S

2n−1 ⊂ Cn . We identify Cn− Yn with R+ × (S2n−1 − Y ∗
n ) and

denote by
(
f̃ , g̃

)
: R+ × (S2n−1 − Y ∗

n ) −→ R+ × (S2n−1 − Y ∗
n )

the pair of maps corresponding to ρ.

Lemma 2.6 If ρ is a positive (or negative) monomials map, then for every
r ∈ R+ , the map

g̃(r, ·) : S2n−1 − Y ∗
n −→ S2n−1 − Y ∗

n

is a local orientation-preserving (or orientation-reversing) diffeomorphism, and
is a covering projection of oriented order |det ρ| (or −|det ρ|).
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Proof To prove the first claim, we assume that ρ is a positive monomials map;
the negative case is proved similarly. By Lemma 2.5 and the decomposition
g̃ = (g, h), it follows that g̃(r, ·) is a local diffeomorphism. Since ρ is orientation-
preserving everywhere, g̃(r, ·) is orientation-preserving at (r, θ) if

〈{
Dρ

∣∣
(r,θ)

}−1
( ∂

∂r

)
,
( ∂

∂r

)〉
> 0. (2.6)

Let c ∈ Rn be given by Ac = 1 ∈ Rn . Then

ρ
(
tc1z1, . . . , t

cnzn
)

= tρ
(
z1, . . . , zn

)
and

d

dt
tρ(z)

∣∣∣
t=1

=
∂

∂r
. (2.7)

Since ρ is positive, c1, . . . , cn ∈ R+ and thus

d

dt

∣∣(tc1z1, . . . , tcnzn
)∣∣ > 0. (2.8)

The desired inequality (2.6) is immediate from (2.7) and (2.8). The remaining
claim follows from Lemma 2.8 and (2.7), since the curves

t 7−→
(
tc1z1, . . . , t

cnzn
)

and t 7−→
(
tw1, . . . , twn

)
, for t ∈ (0,∞),

with (z1, . . . , zn) and (w1, . . . , wn) ∈ S
2n−1 , foliate Cn− Yn and intersect each

(2n− 1)–sphere r = const exactly once.

Remark The first claim of Proposition 2.3B now follows from Lemma 2.8, the
first identity in (2.7), and the assumptions that all the exponents ci have the
same sign.

Corollary 2.7 Suppose ρ is a positive (or negative) monomials map, δ∗ ∈ R+ ,
δ ∈ (0, δ∗), and K is a precompact open subset of Cn − Yn . Then, there exists
ǫ ∈ R+ such that for all t ∈ (0, ǫ), the map

t−1βδρ :
(
B2δ∗1/2(0,Cn) − Yn

)
∩

{
t−1βδρ

}−1
(K) −→ K

is a smooth covering projection of oriented order |det ρ| (−|det ρ|).

Proof We prove this corollary in the case ρ is negative. If ρ is positive, a
stronger claim can be obtained by a similar and somewhat simpler argument.
With notation as above, βδρ corresponds to the pair (βδ f̃ , g̃) with respect to
the splitting of Cn − Yn = R+ × (S2n−1 − Y ∗

n ). Thus

detD(βδρ)
∣∣
(r,θ)

= βδ(r) detDρ
∣∣
(r,θ)

+ β′δ(r)f̃(r, θ) det
(∂g̃
∂θ

)∣∣∣
(r,θ)

. (2.9)
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Let K̃ ⊂ S2n−1 − Y ∗
n be the image of K under the projection map onto the

second component. Since the closure of K in Cn − Yn is compact, Lemma 2.6
implies that the set

Ũ ≡
⋃

δ1/2≤r≤2δ∗1/2

{
g̃(r, ·)

}−1
(K̃)

has compact closure in S2n−1 − Y ∗
n . Thus, there exists C > 0 such that

detDρ
∣∣
(r,θ)

< C and f̃(r, θ) det
(∂g̃
∂θ

)∣∣∣
(r,θ)

< −C−1

for all (r, θ) ∈
(
δ1/2, 2δ∗1/2

)
× Ũ . The second bound is obtained by using

Lemma 2.6. Choose η > 0 such that

β′δ(r) > 2C2βδ(r) for all r ∈
(
δ1/2, δ1/2 + η

)
. (2.10)

Note that combining (2.9)–(2.10), we obtain

detD(βδρ)
∣∣
(r,θ)

< 0 (2.11)

for all (r, θ) ∈
(
δ1/2, δ1/2 + η

)
× Ũ . Let ǫ > 0 be such that

ǫ · max
{
|w| : w ∈ K

}
< 1

2 min
{
βδ(|z|)

∣∣ρ(z)
∣∣ : z ∈

(
δ1/2 + 1

2η, 2δ
∗1/2

)
× Ũ

}
.

(2.12)
We claim that ǫ satisfies the required properties. Suppose that t < ǫ, that
z = (r, θ) ∈ B2δ∗1/2(0,Cn), and that

{
t−1βδρ

}
(z) ∈ K. Then

r ∈
(
δ1/2, 2δ∗1/2

)
=⇒ θ ∈

{
g̃(r, ·)

}−1
(K) ⊂ Ũ .

Assumption (2.12) on ǫ then implies that (r, θ) ∈
(
δ1/2, δ1/2 + 1

2η
)
× Ũ . From

(2.11), we conclude that the determinant of the derivative of t−1βδρ at z is
negative and the map

t−1βδρ :
(
B2δ∗1/2(0,Cn) − Yn

)
∩

{
t−1βδρ

}−1
(K) −→ K

is a local orientation-reversing diffeomorphism. It remains to see that for each
point (s, ϑ) ∈ K ,

∣∣{(r, θ) ∈
(
δ1/2, δ1/2 + 1

2η
)
× Ũ : βδ(r)f̃(r, θ) = ts, g̃(r, θ) = ϑ

}∣∣ = |det ρ|.

By Lemma 2.6, there are smooth paths

θi :
[
δ1/2, δ1/2 + 1

2η
]
−→ Ũ for i = 1, . . . , |det ρ|

such that
{
g̃(r, ·)

}−1
(ϑ) =

{
θi(r) : i = 1, . . . , |det ρ|

}
and θi(r) 6= θj(r)
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for all r ∈
[
δ1/2, δ1/2 + 1

2η
]

and i 6= j . By (2.11) and (2.12),

{βδ f̃}
(
δ1/2, θi(δ

1/2)
)

= 0, {βδ f̃}
(
δ1/2 + 1

2η, θi(δ
1/2 + 1

2η)
)
> ts,

and
d

dr
{βδ f̃}

(
r, θi(r)

)
> 0 for all r ∈

(
δ1/2, δ1/2 + 1

2η
)
.

Thus, for each i = 1, . . . , |det ρ|, there exists a unique number

ri ∈
(
δ1/2, δ1/2 + 1

2η
)

such that {βδ f̃}
(
ri, θi(ri)

)
= ts,

as required.

Corollary 2.7 essentially concludes the proof of part (2) of Proposition 2.3B.
The claimed inclusion is achieved if, in the proof of Corollary 2.7, η is chosen
so that δ1/2 + η < δ+ .

We next prove part (3) of Proposition 2.3B. Suppose A is a positive monomials
map and K̃ = ρ−1(K). Since K̃ is a compact subset of Cn − Yn , there exists
r > 0 such that Br(0,C

n)∩ K̃ = ∅. On the other hand, by Lemma 2.8 and the
first identity in (2.7), if t ∈ R+ and ρ(z) ∈ t · K ,

(z1, . . . , zn) = (tc1w1, . . . , t
cnwn) for some (w1, . . . , wn) ∈ ρ−1(K)

=⇒ |z| ≥ tmin cir.

Thus, if |z| ≤ δ ,
∣∣∣ρ2(z)

ρ1(z)

∣∣∣ = tA2·c−A1·c
∣∣∣ρ2(w)

ρ1(w)

∣∣∣ ≤ C
(δ
r

)(A2·c−A1·c)/min ci
.

Since A2 · c > A1 · c and min ci > 0, the right-hand side above tends to zero
with δ . If ρ is negative, the proof is similar.

Lemma 2.8 If ρ : Cn − Yn −→ Cn − Yn is a nondegenerate monomials map,
ρ is a covering projection of order |det ρ|.

Proof By (2.1), we only need to compute the order of the cover. We can view
ρ as a rational map from (P1)N to (P1)N . In turn, this rational map induces a

holomorphic map ρ̃ : M̃ −→ (P1)N , where M̃ is a compact complex manifold
obtained from (P1)N by a sequence of blowups along submanifolds disjoint from
Cn − Yn . Then

ord ρ =
〈
ρ̃∗

(
ω1 ∧ . . . ∧ ωn

)
, [M̃ ]

〉
=

∫fM ρ̃∗
(
ω1 ∧ . . . ∧ ωn

)

=

∫

Cn−Yn

ρ∗
(
ω1 ∧ . . . ∧ ωn

)
,

(2.13)
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where ωi is the Fubini–Study symplectic form on the ith P1–factor of the target
space. Since ωi = i

2π
dzi∧dz̄i

(1+|zi|2)2
, see [4, p31], by (2.1),

ρ∗
(
ω1 ∧ . . . ∧ ωn

)

= |det ρ|2
(

i

2π

)n r2A1−2
1 . . . r2An−2

1 dz1 ∧ dz̄1 ∧ . . . ∧ dzn ∧ dz̄n

(1 + r
2a1,1

1 . . . r
2a1,n
n )2 . . . (1 + r

2an,1

1 . . . r
2an,n
n )2

.
(2.14)

Combining (2.13) and (2.14) and switching to polar coordinates, we obtain

ord ρ = 2n|det ρ|2
∫ ∞

0
. . .

∫ ∞

0

r2A1−1
1 . . . r2An−1

1 dr1 . . . drn

(1 + r
2a1,1

1 . . . r
2a1,n
n )2 . . . (1 + r

2an,1

1 . . . r
2an,n
n )2

.

(2.15)
The change of variables,

(r1, . . . , rn) −→
(
r
2a1,1

1 . . . r
2a1,n
n , . . . , r

2an,1

1 . . . r
2an,n
n

)
,

reduces (2.15) to

ord ρ = |det ρ|

∫ ∞

0
. . .

∫ ∞

0

dr1 . . . drn
(1 + r1)2 . . . (1 + rn)2

= |det ρ|

( ∫ ∞

0

dr

(1 + r)2

)n

= |det ρ|,

as claimed.

2.2 Topological setup

In this subsection, we give formal definitions of the topological objects to which
the computational method described in the next subsection applies.

We start by extending the concept of monomials maps to vector bundles. All
vector bundles we encounter will be assumed to be complex and normed. Vector
bundles over smooth manifolds will in addition be smooth. Given a vector
bundle F −→ X and any map δ : X −→ R, put

Fδ =
{
(b; v) ∈ F : |v|b < δ(b)

}
.

If F =
⊕

i∈I Fi is the direct sum of nontrivial subbundles and I0 ⊂ I , let

Y (F ; I0) =
⋃

i∈I0

( ⊕

j∈I−{i}

Fj

)
⊂ F.
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Definition 2.9 Suppose I0 , I , and J are finite sets, and A = (aij) is an
integer-valued function on (I0 ⊔ I) × (I0 ⊔ J) such that for all j ∈ I0 , aij = 0
if i 6= j and aij = 1 if i = j .

(1) Suppose Fj −→ M is a vector bundle for each j ∈ I0 and a line bundle
for each j ∈ J ,

F =
⊕

j∈I0⊔J

Fj , F̃i =
⊗

j∈I0⊔J

F
⊗aij

j for all i ∈ I0 ⊔ I, and F̃ =
⊕

i∈I0⊔I

F̃i.

A function ρ : F − Y (F ;J) −→ F̃ is a degree-A monomials map on F if

πiρ
(
(υj)j∈I0⊔J

)
=

⊗

j∈I0⊔J

υ
⊗ai,j

j

for all (υj)j∈I0⊔J ∈ F − Y (F ;J) and i ∈ I0 ⊔ I , where πi : F̃ −→ F̃i is the
projection map.

(2) Suppose ρ is as in (1), Ei −→ M is a vector bundle for each i ∈ I ,

E =
⊕

i∈I

Ei, and Ẽ =
⊕

i∈I

Ei ⊗ F̃i.

A function
ρ̃ : E ⊕ F − Y (E ⊕ F ;J) −→ Ẽ

is a degree-A monomials map on E ⊕ F if

πiρ̃
(
(wi)i∈I , (υ)j∈I0⊔J

)
= wi ⊗ πiρ(υ)

for all
(
(wi)i∈I , (υ)j∈I0⊔J

)
∈ E ⊕ F − Y (E ⊕ F ;J) and i ∈ I .

A monomials map between vector bundles in the sense of Definition 2.9 part (1)
can be viewed as a pair of bundle maps

ρI,J : FJ ≡
⊕

j∈J

Fj −→ F̃I ≡
⊕

i∈I

F̃i and ρI0 : FJ ⊕
⊕

i∈I0

Fi −→
⊕

i∈I0

F̃i.

The vector bundles FJ and F̃I are sums of line bundles and the restriction of the
bundle map ρI,J to each fiber is a monomials map in the sense of Definition 2.1.
The degree of this map is A|I × J . The bundle map ρI0 has I0 components,
indexed by i ∈ I :

πiρ : Fi⊕FJ −→ F̃i ≡ Fi⊗
⊗

j∈J

F
⊗aij

j , given by
(
υi, (υj)j∈J

)
7−→ υi⊗

⊗

j∈J

υj .

A monomials map in the sense of Definition 2.9 part (2) is equivalent to a
monomials map in the sense of Definition 2.9 part (1) with A being a function
on (I ⊔ ∅) × (I ⊔ J).
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If ρ and ρ̃ are as in Definition 2.9 part (2), and i ∈ I , we put

F̃i(ρ̃) = F̃i and ρ̃i(υ) = πiρ(υ) ∈ F̃i(ρ̃) for all υ ∈ F − Y (F ;J).

If ρ is as in Definition 2.9 part (1), we call ρ nondegenerate if the restriction of ρ
to a fiber of F is nondegenerate in the sense of Definition 2.1, for some choice of
identifications of the sets I0⊔I and I0⊔J with the sets of integers 1, . . . , |I0⊔I|
and 1, . . . , |I0 ⊔ J |. If ρ is nondegenerate and |I| = |J |, we call ρ positive (or
negative, or neutral) if the restriction of ρ to a fiber of F is positive (or negative,
or neutral). Similarly, suppose ρ is a positive or negative monomials map, I1
and I2 are one-element sets, and A1 and A2 are integer-valued functions on

I1 × (I0 ⊔ J) and I2 × (I0 ⊔ J),

respectively. If ρ1 and ρ2 are monomials maps of degrees A1 and A2 , respec-
tively, we write ρ1 >ρ ρ2 if this relation holds for the restriction to a fiber;
see Definition 2.2. Due to the remark following this definition, the notions of
nondegenerate, positive, negative, and neutral depend only on A; the partial
ordering relation depends only on A, A1 , and A2 .

If F is any (normed) vector bundle and δ ∈ R+ , we define the function βδ on
F by:

βδ : F −→ [0, 1] ⊂ R, βδ(υ) = βδ
(
|υ|

)
.

If ρ is a positive or negative monomials map between vector bundle and t ∈ R+ ,
we denote by deg ρ the oriented degree of the map t−1βδρ given by Proposi-
tion 2.3B.

The next two definitions characterize the topological spaces with which we work.
Ms-orbifolds, as described by Definition 2.10, include spaces of stable maps.
Examples of pseudovarieties, as described by Definition 2.11, that we encounter
are subspaces of spaces of stable maps that consist of elements corresponding
to curves with specified singularities.

Definition 2.10 A compact topological orbifold M = Mn ⊔
n−1⊔
k=0

Mk is a
mostly smooth, or ms-orbifold of dimension n if

(1) M ≡ Mn is an open subset of M, and Mk − Mk ⊂
⋃
j<k

Mj for all
k = 0, . . . , n;

(2) Mk is a smooth oriented orbifold of dimension 2k for all k = 0, . . . , n;

(3) for each k = 0, . . . , n− 1, there exist a smooth complex vector orbi-bundle
Fk −→ Mk and an identification φk : Uk −→ Vk of neighborhoods of Mk in
Fk and in M such that φk : φ−1

k (M) −→ Vk ∩M is an orientation-preserving
diffeomorphism.
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There is no firm consensus about the correct definition of the orbifold category.
For our purposes, we put the following, rather strong, requirements on the
objects involved in Definition 2.10. Each smooth orbifold Mk of Definition 2.10
is the quotient of a smooth manifold M̃k by a smooth action of a compact Lie
group Gk . All points of M̃k have finite stabilizers, and the set of points with
nontrivial stabilizers has codimension at least two in M̃k . In other words, this
set is a finite union of smooth manifolds of dimension at most 2k− 2+dimGk .
In addition, there exists a vector-bundle splitting

TM̃k = T vM̃k ⊕ T hM̃k,

where T vM̃k is the vertical tangent bundle and T hM̃k is a complex vector
bundle on which Gk acts by complex-linear automorphisms. We call Fk −→
Mk a smooth complex vector orbi-bundle if there exists a smooth complex
vector bundle F̃k −→ M̃k on which Gk acts smoothly.

By a compact topological orbifold M, we mean the quotient of a compact
Hausdorff topological space

M̃ = M̃n ⊔
n−1⊔

i=0

M̃′
k

by a continuous action of a compact Lie group G. For the purposes of Defini-
tion 2.10, M̃′

k denotes the preimage of Mk under the quotient projection map

M̃ −→ M, G = Gn , and the restriction of the continuous G–action to M̃n

agrees with the smooth Gn–action of the previous paragraph. Condition (3) of
Definition 2.10 means that there exist

(3a) a splitting Gk = G×G′
k ;

(3b) a Gk–invariant neighborhood Ũk of M̃k in F̃k ;

(3c) a G–invariant neighborhood Ṽk of M̃′
k in M̃;

(3d) a G–equivariant topological G′
k–fibration φ̃k : Ũk −→ Ṽk such that

(3d-i) φ̃k(M̃k) = M̃′
k and φ̃k : φ̃−1

k (M̃n) −→ Ṽk ∩ M̃n is smooth;

(3d-ii) for each x ∈ φ̃−1
k (M̃n), the map πheφk(x)

◦dφ̃k|x : T hx M̃k −→ T heφk(x)
M̃

is an orientation-preserving isomorphism.

Throughout the rest of the paper by a vector bundle over a smooth orbifold
we will mean a smooth complex normed vector orbi-bundle. With notation
as above, this means that F̃k carries a Gk–invariant Hermitian inner-product.
Similarly, V −→ M is a vector bundle if
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(1) V is the quotient of a topological Hermitian vector bundle Ṽ −→ M̃ by
an action of G;

(2) V |Mk is a vector bundle for all i = 0, . . . , n.

In (1), the action of G preserves the Hermitian structure.

If both M = Mn ⊔
⊔n−1
k=0 Mk and M

′
= Mn′ ⊔

⊔n′−1
k=0 M′

k are ms-orbifolds, a

continuous map π : M −→ M
′
will called an ms-map if for each k = 0, . . . , n,

there exists k′ = 0, . . . , n′ such that π : Mk −→ M′
k′ is a smooth map.

Definition 2.11 Let M be an ms-orbifold as in Definition 2.10.

(1) A smooth 2m–dimensional oriented suborbifold S of M is an m–pseudo-

cycle in M if S − S is contained in
⊔n−1
k=0 Mk and S ∩Mk is contained in a

finite union of smooth suborbifolds of Mk of dimension at most 2m− 2.

(2) A pseudocycle S is a pseudovariety if S is a smooth submanifold of M.

This definition of pseudocycle is a variation on that of [10, Chapter 7] and
[14, Section 1]. For fairly straightforward topological reasons, every pseudo-
cycle of [10] and [14] determines an integral homology class. For nearly the
same reasons, every pseudocycle S of Definition 2.11 determines an element
of H2m(M; Q). If α ∈ H2m(M; Q), we denote the evaluation of α on this
homology class by 〈α,S〉. We write ∂S for the boundary of S , ie the set
S − S .

If S is a pseudovariety in M, by a vector bundle V −→ S we will mean a
topological Hermitian vector bundle over a neighborhood UV of S in M such
that for each k = 0, . . . , n the restriction of V to UV ∩Mk is a smooth Hermitian
bundle. Similarly, we denote by Γ(S;V ) the space of continuous sections of V
over UV that restrict to smooth sections on UV ∩Mk for all k = 0, . . . , n. For
the sake of simplicity, we restrict the presentation of our main topological tools
to vector bundles over pseudovarieties as this is sufficient for the purposes of
counting rational curves in projective spaces.

Throughout the paper, we assume that every smooth oriented manifold Z
comes with a system of trivializations, ie a smooth map

ϑZ : TZδ −→ Z,

where δ ∈ C(Z; R+), such that ϑZ |TbZδ(b) is an orientation-preserving dif-
feomorphism onto an open neighborhood of b in Z that sends (b; 0) to b. If
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V −→ Z is a vector bundle, we assume that such a map ϑZ comes with a
choice of a lift of ϑZ to a bundle identification

ϑZ;V : π∗TZV
∣∣
TZδ

−→ V,

ie an isomorphism of smooth Hermitian vector bundles that restricts to the
identity over Z ⊂ TZ . If V is given as a direct sum of proper subbundles Vi ,
ϑZ;V will be assumed to be induced by the identifications ϑZ;Vi . If M is a
smooth oriented manifold, E −→ M is a vector bundle, and κ ∈ Γ(M;E)
is a section transversal to the zero set, we assume that the smooth oriented
submanifold Z = κ−1(0) comes with a normal-neighborhood model, ie a smooth
map

ϑκ : Eδ −→ M,

for some δ ∈ C(Z; R+), which is an orientation-preserving diffeomorphism onto
an open neighborhood of Z in M such that ϑκ|Z is the identity map. If
V −→ M is a vector bundle, ϑκ comes with a choice of a bundle identification

ϑκ;V : π∗EV
∣∣
Eδ

−→ V
∣∣
Imϑκ

which respects vector-bundle splittings as above. Furthermore,

κ
(
ϑκ(b;w)

)
= ϑκ;E(b;w)

for all (b;w) ∈ Eδ . We will often only imply these identifications in equations
involving vector-bundle sections.

Definition 2.12 Suppose M is an ms-manifold as in Definition 2.10, S is
a pseudovariety in M as in part (2) of Definition 2.11, and Z is a smooth
submanifold of Mk for some k = 0, . . . , n.

(1) A regularization of Z in M is a tuple
(
UZ , E, κ, (Fk;j)j∈J(Z)

)
, where

(1a) UZ is a neighborhood of Z in Mk , E −→ UZ is a vector bundle,
and κ ∈ Γ(UZ ;V ) is a section transversal to the zero set such that
Z = κ−1(0);

(1b) Fk;j −→ UZ is a non-zero subbundle of Fk|UZ for each j ∈ J(Z)
such that Fk|UZ =

⊕
j∈J(Z) Fk;j , φk

(
Uk∩Y (Fk|UZ ;J(Z))

)
⊂ ∂M,

and φk
(
(Uk|UZ) − Y (Fk|UZ ;J(Z))

)
⊂ M.

(2) A model for Z in S is a tuple
(
UZ , E, κ, (Fk;j)j∈J(Z);OZ , ψZ

)
, where

(2a) (UZ , E, κ, (Fk;j)j∈J(Z)) is a regularization of Z in M;

(2b) OZ −→ UZ is a vector bundle of rank 1
2

(
dimM− dimS

)
;

(2c) ψZ : Fk −→ OZ is a bundle map such that
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(2c-i) ψZ is smooth outside of Y (Fk;J(Z));

(2c-ii) if υ ∈ Uk|UZ , φk(υ) ∈ S if and only if ψZ(υ) = 0.

Suppose V −→ S is a vector bundle and (UZ , E, κ, (Fk;j)j∈J(Z)) is a regular-

ization of Z in M. In such a case, we assume that the tuple

(UZ , E, κ, (Fk;j)j∈J(Z))

implicitly encodes a Hermitian vector-bundle isomorphism

ϑUZ ;V : π∗Fk
V

∣∣
φ−1

k (UV )|(UV ∩UZ)
−→ V

∣∣
UV ∩φk(Uk|(UV ∩UZ))

that covers the map φk and restricts to the identity over UV ∩ UZ . This
isomorphism is to be smooth over the complement of Y (Fk|UZ ;J(Z)). Along
with the map ϑk;V , we then obtain an identification

ϑ̃Z;V : π∗E⊕Fk
V

∣∣
(Eδ×Fk;δ)|(UV ∩Z)

−→ V
∣∣
UV ∩φkϑκ;Fk

((Eδ×Fk;δ)|(UV ∩Z))
,

covering the map φk ◦ ϑκ;Fk
for δ ∈ C(Z ∩ UV ; R+) sufficiently small.

Definition 2.13 Suppose M is a smooth manifold, F, V −→ M are vector
bundles, and Ω is an open subset of F .

(1) A smooth bundle map ε : Ω −→ V is C0–negligible if limυ−→0 ε(υ) = 0.

(2) A C0–negligible map ε : Ω −→ V is C1–negligible if limυ−→0DMε(υ) = 0,
where DMε denotes the differentiation of ε along M with respect to some
connections in F and V .

(3) If ρ is a positive or negative monomials map on F =
⊕

i∈I Fi and ρ̃ is a
monomials map on F with values in a line bundle L, a smooth bundle map
ε : Ω −→ V is (ρ, ρ̃)–controlled if there exist monomials maps ρ1, . . . , ρN on F
with values in L such that

ρ̃ >ρ ρj for all j = 1, . . . , N, and lim
υ∈Ω−Y (F ;I)

υ−→0

( N∑

j=1

|ρj(υ)|
)−1∣∣ε(υ)

∣∣ <∞.

Definition 2.14 Suppose M, S , and Z ⊂ Mk are as in Definition 2.12,
V −→ S is a vector bundle, and s ∈ Γ(S;V ).

(1) A semi-regularization of s near Z is a tuple
(
UZ , E, κ, (Fk;j)j∈J(Z);O

−
Z ⊕O+

Z , ψ
−
Z ⊕ ψ+

Z ; F̃ , ρ, α+, αV , ν
∗
)
,

where
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(1a)
(
UZ , E, κ, (Fk;j)j∈J(Z);O

−
Z⊕O+

Z , ψ
−
Z ⊕ψ+

Z

)
is model for Z in S such that

rkE ≥ rkO−
Z ;

(1b) F̃ =
⊕

i∈eI(Z) F̃i −→ UZ is a vector bundle and

ρ : Fk|UZ − Y (Fk|UZ ;J(Z)) −→ F̃

is a smooth bundle map;

(1c) ν∗ ∈ Γ(UZ ;O+
Z ⊕ V ) and α+ ⊕ αV ∈ Γ

(
UZ ; Hom(F̃ ;O+

Z ⊕ V )
)

is an
injective linear map such that α+ is onto along Z ;

(1d) there exist δ ∈ C∞(Z ∩ UV ; R+) and a C0–negligible map

ε̃+,V : Fk|UZ − Y (Fk|UZ ;J(Z)) −→ Hom(F̃ ;O+
Z ⊕ V )

such that
(
ψ+(b;υ), s(b;υ)

)
=

(
α+ρ(b;υ), αV ρ(b;υ)

)
+ ν∗(b) + ε̃+,V (b;υ)ρ(b;υ)

for all (b;υ) ∈ Fk;δ such that φk(b;υ) ∈ S .

(2) A semi-regularization
(
UZ , E, κ, (Fk;j)j∈J(Z);O

−
Z ⊕O+

Z , ψ
−
Z ⊕ ψ+

Z ; F̃ , ρ, α+, αV , ν
∗
)

is hollow if rk F̃k < rkFk and either ν∗ = 0 or the bundle map

F̃ −→ O+ ⊕ V, (b; υ̃) −→
{
α+ ⊕ αV

}
(b; υ̃) + ν∗(b),

does not vanish over Z .

(3) A semi-regularization
(
UZ , E, κ, (Fk;j)j∈J(Z);O

−
Z ⊕O+

Z , ψ
−
Z ⊕ ψ+

Z ; F̃ , ρ, α+, αV , ν
∗
)

is neutral if ρ is a neutral monomials map, α+|Y (F̃ ; {i}) is onto over Z for all
i ∈ Ĩ(Z), and ν∗ = 0.

Definition 2.15 Suppose M, S , Z ⊂ Mk , V −→ S , and s ∈ Γ(S;V ) are as
in Definition 2.14. A regularization of s near Z is a tuple

(
UZ , (Ei)i∈I(Z), (κi)i∈I(Z), (Fk;j)j∈J(Z);

O−
Z ⊕O+

Z , ψ
−
Z ⊕ ψ+

Z ; F̃ , ρ, α+, αV ; (Ẽi)i∈I(Z), ρ̃, α−

)
,

where

(1) Ei −→ UZ is a vector bundle for each i ∈ I(Z);
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(2) with E =
⊕

i∈I(Z) Ei and κ = (κi)i∈I(Z) ,
(
UZ , E, κ, (Fk;j)j∈J(Z);O

−
Z ⊕O+

Z , ψ
−
Z ⊕ ψ+

Z ; F̃ , ρ, α+, αV , 0)

is a semi-regularization of s near Z such that ρ is a positive or negative mono-
mials map and α+|Y (F̃ ; {i}) is onto over Z for all i ∈ Ĩ(Z);

(3) ρ̃ = (ρ̃i)i∈I(Z) is a degree–A monomials map on E ⊕ Fk with values

in Ẽ ≡
⊕

i∈I(Z) Ẽi , for some integer-valued function A on I(Z) × J(Z);

(4) α− ∈ Γ
(
Z; Hom(Ẽ,O−

Z )
)

is an isomorphism on every fiber;

(5) there exist δ ∈ C(Z ∩UV ; R+) and for each i ∈ I(Z) a C1–negligible map
and a (ρ, ρ̃i)–controlled map,

ε̃−i : Fk|UZ − Y (Fk|UZ ;J(Z)) −→ Hom(F̃i(ρ̃), αi(Ẽi)) and

ε−i : Fk|UZ − Y (Fk|UZ ;J(Z)) −→ αi(Ẽi)

such that

ψ−
i (b;υ) = α−ρ̃i(b;κi(b), υ) + ε̃−i (b;υ)ρ̃i(υ) + ε−i (b;υ) for all (b;υ) ∈ Fk;δ,

where ψ−
i denotes the ith component of ψ− under the decomposition O−

Z |Z =⊕
i∈I(Z) α−(Ẽi).

Remark Proposition 3.5 ensures that ψ− admits an expansion as in (5) of
Definition 2.15 in most cases one would encounter in counting rational curves
in projective spaces. However, this expansion is not needed if Z is s–hollow or
s–neutral; see Definition 2.17 and Proposition 2.18B.

If F , E −→ Z are vector bundles and α ∈ Γ
(
Z; Hom(F , E)

)
, let

α̃ ∈ Γ
(
PF ; Hom(γF , π

∗
PFE)

)

denote the section induced by α. Here γF −→ PF is the tautological line
bundle, while πPF : PF −→ Z is the bundle projection map.

If F , E −→ Z and α are as above, a closure of (Z, α) is a tuple (M
′
,F ′, E′),

where M
′

is an ms-manifold containing Z as a pseudovariety, and F ′ and E′

are vector bundles over Z that restrict to F and E , respectively, over Z .

Definition 2.16 Let M, S , Z , V , and s be as in Definition 2.14. A regu-
larization

(
UZ , (Ei)i∈I(Z), (κi)i∈I(Z), (Fk;j)j∈J(Z);

O−
Z ⊕O+

Z , ψ
−
Z ⊕ ψ+

Z ; F̃ , ρ, α+, αV ; (Ẽi)i∈I(Z), ρ̃, α−

)
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of s at Z is closable if (Z, αV ) admits a closure (M
′
, F̃ ′,O′) and PF̃ ′ admits

an ms-orbifold structure such that

(1) M
′
⊂ M, π

P eF ′ : PF̃ ′ −→ M is an ms-map, and α̃−1
+ (0) is a pseudovariety

in PF̃ ′ ;

(2) ∂α̃−1
+ (0) is a union of subsets Zi such that α̃V admits a semi-regularization

at each Zi .

Definition 2.17 Let M, S , V , and s be as in Definition 2.14.

(1) Z ⊂ Mk is s–hollow (neutral, regular) if s admits a hollow semi-regular-
ization (neutral semi-regularization, closable regularization) near Z .

(2) A section s is regular if s is transversal to the zero set and there exists a
finite collection {Zi}i∈Is of smooth disjoint manifolds in M such that

(2a) ∂S ⊂
⊔
i∈Is

Zi and Zi −Zi ⊂
⋃

dimZj<dimZi
Zj for all i ∈ Is ;

(2b) Zi is either s–hollow, s–neutral, or s–regular for every i ∈ Is .

Suppose s ∈ Γ(S;V ) is a regular section as in (2) of Definition 2.17. Let
{Zi}i∈I∗s be the subcollection of s–regular subsets. To each i ∈ I∗s , we associate
the tuple

̺i = (Mi,Si, γi,Oi, αi; deg ρi),

where, with notation as in Definitions 2.15 and 2.16,

Mi = PF̃ ′, Si = α̃−1
+ (0) ⊂ Mi, γi = γ eF ′ −→ Si, Oi = π∗eF ′V −→ Si,

αi = α̃V ∈ Γ
(
Si,Hom(γi,Oi)

)
,

are the objects corresponding to Zi . We will write deg ̺i for deg ρi .

2.3 Contributions to the Euler class

In this subsection, we describe the topological part of the computational method
of this paper:

Proposition 2.18A Suppose S is an m–pseudovariety in an ms-orbifold M
and E,O −→ S are vector bundles such that rkE = 1 and rkO = m + 1. If
α ∈ Γ

(
S;Hom(E,O)

)
is a regular section, for a dense open subset Γα(S;O) of

sections ν̄ ∈ Γ(S;O), the affine map

ψα,ν̄ ≡ α+ ν̄ : E|S −→ O, ψα,ν̄(b;υ) = αb(υ) + ν̄b,
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is transversal to the zero set. The set ψ−1
α,ν̄(0) is finite, and its signed cardinality

±|ψ−1
α,ν̄(0)| is dependent only on α and is given by

N(α) ≡± |ψ−1
α,ν̄(0)| =

∣∣α⊥−1(0)
∣∣,

where α⊥ ∈ Γ
(
S;Hom(E,O/C)

)
is the composition of α with projection map

onto the quotient of O by a generic trivial line subbundle.

Proposition 2.18B Suppose S is an m–pseudovariety in ms-orbifold M,
V −→ S is vector bundle of rank m, such that e(V ) is the restriction of a
cohomology class on M, and s ∈ Γ(S;V ) is a regular section. Then, s−1(0) is
a finite set, and

±
∣∣s−1(0)

∣∣ =
〈
e(V ),S

〉
−

∑

i∈I∗s

deg ̺i ·N(̺i) ≡
〈
e(V ),S

〉
− C∂S(s),

where I∗s is a complete collection of effective regularizations of s on S , as in
the last paragraph of Subsection 2.2 and N(̺i) ≡ N(αi).

Remarks (1) Together the two propositions give a reductive procedure for
counting the number of zeros of a section over the main stratum of a pseudova-
riety, provided that the section is “reasonably nice.” Indeed, one application of
both propositions reduces the rank of the target bundle by one. In the holomor-
phic category, every section is in fact “reasonably nice.” By Proposition 3.5,
many sections of interest to us also have the needed properties.

(2) In Proposition 2.18A, E can be a vector bundle of arbitrary rank, provided
the rank of O is adjusted appropriately and the section α̃ is regular. In such a
case, N(α) = N(α̃). In fact, one can obtain such a reduction even if the original
map α is a polynomial; see Subsection 3.3 in [17] for details. In addition, it is
not necessary to assume that α does not vanish over S . However, in practical
applications, the boundary of M can be enlarged to absorb the zero set of α.

(3) If E,E′ −→ M are vector bundles, ρ ∈ Γ
(
S; Hom(E,E′)

)
is an isomor-

phism on every fiber, and α ∈ Γ
(
S; Hom(E,O)

)
, then N(α) = N(α ◦ ρ−1),

provided both numbers are defined. Note that the isomorphism ρ is assumed
to be defined over S , and not over S . We will call the replacement of α by
α ◦ ρ−1 a rescaling of the linear map. A good choice of the isomorphism ρ may
greatly simplify the computation of the number N(α) via Propositions 2.18A
and 2.18B. In actual applications, our isomorphisms ρ will be such that N(α)
is defined if and only if N(α ◦ ρ−1) is defined.

(4) If α+ and αV are as in the last paragraph of Subsection 2.2,

N(α̃V ) = N(α+ ⊕ αV ).
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In particular, if Zi is a finite set and thus α+ ⊕ αV is an isomorphism over
every point of Zi , then N(α̃V ) =± |Zi|.

For computational purposes, it is useful to observe that if E −→ S is a vector
bundle of rank n such that c(E) is the restriction of an element of H∗(M),

λnE +
k=n∑

k=1

ck(E)λn−kE = 0 ∈ H2n(PE; Q) and

〈
µλn−1

E ,PE|S
〉

=
〈
µ,S

〉
for all µ ∈ H2m(M; Q);

(2.16)

the same formula in a more standard setting can be found in [1, Section 20],
for example. In the situation of Proposition 2.18A, but with E of an arbitrary
rank, Propositions 2.18A and 2.18B and equation (2.16) give

N(α) =
〈
c(O)c(E)−1,S

〉
− C

PE|∂S(α̃⊥). (2.17)

The last term above is zero if α extends to a section of Hom(E,O) over S that
has full rank over every point of S . In the computational sections of this papers,
we view formulas (2.16) and (2.17) as parts of Propositions 2.18A and 2.18B.

In the rest of this subsection, we prove Propositions 2.18A and 2.18B. Before
proceeding, we first comment on the topology on Γ(S;O) to which the first
proposition makes an implicit reference. There are many topologies in which
the statement of the proposition is valid. One of them is defined via convergence
of sequences on compact subsets in the C0–norm on UO and the C2–norm on
compact subset of UO ∩Mk ; see [17, Subsection 3.2] for more details.

The proof of Proposition 2.18A is essentially the same as the proof of [17,
Lemma 3.14]. The finiteness claim is proved as follows. Suppose (br, vr) ∈ E|S
is a sequence such that ψα,ν̄(br, vr) = 0 and {br} converges to some b∗ ∈ ∂S .
Let

(
UZ , E

′, κ, (Fk;j)j∈J(Z);O
−
Z ⊕O+

Z , ψ
−
Z ⊕ ψ+

Z ; F̃ , ρ, α+, αE∗⊗O, ν
∗
)
,

be a semi-regularization of α at a submanifold Z of Mk containing b∗ , as
provided by (2) of Definition 2.17. By replacing Z with Z ∩ UE ∩ UO , if
necessary, it can be assumed that Zi ⊂ UE ∩ UO . As in the proof of Lemma 3.12
in [17], from the sequence {(br, vr)} we can obtain a zero of the map

ψα,ν̄;Z : E ⊗ F̃ −→ E ⊗O+ ⊕O, ψα,ν̄;Z(b;υ) =
(
α+(υ), αE∗⊗O(υ) + ν̄

)
,

if ν∗ = 0. This is a bundle map over Z . By (1c) of Definition 2.14, the
first-component map is surjective. Thus, for a dense open subset of elements
of Γ(S;O), the map ψα,ν̄;Z is transversal to the zero set. Assumptions on the
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dimension and the ranks imply that ψα,ν̄;Z(b;υ) does not vanish if ν̄ lies in this
open dense subset; see (2) of Definition 2.12 and (1a)–(1c) of Definition 2.14.
On the other hand, if ν̄∗ 6= 0, we can obtain a zero of the map

ψα,ν̄;Z : E ⊗ F̃ ⊕ E −→ E ⊗O+ ⊕O,

ψα,ν̄;Z(b;w, υ) =
(
α+(υ), αE∗⊗O(υ) + ν̄

)
+ ν∗w.

In this case, rk F̃ < rkFk and thus the map ψα,ν̄;Z again has no zeros if
ν̄ is generic. We conclude that ψ−1

α,ν̄(0) is a finite set. The independence of
±
∣∣ψ−1
α,ν̄(0)

∣∣ of the choice of ν̄ is shown by constructing a cobordism between

ψ−1
α,ν̄1(0) and ψ−1

α,ν̄2(0); see part (5) of the proof of Lemma 2.22 below for a
similar argument. The final claim of Proposition 2.18A is nearly immediate
from the definition of ψα,ν̄ ; see Subsection 3.3 in [17]. The trivial subbundle
mentioned in the statement of the proposition is simply Cν̄ , if ν̄ ∈ Γ(S;O) is
generic and thus does not vanish.

We next prove Proposition 2.18B. The first step is to construct a section
s̃ ∈ Γ(S;V ) such that s̃ = s outside of a small neighborhood of ∂S that con-
tains no zeros of s. This is achieved by cutting s off near ∂S , so that the new
section extends over ∂S by zero. This procedure changes the estimate of (1d)
of Definition 2.14 in a well-controlled manner. We then add a small perturba-
tion tν to s̃ such that s̃ + tν has transverse zeros on S and no zeros on ∂S .
The total number of zeros of this section is then the euler class of V over S ,
〈e(V ),S〉. On the other hand, for each element of s−1(0) there will be a nearby
zero of the perturbed section. All the remaining zeros will lie near ∂S . The
final step is to show that all such zeros lie near the s–regular subsets of ∂S , for
a good choice of ν , and can be expressed in terms of the zeros of affine maps.

Let {Zi}i∈Is be a collection of smooth manifolds in M as in Definition 2.17
with corresponding semi-regularizations

(
Ui, Ei, κi, (Fki;j)j∈J(Zi);O

−
i ⊕O+

i , ψ
−
i ⊕ ψ+

i ; F̃i, ρi, αi;+, αi;V , ν
∗
i

)
.

By replacing Zi with Zi ∩ UV , if necessary, it can be assumed that Zi ⊂ UV .
Let δ̃i ∈ C(Zi; R

+) be such that ϑκi is defined on Eeδi ,
ϑκi;Fki

(
Eeδi ×Zi Fki;eδi) ⊂ Uki

, and φki
ϑκi;Fki

(
Eeδi ×Zi Fki;eδi) ⊂ UV .

If δ ∈ C(Zi; R
+) is less than δ̃i and K is a subset of Zi , let

Ui(δ) = Ei;δ ×Zi Fki;δ − Y (Ei ⊕Fki
;J(Zi)), and

Wi(δ;K) = φki

(
ϑκi;Fki

(Ei;δ ×K Fki;δ)
)
⊂ M.

We denote Wi(δ;Zi) by Wi(δ). Since all the zeros of s are transverse, the next
lemma implies that s−1(0) is a finite set.
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Lemma 2.19 There exists δ̃∗i ∈ C(Zi; R
+) such that Wi(δ̃

∗
i ) ∩ s

−1(0) = ∅.

Proof Let α̃i = αi;+ ⊕ αi;V . By (1c), (2), and (3) of Definition 2.14 and (2)
of Definition 2.15, there exists εeαi

∈ C(Zi; R
+) such that

∣∣α̃i(b; υ̃) + ν∗i (b)
∣∣ ≥ εeαi

(b)
∣∣υ̃

∣∣ for all (b; υ̃) ∈ F̃i. (2.18)

If ε̃i;+,V is a C0–negligible map as in (1d) of Definition 2.14 corresponding
to Zi , let

ε̄i;+(b, r) = sup
{∣∣ε̃i;+,V (b;w, υ)

∣∣ : (b;w, υ) ∈ Eeδi ×Zi Fki;eδi ;
|w|, |υ| < r, (b;υ) 6∈ Y (Fki

, J(Zi))
}
.

Then, ε̄i;+ is continuous and limr−→0 ε̄i;+(b, r) = 0. Suppose

(b;w, υ) ∈ Ui(δ), φki
ϑκi;Fki

(b;w, υ) ∈ S, and s
(
φki

ϑκi;Fki
(b;w, υ)

)
= 0,

where δ ≤ δ̃i . Then, by Definition 2.14,
∣∣α̃iρi(b;υ) + ν∗i (b)

∣∣ ≤ ε̄i;+
(
b, δ(b)

)∣∣ρi(b;υ)
∣∣. (2.19)

By (2.18) and (2.19), if ε̄i;+
(
b, δ(b)

)
< εeαi

(b) for all b ∈ Zi , then Wi(δ)∩s
−1(0)

is empty.

Choose ν ∈ Γ(S;V ) with the following properties:

(A1) for all i ∈ Is , ν̄i ≡ ν|Zi has no zeros, and the map

ψi;ν̄i : F̃i −→ O+
i ⊕ V, ψi;ν̄i(b;υ) =

(
αi;+(υ), ν̄i(b) + αi;V (υ)

)
,

is transversal to the zero set. Furthermore, if Zi is s–hollow, the sets Rν∗i and
R∗ · Imψi;ν̄i(b;υ) are disjoint.

(A2) If Zi is s–regular or s–neutral, ψi;ν̄i |Y (F̃i; j) does not vanish for all

j ∈ Ĩ(Zi);

(A3) If Zi is s–regular, ψ−1
i;ν̄i

(0) is a finite set.

Note that (A1) and (A2) are just transversality assumptions, due to (1c) and
(3) of Definition 2.14 and (2) of Definition 2.15. Conditions (A3) holds if ν̄i is
the restriction of a section ν̄ ′ ∈ Γ(Z i;V ) such that

π∗eFi
ν̄ ′ ∈ Γeαi;V

(
α̃−1
i;+(0);π∗eFi

V
)
.
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Lemma 2.20 If Zi is s–hollow, there exists δ∗i ∈ C(Zi; R
+) with the following

property. If W is an open neighborhood of ∂S in M, there exists ǫ > 0 such
that for all η ∈ C(S; R), t ∈ R+ , and ν ′ ∈ Γ(S;V ), satisfying ν ′|W = ν|W and
‖ν − ν ′‖C2(S−W ) < ǫ,

Wi(δ
∗
i ) ∩

{
ηs+ tν ′

}−1
(0) = ∅.

Proof By assumption (A1), the map

F̃i ⊕ R −→ O+
i ⊕ V, (b;υ) −→

(
αi;+(b;υ), ν̄i(b) + αi;V (υ)

)
+ τν∗i (b),

has no zeros over Zi . Thus, there exists δeαi,ν̄i
∈ C(Zi; R

+) such that
∣∣(0, ν̄i(b))+ α̃i(b; υ̃)+ τν∗i (b)

∣∣ ≥ δeαi,ν̄i
(b)

(
1+

∣∣α̃i(b; υ̃)
∣∣) for (b; υ̃) ∈ F̃i. (2.20)

By continuity of ν , there exists εi,ν ∈ C0(Zi × R; R) such that

lim
r−→0

εi,ν(b, r) = 0 and
∣∣ν

(
φki

ϑκi;Fki
(b;w, υ)

)
− ν̄i(b)

∣∣ ≤ εi,ν
(
b, δ(b)

)

for all (b;w, υ) ∈ Ui(δ) such that φki
ϑκi;Fki

(b;w, υ) ∈ S . If ν ′ ∈ Γ(S;V ) is such
that ν ′|W = ν|W and ‖ν − ν ′‖C2(S−W ) < ǫ, then

∣∣{ν − ν ′}
(
φki

ϑκ;Fki
(b;w, υ)

)∣∣ ≤ Ci,W (b)δ(b)ǫ

for all (b;w, υ) ∈ Ui(δ) such that φki
ϑκi;Fki

(b;w, υ) ∈ S , where Ci,W ∈ C(Zi; R)
depends only on W . Thus, by the above and (1d) of Definition 2.14,

∣∣(0, tν̄i(b)
)

+ α̃i
(
η(φki

ϑκi;Fki
(b;w, υ))ρi(b;υ)

)
+ η(φki

ϑκi;Fki
(b;w, υ))ν∗i (b)

∣∣

≤ εeαi
(b)−1ε̄+(b, δ(b))

∣∣α̃i
(
η(φki

ϑκi;Fki
(b;w, υ))ρi(b;υ)

)∣∣

+ t
(
εi,ν(b, δ(b)) +Ci,W (b)δ(b)ǫ

)
(2.21)

for all (b;w, υ) ∈ Ui(δ) such that φki
ϑκi;Fki

(b;w, υ) ∈ S and
{
ηs + tν ′

}
φki

ϑκi;Fki
(b;w, υ) = 0,

where εeαi
is as in the proof of Lemma 2.19. By (2.20) and (2.21),

Wi(δ) ∩
{
ηs+ tν ′

}−1
(0) = ∅

if εeαi
(b)−1ε̄+(b, δ(b)), εi,ν (b, δ(b)), Ci,W (b)δ(b)ǫ < 1

4δeαi,ν̄i
(b) for all b ∈ Zi .

Lemma 2.21 If Zi is s–neutral, there exists δ∗i ∈ C(Zi; R
+) with the follow-

ing property. If W is an open neighborhood of ∂S in M, there exists ǫ > 0
such that for all η ∈ C(S; R), t ∈ R+ , and ν ′ ∈ Γ(S;V ), satisfying ν ′|W = ν|W
and ‖ν − ν ′‖C2(S−W ) < ǫ,

Wi(δ
∗
i ) ∩

{
ηs+ tν ′

}−1
(0) = ∅.

Geometry & Topology, Volume 9 (2005)



610 Aleksey Zinger

Proof By assumptions (A1) and (A2), ψ−1
i,ν̄i

(0) is a discrete subset of F̃i −

Y (F̃i; Ĩ(Zi)) and contains at most one point of each fiber. For each υ̃ ∈ ψ−1
i,ν̄i

(0),

let Keυ be a neighborhood of υ̃ in F̃i − Y (F̃i; Ĩ(Zi)) such that the closure of
Keυ in F̃i − Y (F̃i; Ĩ(Zi)) is compact. For simplicity, it can be assumed that all
the sets Keυ are disjoint. By Proposition 2.3A, there exists δρi,ν̄i ∈ C∞(S; R+)
such that

Fki;δρi,ν̄i
∩ ρ−1

i

( ⋃eυ∈ψ−1
i,ν̄i

(0)

R+ · Keυ) = ∅.

Then, there exists δν̄i ∈ C(Zi; R
+) such that for all τ ∈ R

∣∣(0, ν̄i(b)) + α̃i
(
τρi(b;υ)

)∣∣ ≥ δν̄i(b)
(
1 +

∣∣α̃i
(
τρi(b;υ)

)∣∣) (2.22)

for all (b;υ) ∈ Fki;δρi,ν̄i
− Y (F̃i; Ĩ(Zi)). On the other hand, by the same argu-

ment as in the proof of Lemma 2.20,
∣∣(0, tν̄i(b)

)
+ α̃i

(
η(b;w, υ)ρi(b;υ)

)∣∣
≤ εeαi

(b)−1ε̄+(b, δ(b))
∣∣α̃i

(
η(b;w, υ)ρi(b;υ)

)∣∣
+ t

(
εi,ν(b, δ(b)) +Ci,W (b)δ(b)ǫ

)
(2.23)

for all (b;w, υ) ∈ Ui(δ) such that φki
ϑκi;Fki

(b;w, υ) ∈ S and
{
ηs + tν ′

}
φki

(b;w, υ) = 0,

if ν ′|W = ν|W and ‖ν − ν ′‖C2(S−W ) < ǫ. Thus, Wi(δ) ∩
{
ηs + tν ′

}−1
(0) = ∅

if εeαi
(b)−1ε̄+(b, δ(b)), εi,ν (b, δ(b)), Ci,W (b)δ(b)ǫ < 1

4δν̄i(b) for all b ∈ Zi and
δ ≤ δρi,ν̄i .

Lemma 2.22 If Zi is s–regular, there exist δ∗i ∈ C(Zi; R
+), a compact subset

Keαi;ν̄i
of Zi , and δi, ǫi ∈ R+ with the following property. If W is an open

neighborhood of ∂S in M, there exists ǫW ∈ R+ such that for every η ∈
C(S; R), satisfying

η
(
φki

ϑκi;Fki
(w, υ)

)
= βδi(|υ|)

for all (w, υ) ∈ Ei;δ∗i ×Keαi;ν̄i
Fki;δ

∗
i

such that φki
ϑκi;Fki

(w, υ) ∈ S , t ∈ (0, ǫi),
and ν ′ ∈ Γ(S;V ), satisfying ν ′|W = ν|W , ‖ν − ν ′‖C2(S−W ) < ǫW , and ηs+ tν ′

is transversal to the zero set on S , then

±
∣∣Wi(δ

∗
i ) ∩

{
ηs + tν ′

}−1
(0)

∣∣ = deg ρi ·
±

∣∣ψ−1
i,ν̄ (0)

∣∣

and
Wi(δ

∗
i ) ∩

{
ηs + tν ′

}−1
(0) ⊂Wi(δ

∗
i ;Keαi;ν̄i

).

Furthermore, if W ∗ is a neighborhood of Zi in M, δ∗i can be chosen so that
Wi(δi) ⊂W ∗ .
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Proof (1) Let K be an open neighborhood of the finite subset ψ−1
i,ν̄i

(0) of

F̃i − Y (F̃i; Ĩ(Zi)) such that the closure of K in F̃i − Y (F̃i; Ĩ(Zi)) is compact.
Let K̃eαi,ν̄i

= ρ−1
i (R ·K). Note that by (1) of Proposition 2.3B, K̃eαi,ν̄i

is a closed
subset of Fki

−Zi . We take

Keαi,ν̄i
= πFki

(K̃eαi,ν̄i
) = π eFi

(K).

This is a compact subset of Zi .

(2) As in the proofs of Lemmas 2.20 and 2.21, there exists δν̄i ∈ C(Zi; R
+)

such that
∣∣(0, ν̄i(b))+α̃i(b; υ̃)

∣∣ > δν̄i(b)
(
1+

∣∣α̃i(b; υ̃)
∣∣) for all (b; υ̃) ∈ F̃i−R·K. (2.24)

On the other hand, as before, by the estimate (1d) of Definition 2.14,

∣∣(0, tν̄i(b)
)

+ α̃i
(
η(b;w, υ)ρi(b;υ)

)∣∣

≤ ε̃+(b, δ∗i (b))
∣∣α̃i

(
η(b;w, υ)ρi(b;υ)

)∣∣ + t
(
εi,ν(b, δ

∗
i (b)) + C̃i,W (b)ǫW

)

(2.25)

for all (b;w, υ) ∈ Ui(δ
∗
i ) such that φki

ϑκi;Fki
(b;w, υ) ∈ S and

{
ηs+ tν ′

}
(b;w, υ) = 0,

where ε̃+(b, δ∗i (b)) = εeαi
(b)−1ε̄+(b, δ∗i (b)) and C̃i,W (b) = Ci,W (b)δ∗i (b). By

(2.24) and (2.25),

Wi(δ
∗
i ) ∩

{
ηs+ tν ′

}−1
(0)

⊂ φki
ϑκi;Fki

({
(w, υ) ∈ Ei ⊕Fki

: υ ∈ K̃eαi,ν̄i
, |w|, |υ| < δ∗i (b)

})
(2.26)

if ε̃+(b, δ∗i (b)), εi,ν(b, δ
∗
i (b)), C̃i,W (b)ǫW < 1

4δν̄i(b) for all b ∈ Zi.

(3) Let ρ̃i ≡ (ρ̃i,i′)i′∈I(Zi) and αi;− be the monomials map and the vector-
bundle isomorphism as in (3) and (4) of Definition 2.15, respectively, corre-
sponding to Zi . Similarly, for each i′ ∈ I(Zi), let ε̃−i,i′ and ε−i,i′ be a C1–
negligible map and a (ρi, ρ̃i,i′)–controlled map as in (5) of Definition 2.15 cor-
responding to Zi . Since αi;− is an isomorphism on every fiber and the image
of ε̃−i,i′ lies in the subbundle αi;−(Ei,i′) of O− , we can define a C1–negligible
map

ε̃i,i′ : Fki
|Ui − Y (Fki

|Ui;J(Zi)) −→ Ei

by ε̃−i,i′(w, υ) = αi;−
(
ε̃i,i′(w, υ) ⊗ ρ̃i,i′(υ)

)
. By the Contraction Principle, there

exists δ− ∈ R+ such that for all

(w′, υ) ∈ Ei;δ− ×Keαi,ν̄i
FT ki,δ−

Geometry & Topology, Volume 9 (2005)



612 Aleksey Zinger

the equation

w +
∑

i′∈I(Zi)

ε̃i,i′(w, υ) = w′, w ∈ Ei;2δ− ,

has a unique solution. Furthermore, this solution satisfies |w| ≤ 2|w′|; see the
proof of [17, Lemma 3.18], for example. Let ǫ− ∈ R+ be such that

∣∣αi;−(w̃)
∣∣ ≥ ǫ−|w̃| for all w̃ ∈ Ẽ|Keαi,ν̄i

. (2.27)

By (3) of Definition 2.13 and (3) of Proposition 2.3B, there exists δ+ ∈ R+

such that ∣∣ε−i,i′(w, υ)
∣∣ ≤ ǫ−δ−

4|I(Zi)|

∣∣ρ̃i,i′(υ)
∣∣

for all i′ ∈ I(Zi) and υ ∈ K̃eαi,ν̄i
such that |υ| ≤ δ+ . It can be assumed that

δ+ ≤ δ− . Then by (5) of Definition 2.15,

∣∣αi;−
(
(w + ε̃i,i′(w, υ)) ⊗ ρ̃i,i′(υ)

)∣∣ < ǫ−δ−
2|I(Zi)|

∣∣ρ̃i,i′(υ)
∣∣ (2.28)

for all (w, υ) ∈ Ei;δ∗i ×ZiFki;δ∗i
where υ ∈ K̃eαi,ν̄i

, |υ| ≤ δ+, φki
ϑκi;Fki

(w, υ) ∈ S .

(4) Let δi = 1
4δ

2
+ . If δ+ < infKeαi,ν̄i

δ∗i , by (2) of Proposition 2.3B, there exists

ǫi ∈ R+ such that for all t ∈ (0, ǫi),

Fki;δ∗i
∩

{
t−1ηρi

}−1
(K) ⊂ Fki,δ+ ,

and t−1ηρi : Fki;δ∗i
∩

{
t−1ηρi

}−1
(K) −→ K is a covering projection of oriented

degree deg ρi . Then, by (2.26)–(2.28) and the assumption on δ− ,

Wi(δ
∗
i ) ∩

{
ηs+ tν ′

}−1
(0)

⊂ φki
ϑκi;Fki

({
(b;w, υ) ∈ Ei ⊕Fki

: b ∈ Keαi,ν̄i
, |w|, |υ| ≤

1

2
δ∗i (b)

})

for all t ∈ (0, ǫi), if δ± ≤ 1
2δ

∗
i (b) for all b ∈ Keαi,ν̄i

and

ε̃+(b, δ∗i (b)), εi,ν(b, δ
∗
i (b)), C̃i,W (b)ǫW <

1

4
δν̄i(b)

for all b ∈ Zi .

(5) By Definition 2.14, the set Wi(δ
∗
i )∩

{
ηs+tν ′

}−1
(0) consists of the solutions

of the system




ψ−
i (w, υ) = 0 ∈ O−

ψ+
i (w, υ) = 0 ∈ O+

{
ηs+ tν ′

}
(w, υ) = 0 ∈ V

(w, υ) ∈ Ui(δ
∗
i ).
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By our assumptions, the zeros of this system of equations are transverse. By
(1)–(4) and Definitions 2.14 and 2.15, these zeros are the same as the zeros of
the system





αi;−ρ̃i(w, υ) +
∑

i′∈I(Zi)

(
ε̃−i,i′(w, υ)ρ̃i,i′(υ) + ε−i,i′(w, υ)

)
= 0 ∈ O−

βδi(|υ|)
(
αi;+ + ε̃i;+(w, υ)

)
ρi(υ) = 0 ∈ O+

βδi(|υ|)
(
αi;V + ε̃i;V (w, υ)

)
ρi(υ) + tν ′(w, υ) = 0 ∈ V

(2.29)

where ε̃i;+ and ε̃i;V denote the O+ and V –components of ε̃i;+,V and (w, υ) ∈
Ui(δ

∗
i ) as before. We will show that the zeros of (2.29) are cobordant to the

zeros of the system




αi;−ρ̃i(b;w, υ) = 0 ∈ O−

αi;V
(
βδi(|υ|)ρi(b;υ)

)
= 0 ∈ O+

αi;+
(
βδi(|υ|)ρi(b;υ)

)
+ tν̄i(b) = 0 ∈ V

(b;w, υ) ∈ Ui(δ
∗
i ). (2.30)

We construct a cobordism between the two zero sets as follows. If h− , h+ , and
hV are bundle maps from X ≡ [0, 1]×Ui(δ

∗
i ) to O− , O+ , and V , respectively,

and h = (h−, h+, hV ), let X (h) be the set ot tuples (τ, (b;w, υ)) ∈ X such that




βδi(|υ|)
(
αi;+ + τ ε̃i;+(b;w, υ)

)
ρi(b;υ) + h+(τ, b;w, υ) = 0,

βδi(|υ|)
(
αi;V + τ ε̃i;V (b;w, υ)

)
ρi(b;υ) + t

(
τν ′(b;w, υ) + (1 − τ)ν̄i(b)

)

+hV (τ, b;w, υ) = 0,

αi;−ρ̃i
(
b;w, υ) + τ

∑

i′∈I(Zi)

(
ε̃−i,i′(b;w, υ)ρ̃i,i′ (b;υ) + ε−i,i′(b;w, υ)

)

+h−(τ, b;w, υ) = 0.

Since the zeros of (2.29) and (2.30) are transverse, for a generic choice of h
with the boundary condition hτ=0,1 ≡ 0, X (h) is a smooth oriented manifold
such that ∂X (h) = X1(h) −X0(h). By the same argument as in (1)–(4),

X (h) ⊂ [0, 1] ×
{
(b;w, υ) ∈ Ei ⊕Fki

: (b;υ) ∈ K̃eαi,ν̄i
,

δi ≤ |υ| ≤
1

2
δ∗i (b), |w| <

1

2
δ∗i (b)

}
,

if
∣∣hV (τ, b;w, υ)

∣∣,
∣∣h+(τ, b;w, υ)

∣∣ ≤ 1
3 tδν̄i(b) for all b ∈ Zi and

∣∣h−(τ, b;w, υ)
∣∣ ≤

ǫ−δ−
4|I(Zi)|

∣∣ρ̃i,i′(υ)
∣∣ for all υ ∈ K̃eαi,ν̄i

such that δi ≤ |υ| ≤ δ∗i (b), i
′ ∈ I(Zi). The

lower bound on |υ| above follows from the fact that βδi(|υ|) is zero if |υ| < δi .
Thus, X (h) is a compact space if h is sufficiently small. We conclude that

±
∣∣X1(h)

∣∣ =±
∣∣X0(h)

∣∣ = deg ρi ·
±

∣∣ψ−1
i,ν̄ (0)

∣∣. (2.31)

The second equality is immediate from (A1), (A2), (A3), and (2) of Proposi-
tion 2.3B. This concludes the proof of the main claim of the lemma. The other
claim is clear.
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Proposition 2.18B is essentially proved; it only remains to construct a cutoff
function η that has good properties. Let W1 =

⊔
i∈Is

Wi(δ
∗
i /2). This is an

open neighborhood of ∂S in M. By Lemmas 2.19–2.22, it can be assumed
that s−1(0) ∩ W̄1 = ∅ and that

φki

(
ϑκi;Fki

(Ei;δ∗i ×Keαi,ν̄i
Fki;δ∗i

)
)
∩ φkj

(
ϑκj ;Fkj

(Ej;δ∗j ×Keαj,ν̄j
Fkj ;δ∗j

)
)

= ∅

for all i, j ∈ I∗s such that i 6= j . Let W0 be an open neighborhood of ∂S in M
such that W̄0 ⊂ W1 and let η′ : M −→ [0, 1] be a smooth function such that
η′|W0 = 0 and η′|M−W1 = 1. For each i ∈ I∗s , let K′eαi,ν̄i

be a compact subset
of Zi such that Keαi,ν̄i

⊂ IntZiK
′eαi,ν̄i

and

φki

(
ϑκi;Fki

(Ei;δ∗i ×K′eαi,ν̄i
Fki;δ∗i

)
)
∩ φkj

(
ϑκj ;Fkj

(Ej;δ∗j ×K′eαj,ν̄j
Fkj ;δ∗j

)
)

= ∅

for all i, j ∈ I∗s such that i 6= j . Choose a smooth function η′i : Ei⊕Fki
−→ [0, 1]

such that

η′i
∣∣Ei;δ∗i /2 ×Keαi,ν̄i

Fki;δ∗i /2
= 1 and η′i

∣∣(Ei ⊕Fki
− Ei;δ∗i ×K′eαi,ν̄i

Fki;δ∗i

)
= 0.

If δi ∈ R+ is as in Lemma 2.22, we define ηi : S −→ [0, 1] by

ηi(b
∗) = η′i(b;w, υ)βδi (|υ|) +

(
1 − η′i(b;w, υ)

)
η′(b∗)

if b∗ = φki
ϑκi;Fki

(b;w, υ) for some (b;w, υ) ∈ Ei;δ∗i ×K′eαi,ν̄i
Fki;δ

∗
i
, and

ηi(b
∗) = η′(b∗)

otherwise. This function is smooth on S , since it is the restriction of a smooth
function on M. Let

η = η′ +
∑

i∈I∗s

ηi.

Since η vanishes on a neighborhood W of ∂S in M, the section s̃ ≡ ηs of V
over S extends by zero to a continuous section over S . Since ν does not vanish
on S , we can assume that ν does not vanish on W̄ as well. Furthermore, η
satisfies the requirements of Lemma 2.22 with ν replaced by (1 − η′)ν and δ∗i
replaced by δ∗i /2. Since η does not vanish on the complement of W1 , it follows
that ηs + t(1 − η′)ν is transverse to the zero set on (S −W1) ∪W . Thus, for
all t, ǫ ∈ R+ , there exists ν ′ ∈ Γ(S;V ) such that

ν ′
∣∣
S−W1

= (1−η′)ν
∣∣
S−W1

, ν ′
∣∣
W

= (1−η′)ν
∣∣
W
, ‖ν ′− (1−η′)ν‖C2(S−W ) < ǫ,

and ηs+ tν ′ is transversal to the zero set on S . Since ηs+ tν ′ does not vanish
on ∂S and is a positive multiple of s outside of W1 ,

〈
e(V ),S

〉
= ±

∣∣{ηs + tν ′
}−1

(0)
}∣∣

= ±
∣∣s−1(0)

∣∣ +
∑

i∈Is

±
∣∣{ηs+ tν ′

}−1
(0) ∩Wi(δ

∗
i /2)

∣∣. (2.32)
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On the other hand, by Lemmas 2.20–2.22,
∑

i∈Is

±
∣∣{ηs+ tν ′

}−1
(0) ∩Wi(δ

∗
i /2)

∣∣ =
∑

i∈I∗s

deg ρi ·
±

∣∣ψ−1
i,ν̄ (0)

∣∣, (2.33)

provided t and ǫ are sufficiently small. Proposition 2.18B follows immediately
from equations (2.32) and (2.33), assumptions (A1) and (A3), and the second
remark after the statement of the proposition.

3 Spaces of stable maps

3.1 Notation

In this subsection, we describe our notation for spaces of tuples of stable ra-
tional maps and for important vector bundles over them. The zeros of certain
sections of these bundles can be identified with rational curves with prescribed
singularities. In many cases, using the topological method of Section 2 and the
analytic estimates of Subsection 3.2, one can express the number of such ze-
ros in terms of intersection numbers of certain tautological cohomology classes,
that are also defined in this subsection. The notation described below is a gen-
eralization on that of [17, Subsection 1.3] and [18, Section 2]. Thus, we omit
some details.

Definition 3.1 A finite partially ordered set I is a linearly ordered set if for
all i1, i2, h ∈ I such that i1, i2 < h, either i1 ≤ i2 or i2 ≤ i1 .

The term linearly ordered set is sometimes used with a different meaning in
combinatorics, as the referee pointed out. We continue to use this term with
the meaning of Definition 3.1 to be consistent with earlier papers.

If I is a linearly ordered set, let Î be the subset of the non-minimal elements
of I . For every h ∈ Î , denote by ιh ∈ I the largest element of I which is
smaller than h, ie

ιh = max
{
i ∈ I : i < h

}
. (3.1)

Definition 3.2 A linearly ordered set I is graded by I = I−⊔I+ if I−Î ⊂ I− ,
ιh ∈ I∓ for all h ∈ I± ∩ Î , and for every i ∈ I− there exists h ∈ I+ such that
ιh = i.
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A graded linearly ordered set can be represented by an oriented graph. In Fig-
ure 2, the small black and large gray dots denote the elements of I− and I+ ,
respectively. The arrows specify the partial ordering of the linearly ordered
set I . We use graded linearly ordered sets to encode the structure of an I+–
tuple of stable maps. The set I− will describe the nodes of the domain of the
map. For example, the domain of an I+–tuple of stable maps with the structure
depicted by Figure 2 will have two connected components. One of these com-
ponents will consist of six irreducible components and contain a double point
and two triple points. We give more details below.

Figure 2: A graded linearly ordered set

If I = I− ⊔ I+ is a graded linearly ordered set, I− and I+ are linearly ordered
sets. We denote by Î− and Î+ the subsets of the non-minimal elements of I−

and I+ , respectively. If h ∈ Î± , we define ι±h as in (3.1), but with I replaced

by Î± . If h1, h2 ∈ I , let

[h1, h2] =
{
i ∈ I+ : h1 ≤ i ≤ h2

}
, [h1, h2) =

{
i ∈ I+ : h1 ≤ i < h2

}
,

(h1, h2] =
{
i ∈ I+ : h1 < i ≤ h2

}
, (h1, h2) =

{
i ∈ I+ : h1 < i < h2

}
.

If I = I− ⊔ I+ is a graded linearly ordered set and i∗ is an element of I+ , we
define a new graded linearly ordered set

I(i∗) = I−(i∗) ⊔ I+(i∗)

as follows. We take I±(i∗) = I± ⊔ {i∗±}, where i∗+ and i∗− are new elements.
We define a partial ordering ≻ on the set I±(i∗) by

h ≻ i if h, i ∈ I and h > i; i ≻ i∗± if i ∈ I and i > i∗;

i∗± ≻ i if i ∈ I and i∗ ≥ i; i∗+ ≻ i∗−.

It is easy to see that I(i∗) is indeed a graded linearly ordered set.

We denote the south pole of the 2-sphere S2 ⊂ R3 by ∞ and identify S2−{∞}
with C via the standard stereographic projection qN mapping the origin in C

to the north pole of S2 . If M is a finite set, a Pn–valued bubble map with
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M –marked points is a tuple b =
(
M, I;x, (j, y), u

)
, where I = I− ⊔ I+ is a

graded linearly ordered set, and

x : Î− −→ S2 − {∞}, j : M −→ I+, y : M −→ S2 − {∞},

and u : I+ −→ C∞(S2; Pn)

are maps such that
(
ιh1, xh1

)
6=

(
ιh2, xh2),

(
jl1 , yl1

)
6=

(
jl2 , yl2

)
,

(
ιh, xh

)
6=

(
jl, yl

)

for all h, h1, h2 ∈ Î− and l, l1, l2 ∈M ;

uh1(∞) = uh2(∞)

for all h1, h2 ∈ I+ such that ιh1 = ιh2 ; and

uh(∞) = uι+h
(xιh)

for all h ∈ Î+ . We associate such a tuple with Riemann surface

Σb =
( ⊔

h∈I+

Σb,h

)/
∼,

where Σb,h = {h} × S2 , and (h1,∞) ∼ (h2,∞) for all h1, h2 ∈ I+ such that

ιh1 = ιh2 , and (h,∞) ∼
(
ι+h , xιh

)
for all h ∈ Î+ , with marked points (jl, yl) ∈

Σb,jl , and continuous map ub : Σb −→ Pn , given by ub|Σb,h = uh for all h ∈ I+ .
We require that Σb,h contain at least two singular and/or marked points of Σb

other than (h,∞) if uh∗[S
2] = 0 ∈ H2(P

n; Z). In addition, we implicitly
consider each point (h,∞) to be a special marked point. Figure 2 is basically
the dual graph of Σb . The black dots simply specify which of the special marked
points are identified and thus are mapped to the same point in Pn . If

b1 =
(
M, I1;x

(1), (j(1), y(1)), u(1)
)

and b2 =
(
M, I2;x

(2), (j(2), y(2)), u(2)
)

are two bubble maps and Ĩ is a subset of I+
1 and of I+

2 , we say b1 and b2 are

Ĩ –equivalent if there exists a homeomorphism φ : Σb1 −→ Σb2 such that φ|Σb1,i

is holomorphic for all i ∈ I+ , φ(Σb1,i) ⊂ Σb2,i for all i ∈ Ĩ , ub1 = ub2 ◦ φ,

φ(j
(1)
l , y

(1)
l ) = (j

(2)
l , y

(2)
l ) for all l ∈M,

and for every i ∈ I+
1 there exists i′ ∈ I+

2 such that φ(i,∞) = (i′,∞).

The general structure of bubble maps is described by tuples T = (M, I; j, d),
with di ∈ Z specifying the degree of the map ub on Σb,i . The above equivalence
relation on the set of bubble maps induces an equivalence relation on the set of
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bubble types. If Ĩ ⊂ I+ , we denote by A(T |Ĩ) the group of Ĩ –automorphisms
of T ; let A(T ) = A(T |∅). For each i ∈ I+ , let

HiT = {h ∈ Î− : ιh = i} and MiT = {l ∈M : jl = i}.

If i ∈ I− , we put

HiT =
{
h ∈ I+ : ιh = i

}
∪

{
{i}, if i ∈ Î−;

∅, if i 6∈ Î−.

Let HT denote the space of all holomorphic bubble maps with structure T .
This is a smooth complex manifold; see [10, Chapter 3], for example.

We denote by UT |eI the set of Ĩ–equivalence classes of bubble maps in HT . Then

there exists a smooth submanifold BT of HT such that UT |eI is the quotient of

BT by a natural action of the group

G
T |eI ≡ A(T |Ĩ) ⋉GT , where GT =

(
S1

)I+
.

For any i ∈ Ĩ , denote by U
(i)

T |eI the quotient of BT by the group

G
(i)

T |eI ≡ A(T |Ĩ) ⋉G
(i)
T , where G

(i)
T =

(
S1

)I+−{i}
.

Then, UT |eI is the quotient of U
(i)

T |eI by the residual S1–action. If i ∈ I+ is fixed

by every element of the group A(T |Ĩ), corresponding to the first quotient we
obtain a line orbi-bundle LiT −→ U

T |eI . In general, the direct sum of the line

bundles LiT taken over all elements of the orbit A(T |Ĩ) · i is well-defined. If
h ∈ Î+ , let FhT = L∗

ι+h
T ⊗ LhT .

The Gromov-convergence topology on the space of all holomorphic maps induces
a partial ordering on the set of bubble types and their equivalence classes such
that the spaces

U
(i)eT ≡ U

(i)eT |eI+ =
⋃

T ≤eT U
(i)

T |eI+ and U eT ≡ U eT |eI+ =
⋃

T ≤eT U
T |eI+

are compact and Hausdorff. Here T̃ ≡ (M, Ĩ ; j̃, d̃), and the unions are disjoint
if taken over Ĩ+–equivalence classes of bubble types. If T ≤ T̃ , let

U
(i)

T |eT = U
(i)

T |eI+ and U
T |eT = U

T |eI+.
The residual S1–action on U

(i)eT extends to an action on U
(i)eT , and thus the line

orbi-bundle LiT̃ −→ UeT extends over UT as the line bundle LiT .
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For each l ∈M , h ∈ I+ , and i ∈ I− , we define evaluation maps HT −→ Pn by

evl
(
(M, I;x, (j, y), u)

)
= ujl(yl), evh

(
(M, I;x, (j, y), u)

)
= uh(∞),

and evi = evh if h ∈ I+ and ιh = i. These maps descend to all the quotients
defined above and induce continuous maps on UT . If M̃ ⊂M⊔I− and µ = µfM
is an M̃ –tuple of submanifolds of Pn , let

UT (µ) =
{
b ∈ UT : evl(b) ∈ µl for all l ∈ M̃

}
,

and define the spaces UT (µ) and UT |eT (µ) analogously.

If T = (M, I; j, d) is a bubble type and k ∈ I+ , we define the bubble type
Tk ≡ (Mk, Ik; j

(k), d(k)) by

Mk = MkT ⊔HkT ; Ik = {k, ιk} ⊂ I; j
(k)
l = k for all l ∈Mk; d

(k)
k = dk.

Let UT ,T =
∏
k∈I+ UTk

and UT ,T =
∏
k∈I+ UTk

. Note that the spaces UT and
UT are contained in UT ,T and UT ,T , respectively.

Suppose T = (M, I; j, d) is a bubble type, i∗ is an element of I+ such that
di∗ 6= 0 and M0 is nonempty subset of Mi∗T . We define bubble type

T (M0) ≡ (M, I(i∗); j′, d′)

by

j′l =





i∗, if l ∈M0;

i∗+, if l ∈Mi∗T −M0;

jl, otherwise;

d′i =





0, if i = i∗;

di∗ , if i = i∗+;

di, otherwise.

If l ∈ M , we will write T (l) for T ({l}). In Figure 3, we show the domain of
an element of the space UT , where I = {i∗} is a single-element set, and the
domain of an element of the space UT (M0) , where M0 = {l1, l2} is a two-element
set.

In Figure 3, as well as in later figures, we denote each component of the domain
by a disk and shade the component(s) on which the map into Pn is noncon-
stant. We indicate marked points on the ghost components, ie the components
on which the map is constant, by putting small dots on the boundary of the
corresponding disk. The point labeled by i∗ , ie the same way as the component,
is the special marked point (i∗,∞). Lemma 3.4 and Proposition 3.5, as well as
the decomposition (3.4), show that it is crucial to clearly distinguish between
ghost and non-ghost components.
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i∗ i∗

l2

l1

Figure 3: The domains of elements of UT and UT (M0)

If [N ] ≡ {1, . . . , N} is a subset of M such that the set M − [N ] contains no
positive integers, we put

c1(L
∗
i∗T ) ≡ c1(L

∗
i∗T ) −

∑

∅6=M0⊂Mi∗T ∩[N ]

PDUT ,T

[
UT (M0),T (M0)

]
∈ H2

(
UT ,T

)
.

(3.2)
By Proposition 3.5, UT ,T is an ms-orbifold, while UT (M0),T (M0) is an ms-

suborbifold of UT ,T . Thus, the cohomology class on the left-hand side of (3.2)
is well-defined. We illustrate definition (3.2) in Figure 4 in the case I+ = {i∗}
is a single-element set. In this figure, as well in the future ones, we denote
spaces of tuples of stable maps by drawing a picture of the domain of a typical
element of such a space. On the other hand, let

πi : UT ,T −→ UT ′
i
, where T ′

i =
(
Mi − [N ], Ii; j

(i), d(i)
)
,

be the composition of the projection onto the ith factor with the appropriate
forgetful map. By [11, Lemma 2.2.2],

c1(L
∗
i∗T ) = π∗i∗ψi∗ ,

where ψi∗ is the first chern class of the universal cotangent line bundle at the
marked point (i∗,∞) over the moduli space

M0,(Mi−[N ])⊔{i∗}(di∗ ,P
n)

of stable rational degree–di∗ maps into Pn with marked points labeled by the
set (Mi− [N ])⊔ (i∗,∞). In particular, c1(L

∗
i∗T ) is the first chern class of a line

orbi-bundle over UT ,T . Whenever the bubble type T is clear from context, we

will write c1(L
∗
i ) and c1(L

∗
i ) for c1(L

∗
i T ) and c1(L

∗
i T ), respectively. If M̃ is a

subset of M ⊔ I− that contains [N ] and µ is an M̃ –tuple of constraints in Pn

such that µl1 ∩ µl2 = ∅ for all distinct elements l1, l2 of N ,
[
UT (l)(µ)

]
∩ c1(L

∗
i∗T ) =

[
UT (l)(µ)

]
∩ c1(L

∗
i∗+
T (l))

=
[
UT (l)(µ)

]
∩ c1(L

∗
i∗+
T (l)) for all l ∈Mi∗T .

(3.3)

Note that by Lemma 3.4, UT (l)(µ) is a pseudocycle in UT ,T and thus induces
a homology class. The first equality in (3.3) can be deduced from [11, Subsec-
tion 3.2].
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c1(L∗
i∗) ∩

i∗

= c1(L
∗
i∗) ∩

i∗

−
∑

∅6=M0⊂[N ]
i∗

M0

Figure 4: An example of Definition (3.2)

We are now ready to formally explain the notation involved in the statement
of Theorem 1.1. Let n, d, N be positive integers and let µ be an N –tuple of
constraints in Pn . If k ≥ 1, denote by Vk(µ) the quotient of the disjoint union
of the spaces UT (µ) taken over all bubble types T = ([N ], Ik; j, d) such that

I+
k = {1̃, . . . , k̃},

∑
di = d,

and I−k = {0̂} is a one-element set, by the natural action of the symmetric
group Sk . We define the spaces Vk(µ) similarly. Denote by

ηb0,l, η̃b0,l ∈ H2l
(
Vk(µ)

)

the cohomology classes such that π∗ηb0,l and π∗η̃b0,l are the sum of all degree–l
monomials in

{
c1(L

∗e1), . . . , c1(L∗ek)} and
{
c1(L

∗e1), . . . , c1(L∗ek)},
respectively, where π :

⋃
T UT −→ Vk(µ) is the quotient projection map. For

example, if k = 2,

π∗ηb0,3 = c31(L
∗e1) + c31(L

∗e2) + c21(L
∗e1)c1(L∗e2) + c1(L

∗e1)c21(L∗e2).
Let ab0 = ev∗b0 c1(γ∗Pn) ∈ H2

(
Vk(µ)

)
, where γPn −→ Pn is the tautological line

bundle.

Suppose T̃ = (M, Ĩ ; j̃, d̃) and T = (M, I; j, d) are bubble types, such that

T < T̃ , M̃ is a subset of M ⊔ Ĩ− , and µ is an M̃ –tuple of constraints in Pn .
Let

I0 = {i ∈ I+ : di = 0}.

Suppose I0 ⊂ I+− Î+ and for every i ∈ I0 there exists h ∈ I+ such that i < h.
We can then construct a decomposition of the spaces U

T |eT (µ) and U
T |eT (µ)

which is useful in computations as follows. Let T = (M̄ , Ī; j̄, d̄) be the bubble
type given by

M̄ = M −
⋃

i∈I0

MiT and Ī =
(
I ⊔

⋃

i∈I0

MiT
)/

∼,

Geometry & Topology, Volume 9 (2005)



622 Aleksey Zinger

where ιi ∼ h if i ∈ I0 and h ∈
(
{i} ∪ HiT

)
⊔MiT . The set Ī is a graded

linearly ordered set, with its structure induced from I . Let d̄i = di and j̄l = jl
whenever i ∈ Ī+ ⊂ I+ and l ∈ M̄ ⊂ M . Let M̃ ′ be the image of M̃ under
the quotient projection map I ⊔M −→ Ī ⊔ M̄ . We identify the M̃ –tuple µ of
constraints with an M̃ ′–tuple µ̄ of constraints in Pn by

µ̄l̄ =
⋂

[l]=l̄

µl.

Since every degree-zero holomorphic map is constant, we obtain

UT |eT (µ) ≈
( ∏

i∈I0

M(i∪HiT )⊔MiT × UT (µ)
)/

A(T |Ĩ+)

⊂
( ∏

i∈I0

M(i∪HiT )⊔MiT × UT (µ)
)/

A(T |Ĩ+).
(3.4)

Here M(i∪HiT )⊔MiT denotes the Deligne–Mumford moduli space of rational
curves with marked points labeled by the set (i ∪ HiT ) ⊔ MiT , and also
M(i∪HiT )⊔MiT denotes the main stratum of M(i∪HiT )⊔MiT . If i ∈ I0 ⊂ Ĩ+ ,

then by definition the line bundle LiT̃ restricts to the universal tangent line
bundle at the marked point i over M(i∪HiT )⊔MiT . We will denote this bundle

by γT ;i . If d̃i 6= 0 for all i ∈ Ĩ+ and M0 ⊂ [N ]∩MiT for some i ∈ Ĩ+ , we will

write T̃ /M0 for the bubble type T corresponding to T = T̃ (M0) under the
construction of this paragraph. The decomposition (3.4) for the bubble T (M0)
of Figure 3 is illustrated in Figure 5.

i∗

l2

l1
≈

M0,4 ×

i∗, l1, l2

Figure 5: An example of the decomposition (3.4)

3.2 Structural descriptions

In this subsection, we define certain bundle sections over the spaces UT |eT .

These sections are central to this paper, as the zeros of these and closely related
sections count rational curves with pre-specified singularities. We state a basic
transversality lemma that implies that these sections are well-behaved over UT |eT
Geometry & Topology, Volume 9 (2005)



Counting rational curves of arbitrary shape 623

in most cases. The general structure of the spaces U eT (µ) and the behavior of
the sections near the boundary strata are described by Proposition 3.5.

Let qS denote the standard stereographic projection C −→ S2 mapping the
origin in C to the south pole of S2 . Suppose

b =
(
M, I;x, (j, y), u

)
∈ BT

and m ∈ Z+ . If i ∈ I+ , let

D
(m)
T ,i b =

1

m!

Dm−1

dsm−1

d

ds
(ui ◦ qS)

∣∣∣
(s,t)=0

,

where (s, t) are the real and imaginary coordinates on C and Dm−1

dsm−1 denotes
the (m − 1)st covariant derivative with respect to the Levi-Civita connection
of some metric gb,i on Pn . If h ∈ Î− and l ∈M , we similarly define

D
(m)
T ,hb =

1

m!

Dm−1

dsm−1

d

ds
uιh(xh+s

)∣∣∣
s=0

and D
(m)
T ,l b =

1

m!

Dm−1

dsm−1

d

ds
ujl

(
yl+s

)∣∣∣
s=0

Here we take covariant derivatives with respect to some metrics gb,h and gb,l
on Pn , respectively. If Ĩ is a subset of I+ , each metric gb,i is Kahler near evi(b),

and the family {gb,i} is invariant under the action of the group of GT |eI , D(m)
T ,i

induces a section of Hom(L⊗m
i T , ev∗

i TPn) over UT |eI given by

D
(m)
T ,i [b, ci] = ciD

(m)
T ,i b, if b ∈ BT , ci ∈ C.

Under analogous circumstances, D
(m)
T ,h and D

(m)
T ,l induce sections of

Hom(L∗⊗m
ιh

T , ev∗
h TPn) and Hom(L∗⊗m

jl
T , ev∗

l TPn),

respectively. In a certain sense, the choice of the metrics does not matter, since

D
(m)
T ,i b, D

(m)
T ,hb, and D

(m)
T ,l b are well-defined modulo the image of the lower-order

derivatives, and only these quotients have a geometric meaning. However, the
method of [17, Subsection 2.5] for proving the explicit estimates of Proposi-
tion 3.5 makes use of special properties of the metric near the point where the
derivatives are taken. Thus, we put

gb,i = gPn,evi(b), gb,h = gPn,evh(b), and gb,l = gPn,evl(b),

where gPn,· is as in Lemma 3.3, which is exactly [17, Lemma 2.1].

Lemma 3.3 There exist rPn > 0 and a smooth family of Kahler metrics

{gPn,q : q ∈ Pn}

on Pn with the following property. If Bq(q
′, r) ⊂ Pn denotes the gPn,q–geodesic

ball about q′ , the triple (Bq(q, rPn), J, gPn,q) is isomorphic to a ball in Cn for
all q ∈ Pn .
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Suppose T̃ = (M, Ĩ ; j̃, d̃) and T ≡ (M, I; j, d) are bubble types such that

T < T̃ . For each k ∈ Ĩ+ , let T̃k ≡ (Mk, Ĩk; j̃
(k), d̃

(k)
) be the one-component

bubble type defined as in Subsection 3.1 and let

Tk(T̃ ) ≡ (Mk, Ik; j
(k), d(k)) < T̃k

be the bubble type given by

Ik = {ιk} ∪
{
h ∈ I : h ≥ k; h 6≥ h′ for all h′ ∈ Ĩ such that h′ > k

}
,

j
(k)
l = jl for all l ∈Mk; d

(k)
h = dh for all h ∈ I+

k .

Let UeT ,T =
∏
k∈eI+ UTk(eT )|eTk

⊂ U eT ,eT . If M̃ is a subset of Ĩ− ∪M , we define an

evaluation map

ev eT ,fM : U eT ,eT ≡
∏

k∈eI+ UTk
−→ XeT (M̃) ≡ (Pn)

beI−⊔eI+⊔(fM∩M)

by πl
(
ev eT ,fM(b)

)
=





evl(bk), if l ∈Mk;

evl(bl), if l ∈ Ĩ+;

evl(bιl), if l ∈
̂̃
I
−

.

If µ is an M̃ –tuple of submanifolds in Pn , let

∆eT (µ) =
∏

i∈eI−{
(xh)h∈Hi

eT ∈ (Pn)Hi
eT :

xh = xl for all h, l ∈ HiT̃ ,

xh ∈ µi if i ∈ M̃

}

×
∏

l∈(fM∩M)

µl ⊂ XeT (M̃).

We denote by N∆eT (µ) ⊂ TXeT (M̃)
∣∣
∆ eT (µ)

the normal bundle of ∆eT (µ) in

XeT (M̃) as well as an extension of this normal bundle to a neighborhood of

∆eT (µ) in XeT (M̃ ). By definition,

UeT (µ) = ev−1eT ,fM (
∆eT (µ)

)
∩ UeT ,eT and UT |eT (µ) = ev−1eT ,fM (

∆eT (µ)
)
∩ UeT ,T .

The following lemma and now-standard arguments, such as in [10, Chapter 3],
imply that UeT ,T (µ) is a smooth orbifold, if µ is a tuple of constraints in general
position:

Lemma 3.4 Suppose u : S2 −→ Pn is a holomorphic map of degree d,

z1, . . . , zk ∈ S2, vi ∈ TziS
2 − {0} for i = 1, . . . , k, and m1, . . . ,mk ∈ Z+.
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If d+ 1 ≥
∑

imi , the map

φ :
{
ξ ∈ Γ(S2;u∗TPn) : ∂̄ξ = 0

}
−→

i=k⊕

i=1

j=mi⊕

j=1

Tu(zi)P
n, φi,j(ξ) = Dj−1

vi
ξ
∣∣
zi
,

is surjective.

In the statement of this lemma, Dj
viξ

∣∣
zi

denotes the j th covariant derivative
of ξ along u in the direction of v . The meaning of the lemma is the same
no matter what connection is used near each point. The proof is a very slight
generalization of that of [17, Corollary 6.3]. Lemma 3.4 implies that if d is
sufficiently high, a certain section over the space of degree–d holomorphic maps
is transverse to the zero set. In many actual computations, low, but positive-
degree, cases will not appear for simple geometric reasons. For example, the
space of degree-one maps whose image is a cuspidal curve is empty. Thus, if
k = 1 and m1 = 2, the relevant implication of the lemma is valid as long
as d > 0.

Let

FeT T =
⊕

h∈I+−eI FhT =
⊕

k∈eI+ F{Tk(T̃ )} −→ UeT ,T .
If T̃ is a bubble type such that

̂̃
I
−

= ∅, we will write FT for FeT T . By

(2) of Proposition 3.5, FeT T is the “normal bundle” of UeT ,T in U eT ,eT . Part

(3) of Proposition 3.5 describes the behavior of various evaluation maps and
bundle sections over UeT ,eT near the stratum UeT ,T of the boundary of U eT ,eT .
However, before we can state the relevant expansions, we need to introduce
more notation.

If k ∈ Ĩ+ , h1, h2 ∈ I+
k , and l ∈Mk , let

iT (h1, h2) = max
{
i ∈ I+

k : i ≤ h1, i ≤ h2

}
, iT (l, h2) = iT (jl, h2);

χT ,h1(h2) =





0, if di = 0 for all i ∈ [iT (h1, h2), h1] ∪ [iT (h1, h2), h2];

1,
if di = 0 for all i ∈ [iT (h1, h2), h1] ∪ [iT (h1, h2), h2] − {h2},

but dh2 6= 0;

2, otherwise.

Put χh1(T ) =
{
h2 ∈ I+

k : χT ,h1(h2) = 1
}

and χl(T ) =
{
h2 ∈ χjl(T ) : h2 6≤ jl

}
.

If

υ =
[
(M, I;x, (j, y), u), (vh)h∈I+−eI] ∈ FeT T =

⊕

k∈I+−eIFkT
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and m,m′ ∈ Z, let

xh1;h2(υ) =
∑

h∈(iT (h1,h2),h2]

xιh
∏

i∈(iT (h1,h2),h)

vi ∈ L∗
iT (h1,h2)

T ;

yh1;l(υ) =
∑

h∈(iT (h1,l),jl]

xιh
∏

i∈(iT (h1,l),h)

vi + yl
∏

i∈(iT (h1,l),jl]

vi ∈ L∗
iT (h1,l)

T .

ρ
(m;m′)
T ,h1;h2

(υ) =
( ⊗

i∈(k,iT (h1,h2)]

vi

)⊗(−m)
⊗

( ⊗

i∈(iT (h1,h2),h2]

vi

)⊗m′

∈ F̃
(m;m′)
h1;h2

T ,

(3.5)

where F̃
(m;m′)
h1;h2

T =
( ⊗

i∈(k,iT (h1,h2)]

FiT
)⊗(−m)

⊗
( ⊗

i∈(iT (h1,h2),h2]

FiT
)⊗m′

.

The map ρ
(m;m′)
T ,h1;h2

is defined if h1 = k or υ 6∈ Y (FeT T ; I+ − Ĩ). If i ∈ I−k − Ĩ ,

we define the map ρ
(m;m′)
T ,i;h2

by (3.5), but with iT (h1, h2) replaced by ιi ∈ I+
k .

Furthermore, we define the map ρ
(m;m′)
T ,i;i by replacing h2 in (3.5) with the unique

element h(i) ∈ I+
k such that ιh(i) = i. We will write xl;h(υ), ρT ,l;h , and F̃l;hT

for xjl;h(υ), ρT ,jl;h , and F̃jl;hT , respectively, whenever l ∈ Mk . Finally, if
di 6= 0 for some i ∈ [k, jl], let σeT ,T (l) = 1; otherwise, let σeT ,T (l) = 0. In the
former case, we put

j∗l (T ) =

{
jl ∈Mk, if djl 6= 0;

min
{
i ∈ Î−k : i ≤ jl, dh = 0 for all h ∈ (i; jl]

}
, if djl = 0;

yl;T (υ) =

{
0, if djl 6= 0;

yh;l(υ), if djl = 0,

where h ∈ I+
k is given by ιh = j∗l (T ) if j∗l (T ) ∈ Î−k .

Proposition 3.5 Suppose T̃ = (M, Ĩ ; j̃, d̃) and T = (M, I; j, d) are bubble
types such that T < T̃ .

(1) The spaces UeT ,eT and UeT ,T are smooth orbifolds, while U eT ,eT is an ms-
orbifold.

(2) There exist δ ∈ C(UeT ,T ; R+) and a map φeT ,T : FeT Tδ −→ U eT ,eT such that

φeT ,T is a homeomorphism onto an open neighborhood WeT ,T of UeT ,T in U eT ,eT ,

φeT ,T (
FeT Tδ ∩ Y (FeT T ; I+ − Ĩ)

)
⊂ ∂U eT ,eT ,

and φeT ,T : FeT Tδ − Y (FeT T ; I+ − Ĩ) −→ UeT ,eT ∩WT
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is an orientation-preserving diffeomorphism.

(3) Furthermore, there exist normal-neighborhood models and collections of
trivializations such that the following identities are satisfied by all elements
k ∈ Ĩ+ and (b;υ) ∈ FeT Tδ − Y (FeT T ; I+ − Ĩ):

(3a) if M̃ is a subset of Ĩ− ⊔M ,

ev eT ,fM (
φeT ,T (υ)

)
= ev eT ,fM (b) + εeT ,fM (υ),

where εeT ,fM : FeT Tδ − Y (FeT T ; I+ − Ĩ) −→ ev∗eT ,fM TXeT (M̃) is a C1–negligible
map;

(3b) if k ∈ Ĩ+ and m ∈ Z+ ,

D
(m)eT ,kφeT ,T (υ)

=
m∑

m′=1

(
m− 1

m′ − 1

) ∑

h∈χk(T )

xk;h(υ)
m−m′

{
D

(m′)
T ,h + ε

(m′)
T ,h (υ)

}
ρ
(m;m′)
T ,k;h (υ),

where each map

ε
(m′)
T ,h : FeT Tδ − Y (FeT T ; I+ − Ĩ) −→ Hom(L⊗m′

h T , ev∗
k TPn)

is C1–negligible;

(3c) if l ∈M and m ∈ Z+ ,

D
(m)eT ,l φeT ,T (υ)

= σeT ,T (l)

∞∑

m′=m+1

(
m′

m

)
yl;T (υ)m

′−m
{
D

(m′)
T ,j∗l (T ) + ε

(m′)
T ,j∗l (T )(υ)

}
ρ
(m;m′)
T ,j∗l (T );jl

(υ)

+ (−1)m
∞∑

m′=1

{(
m+m′ − 1

m

)

∑

h∈χl(T )

(
yh;l(υ) − xl;h(υ)

)−(m+m′)
{
D

(m′)
T ,h + ε

(m′)
T ,h (υ)

}
ρ
(m;m′)
T ,l;h (υ)

}
,

where ε
(m′)
T ,j∗l (T )(υ) = 0 if m′ 6= m and ε

(m)
T ,j∗l (T ) is a C1–negligible map on

FeT Tδ − Y (FeT T ; I+ − Ĩ).

The expansions (3b) and (3c) above look quite complicated. However, it is
clear from the construction that they involve monomials maps between vector
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bundles. Figure 6 illustrates the expansion (3b) in a case when Ĩ+ = {i∗} is a
single-element set and m = 1. Note that, while the stratum U

T |eT of Figure 6

has codimension three in U eT , the section D
(1)eT ,i∗ depends only on two parameters

of the normal bundle, υh1 and υh2 ⊗ υh3 , at least up to negligible terms. Such
bubble types T will always be hollow in the sense of Definition 2.14 and will
not effect our computations.

i∗

h1 h2

h3

l
D

(1)eT ,i∗
φeT ,T (υ) =

{
D

(1)
T ,h1

+ ε
(1)
T ,h1

(υ)
}
υh1

+
{
D

(1)
T ,h3

+ ε
(1)
T ,h3

(υ)
}
υh2

⊗ υh3

Figure 6: An example of the expansion (3b) of Proposition 3.5

One of the crucial points about the expansions (3b) and (3c) of Proposition 3.5 is
that the terms that appear between the curly brackets depend on h, j∗l (T ), and
m′ , and not k , l , or m. Thus, by subtracting expansions of lower-derivatives
with appropriate coefficients from expansions of higher-derivatives, we can get
rather good estimates on the latter along the subspaces of the main stratum of
a moduli space on which the former vanish; see the proofs of Lemmas 4.8 and
4.10, for example.

Statements (1) and (2) of Proposition 3.5 are basically special cases of Theo-
rem 2.8 in [17]. The map φeT ,T of Proposition 3.5 is the product of the gluing

maps, as constructed in Subsection 3.6 of [18], corresponding to each pair of
bubble types Tk(T̃ ) < T̃k . Claims (3a) and (3b) are proved in Subsection 4.1
of [18] and in Subsection 2.5 of [17], though only a slightly weaker version of
the m = 1 case of (3b) is stated as part of Theorem 2.8 in [17]. The proof
of (3c) uses essentially the same trick as the proof of (3b) in [17]. The dif-
ference is that we make (jl, yl), instead of (k,∞), a node and then use the
explicit nature of the gluing map φeTk,Tk(eT )

to do integration by parts as before.

The appropriate normal-neighborhood models and collections of trivializations
referred to in (3) are described as follows. In (3a), we use the product of
exponential maps in every component taken with respect to the family of met-
rics of Lemma 3.3. In (3b) and (3c), all the relevant bundles have the form
Hom(L⊗±meT ,i , ev∗

i TPn). We use parallel transport in the metric gb,i to identify

φ∗eT ,T ev∗
i TPn with π∗F eT T ev∗

i TPn . On the other hand, the map φeTk,Tk(eT ) , con-
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structed in Subsection 3.6 of [18], is descendant from an S1–equivariant map

φ̃eTk,Tk(eT )
from a bundle over B

Tk(eT )
to U

(k)eTk
. This map φ̃eTk,Tk(eT )

induces an

identification of the line bundles φ∗eT ,T LkT̃ and π∗F eT T LkT over FeT Tδ .
Remarks (1) By the construction of the map φeTk ,Tk(eT ) in [18, Subsection 3.6],

if υ is an element of FeT Tδ − Y (FeT T ; I+ − Ĩ),

φeT ,T (υ) =
(
M, Ĩ ;x(υ), (j̃ , y(υ)), uυ

)
,

where yl(υ) = yk;l(υ) for all l ∈Mk . We use this fact in Section 4.

(2) Even in rather simple cases, the bundle FeT T −→ U eT ,T is not the normal

bundle of U eT ,T in U eT ,eT , as can be seen from Subsection 3.2 in [11]. State-

ment (2) of Proposition 3.5 only implies that the restrictions of FeT T of the

normal bundle of U eT ,T in U eT ,eT to UeT ,eT are isomorphic.

4 Example 1: Rational triple-pointed curves in P3

4.1 Summary

In this section, we illustrate our computational method by proving Theorem 1.2.

We first describe the set V
(2)
1 (µ) that appears in the statement of the theorem.

If N = p+ q , we view µ as an [N ]–tuple of constraints in P3 , where

[N ] =
{
1, . . . ,N

}
.

Let I1 = I−1 ⊔ I+
1 be a two-element graded linearly ordered set. We denote the

unique elements of I−1 and I+
1 by 0̂ and 1̃, respectively. Put

T0 =
(
M0, I1, ; j

(0), d(0)
)
, T1 =

(
M1, I1; j

(1), d(0)
)
, T2 =

(
M2, I1; j

(2), d(0)
)
,

where

M0 = [N ], M1 = M0 ⊔ {1̂}, M2 = M1 ⊔ {2̂}; j
(k)
l = 1̃ for all l ∈Mk; d

(0)e1 = d.

The tuples T0 , T1 , and T2 are bubble types, and we set

V
(1)
1 (µ) =

{
b ∈ UT1(µ) : eve1(b) = evb1(b)},

U
(1)
T2

(µ) =
{
b ∈ UT2(µ) : eve1(b) = evb1(b)},

V
(2)
1 (µ) =

{
b ∈ U

(1)
T2

(µ) : eve1(b) = evb2(b)}.
Geometry & Topology, Volume 9 (2005)



630 Aleksey Zinger

The cardinality of the last set is clearly six times the number of rational curves
that have a triple point and pass through the tuple µ of points and lines in P3 .

Let V
(1)
1 (µ) and U

(1)
T2

(µ) denote the closures of the space V
(1)
1 (µ) in UT1(µ) and

of the space U
(1)
T2

(µ) in UT2(µ), respectively. In the next subsection, we describe

the boundary of the set U
(1)
T2

(µ) and conclude that U
(1)
T2

(µ) is a 3-pseudovariety

in UT2 . Thus, the map

eve1 × evb2 : U
(1)
T2

(µ) −→ P3 × P3,
{

eve1 × evb2 }
(b) =

(
eve1(b), evb2(b)), (4.1)

is a 6-pseudocycle in P3 ×P3 in the sense of [10, Chapter 7] and [14, Section 1],
ie the map (4.1) defines an element in H6(P

3 × P3; Z). In particular, there is a
well-defined homology-intersection number

〈〈
V

(2)
1 (µ)

〉〉
≡

〈〈
{eve1 × evb2}−1(∆P3×P3),U

(1)
T2

(µ)
〉〉

=
∑

r+s=3

〈〈
{eve1 × evb2}−1(Hr ×Hs),U

(1)
T2

(µ)
〉〉
,

where ∆P3×P3 and Hr denote the diagonal in P3 ×P3 and a linear subspace of

complex dimension r in P3 , respectively. However, this number is not |V
(2)
1 (µ)|

in general. Since the map eve1 × evb2 is transversal to a generic submanifold
Hr ×Hs of P3 × P3 , by definition,

〈〈
V

(2)
1 (µ)

〉〉
=

∣∣V(1)
1 (µ+H0)

∣∣ +
〈
ab0,V (1)

1 (µ+H1)
〉

+ d
〈
a2b0,V (1)

1 (µ)
〉
, (4.2)

where the spaces V
(1)
1 (µ + H0) and V

(1)
1 (µ + H1) are defined as above, but

with p replaced by p+ 1 in the first case and with q replaced by q + 1 in the
second case.

The number 〈〈V
(2)
1 (µ)〉〉 can also be obtained by perturbing the map eve1 × evb2 .

If

θ : U
(1)
T2

(µ) −→ P3 × P3

is a small perturbation of eve1 × evb2 such that

θ−1(∆P3×P3) ∩ ∂U
(1)
T2

(µ) = ∅

and θ|U
(1)
T2

(µ) is smooth and transversal to ∆P3×P3 , then

〈〈V
(2)
1 (µ)〉〉 =± |θ−1(∆P3×P3)|.

Since U
(1)
T2

(µ) = ∅ if d = 1, by Lemma 3.4 the map eve1 × evb2 is transversal to

∆P3×P3 on U
(1)
T2

(µ). Thus, θ can be chosen so that θ = eve1 × evb2 outside of a
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very small neighborhood W of ∂U
(1)
T2

(µ). Then,

〈〈
V

(2)
1 (µ)

〉〉
= ±

∣∣θ−1(∆P3×P3

∣∣

=
∣∣V(2)

1 (µ)
∣∣ + ±

∣∣{eve1 × evb2}−1(∆P3×P3) ∩W
∣∣

≡
∣∣V(2)

1 (µ)
∣∣ + C

∂U
(1)
T2

(µ)

(
eve1 × evb2;∆P3×P3

)
.

(4.3)

The last term above is the contribution to 〈〈V
(2)
1 (µ)〉〉 from the boundary of

U
(1)
T2

(µ); it is the analogue of the term C∂S(s) in Proposition 2.18B. If eve1 × evb2
maps a stratum Z of ∂U

(1)
T2

(µ) into ∆P3×P3 , near Z the map eve1 × evb2 can
be modeled on a section of a bundle over Z . In Subsection 4.4, we use the
topological approach of Section 2 to compute this contribution. Theorem 1.2
follows from equations (4.2) and (4.3) and Corollary 4.13.

Before concluding this subsection, we formally define the space V
(1,1)
2 (µ). We

do not need this space in this section, but it is used in the next section and it is

natural to describe its structure along with the structure of the space V
(1)
1 (µ).

Let I2 = I−2 ⊔ I+
2 be the graded linearly ordered set such that I−2 = {0̂} is a

one-element set and I+
2 = {1̃, 2̃} is a two-element set. If T = (M2, I2; j, d) is a

bubble type such that jb1 = 1̃ and jb2 = 2̃, put

U
(1)
T =

{
b ∈ UT : evb1(b) = evb2(b)}.

Let U
(1)
T be the closure of U

(1)
T in the space UT or equivalently in UT ,T . We

define V
(1,1)
2 (µ) and V

(1,1)
2 (µ) to be the disjoint unions of the spaces U

(1)
T (µ)

and U
(1)
T (µ), respectively, taken over all bubble types T as above such that

de1, de2 > 0 and de1 + de2 = d.

4.2 On the structure of U
(1)

T2
(µ), V

(1)

1 (µ), and similar spaces

In this subsection, we describe the closure U
(1)
T2

(µ) of the space U
(1)
T2

(µ) in

UT2(µ), or equivalently, in UT2 . The tuple µ can be arbitrary, and, in fact,
P3 can be replaced by any other projective space. Lemmas 4.1 and 4.2 imply

that U
(1)
T2

(µ) is a pseudovariety in UT2 if µ is as in the previous subsection and
is a pseudocycle in general. The two lemmas in particular describe the kinds
of curves that can appear in the limit of rational one-component nodal curves,
reproducing a known result in algebraic geometry, but in a fairly direct way.
More importantly, we obtain a description of what happens in the limit on the
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finer level of stable maps. The analytic expansion (3b) of Proposition 3.5 plays
a crucial role in the proof of the second lemma. We conclude this subsection

with Lemma 4.3, which describes the structure of the space V
(1,1)
2 (µ).

If T = (M2, I; j, d) is a bubble type such that T < T2 and i, l ∈ I+ ∪M2 , let

χT (i, l) = max
(
χT ,i(l), χT ,l(i)

)
;

see Subsection 3.1. Note that by continuity of the map eve1 × evb1 ,

U
(1)
T2

(µ) ⊂ {eve1 × evb1}−1(∆P3×P3).

Figures 7 and 8 summarize the three lemmas below. All other boundary strata
are either empty or will be hollow with respect to all sections that we encounter.
The map may be constant or not on the disk shaded light gray. The lines
connecting two marked points indicate that the map has the same value at the
two points.

1̃

1̂

1̃

1̂

1̃

l
cusp

1̃

1̂
tacnode

Figure 7: Some boundary strata of V
(1)

1 (µ)

Lemma 4.1 If T = (M2, I; j, d) is a bubble type such that T < T2 and
χT (1̃, 1̂) > 0, the map

eve1 × evb1 : UT |T2
(µ) −→ P3 × P3

is transversal to the diagonal ∆P3×P3 . Thus,

U
(1)
T |T2

(µ) ≡ {eve1 × evb1}−1(∆P3×P3) ∩ UT2,T (µ)

is a smooth submanifold of UT |T2
(µ) of dimension less than the dimension of

U
(1)
T2

(µ) with normal bundle isomorphic to ev∗e1 TP3 .

Proof The first statement is immediate from Lemma 3.4. The second claim
follows from the first, since the dimension of UT |T2

(µ) is less than the dimension
of UT2(µ).
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Lemma 4.2 If T is as in Lemma 4.1, but χT (1̃, 1̂) = 0, for every h ∈ Î+ and
k ∈ Z there exists a C1–negligible map

ε
(k)

T ,b1;h : FT δ − Y (FT ; Î+) −→ Hom(L⊗k
h T , ev∗e1 TP3),

where δ is as in Proposition 3.5, such that with notation as in Proposition 3.5
and with appropriate identifications,

{
eve1 × evb1 }(

φT2,T (υ)
)

=

∞∑

k=1

∑

h∈χe1(T )

(
yh;b1(υ) − xb1;h(υ))−k{D(k)

T ,h + ε
(k)

T ,b1;h(υ)}ρ(0;k)

T ,b1;h(υ)
for all υ ∈ FT δ − Y (FT ; Î+). Thus, U

(1)
T2

(µ) ∩ UT2,T ⊂ ST |T2
(µ), where

ST |T2
(µ) =

{
b ∈ UT |T2

(µ) :
∑

h∈χe1(T )

DT ,hυh = 0
for some υh ∈ LhT
with

(
υh

)
h∈χe1(T )

6= 0

}
.

In particular, U
(1)
T2

(µ) ∩ UT2,T is contained in a finite union of smooth subman-

ifolds of UT2,T of dimension less than the dimension of U
(1)
T2

(µ).

Proof In this case, we choose a specific identification of small neighborhoods
of ∆P3×P3 in π∗e1TP3 and in P3 × P3 :

(
(x, x), (0, w)

)
−→

(
x, expx,xw),

where expx,· denotes the exponential map with respect to the metric gP3,x ; see

Lemma 3.3. Since χT (1̃, 1̂) = 0, eve1(b) = evb1(b) for all b ∈ UT2,T , and thus
gb,e1 = gb,b1 for all b ∈ UT2,T . The above expression for

{
eve1 × evb1 }(

φT2,T (υ)
)

is then simply the “difference” between the values of eve1 and evb1 at φT2,T (υ),
which is computable from (3b) of Proposition 3.5:

{
eve1 × evb1 }(

φT2,T (υ)
)

=

∞∑

m=1

ye1;b1(υ)−mD(m)

T2,e1φeT ,T (υ)

=
∞∑

k=1

∑

h∈χe1(T )

( ∞∑

m=k

(
m−1

k−1

)
ye1;b1(υ)−mxe1;h(υ)

m−k

){
D

(k)
T ,h + ε

(k)

T ,b1;h(υ)}ρ(0;k)

T ,e1;h(υ)
=

∞∑

k=1

∑

h∈χe1(T )

(
ye1;b1(υ) − xe1;h(υ))−k{D(k)

T ,h + ε
(k)

T ,b1;h(υ)}ρ(0;k)

T ,e1;h(υ). (4.4)

Note that ρ
(m;k)

T ,e1;h = ρ
(0;k)

T ,e1;h for all m ∈ Z. The last expression in (4.4) is the

same as the right-hand side of the expansion in the statement of the lemma; see

Geometry & Topology, Volume 9 (2005)



634 Aleksey Zinger

Subsection 3.1. This sum is absolutely convergent for all δ sufficiently small,
since there exists C ∈ C(UT |T2

; R+) such that
∣∣yh;b1(b;υ) − xb1;h(b;υ)∣∣−1

≤ C(b) and
∣∣ρ(0;k)

T ,b1;h(υ)∣∣ ≤ |υ| for all h ∈ χe1(T ), (b;υ) ∈ FT .

The first inequality is immediate from the definitions of yh;b1 and xb1;h , while

the second follows from the assumption χT (1̃, 1̂) = 0. The above expansion of{
eve1 × evb1 }

◦ φT2,T immediately implies that

U
(1)
T2

(µ) ∩ UT2,T ⊂ ST |T2
(µ).

In fact, the opposite inclusion also holds, as can be seen from Lemma 3.4 and
the Contraction Principle. The remaining claim of the lemma is obtained by
simple dimension-counting from Lemma 3.4.

1̃

1̂

2̃
2̂

1̂

1̃

2̃

2̂

tacnode

Figure 8: Some boundary strata of V
(1,1)

2 (µ)

Lemma 4.3 Suppose T̃ = (M2, I2; j̃, d̃) and T = (M2, I; j, d) are bubble types
such that j̃b1 = 1̃, j̃b2 = 2̃, and T < T̃ .

(1) If dh > 0 for some h ∈ I+ such that h ≤ jb1 or h ≤ jb2 , the map

eve1 × evb1 : UT |eT (µ) −→ P3 × P3

is transversal to the diagonal ∆P3×P3 . Thus,

U
(1)

T |eT (µ) ≡ {eve1 × evb1}−1(∆P3×P3) ∩ U
T |eT (µ)

is a smooth submanifold of UT |eT (µ) with normal bundle isomorphic to ev∗e1 TP3 .

(2) If dh > 0 for all h ∈ I+ such that h ≤ jb1 or h ≤ jb2 ,
{

eve1 × evb1 }(
φeT ,T (υ)

)

=
∑

i=1,2

(−1)i
∞∑

k=1

∑

h∈χei(T )

(
yh;bi(υ) − xbi;h(υ))−k{D(k)

T ,h + ε
(k)

T ,bi;h(υ)}ρ(0;k)

T ,bi;h(υ)
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for all υ ∈ FT δ − Y (FT ; Î+). Thus, U
(1)eT (µ) ∩ UeT ,T ⊂ ST |eT (µ), where

ST |eT (µ) =

{
b ∈ UT |eT (µ) :

∑

h∈χe1(T )∪χe2(T )

DT ,hυh = 0

for some υh ∈ LhT such that
(
υh

)
h∈χe1∪χe2(T )

6= 0

}
.

In either case, U
(1)eT (µ)∩UeT ,T is contained in a finite union of smooth subman-

ifolds of UeT ,T of dimension less than the dimension of U
(1)eT (µ).

Proof The proof is essentially the same as that of Lemmas 4.1 and 4.2. The
only change is that in the second case we first obtain expansions for evb1 − eve1
and evb2 − eve2 and then take their difference.

4.3 Behavior of the map eve1 × evb2 near ∂Ū (1)
T2

(µ)

In this subsection, we use Lemma 3.4 and Proposition 3.5 to describe the be-

havior of eve1 × evb2 near the boundary of the space U
(1)
T2

(µ). We assume that µ
is a tuple of points and lines in P3 as in Subsection 4.1.

Lemma 4.4 If T = (M2, I; j, d) is a bubble type such that T < T2 , χT (1̃, 2̂) >
0, and χT (1̂, 2̂) > 0,

{
eve1 × evb2 }−1

(∆P3×P3) ∩
(
U

(1)
T2

(µ) ∩ UT2,T

)
= ∅.

Proof (1) If χT (1̃, 1̂) > 0, by Lemma 4.1,

U
(1)
T2

(µ) ∩ UT2,T ⊂ U
(1)
T |T2

(µ).

Since every degree-one map into P3 is injective, the map

eve1 × evb2 : U
(1)
T |T2

(µ) −→ P3 × P3

is transversal to ∆P3×P3 by Lemma 3.4. Since the complex dimension of

U
(1)
T |T2

(µ) is less than three by Lemma 4.1, it follows that

{
eve1 × evb2 }−1

(∆P3×P3) ∩
(
U

(1)
T2

(µ) ∩ UT2,T

)
= ∅.

(2) If χT (1̃, 1̂) = 0, by Lemma 4.2,

U
(1)
T2

(µ) ∩ UT |T2
⊂ ST2,T (µ).
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Since every degree-one map into P3 is an immersion, the map

eve1 × evb2 : ST |T2
(µ) −→ P3 × P3

is transversal to ∆P3×P3 by Lemma 3.4. Since the complex dimension of
ST |T2

(µ) is less than three by Lemma 4.2, it follows that

{
eve1 × evb2 }−1

(∆P3×P3) ∩
(
U

(1)
T2

(µ) ∩ UT2,T

)
= ∅.

Lemma 4.5 If T ≡ (M2, I; j, d) < T2 is a bubble type such that χT (1̃, 2̂) = 0,

χT (1̂, 2̂) > 0, and U
(1)
T |T2

(µ) 6= ∅, then

U
(1)
T2

(µ) ∩ UT2,T ⊂
{

eve1 × evb2 }−1
(∆P3×P3), χT (1̃, 1̂) > 0, |χe1(T )| ∈ {1, 2}.

Furthermore, there exist a rank-|χe1(T )| vector bundle F̃T −→ UT2,T , a mono-

mials map ρ : FT −→ F̃T , a section α ∈ Γ
(
UT2,T ;Hom(F̃T ; ev∗e1 TP3)

)
, and a

C0–negligible map

ε : FT − Y (FT ; Î+) −→ Hom(F̃T , ev∗e1 TP3)

such that
{

eve1 × evb2 }(
φT2,T (υ)

)
= {α+ ε(υ)

}
ρ(υ) for all υ ∈ FT δ − Y (FT ; Î+).

The vector-bundle map α is injective over U
(1)
T |T2

(µ). Finally, if Î+ = χe1(T ), ρ
is the identity map, and

α(υ) =
∑

h∈χe1(T )

(
yb2 − xh

)−1
⊗D

(1)
T ,hυh for all υ = (υh)h∈χe1(T ) ∈ FT .

Proof The first two claims of the first sentence are clear; the third follows by
dimension-counting from Lemma 3.4. On the other hand, equation (4.4) with
1̂ replaced by 2̂ gives

{
eve1 × evb2 }(

φT2,T (υ)
)

=
∑

h∈χe1(T )

(
yh;b2(υ) − xb2;h(υ)

)−1
{
D

(1)
T ,h + ε̃T ,b2;h(υ)}ρ(0;1)

T ,b2;h(υ).
Thus, we define the monomials map ρ = (ρh)h∈χe1(T ) and the linear map α by:

ρh(υ) =
∏

i∈(iT (b2,h),h]

υi, α
(
(υ̃h)h∈χe1(T )

)
=

∑

h∈χe1(T )

(
yh;b2 − xb2;h)−1

⊗D
(1)
T ,hυ̃h,
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where

xb2;h = xh′ if h′ ∈ (iT (2̂, h);h] and ι+h′ = iT (2̂, h);

yh;b2 =

{
yb2, if jb2 = iT (2̂, h);

xh′ , if h′ ∈ (iT (2̂, h); jb2] and ι+h′ = iT (2̂, h).

We write b = (M, I;x, (j, y), u) as before; then xh and yl are sections of a

bundle over UT2,|T . By Lemma 3.4, the map α is injective over U
(1)
T |T2

(µ).

Lemma 4.6 If T = (M2, I; j, d) is a bubble type such that T < T2 ,

χT (1̃, 1̂) = χT (1̃, 2̂) = χT (1̂, 2̂) = 0,

and ST |T2
(µ) 6= ∅, |χe1(T )| ∈ {1, 2}. Furthermore, the following properties hold.

(1) There exist a rank-|χe1(T )| vector bundle F̃T −→ UT |T2
, section

α ∈ Γ
(
UT |T2

;Hom(F̃T , ev∗e1 TP3)
)
,

and a monomials map and C0–negligible map

ρ, ε : FT − Y (FT ; Î+) −→ F̃T , Hom(F̃T , ev∗e1 TP3)

such that {
eve1 × evb2 }(

φT2,T (υ)
)

= {α+ ε(υ)}ρ(υ)

for all υ ∈ FT δ such that φT2,T (υ) ∈ U
(1)
T2

.

(2) If χe1(T ) = {h} is a single-element set, α is injective over ST |T2
(µ). If, in

addition, Î+ = χe1(T ), then
ρ(υh) = υ ⊗ υ

for all υ ∈ FT and

α(υ̃h) =
(
yb2 − xh

)−2
⊗

(
yb1 − xh

)−1
⊗

(
yb2 − yb1) ⊗D

(2)
T ,hυ̃h

for all υ̃ ∈ F̃T ≡ FT ⊗2 .

(3) If |χe1(T )| > 1, there exist a line bundle L −→ UT |T2
, a section

α+ ∈ Γ
(
UT |T2

;Hom(F̃T ,L∗ ⊗ ev∗e1 TP3)
)
,

and a monomials map and a C0–negligible map

ρ+, ε+ : FT − Y (FT ; Î+) −→ L,Hom(F̃T ,L∗ ⊗ ev∗e1 TP3)

such that α+ ⊕ α is injective over ST |T2
(µ),

α+|Y (F̃T , {h1}) and α+|Y (F̃T , {h2})
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are onto Im(α+) over ST |T2
(µ), and

{
eve1 × evb1 }

(φT2,T (υ)) = ρ+(υ) ⊗
{
α+ + ε+(υ)

}
ρ(υ)

for all υ ∈ FT δ − Y (FT ; Î+). If, in addition, Î+ = χe1(T ) = {h1, h2}, ρ is the
identity map, and

α+(υ) =
(
yb1 − xh1

)−1
⊗D

(1)
T ,h1

υh1 +
(
yb1 − xh2

)−1
⊗D

(1)
T ,h2

υh2 ;

α(υ) =
(
yb1 − xh2

)−1
⊗

(
yb2 − xh1

)−1
⊗

(
yb2 − xh2

)−1
⊗

(
yb2 − yb2)

⊗
(
xh1 − xh2

)
⊗D

(1)
T ,h2

υh2

for all υ = (υh1 , υh2) ∈ FT δ .

Proof (1) The first statement of this lemma follows from Lemma 3.4 by
dimension-counting. If χe1(T ) = {h} is a single-element set, the remaining
claims are obtained by subtracting the expansion of {eve1 × evb1} ◦ φT2,T given
in Lemma 4.2 times

(
ye1;b1(υ) − xe1;h(υ))(ye1;b2(υ) − xe1;h(υ)

)−1

from the corresponding expression for {eve1 × evb2} ◦ φT2,T .

(2) If |χe1(T )| > 1, h ∈ χe1(T ), and l = 1̂, 2̂, we put

i∗T (h) = max
{
iT (h, 1̂), iT (h, 2̂)

}
,

i+T (l) = max
{
iT (l, h) : h ∈ χe1(T )

}
, i−T (l) = min

{
iT (l, h) : h ∈ χe1(T )

}
.

If h1 ∈ χe1(T ) is such that either iT (h1, 1̂) = i∗T (h1) or iT (h1, 2̂) = i−T (2̂), we
subtract the expansion of {eve1 × evb1} ◦ φT2,T given in Lemma 4.2 times

(
ye1;b1(υ) − xe1;h1

(υ)
)(
ye1;b2(υ) − xe1;h1

(υ)
)−1

from the corresponding expression for {eve1 × evb2} ◦ φT2,T and then take the
leading term.

4.4 Computation of the number C
∂U

(1)
T2

(µ)

(
eve1 × evb2; ∆P3×P3

)

We are now ready to compute the term C
∂U

(1)
T2

(µ)

(
eve1 × evb2;∆P3×P3

)
appear-

ing in equation (4.3). We perturb the map eve1 × evb2 to a new continuous

map θ on UT2 such that the image of ∂U
(1)
T2

(µ) under θ is disjoint from ∆P3×P3

and θ|U
(1)
T2

(µ) is smooth and transversal to ∆P3×P3 . In order to achieve these
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requirements, it is sufficient to perturb eve1 × evb2 very slightly on a small neigh-
borhood W of

∂U
(1)
T2

(µ) ∩ {eve1 × evb2}−1(∆P3×P3).

Then,
C
∂U

(1)
T2

(µ)

(
eve1 × evb2;∆P3×P3

)
= ±

∣∣θ−1(∆P3×P3) ∩W
∣∣.

Along the set ∂U
(1)
T2

(µ)∩{eve1 × evb2}−1(∆P3×P3), the maps eve1 × evb2 and θ can
be viewed as sections of the bundle ev∗e1 TP3 . Thus, we can apply the termi-
nology and the computational method of Section 2 to determine the number of
zeros of a small perturbation of eve1 × evb2 near

∂U
(1)
T2

(µ) ∩ {eve1 × evb2}−1(∆P3×P3).

Of course, we cannot “cut off” the map near the entire boundary of U
(1)
T2

(µ),
as was done for vector-bundle sections in Subsection 2.3. However, the entire
approach of Subsection 2.3 goes through, since {eve1 × evb2}−1(∆P3×P3) is well-

defined on all of the space U
(1)
T2

(µ), and not just on U
(1)
T2

(µ).

We prove Corollary 4.13, which expresses the boundary contribution

C
∂U

(1)
T2

(µ)

(
eve1 × evb2;∆P3×P3

)

in terms of level 1 numbers, by computing contributions from the individual
strata UT2,T . We split the computation into four cases, depending on whether
χT (1̃, 2̂) and χT (1̂, 2̂) are zero or not. By Lemma 4.4, if χT (1̃, 2̂) 6= 0 and
χT (1̂, 2̂) 6= 0, the space UT2,T makes no contribution. The case χT (1̃, 2̂) = 0
and χT (1̂, 2̂) 6= 0 is handled in Lemma 4.7. Figure 9 shows the three possi-
bilities for non-hollow spaces UT2,T . In all three cases, we express the contri-
bution from the stratum in terms of the number N(α1) of zeros of an affine
map between vector bundles. However, in two of the cases, this number is
zero, basically for dimensional reasons; the remaining number is computed in
Lemma 4.8. The case χT (1̃, 2̂) 6= 0 and χT (1̂, 2̂) = 0 is symmetric to the one
just considered and no separate computation is needed. The remaining case
is dealt with in Lemma 4.12. Figure 11 shows the three possibilities for non-
hollow spaces UT2,T , but in all three cases the corresponding number N(α1) is
zero for dimensional reasons. In both figures, the numbers above the arrows
show the multiplicity with which the corresponding number N(α1) enters into
C
∂U

(1)
T2

(µ)

(
eve1 × evb2;∆P3×P3

)
.

Before proceeding with the actual proofs, we formally define more spaces of
tuples of stable genus-zero maps that appear in the statements of Theorems 1.2
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and 1.3 and describe curves pictured in Figure 1. First, let

S1(µ) =
{
b ∈ UT0(µ) : D

(1)

T0,e1b = 0
}

and let S1(µ) be the closure of S1(µ) in UT0 . If T = (M0, I2; j, d), let

ST (µ) =
{
b ∈ UT (µ) :

D
(1)

T ,e1υe1 + D
(1)

T ,e2υe2 = 0 for some (b;υe1, υe2) ∈ Le1T ⊕ Le2T − UT

}
.

We denote by S2(µ) the quotient of the disjoint union of the spaces ST (µ),
taken over all bubble types T as above such that de1, de2 > 0 and de1 + de2 = d,
by the natural action of the symmetric group S2 . Finally, if T = (M1, I2; j, d)
is a bubble type such that jb1 = 1̃, let

U
(1)
T (µ) =

{
b ∈ UT (µ) : eve1(b) = evb1(b)}.

We denote by V
(1)
2 (µ) the disjoint union of the spaces U

(1)
T (µ), taken over all

bubble types T as above such that de1, de2 > 0 and de1 + de2 = d.

1̃

1̂2̂

×
1

×1

×
1

1̃

2̂

1̂

1̃

2̂

1̂

l

1̃

1̂

2̂

≈

≈

≈

V
(1)

1 (µ)

M0,4 ×

1̃, l

1̂

M0,4 ×

1̂

Lemma 4.8

0

0

Figure 9: An outline of the proof of Lemma 4.7

Lemma 4.7 Suppose T = (M2, I; j, d) is a bubble type such that T < T2 ,
χT (1̃, 2̂) = 0, and χT (1̂, 2̂) > 0.

(1) If |Î+| > |χe1(T )|, U
(1)
T (µ) is (eve1 × evb2,∆P3×P3)–hollow, and thus

CUT2,T

(
eve1 × evb2;∆P3×P3

)
= 0.
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(2) If |Î+| = |χe1(T )| = 1, |Me1T | ∈ {1, 2}. If |Me1T | = 2,

CUT2,T

(
eve1 × evb2;∆P3×P3

)
= 0.

If |Me1T | = 1,

CUT2,T

(
eve1 × evb2;∆P3×P3

)
=

〈
6a2b0 + 4ab0c1(L∗e1) + c21(L

∗e1),V (1)
1 (µ)

〉
+

∣∣S2(µ)
∣∣

−
∣∣V(1)

2 (µ)
∣∣ −

〈
8a2b0 + 4c1(L

∗e1),S1(µ)
〉
.

(3) If |Î+| = |χe1(T )| = 2, CUT2,T

(
eve1 × evb2;∆P3×P3

)
= 0.

Proof (1) By Lemma 4.1, U
(1)
T2

(µ) ∩ UT2,T ⊂ U
(1)
T |T2

(µ). With appropriate

identifications, U
(1)
T |T2

(µ) is the zero set of the section evT2,M0 ⊕(evb1 − eve1) of
the bundle

ev∗
T2,M0

N∆T2(µ) ⊕ ev∗e1 TP3

over an open neighborhood of U
(1)
T |T2

(µ) in UT2,T . By Lemma 3.4, this section is
transversal to the zero set, since the constraints µ are assumed to be in general
position. By Proposition 3.5, there exists a C1–negligible map

ε− : FT δ − Y (FT ; Î+) −→ ev∗
T2,M0

N∆T2(µ) ⊕ ev∗e1 TP3

such that
{

evT2,M0 × eve1 × evb1 }(
φT2,T (b;υ)

)
=

{
evT2,M0 × eve1 × evb1 }

(b) + ε−(b;υ)

for all (b;υ) ∈ FT δ − Y (FT ; Î+). On the other hand, by Lemma 4.5,
{

eve1 × evb2 }(
φT2,T (υ)

)
=

{
α+ ε(υ)

}
ρ(υ) ∈ ev∗e1 TP3

for all υ ∈ FT δ∗ − Y (FT ; Î+), where α is a linear map, which is injective

over U
(1)
T |T2

(µ), and its domain is a vector bundle of rank |χe1(T )|. Thus, if

|Î+| > |χe1(T )|, then U
(1)
T |T2

(µ) is (eve1 × evb2,∆P3×P3)–hollow, and

CUT2,T

(
eve1 × evb2;∆P3×P3

)
= 0

by Proposition 2.18B, or Lemma 2.20, and Lemma 4.1.

(2) On the other hand, if |Î+| = |χe1(T )|, by the above and Lemma 4.5,

U
(1)
T |T2

(µ) is (eve1 × evb2,∆P3×P3)–regular, and by Proposition 2.18B and rescaling
of the linear map,

CUT2,T

(
eve1 × evb2;∆P3×P3

)
= N(α), where

α ∈ Γ
(
U

(1)
T |T2

(µ);Hom(FT , ev∗e1 TP3)
)
, α(υ) =

∑

h∈χe1(T )

(
yb2 − xh

)−1
⊗D

(1)
T ,hυh.
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provided α is a regular section, as is implied by what follows. Since the map

FT ≡
⊕

h∈χe1(T )

L∗e1T ⊗ LhT −→ F =
⊕

h∈χe1(T )

LhT , υh −→
(
yb2 − xh

)−1
⊗ υh,

is simply a rescaling of factors over UT2(µ),

CUT |T2

(
eve1 × evb2;∆P3×P3

)
= N(α′), where

α′ ∈ Γ
(
U

(1)
T |T2

(µ);Hom(F , ev∗e1 TP3)
)
, α′(υ) =

∑

h∈χe1(T )

D
(1)
T ,hυh.

Note that with respect to the decomposition (3.4), shown in Figure 9, the
linear map α′ comes entirely from the second factor. Thus, if the first factor is
positive-dimensional, N(α′) = 0, ie

CUT2,T

(
eve1 × evb2;∆P3×P3

)
= 0

unless |χe1(T )| = 1 and |Me1T | = 1. If |χe1(T )| = 1 and |Me1T | = 1, we conclude
that

CUT2,T

(
eve1 × evb2;∆P3×P3

)
= N(α1), where

α1 ∈ Γ
(
V

(1)
1 (µ);Hom(Le1T1, ev

∗b0 TP3)
)
, α1(υ) = D

(1)

T1,e1υ.
The number N(α1) is computed below.

Lemma 4.8 If α1 ∈ Γ
(
V

(1)
1 (µ);Hom(Le1, ev∗b0 TP3)

)
is given by α1 = D

(1)

T1,e1 ,

N(α1) =
〈
6a2b0 + 4ab0c1(L∗e1) + c21(L

∗e1),V (1)
1 (µ)

〉
+

∣∣S2(µ)
∣∣ −

∣∣V(1)
2 (µ)

∣∣

−
〈
8a2b0 + 4c1(L

∗e1),S1(µ)
〉
.

Proof (1) Since α1 does not vanish on V
(1)
1 (µ) by Lemma 3.4, by Proposi-

tions 2.18A and 2.18B,

N(α1) =
〈
6a2b0 + 4ab0c1(L∗e1) + c21(L

∗e1),V (1)
1 (µ)

〉
− C

∂V
(1)
1 (µ)

(α⊥
1 ), (4.5)

where α⊥
1 denotes the composition of α1 with the projection π⊥ν̄1 onto the

quotient O1 of ev∗b0 TP3 by a generic trivial line subbundle Cν̄1 . Figure 10

shows the five types of boundary strata that are not α⊥
1 –hollow. Contributions

from the first two are computed in (2) below, from the following two in (3), and
from the last one in (4) below.

Geometry & Topology, Volume 9 (2005)



Counting rational curves of arbitrary shape 643

1̃

1̂

×
1

×
1

×2

×
2

×
1

1̃

l

1̂

1̃

1̂

1̃

1̂

1̃

1̂

l

cusp

1̃
1̂

tacnode

≈

≈

≈

≈

≈

V
(1)

1;1(µ)

V
(1)
2 (µ)

S1(µ)

M0,4 × S1;1(µ)

M0,4 × S2(µ)

Lemma 4.9

|V
(1)
2 (µ)|

Lemma 4.10

|S1;1(µ)|

|S2(µ)|

Figure 10: An outline of the proof of Lemma 4.8

(2) If T < T1 and χT (1̃, 1̂) > 0, V
(1)
1 (µ) ∩ UT1,T ⊂ U

(1)
T |T1

(µ) by Lemma 4.1.
By Proposition 3.5,

D
(1)

T1,e1(φT1,T (υ)
)

=
∑

h∈χe1(T )

(
D

(1)
T ,h + εh(υ)

)
ρh(υ), where

ρh(υ) =
∏

i∈(e1,h]

υi, for all υ ∈ FT δ∗ − Y (FT ; Î+),

and for some C0–negligible maps

εh : FT δ∗ − Y (FT ; Î+) −→ Hom(LhT , ev
∗b0 TP3).

Let F̃hT denote the line bundle determined by ρh . By Lemma 3.4, the map

F̃T ≡
⊕

h∈χe1(T )

F̃hT −→ L∗e1T ⊗ ev∗b0 TP3,
(
υ̃h

)
h∈χe1(T )

−→
∑

h∈χe1(T )

D
(1)
T ,hυ̃h,
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is injective over U
(1)
T |T1

(µ). If ν̄1 is generic, the same is true of the map

α′
2 : F̃T −→ L∗e1T ⊗ O1,

{
α′

2(υ̃)
}
(υ) = π⊥ν̄1

∑

h∈χe1(T )

D
(1)
T ,hυ̃h ⊗ υ.

By the same argument as in (1) of the proof of Lemma 4.7,

CUT1,T
(α⊥

1 ) = 0 unless Î+ = χe1(T ).

If Î+ = χe1(T ), by dimension-counting either

|Î+| = |χe1(T )| = 1 and |Me1T | = 1 or

|Î+| = |χe1(T )| = 2 and |Me1T | = 0.

In the second case, the map α′
2 is an isomorphism on every fiber of FT over

the finite set U
(1)
T |T1

(µ). Thus, by Proposition 2.18B,

CUT1,T
(α⊥

1 ) =
∣∣U (1)

T |T1
(µ)

∣∣.

Note that the sum of the numbers |U
(1)
T |T1

(µ)|, taken over all bubble types T < T1

such that
|Î+| = |χe1(T )| = 2 and |Me1T | = 0,

is |V
(1)
2 (µ)|. On the other hand, if Î+ = χe1(T ) = {h} is a single-element set

and |Me1T | = 1, ie T = T1(l) for some l ∈ [N ], by Proposition 2.18B and the
decomposition (3.4),

C
U

(1)
T |T1

(µ)
(α⊥

1 ) = N(α2), where α2 ∈ Γ
(
U

(1)
T1/l

(µ);Hom(Lh,O1)
)

is the map induced by α′
2 , ie the composition of D

(1)
T1/l,h

with the projection

π⊥ν̄1 onto the quotient O1 of ev∗b0 TP3 by a generic line subbundle Cν̄1 . Thus,
by Lemma 4.9,

∑

l∈[N ]

CUT1(l)|T1
(α⊥

1 ) =
〈
4ab0 + c1(L

∗e1),V (1)
1;1(µ)

〉
− 2

∣∣S1;1(µ)
∣∣.

Summing up the above contributions, we find that
∑

χT (e1,b1)>0

CUT1,T
(α⊥

1 ) =
∣∣V(1)

2 (µ)
∣∣ +

〈
4ab0 + c1(L

∗e1),V (1)
1;1(µ)

〉
− 2

∣∣S1;1(µ)
∣∣. (4.6)

In (4.6), S1;1(µ) denotes the disjoint union of the sets

ST0;l
(µ) = {b ∈ UT0;l

(µ) : D
(1)

T0;l,e1b = 0
}
, where

T0;l =
(
M0 − {l}, I1(l); j, d), I1(l) = {0̂ = l} ⊔ I+

1 ,
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taken over all l ∈ [N ]. The space V
(1)
1;1 (µ) is the disjoint union of the sets

U
(1)
T1;l

(µ) = {b ∈ UT1;l
(µ) : eve1(b) = evb1(b)}, where

T1;l =
(
M1 − {l}, I1(l); j, d),

taken over all l ∈ [N ]. As usual, V
(1)
1;1(µ) denotes the closure of V

(1)
1;1 (µ) inside of

a union of moduli spaces of stable maps. More geometrically, the image of every

element of S1;1(µ) (of V
(1)
1;1 (µ)) has a cusp (a node) at one of the constraints

µ1, . . . , µN .

(3) If T < T1 and χT (1̃, 1̂) = 0, V
(1)
1 (µ)∩UT1,T ⊂ ST |T1

(µ) by Lemma 4.2. On
the other hand, by Lemma 3.4, ST |T1

(µ) = ∅ unless |χe1(T )| ∈ {1, 2}. Suppose
χe1(T ) = {h} is a single-element set. With appropriate identifications, ST |T1

(µ)

is the zero set of the section evT1,M0 ⊕D
(1)
T ,h of the bundle

ev∗
T1,M0

N∆T1(µ) ⊕ L∗
h ⊗ ev∗b0 TP3

defined over a neighborhood of ST |T1
(µ) in UT1,T . By Lemma 3.4, this section

is transverse to the zero set. By Proposition 3.5 and Lemma 4.2,

evT1,M0

(
φT1,T (b;υ)

)
= evT1,M0(b) + ε−;1(b;υ),

{eve1 × evb1}(φT1,T (υ)
)

=
(
yh;b1 − xh;b1)−1

⊗
{
D

(1)
T ,h + ε−;2(υ)

}
ρ
(0;1)

T ,b1;h(υ)
for all (b;υ) ∈ FT δ − Y (FT ; Î+) and some C1–negligible maps

ε−;1, ε−;2 : FT δ − Y (FT ; Î+) −→ ev∗
T1,M0

N∆T1(µ), L∗
h ⊗ ev∗b0 TP3.

On the other hand, subtracting
(
ye1;b1(υ) − xe1;h(υ)) times the expansion of

{eve1 × evb1} ◦φT1,T in Lemma 4.2 from the expansion of D
(1)

T1,e1 ◦φT1,T in (3b) of

Proposition 3.5, we obtain

D
(1)

T1,e1φT1,T (υ) = −
(
yh;b1 − xb1;h

)
⊗

{
D

(2)
T ,h + ε(υ)

}
ρ(υ),

where ρ(υ) =
∏

i∈(χT (b1,h),h]

υ⊗2
i ⊗

∏

i∈(e1,χT (b1,h)]

υi,

for all υ ∈ FT δ such that φT1,T (υ) ∈ U
(1)
T1

(µ) and for some C0–negligible map

ε : FT δ − Y (FT ; Î+) −→ L∗⊗2
h ⊗ ev∗b0 TP3.

By Lemma 3.4, D
(2)
T ,h does not vanish over ST |T1

(µ), and neither does the
linear map

α′
2 : FhT

⊗2 −→ L∗e1T ⊗ O1,
{
α′

2(υ̃)
}
(υ) = π⊥ν̄1D

(2)
T ,hυ̃ ⊗ υ,
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provided ν̄1 is generic. Thus, ST |T1
(µ) is α⊥

1 –hollow unless Î+ = χe1(T ). On

the other hand, if Î+ = χe1(T ), by Proposition 2.18B, a rescaling of the linear
map, and the decomposition (3.4),

CUT1,T (µ)(α
⊥
1 ) = 2N(α2), where

α2 ∈ Γ(M{e1,h}⊔Me1T × ST (µ);Hom(π∗1L
∗e1 ⊗ π∗2L

⊗2
h , π∗1L

∗b1 ⊗O1)
)
,

α2(υ̃) = π⊥ν̄1 ◦
{
D

(2)

T ,h
υ̃
}
.

By dimension-counting, |Me1T | ∈ {1, 2}. If |Me1T | = 2, ie Me1T = {2̂, l} for

some l ∈ [N ], ST (µ) is a finite set and D
(2)

T ,h
does not vanish. Thus, by

Propositions 2.18A and 2.18B,

∑

χT (e1,b1)=0,|Me1T |=2

CUT |T1
(α⊥

1 ) = 2
〈
c1(L

∗e1),M{e1,h}⊔Me1T 〉∣∣S1;1(µ)
∣∣ = 2

∣∣S1;1(µ)
∣∣.

If |Me1T | = 1, that is, Me1T = {2̂}, by Propositions 2.18A and 2.18B and
Lemma 4.10,

N(α2) =
〈
4ab0 + 2c1(L

∗e1),S1(µ)
〉
−

∣∣S2(µ)
∣∣.

Thus, summing up the above contributions, we obtain

∑

χT (e1,b1)=0,|χe1(T )|=1

CUT1,T
(α⊥

1 ) =
〈
8ab0 + 4c1(L

∗e1),S1(µ)
〉

+ 2
∣∣S1;1(µ)

∣∣ − 2
∣∣S2(µ)

∣∣.

(4.7)
(4) Finally, if T < T1 , χT (1̃, 1̂) = 0, and χe1(T ) = {h1, h2} is a two-element

set, the section D
(1)
T ,h1

does not vanish over the set ST |T1
(µ). We denote by

πh1 : ev∗b0 TP3 −→ ImD
(1)
T ,h1

and π⊥h1
: ev∗b0 TP3 −→ Eh1

the orthogonal projections, defined over a neighborhood of ST |T1
(µ) in UT1,T ,

onto ImD
(1)
T ,h1

and its orthogonal complement E1 in ev∗b0 TP3 . With appropriate

identifications, ST |T1
(µ) is the zero set of the section evT1,M0 ⊕π

⊥
h1

◦ D
(1)
T ,h2

of
the bundle

ev∗
T1,M0

N∆T1(µ) ⊕ L∗
h2

⊗ Eh1

defined over a neighborhood of ST |T1
(µ) in UT1,T . By Lemma 3.4, this section
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is transverse to the zero set. By Proposition 3.5 and Lemma 4.2,

evT1,M0

(
φT1,T (b;υ)

)
= evT1,M0(b) + ε−;1(b;υ),

π⊥h1
{eve1 × evb1}(φT1,T (υ)

)
=

(
yh2;b1 − xb1;h2

)−1
⊗

{
π⊥h1

◦ D
(1)
T ,h2

+ ε−;2(υ)
}
ρ
(0;1)

T ,b1;h2
(υh2),

πh1{eve1 × evb1}(φT1,T (υ)
)

=
{
yh1;b1 − xb1;h1

)−1
⊗

(
D

(1)
T ,h1

+ ε+;h1(υ)
}
ρ
(0;1)

T ,b1;h1
(υh1)

+
(
yh2;b1 − xb1;h2

)−1
⊗

{
πh1D

(1)
T ,h2

+ ε+;h2(υ)
}
ρ
(0;1)

T ,b1;h2
(υh2)

for all (b;υ) ∈ FT δ − Y (FT ; Î+) and some C1–negligible maps

ε−;1, ε−;2, ε+;h : FT δ − Y (FT ; Î+)

−→ ev∗T1,M0
N∆T1(µ), L∗

h2
⊗ Eh1, L

∗
h ⊗ ImD

(1)
T ,h1

.

However, subtracting the expansion of {eve1 × evb1} ◦ φT1,T in Lemma 4.2 mul-

tiplied by
(
ye1;b1(υ) − xe1;h1

(υ)
)

from the expansion of D
(1)

T ,b1 ◦ φT1,T in (3b) of

Proposition 3.5, we find that

D
(1)

T1,e1φT1,T (υ) =
{
α′

2 + ε(υ)
}
ρ(υ)

for all υ ∈ FT δ such that φT1,T (υ) ∈ U
(1)
T1

(µ), where ρ is a monomials map on

FT with values in a rank-two bundle F̃T ,

α′
2 : F̃T −→ L∗e1 ⊗ ev∗b0 TP3

is a linear map, such that α+ ⊕ α is injective over U
(1)
T1

(µ), and

ε : FT − Y (FT ; Î+) −→ Hom(F̃T , L∗e1 ⊗ ev∗b0 TP3)

is a C0–negligible map. Explicitly, if Î = χe1(T ), ρ is the identity map, and

α
(
υh1 , υh2

)
=

(
yb1 − xh1

)−1
⊗

(
xh2 − xh2

)
⊗D

(1)
T ,h2

υh2.

Thus, if ν̄1 is generic, ST |T1
(µ) is α⊥

1 –hollow unless Î+ = χe1(T ). If Î+ =

χe1(T ), by dimension-counting Me1T = {2̂} if ST |T1
(µ) 6= ∅, and by Proposi-

tion 2.18B, rescaling of the linear map, and the decomposition (3.4),

CST |T1
(µ)(α

⊥
1 ) = N(α2), where

α2 ∈ Γ(M{e1,b1,h1,h2}
× ST (µ);Hom(π∗1L

∗e1 ⊗ π∗2Lh2, π
∗
1L

∗e1 ⊗O1)
)
,

α2(υ̃) = π⊥ν̄1 ◦
{
D

(1)

T
υ
}
.
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The set ST (µ) is finite and D
(1)

T
does not vanish. Thus, by Propositions 2.18A

and 2.18B,
∑

χT (e1,b1)=0,|χe1(T )|=2

CUT |T1
(α⊥

1 ) =
〈
c1(L

∗e1),M{e1,b1,h1,h2}
T

〉∣∣S2(µ)
∣∣ =

∣∣S2(µ)
∣∣. (4.8)

The claim follows by plugging equations (4.6), (4.7), and (4.8) into (4.5) and
using (3.2) and (3.3).

Lemma 4.9 If O1 −→ V
(1)
1;1(µ) is the quotient of the bundle ev∗b0 TP3 by

a generic trivial line subbundle Cν̄1 , π⊥ν̄1 : ev∗b0 TP3 −→ O1 is the quotient

projection, and α2 ∈ Γ
(
V

(1)
1;1(µ);Hom(Le1,O1)

)
is given by α2 = π⊥ν̄1 ◦ D

(1)

T1;l,e1
on U

(1)
T1;l

(µ),

N(α2) =
〈
4ab0 + c1(L

∗e1),V (1)
1;1(µ)

〉
− 2

∣∣S1;1(µ)
∣∣.

Proof By Propositions 2.18A and 2.18B,

N(α2) =
〈
4ab0 + c1(L

∗e1),V (1)
1;1(µ)

〉
− C

∂V
(1)
1;1(µ)

(α⊥
2 ), (4.9)

where α⊥
2 denotes the composition of α2 with the projection π⊥ν̄2 onto the

quotient O2 of O1 by a generic trivial line subbundle Cν̄2 . Suppose

T ≡ (M1, I; j, d) < T1;l

is a bubble type such that D
(1)

T1;l,e1 vanishes somewhere on V
(1)
1;1(µ)∩UT1;l,T . Then,

by Lemmas 3.4, 4.1, and 4.2,

T = T1;l(1̂) and V
(1)
1;1(µ) ∩ UT1;l,T ⊂ ST |T1;l

(µ).

By the same argument as in (3) of the proof of Lemma 4.8,

CST |T1;l
(µ)(α

⊥
2 ) = 2

∣∣ST |T1;l
(µ)

∣∣.

We conclude that
C
∂V

(1)
1;1(µ)

(α⊥
2 ) = 2

∣∣S1;1(µ)
∣∣. (4.10)

The claim follows from (4.9) and (4.10).

Lemma 4.10 If O1 −→ S1(µ) is the quotient of the bundle ev∗b0 TP3 by a

generic trivial line subbundle Cν̄1 , π⊥ν̄1 : ev∗b0 TP3 −→ O1 is the quotient pro-

jection, and α2 ∈ Γ
(
S1(µ);Hom(L⊗2e1 ,O1)

)
is given by α2 = π⊥ν̄1 ◦ D

(2)

T0,e1 ,

N(α2) =
〈
4ab0 + 2c1(L

∗e1),S1(µ)
〉
−

∣∣S2(µ)
∣∣.
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Proof (1) By Propositions 2.18A and 2.18B,

N(α2) =
〈
4ab0 + 2c1(L

∗e1),S1(µ)
〉
− C∂S1(µ)(α

⊥
2 ), (4.11)

where α⊥
2 denotes the composition of α2 with the projection π⊥ν̄2 onto the

quotient O2 of O1 by a generic trivial line subbundle Cν̄2 . We now use the
expansion (3d) of Proposition 3.5 to describe the boundary strata of S1(µ)
and compute the contribution of each stratum to C∂S1(µ)(α

⊥
2 ). Our description

shows that ∂S1(µ) is a finite set and thus S1(µ) is a one-pseudovariety in V1(µ)
and V1 .

(2) If T = (M0, I; j, d) < T0 , by Proposition 3.5,

D
(1)

T0,e1φT0,T (υ) =
∑

h∈χe1(T )

(
D

(1)
T ,h + ε

(1)

T ,e1;h)ρ(0;1)

T ,e1 (υ), where ρ
(0;1)

T ,e1 (υ) =
∏

i∈(e1,h]

υi,

for all υ ∈ FT sufficiently small. Thus, S1(µ)∩UT0,T is contained in the finite

set ST |T0
(µ). If de1 6= 0, section D

(2)

T0,e1 does not vanish on ST |T0
(µ) and thus

UT |T0
does not contribute to C∂S1(µ)(α

⊥
2 ), since D

(1)

T0,e1 is defined everywhere

on S1(µ).

(3) If de1 = 0 and ST |T0
(µ) 6= ∅, Î+ = χe1(T ) and |χe1(T )| ∈ {1, 2}. Suppose

χe1(T ) = {h} is a single-element set, ie T = T0(l) for some l ∈ [N ]. With

appropriate identifications, ST |T0
(µ) is the zero set of the section evT0,M0 ⊕D

(1)
T ,h

of the bundle

ev∗
T0,M0

N∆T0(µ) ⊕ L∗
h ⊗ ev∗b0 TP3

defined over a neighborhood of ST |T0
(µ) in UT0,T . By Lemma 3.4, this section

is transverse to the zero set. By Proposition 3.5 and Lemma 4.2,

evT0,M0

(
φT0,T (b;υ)

)
= evT0,M0(b) + ε−;1(b;υ),

D
(1)

T0,e1(φT0,T (υ)
)

=
{
D

(1)
T ,h + ε−;2(υ)

}
υ,

for all (b;υ) ∈ FT δ − Y (FT ; Î+) and some C1–negligible maps

ε−;1, ε−;2 : FT δ − Y (FT ; Î+) −→ ev∗
T0,M0

N∆T0(µ), L∗
h ⊗ ev∗b0 TP3.

On the other hand, subtracting the expansion of D
(1)

T0,e1◦φT0,T of (3d) of Proposi-

tion 3.5 times xh from the expansion of D
(2)

T0,e1 ◦φT0,T of (3d) of Proposition 3.5,

we obtain

D
(2)

T0,e1φT0,T (υ) =
{
D

(2)
T ,h + ε

(2)

T ,e1;h(υ)}υ ⊗ υ for all υ ∈ FT δ with φT0,T (υ) ∈ S1.
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By Lemma 3.4, D
(2)
T ,h does not vanish on the finite set ST |T0

(µ). Thus, by
Proposition 2.18B,

∑

|χe1(T )|=1

CUT0,T (µ)(α
⊥
2 ) = 2

∣∣S1;1(µ)
∣∣. (4.12)

(4) If χe1(T ) = {h1, h2} is a two-element set, the section D
(1)
T ,h1

does not

vanish over the set ST |T0
(µ). Let πh1 , π⊥h1

, and Eh1 be as in (4) of the proof
of Lemma 4.8. Similarly to the previous case, ST |T0

(µ) is the zero set of the
section

evT0,M0 ⊕π
⊥
h1

◦ D
(1)
T ,h2

of the bundle ev∗
T0,M0

N∆T0(µ) ⊕ L∗
h2

⊗ Eh1 defined over a neighborhood of
ST |T0

(µ) in UT0,T . By Lemma 3.4, this section is transverse to the zero set. By
Proposition 3.5 and Lemma 4.2,

evT0,M0

(
φT0,T (b;υ)

)
= evT0,M0(b) + ε−;1(b;υ),

π⊥h1
D

(1)

T0,e1(φT0,T (υ)
)

=
{
π⊥h1

◦ D
(1)
T ,h2

+ ε−;2(υ)
}
υh2 ,

πh1D
(1)

T0,e1(φT0,T (υ)
)

=
{
D

(1)
T ,h1

+ ε+;h1(υ)
}
υh1) +

{
πh1D

(1)
T ,h2

+ ε+;h2(υ)
}
υh2

for all (b;υ) ∈ FT δ−Y (FT ; Î+) and some C1–negligible maps ε−;1, ε−;2, ε+;h .

On the other hand, subtracting the expansion of D
(1)

T ,e1◦φT0 ,T of (3d) of Proposi-

tion 3.5 times xh1 from the expansion of D
(2)

T0,e1◦φT0,T of (3d) of Proposition 3.5,

we obtain

D
(2)

T0,e1φT0,T (υ) = (xh2 − xh1) ⊗
{
D

(1)
T ,h2

+ ε(υ)
}
υh2

for all υ ∈ FT δ such that φT0,T (υ) ∈ S1(µ),

where ε is a C0–negligible map. Since D
(1)
T ,h does not vanish on ST |T0

(µ), from
Proposition 2.18B, we conclude that

∑

|χe1(T )|=2

CUT |T0
(µ)(α

⊥
2 ) =

∣∣S2(µ)
∣∣. (4.13)

The claim follows by plugging equations (4.12) and (4.13) into (4.11) and using
(3.2) and (3.3).

Lemma 4.11 Suppose T = (M2, I; j, d) is a bubble type such that T < T2 ,
χT (1̃, 2̂) > 0, and χT (1̂, 2̂) = 0.

(1) If |Î+| 6= 1 or |Mjb1T | 6= 1, CUT2,T

(
eve1 × evb2;∆P3×P3

)
= 0.
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(2) If |Î+| = 1 and |Mjb1T | = 1,

CUT2,T

(
eve1 × evb2;∆P3×P3

)
=

〈
6a2b0 + 4ab0c1(L∗e1) + c21(L

∗e1),V (1)
1 (µ)

〉

+
∣∣S2(µ)

∣∣ −
∣∣V(1)

2 (µ)
∣∣ −

〈
8a2b0 + 4c1(L

∗e1),S1(µ)
〉
.

Proof This lemma follows from Lemma 4.7 by symmetry.

Remark These contributions can be computed directly, ie similarly to the
proof of Lemma 4.7, and in fact one finds a somewhat different expression for
the contribution in (2). What this means is that we have found a relationship
between certain intersection numbers:
〈
8ab0c1(L∗e1),V (1)

1 (µ)
〉
+2

∣∣V(1)
2 (µ)

∣∣ =
〈
4ab0 − ηb0,1,V (1,1)

2 (µ)
〉
+

∣∣V(1;0,1)
2,(0,1) (µ)

∣∣. (4.14)

Here V
(1;0,1)
2,(0,1) (µ) denotes a set of tuples of stable maps whose cardinality is six

times the number of rational curves that pass through the constraints µ and
have the form described by the last picture of Figure 1. Using Lemma 2.2.2
in [11], it is possible to restate the relation (4.14) in terms of numbers of rational
curves of various shapes.

Lemma 4.12 If T = (M2, I; j, d) is a bubble type such that T < T2 and
χT (1̃, 2̂) = χT (1̂, 2̂) = 0,

CUT2,T

(
eve1 × evb2;∆P3×P3

)
= 0.

Proof (1) Since χT (1̃, 1̂) = 0, by Lemma 4.2,

U
(1)
T2

(µ) ∩ UT2,T ⊂ ST |T2
(µ).

If ST |T2
(µ) 6= ∅, |χe1(T )| ∈ {1, 2} . If h is the unique element of χe1(T ), mix-

ing the argument in (1) of the proof of Lemma 4.7 with (3) of the proof of
Lemma 4.8, we find that ST |T2

(µ) is (eve1 × evb2,∆P3×P3)–hollow unless Î+ =

χe1(T ). On the other hand, if Î+ = χe1(T ) = {h}, by Proposition 2.18B, the
decomposition (3.4), and a rescaling of the linear map,

CUT2,T

(
eve1 × evb2;∆P3×P3

)
= 2N(α1), where

α1 = π∗2D
(2)

T
∈ Γ

(
M{e1,h}⊔Me1T × ST (µ);π∗2Hom(L∗e1, ev∗b0 TP3)

)
.

Since |Me1T | ≥ 2, the first factor is positive-dimensional, while the linear
map α1 comes entirely from the second factor. Thus,

CUT2,T

(
eve1 × evb2;∆P3×P3

)
= 0.
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1̃

1̂2̂

×
2

×2

×
1

1̃

2̂

1̂

1̃

2̂

1̂l

1̃
2̂1̂

≈

≈

≈

cusp

cusp

tacnode

M0,4 ×

1̃

M0,5 ×

1̃, l

M0,5×

0

0

0

Figure 11: An outline of the proof of Lemma 4.12

(2) If χe1(T ) = {h1, h2} is a two-element set, the section D
(1)
T ,h1

does not vanish
over the set ST |T2

(µ). Mixing (1) of the proof of Lemma 4.7 with (4) of the proof

of Lemma 4.8, we find that ST |T2
(µ) is (eve1 × evb2,∆P3×P3)–hollow unless Î+ =

χe1(T ). On the other hand, if Î+ = χe1(T ) = {h1, h2}, by Proposition 2.18B,
the decomposition (3.4), and a rescaling of the linear map,

CUT2,T

(
eve1 × evb2;∆P3×P3

)
= N(α1), where

α1 ∈ Γ
(
M{e1,h1,h2}⊔Me1T × ST (µ);π∗2Hom(Lh1 ⊕ Lh2 , ImD

(1)

T
⊕ ev∗b0 TP3)

)
,

α1

(
υh1 , υh2

)
=

(
D

(1)

T
υh1 + D

(1)

T
υh2,D

(1)

T
υh2

)
.

Since |Me1T | ≥ 2, the first factor is positive-dimensional, while the linear
map α1 comes entirely from the second factor. Thus,

CUT2,T

(
eve1 × evb2;∆P3×P3

)
= 0.

Corollary 4.13 The contribution from the boundary to the number 〈〈V
(2)
1 (µ)〉〉

is given by

C
∂U

(2)
T2

(
eve1 × evb2;∆P3×P3

)
=

〈
12a2b0 + 8ab0ηb0,1 + 2η2b0,1,V (1)

1 (µ)
〉

+ 2
∣∣S2(µ)

∣∣

−2
∣∣V(1)

2 (µ)
∣∣ −

〈
16ab0 + 8ηb0,1,S1(µ)

〉
.

Proof This corollary follows immediately from Lemmas 4.1–4.4, 4.7, 4.11,
and 4.12.
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5 Example 2: Rational tacnodal curves in P3

5.1 Summary

In this section, we prove Theorem 1.3. The general approach is the same as in
Section 4. If T1 is the bubble type as defined in Section 4, let

S
(1)
1 (µ) =

{
(b, [υe1, υb1]) ∈ P(Le1 ⊕ L∗e1) → V

(1)
1 : b ∈ V

(1)
1 (µ), De1,b1(b, [υe1, υb1]) = 0

}

where De1,b1 ∈ Γ
(
P(Le1 ⊕ L∗e1)|V(1)

1 (µ); γ∗Le1⊕L∗e1 ⊗ ev∗b0 TP3
)
,

De1,b1(υe1, υb1) = D
(1)

T1,e1υe1 + D
(1)

T1,b1υb1.
The set S

(1)
1 (µ) can be identified with the set of rational one-component tac-

nodal curves passing through the constraints µ, but with a choice of a branch

at each node. In particular, the cardinality of the set S
(1)
1 (µ) is twice the

enumerative number of Theorem 1.3.

Note that section De1,b1 does not extend continuously over all of the boundary of

V
(1)
1 (µ). In fact, this can be seen from (3c) of Proposition 3.5. Nevertheless, the

behavior of this section can be understood everywhere. By Proposition 2.18B
and equation (2.16), we have

∣∣S(1)
1 (µ)

∣∣ =
〈
6a2b0 + c21(L

∗e1),V (1)
1 (µ)

〉
− C∂P(Le1⊕L∗e1)(De1,b1), (5.1)

where C∂P(Le1⊕L∗e1)(De1,b1) is the De1,b1–contribution from the boundary strata of

P(Le1 ⊕ L∗e1) to the euler class of γ∗Le1⊕L∗e1 ⊗ ev∗b0 TP3 . This contribution is com-

puted in the rest of this section. Theorem 1.3 is obtained by plugging the
expressions of Corollaries 5.3 and 5.9 into (5.1) and then using identities (3.2)
and (3.3).

Before proceeding with our computation of the contributions from various

strata, we observe that the section De1,b1 extends over V
(1)
1 (µ) ∩ UT1,T if

T ≡ (M1, I; j, d) < T1

is a bubble type such that jb1 = 1̃, as can be seen from Proposition 3.5. If in
addition de1 6= 0, by Lemmas 3.4 and 4.1, De1,b1 does not vanish over

V
(1)
1 (µ) ∩ UT1,T ⊂ U

(1)
T |T1

(µ).

Thus, such spaces UT1,T do not contribute to C∂P(Le1⊕L∗e1)(De1,b1) and will not be

considered below.
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5.2 Contributions from the spaces UT1,T with χT (1̃, 1̂) = 0

In this subsection, we prove Corollary 5.3, which gives the total contribution to
C∂P(Le1⊕L∗e1)(De1,b1) from all the spaces UT1,T , where

T ≡ (M1, I; j, d) < T1

is a bubble type such that χT (1̃, 1̂) = 0. We use Lemma 4.2, which describes

the intersection V
(1)
1 (µ) ∩ UT1,T , along with Proposition 3.5.

Figure 12 shows the three types of boundary strata V
(1)
1 (µ) ∩ UT1,T such that

P(Le1 ⊕ L∗e1)|V(1)
1 (µ) ∩ UT1,T

is not contained in a finite union of De1,b1–hollow sets. For such boundary strata,

P(Le1 ⊕ L∗e1)|V(1)
1 (µ) ∩ UT1,T

is a union of two De1,b1–regular subsets: a section over the base V
(1)
1 (µ) ∩ UT1,T

and its complement. Each number in the odd rows of the last column in Fig-
ure 12 gives the multiplicity with which the number N(α) of zeros of an affine
map over the larger De1,b1–regular set enters into C∂P(Le1⊕L∗e1)(De1,b1); each number

in the even rows gives such a multiplicity for the smaller set. Lemma 5.1 com-
putes the contributions from the first two types of boundary strata of Figure 12;
Lemma 5.2 deals with remaining one.

1̃

1̂

1̃

1̂

1̃

1̂

l

1̃
1̂

≈

≈

≈

S1(µ)

M0,4 × S1;1(µ)

M0,4 × S2(µ)

×2

×3

×2

×3

×1

×2

cusp

tacnode

Figure 12: An outline of Subsection 5.2
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Lemma 5.1 Suppose T = (M1, I; j, d) is a bubble type such that T < T1 ,
χT (1̃, 1̂) = 0, and |χe1(T )| = 1.

(1) If |Î+| > |χe1(T )|, P(Le1 ⊕ L∗e1)|ST |T1
(µ) is a finite union of De1,b1–hollow

subsets and thus
CP(Le1⊕L∗e1)|UT1,T

(De1,b1) = 0.

(2) If |Î+| = |χe1(T )| and Me1T = {1̂},

CP(Le1⊕L∗e1)|UT1,T
(De1,b1) =

〈
20ab0 + 19c1(L

∗e1),S1(µ)
〉
− 11

∣∣S2(µ)
∣∣.

(3) If |Î+| = |χe1(T )| and Me1T = {1̂, l} for some l ∈ [N ],

CP(Le1⊕L∗e1)|UT1,T
(De1,b1) = 3

∣∣ST0/l(µ)
∣∣.

Proof (1) Let h be the unique element of χe1(T ). By Lemma 4.2,

V
(1)
1 (µ) ∩ UT1,T ⊂ ST |T1

(µ) ≡
{
b ∈ UT |T1

(µ) : D
(1)
T ,hb = 0

}
.

With appropriate identifications, ST |T1
(µ) is the zero set of the section

evT1,M0 ⊕D
(1)
T ,h

of the bundle
ev∗

T1,M0
N∆T1(µ) ⊕ L∗

h ⊗ ev∗b0 TP3

defined over a neighborhood of ST |T1
(µ) in UT1,T . By Lemma 3.4, this section

is transverse to the zero set. By Proposition 3.5 and Lemma 4.2,

evT1,M0

(
φT1,T (b;υ)

)
= evT1,M0(b) + ε−;1(b;υ),

{eve1 × evb1}(φT1,T (υ)
)

=
(
yh;b1 − xb1;h)−1

⊗
{
D

(1)
T ,h + ε−;2(υ)

}
⊗ ρ

(0;1)

T ,b1;h(υ)
for all (b;υ) ∈ FT δ − Y (FT ; Î+) and some C1–negligible maps

ε−;1, ε−;2 : FT δ − Y (FT ; Î+) −→ ev∗
T1,M0

N∆T2(µ), L∗
h ⊗ ev∗b0 TP3.

(2) Subtracting the expansion of {eve1 × evb1} ◦ φT1,T of Lemma 4.2 multiplied
by (

ye1;b1(υ) − xe1;h(υ)) and by −
(
ye1;b1(υ) − xe1;h(υ))−1

from the expansions of D
(1)

T1,e1 ◦ φT1,T and D
(1)

T1,b1 ◦ φT1,T , respectively, given by

Proposition 3.5, we obtain

De1,b1φT1,T ([υe1, υb1];υ) =
{
α+ ε(υ)}ρ(υ)

for all ([υe1, υb1];υ) ∈ FT δ with φT1,T (υ) ∈ V
(1)
1 ,
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where ρ is a monomials map on FT with values in a line bundle F̃T ,

α : F̃T −→ γ∗Le1⊕L∗e1 ⊗ ev∗b0 TP3

is a linear map, and

ε : FT − Y (FT ; Î+) −→ Hom(F̃T , γ∗Le1⊕L∗e1 ⊗ ev∗b0 TP3)

is a C0–negligible map. Explicitly,

ρ(υ) =
∏

i∈(iT (h,b1),h]

υ⊗2
i ⊗

∏

i∈(e1,iT (h,b1)] υ∗i ,
α
(
[υe1, υb1], υ̃)

= −(yh;b1 − xb1;h)
−3 ⊗D

(2)
T ,hυ̃

⊗

{
(yh;b1 − xb1;h)2 ⊗ υe1 + υb1, if iT (h, 1̂) = 1̃;

υb1, if iT (h, 1̂) > 1̃.

In particular, α is an injective linear map outside of a section ZT of P(Le1⊕L∗e1)
over ST |T1

(µ). Thus, P(Le1 ⊕ L∗e1)|ST |T1
(µ) − ZT is De1,b1–hollow unless Î+ =

χe1(T ). If Î+ = χe1(T ), by Proposition 2.18B, the decomposition (3.4), and a
rescaling of the linear map,

CP(Le1⊕L∗e1)|ST |T1
(µ)−ZT

(De1,b1) = 2N(α1), where

α1 ∈ Γ
(
PF × ST (µ);Hom(γ∗F ⊗ L⊗2

h , γ∗F ⊗ ev∗b0 TP3)
)
,

F = Le1 ⊕ L∗e1 −→ M{e1,h}⊔Me1T , α1 = D
(2)

T ,h
.

If Me1T = {1̂, l} for some l ∈ [N ], D
(2)

T ,h
does not vanish on the finite set ST (µ)

and thus

CP(Le1⊕L∗e1)|ST |T1
(µ)−ZT

(De1,b1) = 2
〈
3λ2

F − 3λ2
F + λ2

F ,PF
〉∣∣ST (µ)

∣∣ = 0. (5.2)

If Me1T = {1̂}, T = T0 , and by Propositions 2.18A and 2.18B, and iden-
tity (2.16),

CP(Le1⊕L∗e1)|ST |T1
(µ)−ZT

(De1,b1) = 2
(〈

4ab0 + 2c1(L
∗e1),S1(µ)

〉
− Cα−1

1 (0)(α
⊥
1 )

)
.

The zero set of α1 is precisely PF × D
(2)−1

T0,e1 (0). From the argument in (3)

and (4) of the proof of Lemma 4.10, we obtain

Cα−1
1 (0)(α

⊥
1 ) =

〈
λF ,PF

〉(
2|S1;1(µ)| + |S2(µ)|

)
= 2

∣∣S1;1(µ)
∣∣ +

∣∣S2(µ)
∣∣.

Putting the last two equations together, we conclude that if Me1T = {1̂},

CP(Le1⊕L∗e1)|ST |T1
(µ)−ZT

(De1,b1) =
〈
8ab0 + 4c1(L

∗e1),S1(µ)
〉
− 2|S2(µ)|. (5.3)
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(3) In order to compute the contribution from the space ZT , we keep the two
leading terms of the expression for De1,b1 obtained as in (2). We can model a
neighborhood of ZT in P(Le1 ⊕ L∗e1) by the map

L∗e1 ⊗ L∗e1 −→ P(Le1 ⊕ L∗e1), (
[υe1, υb1], u) −→

[
υe1, υb1 + u(υe1)].

If iT (1̂, h) = 1̃, near ZT ,

De1,b1φT1,T ([υe1, υb1];u, υ) = − (ye1;b1 − xe1;h)
−3 ⊗

(
D

(2)
T ,h + ε2(u, υ)

)
ρ
(0;2)

T ,e1;h(υ) ⊗ u

− (ye1;b1 − xe1;h)
−2 ⊗ υe1 ⊗ (

D
(3)
T ,h + ε3(u, υ)

)
ρ
(0;3)

T ,e1;h(υ).
Note that by Lemma 3.4, the images of D

(2)
T ,h and D

(3)
T ,h are distinct over

ST |T1
(µ). If iT (1̂, h) > 1̃, we similarly find ZT is De1,b1–hollow unless Î+ =

χe1(T ). If Î+ = χe1(T ), by Proposition 2.18B, the decomposition (3.4), and a
rescaling of the linear map,

CZT
(De1,b1) = 3N(α1), where

α1 ∈ Γ
(
ZT ; Hom(γ∗F ⊗ L⊗2

h ⊕ γ∗F ⊗ L⊗3
h ; γ∗F ⊗ ev∗b0 TP3)

)
,

ZT ⊂ PF × ST (µ), F = Le1 ⊕ L∗e1 −→ M{e1,h}⊔Me1T ,
α1(υ2, υ3) = D

(2)

T ,h
υ2 + D

(3)

T ,h
υ3.

If Me1T = {1̂, l} for some l ∈ [N ], α1 has full rank over ZT and thus
∑

Me1T ={b1,l} CZT
(De1,b1) = 3

∑

l∈[N ]

〈
3λF − 2λF ,ZT

〉∣∣ST (µ)
∣∣ = 3

∣∣S1;1(µ)
∣∣. (5.4)

If Me1T = {1̂}, ZT ≈ S1(µ), and

CZT
(De1,b1) = 3N(α1) =

〈
12ab0 + 15c1(L

∗e1),S1(µ)
〉
− 9

∣∣S2(µ)
∣∣; (5.5)

see [17, Lemma 5.12]. The claim follows from equations (5.2)–(5.5).

Lemma 5.2 Suppose T = (M1, I; j, d) is a bubble type such that T < T1 ,
χT (1̃, 1̂) = 0, and |χe1(T )| = 2.

(1) If |Î+| > |χe1(T )|, P(Le1 ⊕ L∗e1)|ST |T1
(µ) is a finite union of De1,b1–hollow

subsets and thus
CP(Le1⊕L∗e1)|UT1,T

(De1,b1) = 0.

(2) If |Î+| = |χe1(T )|, Me1T = {1̂} if ST |T1
(µ) 6= ∅, and

∑

T <T1

CP(Le1⊕L∗e1)|UT1,T
(De1,b1) = 2

∣∣S2(µ)
∣∣,
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where the sum is taken over all equivalence classes of bubble types of the above
form.

Proof The proof is a mixture of the proof of Lemma 5.1 with (2) of the proof
of Lemma 4.12; thus, we omit it.

Corollary 5.3 The total contribution from the boundary strata UT1,T such
that χT (1̃, 1̂) = 0 to the number C∂P(Le1⊕L∗e1)(De1,b1) is given by

∑

χT (e1,b1)=0

CP(Le1⊕L∗e1)|UT1,T
(De1,b1) =

〈
20ab0 + 19ηb0,1,S1(µ)

〉
− 9

∣∣S2(µ)
∣∣ + 3

∣∣S1;1(µ)
∣∣.

Proof This Corollary follows immediately from Lemmas 5.1 and 5.2.

5.3 Contributions from the spaces UT |T1
with χT (1̃, 1̂) > 0

In this subsection, we prove Corollary 5.9, which gives the total contribution to
the number C∂P(Le1⊕L∗e1)(De1,b1) from the spaces UT1,T , where

T ≡ (M1, I; j, d) < T1

is a bubble type such that χT (1̃, 1̂) > 0. Note that by the last paragraph of
Subsection 5.1 it is sufficient to consider bubble types T such that jb1 > 1̃.

Figure 13 shows the three types of boundary strata V
(1)
1 (µ) ∩ UT1,T such that

P(Le1 ⊕ L∗e1)|V(1)
1 (µ) ∩ UT1,T

is not contained in a finite union of De1,b1–hollow sets. As in Subsection 5.2, we
have to split each space

P(Le1 ⊕ L∗e1)|V(1)
1 (µ) ∩ UT1,T

into two or three subspaces, as indicated on the right-hand side of Figure 13.
Lemma 5.4 computes the contributions from the first two types of boundary
strata of Figure 13; Lemma 5.7 deals with remaining one.

Lemma 5.4 Suppose T = (M1, I; j, d) is a bubble type such that T < T1 ,

χT (1̃, 1̂) > 0, and de1 = 0. (1) If |Î+| > |χe1(T )|, P(Le1⊕L∗e1)|U (1)
T |T1

(µ) is a finite
union of De1,b1–hollow subspaces and thus

CP(Le1⊕L∗e1)|UT1,T
(De1,b1) = 0.
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1̃

1̂

1̃

l

1̂

1̃

1̂

1̃

1̂

≈

≈

≈

V
(1)

1;1(µ)

V
(1)
2 (µ)

V
(1,1)

2 (µ)

×(−1)

×1

×1

×(−1)

Lemma 5.5

Lemma 5.6

De1,b1–neutral

|V
(1)
2 (µ)|

De1,b1–hollow

Lemma 5.8

De1,b1–hollow

Figure 13: An outline of Subsection 5.3

(2) The total contribution from the boundary strata UT1,T such that |Î+| =
|χe1(T )| = 1 is given by

∑

|bI+|=|χe1(T )|=1

CP(Le1⊕L∗e1)|UT1,T
(De1,b1) =

〈
c1(L

∗e1),V (1)
1;1(µ)

〉
− 3

∣∣S1;1(µ)
∣∣.

(3) The total contribution from the boundary strata UT1,T such that |Î+| =
|χe1(T )| = 2 is given by

∑

|bI+|=|χe1(T )|=2

CP(Le1⊕L∗e1)|UT1,T
(De1,b1) =

∣∣V(1)
2 (µ)

∣∣.

Proof (1) By Lemma 4.1,

U
(1)
T1

(µ) ∩ UT1,T ⊂ U
(1)
T |T1

(µ).

With appropriate identifications, U
(1)
T |T1

(µ) is the zero set of the section

evT1,M0 ⊕(evb1 − eve1)
of the bundle

ev∗
T1,M0

N∆T1(µ) ⊕ ev∗e1 TP3

over an open neighborhood of U
(1)
T |T1

(µ) in UT1,T . By Lemma 3.4, this section

is transversal to the zero set. By Proposition 3.5, there exists a C1–negligible
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map

ε− : FT δ − Y (FT ; Î+) −→ ev∗
T1,M0

N∆T1(µ) ⊕ ev∗b0 TP3

such that
{

evT1,M0 × eve1 × evb1 }(
φT1,T (b;υ)

)
=

{
evT1,M0 × eve1 × evb1 }

(b) + ε−(b;υ)

for all (b;υ) ∈ FT δ − Y (FT ; Î+). On the other hand, by Proposition 3.5,

De1,b1φT1,T ([υe1, υb1];υ) =
{
α+ ε(υ)

}
ρ(υ) for all υ ∈ FT δ − Y (FT ; Î+).

In this equation, ρ is the monomials map on FT defined by

ρh(υ) =





ρ
(1)

T ,b1;b1(υ), if h ∈ χjb1(T ) − χb1(T );

ρ
(1;1)

T ,b1;h(υ), if h ∈ χb1(T );

ρ
(1;1)

T ,e1;h(υ), if h ∈ χe1(T ), h 6≤ jb1;
with values in the bundle F̃T =

⊕
h∈eI F̃hT , where

Ĩ = χjb1(T ) ∪
{
h ∈ χe1(T ) : h 6≤ jb1},

F̃hT =





F̃
(1)

T ,b1;b1T , if h ∈ χjb1(T ) − χb1(T );

F̃
(1;1)

T ,b1;hT , if h ∈ χb1(T );

F̃
(1;1)

T ,e1;hT , if h ∈ χe1(T ), h 6≤ jb1.
The linear map α : F̃T −→ γ∗Le1⊕L∗e1 ⊗ ev∗b0 TP3 is given by

α
(
[υe1, υb1], υ̃h) =





υb1 ⊗D
(1)
T ,j∗b1 (T )υ̃h, if h ∈ χjb1(T ) − χb1(T );

−υb1 ⊗ (yh;b1 − xb1;h)−2 ⊗D
(1)
T ,hυ̃h, if h ∈ χb1(T );

υe1 ⊗D
(1)
T ,hυ̃h, if h ∈ χe1(T ), h 6≤ jb1.

In particular, by Lemma 3.4, α has full rank over U
(1)
T |T1

(µ) outside of the set

ZT ≡

{
PLe1, if h ≤ jb1 for all h ∈ χe1(T );

PLe1 ∪ PL∗e1, otherwise.

As usual,

ε : FT − Y (FT ; Î+) −→ Hom(F̃T , γ∗Le1⊕L∗e1 ⊗ ev∗b0 TP3)

is a C0–negligible map. Thus,

P(Le1 ⊕ L∗e1)|U (1)
T |T1

(µ) −ZT
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is De1,b1–hollow unless Î+ = Ĩ . Since χT (1̃, 1̂) > 0 and de1 = 0, if Î+ = Ĩ

and UT |T1
(µ) 6= ∅, either T = T1(l) for some l ∈ [N ] or |Î+| = |χe1(T )| = 2

and Me1T = ∅. In the second case, the matrix corresponding to the monomials
map ρ is (

−1 0
0 1

)
.

Thus, ρ is neutral, and

∑

l∈[N ]

C
P(Le1⊕L∗e1)|U

(1)
T |T1

(µ)−ZT
(De1,b1) = 0. (5.6)

In the first case, the degree of ρ is −1. Thus, by Proposition 2.18B, a rescaling
of the linear map, and the decomposition (3.4), we obtain

∑

|bI+|=|χe1(T )|=1

C
P(Le1⊕L∗e1)|U

(1)
T1(l)|T1

(µ)−ZT
(De1,b1) = −N(α1), where

α1 ∈ Γ
(
P1 × V

(1)
1;1(µ);Hom(γ∗ ⊗ L∗e1, γ∗ ⊗ ev∗b0 TP3)

)
, α1

∣∣U (1)
T1/l

(µ) = D
(1)

T1/l,b1.
Thus, by Lemma 5.5,

∑

l∈[N ]

C
P(Le1⊕L∗e1)|U

(1)
T1(l)|T1

(µ)−ZT
(De1,b1) = −

〈
4ab0 − c1(L

∗e1),V (1)
1;1(µ)

〉

+ 2
∣∣S1;1(µ)

∣∣ −
∣∣V(1,1)

2;1 (µ)
∣∣.

(5.7)

The space V
(1,1)
2;1 (µ) is the disjoint union of sets

U
(1)
T (µ) ≡

{
b ∈ UT (µ) : evb1(b) = evb2(b)},

taken over all bubble types T = (M2 − {l}, I2(l); j, d), where

I2(l) = {0̂ = l} ⊔ I+
2 , jb1 = 1̃, jb2 = 2̃, de1, de2 > 0, and de1 + de2 = d.

The image of every element of V
(1,1)
2;1 (µ) has two components arranged in a

circle, as in the fifth picture of Figure 1, with one of the two nodes lying on one
of the constraints µ1, . . . , µN .

(3) We next consider the contribution from the space PLe1|U (1)
T |T1

(µ). We model

a neighborhood of PLe1 in P(Le1 ⊕ L∗e1) by the map

L∗e1 ⊗ L∗e1 −→ P(Le1 ⊕ L∗e1), (
[υe1, υb1], u) −→

[
υe1, u(υe1)].
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In this case, with notation as in (2) above, Ĩ = χjb1(T ) ⊔ χe1(T ),

(
ρh(u, υ), α(υ̃h)

)
=





(
u⊗ ρ

(1)

T ,b1;b1(υ),D(1)
T ,j∗b1 (T )υ̃h

)
, if h ∈ χjb1(T )−χb1(T );

(
u⊗ ρ

(1;1)

T ,b1;h(υ),
− (yh;b1 − xb1;h)

−2 ⊗D
(1)
T ,hυ̃h

)
,
if h ∈ χb1(T );

(
ρ
(1;1)

T ,e1;h(υ),D(1)
T ,hυ̃h

)
, if h ∈ χe1(T ).

As before α has full rank on PLe1|U (1)
T |T1

(µ). Thus, PLe1|U (1)
T |T1

(µ) is De1,b1–hollow

unless either T = T1(l) for some l ∈ [N ] or |Î+| = |χe1(T )| = 2 and Me1T = ∅.
In both cases, the degree of ρ is one. In the second case, α is an isomorphism
on every fiber, and thus

∑

|bI+|=|χe1(T )|=2

C
PLe1|U(1)

T |T1
(µ)

(De1,b1) =
∣∣V(1)

2 (µ)
∣∣. (5.8)

In the first case, via the decomposition (3.4), we obtain
∑

l∈[N ]

C
PLe1|U(1)

T |T1(l)
(µ)

(De1,b1) = N(α1), where

α1 ∈ Γ
(
V

(1)
1;1(µ);Hom(Le1 ⊕ L∗e1, ev∗b0 TP3)

)
,

{
α1

∣∣U (1)
T1;l

(µ)
}
(υe1, υb1) = D

(1)

T1;l,e1υe1 + D
(1)

T1;l,b1υb1.
Thus, by Lemma 5.6,

∑

l∈[N ]

CPLe1|UT |T1(l)
(De1,b1) =

〈
4ab0,V (1)

1;1(µ)
〉
− 5

∣∣S1;1(µ)
∣∣ +

∣∣V(1,1)
2;1 (µ)

∣∣. (5.9)

(4) Finally, it is easy to see that the set PL∗e1|U (1)
T |T1

is De1,b1–hollow. Indeed, in

this case, the target bundle F̃T has the same rank as the target in case (2),
but the domain of ρ is Le1 ⊗Le1 ⊕FT , instead of FT . Thus, the claim follows
from equations (5.6)–(5.9).

Lemma 5.5 If α1 ∈ Γ
(
P1 × V

(1)
1;1(µ);Hom(γ∗ ⊗ L∗e1, γ∗ ⊗ ev∗b0 TP3)

)
is given by

α1

∣∣U (1)
T1;l

(µ) = D
(1)

T1;l,b1 ,

N(α1) =
〈
4ab0 − c1(L

∗e1),V (1)
1;1(µ)

〉
− 2

∣∣S1;1(µ)
∣∣ +

∣∣V(1)
2;1 (µ)

∣∣.

Proof (1) By Propositions 2.18A and 2.18B,

N(α1) =
〈
4ab0 − c1(L

∗e1),V (1)
1;1(µ)

〉
− C

P1×∂V
(1)
1;1(µ)

(α⊥
1 ), (5.10)
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where α⊥
1 denotes the composition of α1 with the projection map onto the

quotient O1 of γ∗ ⊗ ev∗b0 TP3 by generic trivial line subbundle Cν̄1 . Suppose
T < T1;l is a bubble type such that

V
(1)
1;1(µ) ∩ UT1;l,T 6= ∅.

(2) If χT (1̃, 1̂) > 0, by Lemma 4.1,

V
(1)
1;1(µ) ∩ UT1;l,T ⊂ U

(1)
T |T1;l

(µ),

and thus Î+ = {h} is a single-element set. Furthermore, de1 6= 0, since our

constraints µ are disjoint. Thus, if jb1 = 1̃, α1 extends over P1×U
(1)
T |T1;l

(µ), and

this extension does not vanish by Lemma 3.4. It follows that P1 × UT1;l,T does

not contribute to C
P1×∂V

(1)
1;1(µ)

(α⊥
1 ). If jb1 = h and dh = 0, by Proposition 3.5,

α1 again has a nonvanishing extension over P1×U
(1)
T |T1;l

(µ). Thus, we only need

to consider the case jb1 = h and de1, dh > 0. By Proposition 3.5,

α1

(
φT1;l,T (υ)

)
= {D

(1)

T ,b1 + ε(υ)
}
υ∗ for all υ ∈ FT δ − Y (FT ; {h}).

Since D
(1)

T ,b1 does not vanish on U
(1)
T |T1;l

(µ), from Proposition 2.18B, we conclude

that
∑

χT (e1,b1)>0

CP1×UT1;l,T
(α⊥

1 ) = −N(α2) ·
∣∣V(1,1)

2;1 (µ)
∣∣, where

α2 ∈ Γ
(
P1; Hom(C,C3/γ)

)

is a nonvanishing section. Thus, by Proposition 2.18A,
∑

χT (e1,b1)>0

CP1×UT1;l,T
(α⊥

1 ) = −
∣∣V(1,1)

2;1 (µ)
∣∣. (5.11)

(3) If χT (1̃, 1̂) = 0, by Lemma 4.2,

V
(1)
1;1(µ) ∩ UT1;l,T ⊂ ST |T1;l

(µ).

Thus, Î+ = {h} is again a single-element set. Adding the expansion of eve1 × evb1
of Lemma 4.2 times (yb1 − xh)

−1 to the expansion of D
(1)

T1;l,b1 of (3c) of Proposi-

tion 3.5, we obtain

α1

(
φT1;l,T (υ)

)
= −(yb1 − xh)

−2 ⊗
{
D

(2)
T ,h + ε(υ)

}
υ ⊗ υ

for all υ ∈ FT δ such that φT1;l,T (υ) ∈ V
(1)
1;1 .
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Thus, as in the second half of (2) of the proof of Lemma 4.8, we can conclude
that

∑

χT (e1,b1)=0

CP1×UT (l),T
(α⊥

1 ) = 2N(α2) ·
∣∣S1;1(µ)

∣∣, where

α2 ∈ Γ
(
P1; Hom(C,C3/γ)

)

is a nonvanishing section. Thus, by Proposition 2.18A,
∑

χT (e1,b1)=0

CP1×UT1;l,T
(α⊥

1 ) = 2
∣∣S1;1(µ)

∣∣. (5.12)

The claim follows from equations (5.10)–(5.12).

Lemma 5.6 If α1 ∈ Γ
(
V

(1)
1;1(µ);Hom(Le1 ⊕ L∗e1, ev∗b0 TP3)

)
is given by

α1|U(1)
T1;l

(µ)
(υe1, υb1) = D

(1)

T1;l,e1υe1 + D
(1)

T1;l,b1υb1
for all l ∈ [N ],

N(α1) =
〈
4ab0,V (1)

1;1(µ)
〉
− 5

∣∣S1;1(µ)
∣∣ +

∣∣V(1,1)
2;1 (µ)

∣∣.

Proof (1) Let F = Le1 ⊕ L∗e1 . By Propositions 2.18A and 2.18B,

N(α1) =
〈
4ab0,V(1)

1;1(µ)
〉
− C

PF|∂V
(1)
1;1(µ)

(α⊥
1 ), (5.13)

where α̃⊥
1 denotes the composition of the section

α̃1 ∈ Γ
(
PF ; Hom(γF , π

∗
PF ev∗b0 TP3)

)
,

induced by α, with the projection map onto the quotient O1 of π∗
PF ev∗b0 TP3 by

generic trivial line subbundle Cν̄1 . Suppose T < T1;l is a bubble type such that

V
(1)
1;1(µ) ∩ UT1;l,T 6= ∅.

(2) If χT (1̃, 1̂) > 0, then

V
(1)
1;1(µ) ∩ UT1;l,T ⊂ U

(1)
T |T1;l

(µ),

Î+ = {h} is a single-element set, and de1 6= 0. As before, we only need to
consider the case jb1 = h and de1, dh > 0. By Proposition 3.5,

α̃1

(
φT1;l,T ([υe1, υb1], υ)) =

{
υb1 ⊗D

(1)

T ,b1 + ε(υ)
}
υ∗ for all υ ∈ FT δ−Y (FT ; {h}),
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where ε is a C0–negligible map. Since the linear map υb1 ⊗ D
(1)

T ,b1 does not

vanish outside of the set ZT = PLe1 , by Proposition 3.5 and a rescaling of the
linear map,

∑

χT (e1,b1)>0

C
PF|U

(1)
T |T1;l

(µ)−ZT
(α⊥

1 ) = −N(α2) ·
∣∣V(1,1)

2;1 (µ)
∣∣, where

α2 ∈ Γ
(
P1; Hom(γ∗, γ∗ ⊗ C2)

)

is a nonvanishing section. Thus, by Proposition 2.18A,
∑

χT (e1,b1)>0

C
PF|U

(1)
T |T1;l

(µ)−ZT
(α̃⊥

1 ) = −
∣∣V(1,1)

2;1 (µ)
∣∣.

On the other hand, we can model a neighborhood of ZT in PF by the map

L∗e1 ⊗ L∗e1 −→ PF ,
(
[υe1, υb1], u) −→

[
υe1, u(υe1)].

Since by Proposition 3.5

α̃1

(
φT1;l,T ([υe1, υb1], u, υ)) =

{
D

(1)

T ,b1 + ε1(υ)
}
u⊗ υ∗ + DT ,e1 + ε1(υ)

for all υ ∈ FT δ − Y (FT ; {h}),

it follows that ZT |U
(1)
T |T1;l

(µ) is α̃⊥
1 –hollow. Thus,

∑

χT (e1,b1)>0

CPF|UT1;l,T
(α̃⊥

1 ) = −
∣∣V(1,1)

2;1 (µ)
∣∣. (5.14)

(3) If χT (1̃, 1̂) = 0,

V
(1)
1;1(µ) ∩ UT1;l,T ⊂ ST |T1;l

(µ)

and Î+ = {h} is a single-element set. Subtracting the expansion of eve1 × evb1
of Lemma 4.2 times

(yb1 − xh) and times (yb1 − xh)
−1

from the expansions of D
(1)

T1;l,e1 and D
(1)

T1;l,b1 in Proposition 3.5, we obtain

α̃1

(
φT1;l,T ([υe1, υb1], υ)) = −(yb1 − xh)

−1 ⊗
(
υe1 ⊗D

(2)
T ,h + εe1(υ))υ⊗2

−(yb1 − xh)
−3 ⊗

(
υb1 ⊗D

(2)
T ,h + εb1(υ))υ⊗2

for all υ ∈ FT δ such that φT1;l,T (υ) ∈ V
(1)
1;1 . Let

ZT =
{
[υe1, υb1] ∈ PF : υe1 + (yb1 − xh)

−2υb0 = 0 ∈ Le1}.
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Similarly to the argument in (2) of the proof of Lemma 5.4, from the above we
can conclude that

∑

χT (e1,b1)=0

CPF|ST |T1;l
(µ)−ZT

(α̃⊥
1 ) = 2N(α2) ·

∣∣S1;1(µ)
∣∣, where

α2 ∈ Γ
(
P1; Hom(γ∗, γ∗ ⊗ C2)

)

is a nonvanishing section. Thus, by Lemma 2.18A,
∑

χT (e1,b1)=0

CPF|ST |T1;l
(µ)−ZT

(α̃⊥
1 ) = 2

∣∣S1;1(µ)
∣∣.

On the other hand, the same argument as in (3) of the proof of Lemma 5.4
shows that

CZT |ST |T1;l
(µ)(α̃1) = 3

∣∣ZT |.

Thus, we conclude that
∑

χT (e1,b1)=0

CPF|UT1;l,T
(α̃⊥

1 ) = 5
∣∣S1;1(µ)

∣∣. (5.15)

The claim follows from equations (5.13)–(5.15).

Lemma 5.7 Suppose T = (M1, I; j, d) is a bubble type such that T < T1 ,
χT (1̃, 1̂) > 0, and de1 > 0.

(1) If jb1 = 1̃, |Î+| 6= 1, or djb1 = 0, P(Le1 ⊕ L∗e1)|U (0)
T |T1

is a finite union of
De1,b1–hollow subspaces and thus

CP(Le1⊕L∗e1)|UT1,T
(De1,b1) = 0.

(2) The total contribution from the boundary spaces UT1,T such that jb1 > 1̃,

|Î+| = 1, and djb1 > 0, is given by
∑

de1>0

CP(Le1⊕L∗e1)|UT1,T
(De1,b1) = −

〈
4ab0 + c1(L

∗e1),V (1,1)
2 (µ)

〉
+

∣∣V(1)
2 (µ)

∣∣ + 2
∣∣S2(µ)

∣∣.

Proof (1) We proceed as in (1) of the proof of Lemma 5.4. In particular, we
have

De1,b1φT1,T ([υe1, υb1];υ) =
{
α+ ε(υ)

}
ρ(υ) for all υ ∈ FT δ − Y (FT ; Î+).

In this equation, ρ is the monomials map on FT defined by

ρh(υ) =




ρ
(1)

T ,b1;b1(υ), if h ∈ χjb1(T ) − χb1(T );

ρ
(1;1)

T ,b1;h(υ), if h ∈ χb1(T )
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with values in the bundle

F̃T =
⊕

h∈χjb1 (T )

F̃hT , where F̃hT =




F̃

(1)

T ,b1;b1T , if h ∈ χjb1(T ) − χb1(T );

F̃
(1;1)

T ,b1;hT , if h ∈ χb1(T ).

The linear map α : F̃T −→ γ∗Le1⊕L∗e1 ⊗ ev∗b0 TP3 is given by

α
(
[υe1, υb1], υ̃h) = υb1 ⊗ 



D

(1)
T ,j∗b1 (T )υ̃h, if h ∈ χjb1(T ) − χb1(T );

−(yh;b1 − xb1;h)−2 ⊗D
(1)
T ,hυ̃h, if h ∈ χb1(T ).

In particular, by Lemma 3.4, α has full rank over U
(1)
T |T1

(µ) outside of the set
ZT ≡ PLe1 . Thus,

P(Le1 ⊕ L∗e1)|U (1)
T |T1

(µ) −ZT

is De1,b1–hollow unless Î+ = {h} is a one-element set, jb1 = h, and dh 6= 0. If

Î+ = {h}, jb1 = h, and dh 6= 0, the degree of the map ρ is −1, and from
Proposition 2.18B and a rescaling of the linear map,

C
P(Le1⊕L∗e1)|U

(1)
T |T1

(µ)−ZT
(De1,b1) = −N(α′

1), where

α′
1 ∈ Γ

(
PF ; Hom(γ∗F ⊗ L∗

h, γ
∗
F ⊗ ev∗b0 TP3)

)
,

F = Le1 ⊕ L∗e1 −→ U
(1)
T |T1

(µ), α′
1 = D

(1)

T ,b1.
Thus, using Lemma 5.8, another rescaling of the linear map, and an obvious
symmetry, we obtain

∑

T

C
P(Le1⊕L∗e1)|U

(1)
T1|T1

(µ)−ZT
(De1,b1) = −

〈
4ab0 + c1(L

∗e1),V (1,1)
2 (µ)

〉

+
∣∣V(1)

2 (µ)
∣∣ + 2

∣∣S2(µ)
∣∣.

(5.16)

Finally, it is easy to see that the set ZT |U
(1)
T |T1

(µ) is De1,b1–hollow for all bubble
types T .

Lemma 5.8 Suppose T̃ = (M2, I2; j̃, d̃) is a bubble type such that

j̃b1 = 1̃, jb2 = 2̃, d̃e1, d̃e2 > 0, and d̃e1 + d̃e2 = d,

and F −→ U eT ,eT is a rank-two vector bundle such that c1(F)|U
(1)eT (µ) = 0. If

α1 ∈ Γ
(
PF|U

(1)eT (µ);Hom(γ∗ ⊗ Le1; γ∗ ⊗ ev∗b0 TP3)
)

Geometry & Topology, Volume 9 (2005)



668 Aleksey Zinger

is given by α1(υe1) = D
(1)eT ,e1υe1 ,

N(α1) =
〈
4ab0 + c1(L

∗e1),U (1)eT (µ)
〉
−

∣∣U (1)eT /b1(µ)
∣∣ −

∣∣UeT /{b1,b2}(µ)
∣∣.

In other words, the sum of the numbers N(α1) taken over all bubble types T̃
over the above form is given by

∑eT N(α1) =
〈
4ab0 + c1(L

∗e1),V (1,1)
2 (µ)

〉
−

∣∣V(1)
2 (µ)

∣∣ − 2
∣∣S2(µ)

∣∣.

Proof By Proposition 2.18A and the assumption c1(F)|U
(1)eT (µ) = 0,

N(α1) =
〈
4ab0 + c1(L

∗e1),U (1)eT (µ)
〉
− C

PF|∂U
(1)eT (µ)

(α⊥
1 ), (5.17)

where α⊥
1 denotes the composition of α1 with the projection map onto the

quotient O1 of γ∗ ⊗ ev∗b0 TP3 by generic trivial line subbundle Cν̄1 . Suppose

T = (M2, I; j, d) is a bubble type such that T < T̃ and

U
(1)eT (µ) ∩ UeT ,T 6= ∅.

The section α1 extends over PF|∂U
(1)eT (µ). Moreover, by Lemmas 4.3 and 3.4,

this extension does not vanish unless de1 = 0. Thus, in computing the number
C

PF|∂U
(1)eT (µ)

(α⊥
1 ), we only need to consider bubble types T such that de1 = 0.

(2) If de2 6= 0, then

U
(1)eT (µ) ∩ UeT ,T ⊂ U

(1)

T |eT (µ)

and T = T̃ (1̂) or T = T̃ (l) for some l ∈ [N ] ∩Me1T . Moreover, by Proposi-
tion 3.5,

α1

(
φeT ,T (υ)

)
=

{
D

(1)
T ,h + ε(υ)

}
υ for all υ ∈ FT δ,

if h is the unique element of Î+ . Thus, by the same argument as in (1) of the
proof of Lemma 5.4, we conclude that

C
PF|U

(1)

T | eT (µ)
(α⊥

1 ) = N(α2), where α2 ∈ Γ(P1 × U
(1)

T |eT (µ);Hom(C,C/γ)
)

is a nonvanishing section. Thus, from Proposition 2.18A and the decomposi-
tion (3.4), we obtain

∑

de2>0

CPF|U eT ,T
(α⊥

1 ) =
∣∣U (1)eT /b1(µ)

∣∣ +
∑

l∈[N ]∩Me1T ∣∣U (1)eT /l(µ)
∣∣. (5.18)
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(3) If de2 = 0, then

U
(1)eT (µ) ∩ UeT ,T ⊂ S

T |eT (µ),

jb1 = 1̃, jb2 = 2̃, de1 = de2 = 0, and |Î+| = 2. Furthermore,

α1

(
φeT ,T (υ)

)
=

{
D

(1)
T ,h1

+ ε(υ)
}
υh1 for all υ = (υh1, υh2) ∈ FT δ,

if Î+ = {h1, h2} and h1 = jb1 . By an argument similar to (4) of Lemma 4.8, we
conclude that

CPF|S
T | eT (µ)(α

⊥
1 ) = N(α2), where α2 ∈ Γ(P1 × S

T |eT (µ);Hom(C,C/γ)
)

is a nonvanishing section. Thus, from Proposition 2.18A and the decomposi-
tion (3.4), we obtain

CPF|U eT ,T
(α⊥

1 ) =
∣∣SeT /{b1,b2}(µ)

∣∣. (5.19)

The claim follows by plugging equations (5.18) and (5.19) into (5.17) and us-
ing (3.2) and (3.3).

Remark By the second rescaling of the linear map referred to in the proof of
Lemma 5.7, the number

∑eT N(α1) of Lemma 5.7 does not change if we replace

D
(1)eT ,e1 by D

(1)eT ,b1 . However, a direct computation, ie using Propositions 2.18A,

2.18B, and 3.5, gives a slightly different answer. As a result, we obtain yet
another enumerative relationship:

2
〈
ηb0,1,V (1,1)

2 (µ)
〉

=
∣∣V(1,0,1)

2,(0,1) (µ)
∣∣.

Corollary 5.9 The total contribution from the boundary strata UT1,T such
that χT (1̃, 1̂) > 0 to the number C∂P(Le1⊕L∗e1)(De1,b1) is given by

∑

χT (e1,b1)=1

CP(Le1⊕L∗e1)|UT1,T
(De1,b1) =

〈
c1(L

∗e1),V (1)
1;1(µ)

〉
−

〈
4ab0 +

1

2
ηb0,1,V (1,1)

2 (µ)
〉

+2
∣∣V(1)

2 (µ)
∣∣ + 2

∣∣S2(µ)
∣∣ − 3

∣∣S1;1(µ)
∣∣.

Proof This Corollary follows immediately from Lemmas 5.4 and 5.7.
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6 Level 1 numbers

6.1 Evaluation of cohomology classes on the spaces V
(1)

1 (µ)

In this subsection, we evaluate various tautological classes on the space V
(1)
1 (µ)

and compute the other level 1 numbers of Lemma 1.8. We again use the com-
putational method of Section 2, but first we represent each cohomology class
by a vector-bundle section s on neighborhood of UT1(µ) in UT1 . We choose
this section s so that it is smooth and transversal to the zero set on all the
strata of UT1(µ), as well as on a finite number of natural submanifolds of the
strata. We will impose additional restrictions on each given section to simplify
our computations.

Lemma 6.1 With assumptions as in (2) of Lemma 1.8,

〈ab0,V(1)
1 (µ)〉 =

〈
(2d− 6)a3b0 − 4a2b0ηb0,1 − ab0η2b0,1,V1(µ)

〉
+

〈
a2b0,V1(µ+H1)

〉

+
〈
ab0,V2(µ)

〉
.

Proof (1) In this case, we choose a generic hyperplane H2 in P3 , instead of

a section of ev∗b0 O(1P3). Let µ̃ be the M̃ = [N ] ⊔ {0̂}–tuple of constraints in

P3 given by

µ̃l = µl for all l ∈ [N ]; µ̃b0 = H2.

By Proposition 3.5, UT1(µ̃) is a pseudovariety in U eT1
, and thus

eve1 × evb1 : UeT1
(µ̃) −→ P3 × P3

is a 6–pseudocycle and determines the homology-intersection number

〈〈
ab0,V (1)

1 (µ)
〉〉

≡
〈〈
V

(1)
1 (µ̃)

〉〉
≡

〈〈
{eve1 × evb1}−1(∆P3×P3),UT1(µ̃)

〉〉

=
∑

r+s=3

〈〈
{eve1 × evb1}−1(Hr ×Hs),UT1(µ̃)

〉〉
,

= 2d
〈
a3b0,V1(µ)

〉
+

〈
a2b0,V1(µ+H1)

〉
.

(6.1)

By the same argument as in Subsection 4.1,

〈
ab0,V(1)

1 (µ)
〉

=
∣∣V(1)

1 (µ̃)
∣∣ =

〈〈
ab0,V (1)

1 (µ)
〉〉
−C∂UT1

(eµ)

(
eve1 × evb1,∆P3×P3

)
, (6.2)

where C∂UT1
(eµ)

(
eve1 × evb1,∆P3×P3

)
is the contribution of ∂UT1(µ̃) to 〈〈V

(1)
1 (µ̃)〉〉

to be computed as in Subsection 4.4.

Geometry & Topology, Volume 9 (2005)



Counting rational curves of arbitrary shape 671

(2) If T = (M1, I; j, d) < T1 is a bubble type such that χT (1̃, 1̂) > 0, the
map eve1 × evb1 is transversal to ∆P3×P3 on UT |T1

(µ̃) by Lemma 3.4. Thus, the
image of UT |T1

(µ̃) is disjoint from ∆P3×P3 , and UT |T1
does not contribute to

C∂UT1
(eµ)

(
eve1 × evb1,∆P3×P3

)
. Thus, from now on, we assume that χT (1̃, 1̂) = 0.

Note that UT |T1
(µ̃) = ∅ unless |χe1(T )| ∈ {1, 2}.

(3) With appropriate identifications, UT |T1
(µ̃) is the zero set of the section

ev
T1,fM of the bundle ev∗

T1,fM N∆T1(µ̃) over an open neighborhood of UT |T1
(µ̃)

in UT1,T . By Lemma 3.4, this section is transversal to the zero set. By Propo-
sition 3.5, there exists a C1–negligible map

ε− : FT δ − Y (FT ; Î+) −→ ev∗
T1,fM N∆T1(µ̃)

such that

ev
T1,fM (

φT1,T (b;υ)
)

= ev
T ,fM(b) + ε−(b;υ)

for all (b;υ) ∈ FT δ − Y (FT ; Î+). On the other hand, by Lemma 4.2,

{
eve1 × evb1 }

φT1,T (υ) =
∑

h∈χe1(T )

(
yh;b1 − xb1;h)−1

⊗
{
D

(1)
T ,h + εh(υ)

}
ρh(υ),

where ρh(υ) =
∏

i∈(iT (h,b2),h]

υi,

for all υ ∈ FT δ . Since the linear map,

F ≡
⊕

h∈χe1(T )

LhT , υ −→
∑

h∈χe1(T )

D
(1)
T ,hυh,

is injective over UT |T1
(µ̃) by Lemma 3.4, UT |T1

is
(
eve1 × evb1,∆P3×P3

)
–hollow

unless χe1(T ) = Î+ . If χe1(T ) = Î+ , by Proposition 2.18B, decomposition (3.4),
and a rescaling of the linear map,

CU
T | eT1

(
eve1 × evb1;∆P3×P3

)
= N(α1), where

α1 ∈ Γ
(
M{e1}⊔χe1(T )⊔Me1T × UT (µ̃);π∗2Hom(F , ev∗b0 TP3)

)
, α1(υ) =

∑

h∈χe1(T )

D
(1)

T ,h
υh.

Since the linear map α1 comes entirely from the second factor, N(α1) = 0
unless |χe1(T )| + |Me1T | = 2.

(4) Thus, we only need to consider the case |χe1(T )| = 1 and Me1T = {1̂} and
to compute the number N(α1), where

α1 = D
(1)

T0,e1 ∈ Γ
(
UT0(µ̃);Hom(Le1, ev∗b0 TP3)

)
.
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Since α1 does not vanish on UT0(µ̃) by Lemma 3.4, by Propositions 2.18A
and 2.18B,

N(α1) =
〈
6a2b0 + 4ab0c1(L∗e1) + c21(L

∗e1),UT0(µ̃)
〉
− C∂U eT0

(eµ)(α
⊥
1 ), (6.3)

where α⊥
1 denotes the composition of α1 with the projection π⊥ν̄1 onto the

quotient O1 of ev∗b0 TP3 by a generic trivial line subbundle Cν̄1 .

(5) If T = (M0, I; j, d) < T0 is a bubble type such that de1 > 0, the section α⊥
1

does not vanish over UT |T0
(µ̃) by Lemma 3.4, if ν̄1 is generic. Thus, UT |T0

does

not contribute to C∂UT0
(eµ)(α

⊥
1 ). If de1 = 0, by (3b) of Proposition 3.5,

D
(1)

T0,e1φT0,T (υ) =
∑

h∈χe1(T )

{
D

(1)
T ,h + ε

(1;1)

T ,b1;h(υ)}ρ(1;1)

T ,e1;h(υ),
where ρ

(1;1)

T ,e1;h(υ) =
∏

i∈(e1,h]

υi,

for all υ ∈ FT sufficiently small. Thus, as before, we conclude that UT |T0
(µ̃)

is α⊥
1 –hollow unless Î+ = χe1(T ). If Î+ = χe1(T ), either T = T0(l) for some

l ∈ [N ] or |Î+| = |χe1(T )| = 2 and |Me1T | = 0. Thus, by Proposition 2.18B and
decomposition (3.4),

CUT |T0
(α⊥

1 ) = N(α2), where α2 ∈ Γ
(
UT (µ̃);Hom(F2,O1)

)
,

F1 =
⊕

h∈χe1(T )

Lh, O1 = ev∗b0 TP3/Cν̄1, α2(υ) = π⊥ν̄1

∑

h∈χe1(T )

D
(1)

T ,h
υh.

In either case, α2 does not vanish on UT (µ̃), and thus, by Propositions 2.18A
and 2.18B,

C∂UT0
(eµ)(α

⊥
1 ) =

∑

l∈[N ]

〈
4ab0 + c1(L

∗e1),UT0/l(µ̃)
〉

+
∣∣V2(µ̃)

∣∣. (6.4)

The lemma follows from equations (6.1)–(6.4) and by using (3.2) and (3.3).

Lemma 6.2 With assumptions as in (3) of Lemma 1.8,

〈a2b0,V(1)
1 (µ)〉 = 2

〈
a3b0,V1(µ+H1)

〉
−

〈
4a3b0ηb0,1 + a2b0η2b0,1,V1(µ)

〉
+

〈
a2b0,V2(µ)

〉
.

Proof The proof is nearly identical to that of Lemma 6.1.

Lemma 6.3 With assumptions as in (3) of Lemma 1.8,
〈
ab0ηb0,1,V(1)

1 (µ)
〉

=
〈
ab0ηb0,1,V1(µ+H0)

〉
+

〈
a2b0ηb0,1,V1(µ+H1)

〉

+d
〈
a3b0ηb0,1,V1(µ)

〉
−

〈
4a2b0 + ab0ηb0,1,V2(µ)

〉
.
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Proof (1) Let M̃ = M0 ⊔ {0̂} and let µ̃ be the M̃ –tuple of constraints given
by µ̃l = µl for all l ∈ [N ] and µ̃b0 = H2 . If s is a section of the bundle L∗e1 over

a neighborhood of UT1(µ̃) in UT1 such that s is transversal to the zero set on
all smooth strata of UT1(µ), the map

eve1 × evb1 : s−1(0) ∩ UT1(µ̃) −→ P3 × P3

is a 6-pseudocycle. In particular, we have a well-defined intersection number,

〈〈
ab0c1(L∗e1),V (1)

1 (µ)
〉〉

≡
〈〈
s−1(0) ∩ V

(1)
1 (µ̃)

〉〉

≡
〈〈
{eve1 × evb1}−1(∆P3×P3), s−1(0) ∩ UT1(µ̃)

〉〉

=
〈
ab0c1(L∗e1),V1(µ+H0)

〉
+

〈
a2b0c1(L∗e1),V1(µ+H1)

〉

+ d
〈
a3b0c1(L∗e1),V1(µ)

〉
.

(6.5)

As before,

〈
ab0c1(L∗e1),V (1)

1 (µ)
〉

= ±
∣∣s−1(0) ∩ V

(1)
1 (µ̃)

∣∣

=
〈〈
ab0c1(L∗e1),V (1)

1 (µ)
〉〉

− C∂UT1
(eµ)

(
eve1 × evb1,∆P3×P3

)
,

(6.6)

where C∂UT1
(eµ)

(
eve1 × evb1,∆P3×P3

)
is the contribution of s−1(0) ∩ ∂UT1(µ̃) to

〈〈s−1(0) ∩ V
(1)
1 (µ̃)〉〉.

(2) If T = (M1, I; j, d) < T1 is a bubble type such that χT (1̃, 1̂) > 0, the
map eve1 × evb1 is transversal to ∆P3×P3 on UT |T1

(µ̃) by Lemma 3.4. Thus, if s
is chosen to be transversal to the zero set on the set {eve1 × evb1}−1(∆P3×P3) ∩
UT |T1

(µ̃),

s−1(0) ∩ {eve1 × evb1}−1(∆P3×P3) ∩ UT |T1
(µ̃) = ∅,

and UT |T1
does not contribute to C∂UT1

(eµ)

(
eve1 × evb1,∆P3×P3

)
. If χT (1̃, 1̂) = 0,

it can be assumed that s is transversal to the zero set on the submanifold
ST |T1

(µ), ie that s−1(0) ∩ ST |T1
(µ) = ∅. Then, as in the proofs of Lemma 6.1

and 6.2 we can conclude that s−1(0) ∩ UT |T1
(µ) is

(
eve1 × evb1,∆P3×P3

)
–hollow

unless χe1(T ) = Î+ .

(3) We can also assume that section φ∗T1,T
s is constant along the fibers of the

bundle FT over an open subset KT of UT |T1
that contains all of the finitely

many zeros of the map affine map

F ≡
⊕

h∈χe1(T )

Lh −→ ev∗b0 TP3, (b, υ) −→ ν(b) +
∑

h∈χe1(T )

D
(1)
T ,hυh,
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over s−1(0)∩UT |T1
(µ) for a generic section ν ∈ Γ(UT |T1

(µ); ev∗b0 TP3). Then, as
before,

CUT |T1

(
eve1 × evb1;∆P3×P3

)
= N(α1), where

α1 ∈ Γ
(
s−1(0) ∩ (Mb1,χe1(T ),Me1T × UT (µ̃));Hom(F , ev∗b0 TP3)

)
,

α1(υ) =
∑

h∈χe1(T )

D
(1)
T ,hυh.

(4) If c1(L
∗e1)|UT |T1

(µ) = 0, we can choose s so that

s−1(0) ∩ UT |T1
(µ) = ∅.

Thus, we only need to compute contributions N(α1) from the strata UT |T1
(µ)

to which c1(L
∗e1) restricts non-trivially. By dimension-counting, |χe1(T )| ∈ {1, 2}

if UT |T1
(µ) 6= ∅. If |χe1(T )| = 1, either Me1T = {1̂} or Me1T = {1̂, l} for some

l ∈ [N ]. In either case, c1(L
∗e1) restricts trivially to UT |T1

(µ). On the other

hand, if |χe1(T )| = 2 and Me1T = {1̂, l} for some l ∈ [N ], N(α1) = 0, because
the second factor in the decomposition (3.4) is a finite set of points, while
the map α1 comes entirely from the second factor. In the remaining case, ie
|χe1(T )| = 2 and Me1T = {1̂}, c1(L

∗e1) is the pullback of the poincare dual of a
point by the projection map π1 . Thus, in this case,

CUT |T1

(
eve1 × evb1;∆P3×P3

)
= N(α1), where

α1 ∈ Γ
(
UT (µ̃);Hom(F , ev∗b0 TP3)

)
, α1(υ) =

∑

h∈χe1(T )

D
(1)

T ,h
υh.

Since α1 has full rank on all of UT |T1
(µ̃), by Propositions 2.18A and 2.18B,

N(α1) =
〈
4ab0 +

(
c1(L

∗
h1

) + c1(L
∗
h2

)
)
,UT (µ̃)

〉
− C

PF|∂UT (eµ)(α̃
⊥
1 ), (6.7)

where α̃⊥
1 denotes the composition of the linear map

α̃1 ∈ Γ
(
PF ; Hom(γF , π

∗
PF ev∗b0 TP3)

)

with the projection onto the quotient of π∗
PF ev∗b0 TP3 by a generic trivial line

subbundle Cν̄1 . If

T ′ ≡ (M0, I
′; j′, d′) < T

is a bubble type such that α̃1 vanishes somewhere on PF|UT ′|T (µ̃), T ′ = T (l)

for some l ∈ [N ] and

α̃−1
1 (0) ∩ PF|UT ′|T (µ̃) =

{
(b, [υh1 , υh2 ]) : b ∈ UT ′|T (µ̃), υj′l = 0

}
,
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as can be seen from Lemma 3.4. From Proposition 3.5, we then conclude that

CPF|UT ′|T (eµ)(α̃
⊥
1 ) =

∣∣UT ′|T (µ̃)
∣∣.

Thus, summing equation (6.7) over all bubble type T and using (3.2) and (3.3),
we obtain

C∂UT1
(eµ)

(
eve1 × evb1,∆P3×P3

)
=

〈
4ab0 +

(
c1(L

∗e1) + c1(L
∗e2)),V2(µ̃)

〉
. (6.8)

The claim follows from equations (6.5), (6.6), and (6.8).

Lemma 6.4 With assumptions as in (3) of Lemma 1.8,
〈
η2b0,1,V (1)

1 (µ)
〉

=
〈
η2b0,1,V1(µ+H0)

〉
+

〈
ab0η2b0,1,V1(µ+H1)

〉

+
〈
4a3b0ηb0,1 + d · a2b0η2b0,1,V1(µ)

〉
−

∣∣V3(µ)
∣∣.

Proof (1) We proceed as in the proof of Lemma 6.3. Let s be a section of
L∗e1 ⊕ L∗e1 with good properties. Then, we have a well-defined homology inter-
section number

〈〈
c21(L

∗e1),V (1)
1 (µ)

〉〉
≡

〈〈
s−1(0) ∩ V

(1)
1 (µ)

〉〉

≡
〈〈
{eve1 × evb1}−1(∆P3×P3), s−1(0) ∩ UT1(µ)

〉〉

=
∑

q+r=3

〈
c21(L

∗e1)aqb0arb1,UT1(µ)
〉

=
〈
c21(L

∗e1),V1(µ+ {H0})
〉

+
〈
ab0c21(L∗e1),V1(µ+ {H1})

〉

+ d ·
〈
a2e1c21(L∗e1),V1(µ)

〉
+ 4

〈
a3b0c1(L∗e1),V1(µ+ {H0})

〉
.

(6.9)

A little care is required to obtain the last equality above. For example, note that
〈
c21(L

∗e1)a3b1,UT1(µ)
〉

=
〈
c21(L

∗e1),V1(µ+ {H0})
〉

+
〈
a3b0c1(L∗e1),V1(µ+ {H0})

〉
,

with our definitions; see (3.2). As before,
〈
c21(L

∗e1),V (1)
1 (µ)

〉
= ±

∣∣s−1(0) ∩ V
(1)
1 (µ)

∣∣

=
〈〈
c21(L

∗e1),V (1)
1 (µ)

〉〉
− C∂UT1

(µ)

(
eve1 × evb1,∆P3×P3

)
,

(6.10)

where C∂UT1
(µ)

(
eve1 × evb1,∆P3×P3

)
is the contribution of s−1(0) ∩ ∂UT1(µ) to

〈〈s−1(0) ∩ V
(1)
1 (µ)〉〉.

(2) If T = (M1, I; j, d) < T1 is a bubble type such that χT (1̃, 1̂) > 0, as in the
proof of Lemma 6.3, the space UT |T1

does not contribute to

C∂UT1
(µ)

(
eve1 × evb1,∆P3×P3

)
.
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If χT (1̃, 1̂) = 0, but Î+ 6= χe1(T ), UT |T1
(µ) is

(
eve1 × evb1,∆P3×P3

)
–hollow and

again does not contribute to C∂UT1
(µ)

(
eve1 × evb1,∆P3×P3

)
. If Î+ = χe1(T ), by

dimension-counting

|χe1(T )| ∈ {1, 2}, Me1T = {1̂} or Me1T = {1̂, l} for some l ∈ [N ],

OR |χe1(T )| = 3, Me1T = {1̂}.

In all cases, but the last, c21(L
∗e1) restricts trivially to UT |T1

(µ). If |χe1(T )| = 3

and Me1T = {1̂}, under the decomposition (3.4), c21(L
∗e1) is the pullback of the

poincare dual of a point by the projection map onto the second factor. Thus,
similarly to the proof of Lemma 6.3,

CUT |T1

(
eve1 × evb1;∆P3×P3

)
= N(α1), where

α1 ∈ Γ
(
UT (µ);Hom(F , ev∗b0 TP3)

)
, F =

⊕

h∈χe1(T )

Lh, α1(υ) =
∑

h∈χe1(T )

D
(1)

T ,h
υh.

Since α1 is an isomorphism on every fiber of F over the finite set UT /Me1T (µ),

N(α1) =
∣∣UT (µ)

∣∣. Thus, over all bubble types T as above, we obtain

C∂UT1
(µ)

(
eve1 × evb1,∆P3×P3

)
=

∣∣V3(µ)
∣∣. (6.11)

The claim follows from equations (6.9), (6.10), and (6.11).

6.2 Other level 1 numbers

In this subsection, we compute the level 1 numbers of Lemmas 1.4 and 1.6 and
thus conclude the computation of the enumerative numbers of Theorems 1.2
and 1.3.

Lemma 6.5 With assumptions as in Lemma 1.4,
∣∣V(1)

2 (µ)
∣∣ =

∣∣V2(µ+H0)
∣∣ +

〈
ab0,V2(µ+H1)

〉
+ 3

∣∣V3(µ)
∣∣

−
〈
(12 − d)a2b0 + 4ab0ηb0,1 + 2ηb0,2 − η2b0,1,V2(µ)

〉
.

Proof (1) By definition and the usual argument,
∣∣V(1)

2 (µ)
∣∣ =

∑eT (〈〈
{eve1 × evb1}−1(∆P3×P3),U eT (µ)

〉〉

− C∂U eT (µ)

(
eve1 × evb1;∆P3×P3

))

=
∣∣V2(µ+H0)

∣∣ +
〈
ab0,V2(µ+H1)

〉
+ d

〈
a2b0,V2(µ)

〉

−
∑eT C∂U eT (µ)

(
eve1 × evb1;∆P3×P3

)
,

(6.12)
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where the union is taken over all bubble types T̃ = (M1, I2; j̃, d̃) such that

j̃b1 = 1̃, d̃e1, d̃e2 > 0, and d̃e1 + d̃e2 = 0.

Let T = (M1, I; j, d) be a bubble type such that T < T̃ and U
T |eT (µ) 6= ∅. If

χT (1̃, 1̂) > 0, as in the proof of Lemma 6.1, UeT ,T does not contribute to

C∂U eT (µ)

(
eve1 × evb1;∆P3×P3

)
.

Thus, we assume, χT (1̃, 1̂) = 0.

(2) By Lemma 4.2,
{

eve1 × evb1 }
φeT ,T (υ) =

∑

h∈χe1(T )

(
yh;b1 − xb1;h)−1

⊗
{
D

(1)
T ,h + εh(υ)

}
ρh(υ),

where ρh(υ) =
∏

i∈(iT (h,b1),h]

υi,

for all υ ∈ FT δ . Since the linear map,

F ≡
⊕

h∈χe1(T )

LhT , υ −→
∑

h∈χe1(T )

D
(1)
T ,hυh,

is injective over UT |eT (µ̃) by Lemma 3.4, UT |eT1
is

(
eve1 × evb1,∆P3×P3

)
–hollow

unless χe1(T ) = Î+ . If χe1(T ) = Î+ by dimension-counting,

|χe1(T )| = |Î+| = 1 and Me1T = {1̂} or Me1T = {1̂, l} for some l ∈ [N ]

OR |χe1(T )| = |Î+| = 2 and Me1T = {1̂}.

Furthermore, by Proposition 2.18B, a rescaling of the linear map, and the
decomposition (3.4),

CU
T | eT (µ)

(
eve1 × evb1;∆P3×P3

)
= N(α1), where

α1 ∈ Γ
(
M{e1}⊔χe1(T )⊔Me1(T ) × UT (µ);Hom(F , ev∗b0 TP3)

)
,

F =
⊕

h∈χe1(T )

Lh, α1(υ) =
∑

h∈χe1(T )

D
(1)

T ,h
υh.

Since α1 comes entirely from the second component, N(α1) = 0 unless the first
component is zero-dimensional, ie unless χe1(T ) = {h} is a single-element set

and Me1T = {1̂}. Thus, we assume that this is the case.

(3) By Propositions 2.18A and 2.18B,

N(α1) =
〈
6a2b0 + 4ab0c1(L∗

h) + c21(L
∗
h),UT (µ)

〉
− C∂UT (µ)(α

⊥
1 ).
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Suppose T ′ = (M0, I
′; j′, d′) is a bubble type such that T ′ < T and UT ′|T (µ) 6=

∅. Then, UT ′|T (µ) does not contribute to C∂UT (µ)(α
⊥
1 ) unless d′h = 0. If d′h = 0,

by Proposition 3.5,

α1φT ,T ′(υ) =
∑

h′∈χh(T ′)

{
D

(1)
T ′,h′ + εh′(υ)

}
ρh′(υ), where ρh′(υ) =

∏

i∈(h,h′]

υi,

for all υ ∈ FT ′
δ . Thus, UT ′|T (µ) is α⊥

1 –hollow unless χh(T ) = Î ′+ . In such

a case, either T ′ = T (l) for some l ∈ MhT or |χh(T
′)| = |Î ′+| = 2 and

MhT
′ = ∅. In either case,

CUT ′|T (µ)

(
α⊥

1

)
= N(α1), where α2 ∈ Γ

(
UT ′(µ);Hom(FT ′, ev∗b0 TP3/Cν̄1)

)

is a nonvanishing section. Thus, using Proposition 2.18A along with identities
(3.2) and (3.2), we conclude that

N(α1) =
〈
6a2b0 + 4ab0c1(L∗

h) + c21(L
∗
h),UT (µ)

〉
−

∑

|χh(T ′)|=2

∣∣UT ′|T (µ)
∣∣. (6.13)

Summing equation (6.13) over all bubble types T̃ , we obtain
∑eT C∂U eT (µ)

(
eve1 × evb1;∆P3×P3

)

=
〈
12a2b0 + 4ab0ηb0,1 + 2ηb0,2 − η2b0,1,V2(µ)

〉
− 3

∣∣V3(µ)
∣∣.

(6.14)

The claim follows from (6.12) and (6.14).

Lemma 6.6 With assumptions as in Lemma 1.6,

〈
ab0,V (1,1)

2 (µ)
〉

= 2
〈
ab0,V2(µ+ {H1 : H2})

〉
−

〈
8a2b0 + 2ab0ηb0,1,V2(µ)

〉
.

Proof (1) Let M̃ = M0 ⊔ {0̂} and let µ̃ be the M̃ –tuple of constraints given
by µ̃l = µl if l ∈ M0 and µ̃b0 = H2 , where H2 is a generic hyperplane in P3 .
By definition and the same argument as before,

〈
ab0,V(1,1)

2 (µ)
〉

=
∑eT (〈〈

{evb1 × evb2}−1(∆P3×P3),U eT (µ̃)
〉〉

− C∂U eT (eµ)

(
evb1 × evb2;∆P3×P3

))

= 2
〈
ab0,V2(µ+ {H1 : H2})

〉
−

∑eT C∂U eT (eµ)

(
evb1 × evb2;∆P3×P3

)
,

(6.15)
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where the union is taken over all bubble types T̃ = (M2, I2; j̃, d̃) such that

j̃b1 = 1̃, j̃b2 = 2̃, d̃e1, d̃e2 > 0, and d̃e1 + d̃e2 = 0.

Let T = (M2, I; j, d) be a bubble type such that T < T̃ and U
T |eT (µ) 6= ∅. If

dh 6= 0 for some h ∈ Î such that h ≤ jb1 or h ≤ jb2 as in the proof of Lemma 6.1,
UeT ,T does not contribute to C∂U eT (eµ)

(
evb1 × evb2;∆P3×P3

)
; see also Lemma 4.3.

Thus, we assume that dh = 0 for all h ∈ Î such that h ≤ jb1 or h ≤ jb2 .

(2) By Lemma 4.3,
{

evb1 × evb2 }
φeT ,T (υ)

=
∑

i=1,2

(−1)i
∞∑

k=1

∑

h∈χei(T )

(
yh;bi(υ) − xbi;h(υ))−k{D(k)

T ,h + ε
(k)

T ,bi;h(υ)}ρ(0;k)

T ,bi;h(υ)
for all υ ∈ FT δ − Y (FT ; Î+). Since the map

F ≡
⊕

h∈χe1(T )∪χe2(T )

Lh −→ ev∗b0 TP3, υ −→
∑

h∈χe1(T )∪χe2(T )

D
(1)
T ,hυh,

is injective over U
T |eT (µ), it follows that U

T |eT (µ) is
(
evb1 × evb2,∆P3×P3

)
–hollow

unless

χe1(T ) ∪ χe2(T ) = Î+.

In such a case, by Proposition 2.18B, a rescaling of the linear map, and the
decomposition (3.4),

CU
T | eT (eµ)

(
evb1 × evb2;∆P3×P3

)
= N(α1), where

α1 ∈ Γ
(
M{e1}⊔χe1(T )⊔Me1(T ) × M{e2}⊔χe2(T )⊔Me2(T ) × UT (µ̃);Hom(F , ev∗b0 TP3)

)
,

α(υ) =
∑

h∈χe1(T )∪χe2(T )

D
(1)

T ,h
υh.

Since α1 comes entirely from the third component, N(α1) = 0 unless the first
two components are zero-dimensional, ie unless

|χe1(T )| = |χe2(T )| = 1 and |Me1(T )| = |Me2(T )| = 1.

It follows that
∑eT C∂U eT (eµ)

(
evb1 × evb2;∆P3×P3

)
= 2N(α1), where

α1 ∈ Γ
(
V2(µ̃);Hom(Le1 ⊕ Le2, ev∗b0 TP3)

)
, α1

∣∣
U eT (µ)

(υ) = D
(1)eT ,e1υ1 + D

(1)eT ,e2υ2,
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if T̃ = (M0, I2; j̃, d̃) bubble type such that d̃e1, d̃e2 > 0 and d̃e1 + d̃e2 = 0. Using
Propositions 2.18A and 2.18B, we conclude that∑eT C∂U eT (eµ)

(
evb1 × evb2;∆P3×P3

)
=

〈
8a2b0 + 2ab0ηb0,1,V2(µ)

〉
. (6.16)

This number is in fact computed in the proof of Lemma 5.13 in [17]. The claim
follows from equations (6.15) and (6.16).

Lemma 6.7 With assumptions as in Lemma 1.6,
〈
ηb0,1,V (1,1)

2 (µ)
〉

=
〈
ηb0,1,V2(µ+ {H1 : H2})

〉
+

∣∣V2(µ+H0)
∣∣

+ 2
〈
ab0,V2(µ+H1)

〉
+ 2d

〈
a2b0,V2(µ)

〉
− 6

∣∣V3(µ)
∣∣.

Proof The proof is a mixture of the proof of Lemma 6.6 with the proof of
Lemma 6.3.

7 Other examples

7.1 Rational triple-pointed curves in P2

In this subsection, we prove Proposition 7.1, ie the P2 analogue of Theorem 1.2.
The method is the same as in Section 4, but the computation is significantly
simpler, since there are many fewer boundary strata to consider. Note that the
formula of Proposition 7.1 agrees with [6, Lemma 3.2] and [15, Subsection 3.2].

Figure 14 outlines the computation of the boundary contribution to the hom-

ology-intersection number 〈〈V
(2)
1 (µ)〉〉. It shows all non-hollow boundary strata

and the multiplicity with which the number N(α) of zeros of an affine map

over a closure of each stratum enters into 〈〈V
(2)
1 (µ)〉〉. In three of the cases, the

number N(α) is easily seen to be zero. Lemma 7.2 computes the number N(α)
in the remaining two cases.

If d is a positive integer, let nd denote the number of degree–d rational curves
that pass through 3d− 1 points in general position in P2 . Following [15], we
put

Ad ≡ nd =
〈
a2b0,V1(µ)

〉
,

Bd ≡ −
nd
d

+
1

2d

∑

d1+d2=d

(
3d− 2

3d1 − 1

)
d2
1d

2
2nd1nd2 =

〈
ab0ηb0,1,V1(µ)

〉
,

−Cd = ∆d ≡
1

2

∑

d1+d2=d

(
3d− 2

3d1 − 1

)
d1d2nd1nd2 =

∣∣V2(µ)
∣∣ = −

〈
η2b0,1,V1(µ)

〉
,
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where µ is a tuple of 3d−2 points in P2 . The computation of the above in-
tersection numbers, with essentially the same notation as in this paper, can be
found in Subsection 5.7 of [17].

Proposition 7.1 If d is a positive integer, the number of rational one-com-
ponent degree–d curves that have a triple point and pass through a tuple µ of

3d−2 points in general position in P2 is 1
6 |V

(2)
1 (µ)|, where

∣∣V(2)
1 (µ)

∣∣ = 3(d2 − 6d+ 10)Ad − 3(d− 6)Bd + 6Cd.

Proof We use the same notation as in Section 4, except now all the stable
maps under consideration have values in P2 , instead of P3 . Similarly to Sub-
section 4.1, we have

∣∣V(2)
1 (µ)

∣∣ =
〈〈
V

(2)
1 (µ)

〉〉
− C∂UT2

(µ)

(
eve1 × evb2;∆P2×P2

)

= 2n
(1)
d + d

〈
ab0,V(1)

1 (µ)
〉
− C∂UT2

(µ)

(
eve1 × evb2;∆P2×P2

)
,

(7.1)

where n
(1)
d denotes the number of degree–d rational curves that pass 3d − 1

points in general position in P2 counted with a choice of a node, ie

n
(1)
d =

(
d− 1

2

)
nd. (7.2)

The number
〈
ab0,V (1)

1 (µ)
〉

is computed in Lemma 7.5. In order to compute
the boundary contribution C∂UT2

(µ)

(
eve1 × evb2;∆P2×P2

)
, by Lemma 4.4 it is

sufficient to consider only bubble types T = (M2, I; j, d) such that T < T2 and
either χT (1̃, 2̂) = 0 or χT (1̂, 2̂) = 0. Thus, the number

C∂UT2
(µ)

(
eve1 × evb2;∆P2×P2

)

is computed by Lemmas 7.2 and 7.4. Finally, the numbers 〈ηb0,1,V (1)
1 (µ)〉 and

|S1(µ)| are given by Lemmas 7.5 and 7.6.

Lemma 7.2 The total contribution to the number

C∂UT2
(µ)

(
eve1 × evb2;∆P2×P2

)

from the boundary strata UT2,T , where T = (M2, I; j, d) is a bubble type such
that T < T2 and either χT (1̃, 2̂) = 0 or χT (1̂, 2̂) = 0, but not both, is given by

∑

χT (e1,b2)+χT (b1,b2)>0

CUT2,T

(
eve1 × evb2;∆P2×P2

)
=

〈
6ab0 + 2ηb0,1,V(1)

1 (µ)
〉
− 4

∣∣S1(µ)
∣∣.
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1̃

1̂2̂

×
1

×
1

×1

×
1

×
2

1̃

2̂

1̂

1̃

2̂

1̂

l

1̃

2̂
1̂

1̃

2̂
1̂

l

1̃

2̂

1̂

≈

≈

≈

≈

≈

V
(1)

1 (µ)

M0,4 ×

1̃, l

1̂

V
(1)

1 (µ)

M0,4 ×

1̃, l

1̂

M0,4 ×

1̃
cusp

Lemma 7.2

0

Lemma 7.2

0

0

Figure 14: An outline of the proof of Proposition 7.1

Proof (1) By symmetry, it is sufficient to consider the case χT (1̃, 2̂) = 0 and
χT (1̂, 2̂) > 0 and then double the answer. By Lemma 4.1,

U
(1)
T2

(µ) ∩ UT2,T ⊂ U
(1)
T |T2

(µ).

By Lemma 4.2,
{

eve1 × evb2 }
φT2,T (µ)

∑

h∈χe1(T )

(
yh;b2 − xh;b2)−1{

D
(1)
T ,h + εh(υ)

}
ρh(υ),

where ρh(υ) =
∏

i∈(iT (h,b2),h]

υi,

for all υ ∈ FT δ∗ − Y (FT ; Î+) and some C0–negligible maps

εh : FT δ∗ − Y (FT ; Î+) −→ Hom(Lh, ev
∗b0 TP2).

The linear map

α : F ≡
⊕

h∈χe1(T )

Lh −→ ev∗b0 TP2
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is injective over U
(1)
T |T2

(µ) by Lemma 3.4. Thus, if Î+ 6= χe1(T ), then U
(1)
T |T2

(µ)

is (eve1 × evb2,∆P2×P2)–hollow, and

CUT2,T

(
eve1 × evb2;∆P2×P2

)
= 0

by Proposition 2.18B, or Lemma 2.20, and Lemma 4.1.

(2) On the other hand, if Î+ = χe1(T ), by the above and Lemma 4.5, U
(1)
T |T2

(µ)

is (eve1 × evb2,∆P2×P2)–regular, and by Proposition 2.18B, a rescaling of the
linear map, and the splitting (3.4),

CUT2,T

(
eve1 × evb2;∆P2×P2

)
= N(α), where

α ∈ Γ
(
M{e1}⊔χe1(T )⊔Me1(T ) × U

(1)

T
(µ);Hom(F , ev∗b0 TP2)

)
, α(υ) =

∑

h∈χe1(T )

D
(1)
T ,hυh.

Since the linear map α comes entirely from the second component N(α) = 0
unless the first component is zero-dimensional, ie |χe1(T )| = 1 and Me1T = {2̂}.
Thus, we conclude that

∑

χT (e1,b2)+χT (b1,b2)>1

CUT2,T

(
eve1 × evb2;∆P2×P2

)
= 2N(α1),

where α1 = D
(1)

T1,e1 ∈ Γ
(
V

(1)
1 (µ);Hom(Le1, ev∗b0 TP2)

)
.

The number N(α1) is computed in Lemma 7.3.

Lemma 7.3 If α1 = D
(1)

T1,e1 ∈ Γ
(
V

(1)
1 (µ);Hom(Le1, ev∗b0 TP2)

)
,

N(α1) =
〈
3ab0 + c1(L

∗e1),V (1)
1 (µ)

〉
− 2

∣∣S1(µ)
∣∣.

Proof (1) Since α1 does not vanish on V
(1)
1 (µ) by Lemma 3.4, by Proposi-

tions 2.18A and 2.18B,

N(α1) =
〈
3ab0 + c1(L

∗e1),V (1)
1 (µ)

〉
− C

∂V
(1)
1 (µ)

(α⊥
1 ), (7.3)

where α⊥
1 denotes the composition of α1 with the projection π⊥ν̄1 onto the

quotient O1 of ev∗b0 TP2 by a generic trivial line subbundle Cν̄1 . Suppose

T = (M1, I; j, d)

is a bubble type such that T < T1 .

(2) If χT (1̃, 1̂) > 0, by Lemma 4.1

V
(1)
1 (µ) ∩ UT1,T ⊂ U

(1)
T |T1

(µ).
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If in addition de1 > 0, α1 does not vanish on U
(1)
T |T1

(µ), and thus UT1,T does not

contribute to C
∂V

(1)
1 (µ)

(α⊥
1 ). On the other hand, if de1 = 0 and U

(1)
T |T1

(µ) 6= ∅,

by dimension-counting via Lemma 3.4, χe1(T ) = {h} is a single element-set and
T = T1(l) for some l ∈ [N ]. By Proposition 3.5,

D
(1)

T1,e1(φT1,T (υ)
)

=
{
D

(1)
T ,h + ε(υ)

}
υ, for all υ ∈ FT δ∗ − Y (FT ; {h}).

Since the section D
(1)
T ,h does not vanish over U

(1)
T |T1

(µ) by Lemma 3.4, by Propo-
sition 2.18B,

CUT1,T
(α⊥

1 ) =
∣∣UT (µ)

∣∣.
Summing up for all bubble types T = T1(l), we conclude that

∑

χT (e1,b1)>0

CUT1,T
(α⊥

1 ) =
∣∣V(1)

1;1 (µ)
∣∣. (7.4)

(3) If T < T1 and χT (1̃, 1̂) = 0, by Lemma 4.2

V
(1)
1 (µ) ∩ UT1,T ⊂ ST |T1

(µ).

If ST |T1
(µ) 6= ∅, by dimension-counting via Lemma 3.4, χe1(T ) = {h} is a

single element-set and T = T1(1̂). Subtracting
(
yb1 − xh

)
times the expansion

of {eve1 × evb1} ◦ φT1,T in Lemma 4.2 from the expansion of D
(1)

T1,e1 in (3b) of

Proposition 3.5, we obtain

D
(1)

T1,e1φT1,T (υ) = −
(
yb1 − xh

)
⊗

{
D

(2)
T ,h + ε(υ)

}
υ ⊗ υ

for all υ ∈ FT δ such that φT1,T (υ) ∈ U
(1)
T1

(µ)

and for some C0–negligible map

ε : FT δ − Y (FT ; Î+) −→ L∗⊗2
h ⊗ ev∗b0 TP2.

By Lemma 3.4, D
(2)
T ,h does not vanish on the finite set ST |T1

(µ). Thus, by
Proposition 2.18B,

∑

χT (e1,b1)=0

CUT1,T
(α⊥

1 ) = 2
∣∣ST (µ)

∣∣ = 2
∣∣S1(µ)

∣∣. (7.5)

The claim follows from (7.3)–(7.5) along with (3.2) and (3.3).

Lemma 7.4 If T = (M2, I; j, d) < T2 is a bubble type such that χT (1̃, 2̂) =
χT (1̂, 2̂) = 0,

CUT2,T

(
eve1 × evb2;∆P2×P2

)
= 0.
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Proof Since χT (1̃, 1̂) = 0, by Lemma 4.2, U
(1)
T2

(µ) ∩ UT2,T ⊂ ST |T2
(µ). If

ST |T2
(µ) 6= ∅, χe1(T ) = {h} is a single-element set. Subtracting the expansion

of {eve1 × evb1} ◦ φT2,T of Lemma 4.2 times
(
yh;b1(υ) − xb1;h(υ)

)(
yh;b2(υ) − xb2;h(υ))

from the corresponding expansion {eve1 × evb2} ◦ φT2,T , we obtain

{eve1 × evb2}◦φT2,T (υ) = {α+ε(υ)}ρ(υ) for all υ ∈ FT δ with φeT2,T
(υ) ∈ U

(1)
T1

(µ),

where ρ is a a monomials map on FT with values in a line bundle F̃T and
α : F̃T −→ ev∗b0 TP2 is a linear map. Explicitly, if h1 = iT (h, 1̂) and h2 =

iT (h, 2̂),

ρ(υ) =
∏

i∈(h1,h]

υi ⊗
∏

i∈(h2,h]

υi,

α(υ) = D
(2)
T ,h ⊗





(yh;b2 − xb2;h)−2 ⊗ (yh;b1 − xb1;h)
−1 ⊗ (yh;b2 − yh;b1), if h1 = h2;

(yh;b2 − xb2;h)−2, if h1 < h2;

(yh;b2 − xb2;h)−1 ⊗ (yh;b1 − xb1;h)
−1, if h1 > h2.

Thus, ST |T2
(µ) is (eve1 × evb2,∆P3×P3)–hollow unless Î+ = χe1(T ). On the other

hand, if Î+ = χe1(T ), by Proposition 2.18B, the decomposition (3.4), and a
rescaling of the linear map,

CUT2,T

(
eve1 × evb2;∆P3×P3

)
= 2N(α1), where

α1 = π∗2D
(2)

T
∈ Γ

(
M{e1,h}⊔Me1T × ST (µ);π∗2Hom(L∗e1, ev∗b0 TP3)

)
.

Since |Me1T | ≥ 2, the first factor is positive-dimensional, while the linear
map α1 comes entirely from the second factor. Thus,

CUT2,T

(
eve1 × evb2;∆P3×P3

)
= N(α1) = 0.

Lemma 7.5 If d is a positive integer and µ is a tuple of 3d−2 points in general
position in P2 , the number of rational one-component degree–d curves that pass

through the constraints µ and have a node on a generic line is 1
2〈ab0,V (1)

1 (µ)〉,
where

〈ab0,V(1)
1 (µ)〉 =

〈
(2d− 3)a2b0 − ab0ηb0,1,V1(µ)

〉
.

Furthermore,

〈
ηb0,1,V (1)

1 (µ)
〉

=
〈
a2b0 + d · ab0ηb0,1,V1(µ)

〉
−

∣∣V2(µ)
∣∣.
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Proof (1) In order to prove the first identity, we take µ̃ to be the M̃ ≡
[N ]∪ {0̂}–tuple of constraints defined by µ̃l = µl and µ̃b0 = H1 , where H1 is a
generic hyperplane. Similarly to the proof of Lemma 6.1,

〈
ab0,V (1)

1 (µ)
〉

=
〈〈
ab0,V(1)

1 (µ)
〉〉

− C∂UT1
(eµ)

(
eve1 × evb1,∆P2×P2

)

= 2d
〈
a2b0,V1(µ)

〉
− C∂UT1

(eµ)

(
eve1 × evb1,∆P2×P2

)
,

(7.6)

where C∂UT1
(eµ)

(
eve1 × evb1,∆P2×P2

)
is the contribution of ∂UT1(µ̃) to 〈〈V

(1)
1 (µ̃)〉〉.

If T = (M1, I; j, d) < T1 is a bubble type such that χT (1̃, 1̂) > 0, the map
eve1 × evb1 is transversal to ∆P2×P2 on UT |T1

(µ̃) by Lemma 3.4 and thus the
boundary stratum UT1,T (µ̃) does not contribute to the number

C∂UT1
(eµ)

(
eve1 × evb1,∆P2×P2

)
.

If χT (1̃, 1̂) = 0 and UT |T1
(µ̃) 6= ∅, χe1(T ) = {h} and Me1T = {1̂} are single-

element sets. By Lemma 4.2,

{
eve1 × evb1 }

φT1,T (υ) =
(
yb1 − xh

)−1
⊗

{
D

(1)
T ,h + ε(υ)

}
υ for all υ ∈ FT δ.

Since the section D
(1)
T ,h does not vanish on UT |T1

(µ) by Lemma 3.4, UT |T1

is
(
eve1 × evb1,∆P2×P2

)
–hollow unless Î+ = {h}. If Î+ = {h}, by Proposi-

tion 2.18B, decomposition (3.4), and a rescaling of the linear map,

CU
T |eT1

(eµ)

(
eve1 × evb1;∆P2×P2

)
= N(α1), where

α1 = D
(1)

T0,b1 ∈ Γ
(
V1(µ̃);Hom(Le1, ev∗b0 TP2)

)
.

By Propositions 2.18A and 2.18B,

N(α1) =
〈
3ab0 + c1(L

∗e1),V1(µ̃)
〉
− C∂V1(µ)(α

⊥
1 ).

If T ≡ (M0, I; j, d) < T0 is a bubble type such that α1 vanishes somewhere on
UT |T0

(µ̃), T = T1(l) for some l ∈ [N ]. From Proposition 3.5, we then obtain

C∂V1(eµ)(α
⊥
1 ) =

∣∣V1;1(µ̃)
∣∣.

Putting everything together and using identities (3.2) and (3.3), we conclude
that

C∂UT1
(eµ)

(
eve1 × evb1,∆P2×P2

)
=

〈
3a2b0 + ab0c1(L∗e1),V1(µ)

〉
. (7.7)

The first claim of the lemma follows from (7.6) and (7.7).
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(2) Let s be a section of L∗e1 with good properties, ie as in the proof of
Lemma 6.3. Then,

〈
c1(L

∗e1),V (1)
1 (µ)

〉

=
〈〈
c1(L

∗e1),V (1)
1 (µ)

〉〉
− Cs−1(0)∩∂UT1

(µ)

(
eve1 × evb1,∆P2×P2

)

=
〈
c1(L

∗e1),V1(µ+H0)
〉

+
〈
ab0c1(L∗e1),V1(µ+H1)

〉
+ 3

〈
a2b0,V1(µ)

〉

− Cs−1(0)∩∂UT1
(µ)

(
eve1 × evb1,∆P2×P2

)

=
〈
a2b0 + d · ab0c1(L∗e1),V1(µ+H1)

〉
− Cs−1(0)∩∂UT1

(µ)

(
eve1 × evb1,∆P2×P2

)
.

(7.8)

In the last equality we used Lemma 5.17 of [17], which is essentially Lemma 2.2.2
of [11]. If

T ≡ (M1, I; j, d) < T1

is a bubble type such that χT (1̃, 1̂) > 0, the space UT |T1
does not contribute

to C∂UT1
(µ)

(
eve1 × evb1,∆P2×P2

)
unless χT (1̃, 1̂) = 0 and ηb0,1|UT |T1

(µ) 6= 0. On

the other hand,

χT (1̃, 1̂) = 0, ηb0,1|UT |T1
(µ) 6= 0 =⇒ Î+ = χe1(T ) = {h1, h2}, Me1(T ) = {1̂}.

By Lemma 4.2,
{

eve1 × evb1 }
φT1,T (υ) =

∑

h∈χe1(T )

(
yb1 − xh

)−1
⊗

{
D

(1)
T ,h + εh(υ)

}
υh,

for all υ ∈ FT δ . Thus,

CUT |T1
(µ)

(
eve1 × evb1;∆P2×P2

)
= ±

∣∣s−1(0) ∩ UT |T1
(µ)

∣∣ =
∣∣UT (µ)

∣∣.
We conclude that

Cs−1(0)∩∂UT1
(µ)

(
eve1 × evb1,∆P2×P2

)
=

∣∣V2(µ)
∣∣. (7.9)

The second claim of the lemma follows from (7.8) and (7.9).

Lemma 7.6 If d ≥ 1, the number of rational degree–d cuspidal curves passing
through a tuple µ of 3d−2 points in general position in P2 is given by

∣∣S1(µ)
∣∣ =

〈
3a2b0 + 3ab0ηb0,1 + η2b0,1,V1(µ)

〉
−

∣∣V2(µ)
∣∣.

Proof This is the n = 2 case of Theorem 1.1; see [17, Lemma 5.4] for a direct
proof. The same formula can also be found in [11, Subsection 4.5] and [15,
Subsection 3.2].
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7.2 Rational tacnodal curves in P2

In this subsection, we prove Proposition 7.7, the P2–analogue of Theorem 1.3.
The formula we obtain agrees with previously known results; see equation (1.2)
in [2] and Subsection 3.2 in [15].

Figure 15 shows the three types of boundary strata V
(1)
1 (µ) ∩ UT1,T such that

P(Le1 ⊕ L∗e1)|V(1)
1 (µ) ∩ UT1,T

is not contained in a finite union of De1,b1–hollow sets. For such boundary strata,

P(Le1 ⊕ L∗e1)|V(1)
1 (µ) ∩ UT1,T

is a union of one De1,b1–regular or hollow subset and one De1,b1–regular subset: a

section over the base V
(1)
1 (µ) ∩ UT1,T and its complement. The second-to-last

column of Figure 15 shows the multiplicity with which each number N(α) of
zeros of an affine map over a closure of the larger and the smaller subset, if it is
regular, enters into the euler class of the bundle γ∗Le1⊕L∗e1 ⊗ ev∗b0 TP2 as computed

via the section De1,b1 . The last column gives the number N(α) for each regular
subset of the boundary strata. Contributions from the boundary strata as in
the first row of Figure 15 are computed in Lemma 7.8. Lemma 7.9 deals with
the boundary strata as in the last two rows of Figure 15.

Proposition 7.7 If d is a nonnegative integer, the number of rational one-
component degree–d curves that have a tacnodal point and pass through a

tuple µ of 3d−2 points in general position in P2 is 1
2 |S

(1)
1 (µ)|, where

∣∣S(1)
1 (µ)

∣∣ = 2(3d − 11)Ad + 2(d− 9)Bd − 8Cd.

Proof Similarly to Subsection 5.1,

∣∣S(1)
1 (µ)

∣∣ =
〈
3ab0,V(1)

1 (µ)
〉
− C∂P(Le1⊕L∗e1)(De1,b1), (7.10)

where C∂P(Le1⊕L∗e1)(De1,b1) is the contribution from the boundary strata of the

space P(Le1 ⊕ L∗e1). This contribution is computed in Lemmas 7.8 and 7.9. The

numbers 〈ab0,V(1)
1 (µ)〉 and |S1(µ)| are given by Lemmas 7.5 and 7.6. Finally,

the number of two-component rational curves that pass through 3d−2 points
in general position in P2 , counted a with choice of an ordered pair of distinct
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1̃

1̂

1̃

1̂

cusp

1̃

l

1̂

1̃

1̂

≈

≈

≈

S1(µ)

V
(1)
1;1 (µ)

V
(1,1)
2 (µ)

×2

×3

×(−1)

×1

×(−1)

|S1(µ)|

|S1(µ)|

|V
(1)
1;1 (µ)|

|V
(1)
1;1 (µ)|

|V
(1,1)
2 (µ)|

De1,b1–hollow

Figure 15: An outline of the proof of Proposition 7.7

nodes at which the two components intersect and with a choice of a branch at
one of these nodes, is easily seen to be

∣∣V(1,1)
2 (µ)

∣∣ =
∑

d1+d2=d

(
3d− 2

3d1 − 1

)
d1d2

(
d1d2 − 1

)
nd1nd2

= 2Ad + 2dBd + 2Cd

(7.11)

which proves the claim.

Lemma 7.8 The total contribution to C∂P(Le1⊕L∗e1)(De1,b1) from the boundary

strata P(Le1 ⊕ L∗e1)|UT1,T , where T = (M1, I; j, d) is a bubble type such that

T < T1 and χT (1̃, 1̂) = 0, is given by
∑

χT (e1,b1)=0

C∂P(Le1⊕L∗e1)|UT2,T
(De1,b1) = 5

∣∣S1(µ)
∣∣.

Proof (1) By Lemma 4.2,

U
(1)
T1

(µ) ∩ UT1,T ⊂ ST |T1
(µ).

If ST |T1
(µ) 6= ∅, Î+ = χe1(T ) = {h} and Me1T = {1̂} are a single-element

sets. Subtracting the expansion of {eve1 × evb1} ◦φT1,T of Lemma 4.2 multiplied

by (yb1 − xh) and by −(yb1 − xh)
−1 from the expansions of D

(1)

T1,e1 ◦ φT1,T and
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D
(1)

T1,b1 ◦ φT1,T , respectively, given by Proposition 3.5, we obtain

De1,b1φT1,T ([υe1, υb1];υ) = −
{(

(yb1 − xh)
−1 ⊗ υe1 + (yb1 − xh)

−3 ⊗ υb1) ⊗D
(2)
T ,h

+ε(υ)}υ ⊗ υ

for all ([υe1, υb1];υ) ∈ FT δ such that φT1,T (υ) ∈ U
(1)
T1

. Let

ZT =
{[
υe1, υb1] ∈ P(Le1 ⊕ L∗e1)|UT |T1

: (yb1 − xh)
−1υe1 + (yb1 − xh)

−3υb1 = 0
}
.

Since the section D
(2)
T ,h does not vanish over ST |T1

(µ), by Proposition 2.18B,
the decomposition (3.4), and a rescaling of the linear map,

CP(Le1⊕L∗e1)|ST |T1
(µ)−ZT

(De1,b1) = 2N(α1), where

α1 ∈ Γ
(
P1 × S1(µ);Hom(γ∗, γ∗ ⊗ ev∗b0 TP2)

)

is a nonvanishing section. Thus, by Proposition 2.18A,
∑

χT (e1,b1)=0

CP(Le1⊕L∗e1)|ST |T1
(µ)−ZT

(De1,b1) = 2
〈
2λ−λ,P1

〉∣∣S1(µ)
∣∣ = 2

∣∣S1(µ)
∣∣. (7.12)

(3) In order to compute the contribution from the space ZT , we model a
neighborhood of ZT in P(Le1 ⊕ L∗e1) by the map

L∗e1 ⊗ L∗e1 −→ P(Le1 ⊕ L∗e1), (
[υe1, υb1], u) −→

[
υe1, υb1 + u(υe1)].

Near ZT ,

De1,b1φT1,T ([υe1, υb1];u, υ) = − (yb1 − xh)
−3 ⊗

(
D

(2)
T ,h + ε2(u, υ)

)
υ ⊗ υ ⊗ u

− (yb1 − xh)
−2 ⊗ υe1 ⊗ (

D
(3)
T ,h + ε3(u, υ)

)
υ ⊗ υ ⊗ υ

for all ([υe1, υb1];υ) ∈ FT δ such that φT1,T (υ) ∈ U
(1)
T1

. By Lemma 3.4, the images

of D
(2)
T ,h and D

(3)
T ,h are distinct over ST |T1

(µ). Thus, by Proposition 2.18B, the
decomposition (3.4), and a rescaling of the linear map,

∑

χT (e1,b1)=0

CZT
(De1,b1) = 3

∣∣S1

∣∣. (7.13)

The claim follows from equations (7.12) and (7.13).

Lemma 7.9 The total contribution to C∂P(Le1⊕L∗e1)(De1,b1) from the boundary

strata P(Le1 ⊕ L∗e1)|UT1,T , where T = (M1, I; j, d) is a bubble type such that

T < T1 and χT (1̃, 1̂) > 0, is given by
∑

χT (e1,b1)>0

C∂P(Le1⊕L∗e1)|UT2,T
(De1,b1) = −

∣∣V(1,1)
2 (µ)

∣∣.

Geometry & Topology, Volume 9 (2005)



Counting rational curves of arbitrary shape 691

Proof (1) By Lemma 4.1,

U
(1)
T1

(µ) ∩ UT1,T ⊂ U
(1)
T |T1

(µ).

If jb1 = 1̃ or jb1 > 1̃ and djb1 = 0, the section De1,b1 has a nonvanishing extension

over U
(1)
T |T1

(µ). Thus, we only need to consider bubble types T such that

jb1 ≡ h > 1̃ and dh > 0.

Furthermore, if U
(1)
T |T1

(µ) 6= ∅, I+ = {1̃, h}.

(2) If de0 = 0 and U
(1)
T |T1

(µ) 6= ∅, T = T1(l) for some l ∈ [N ]. By Proposi-
tion 3.5,

De1,b1φT1,T ([υe1, υb1];υ) = −(yb1 − xh)
−2

{
υb1 ⊗D

(1)
T ,h + ε(υ)

}
υ∗

for all υ ∈ FT δ − Y (FT ; Î+).

Let ZT = PLe1 . Since the section D
(1)
T ,h does not vanish on U

(1)
T |T1

(µ), by Propo-
sition 2.18B and a rescaling of the linear map,

C
P(Le1⊕L∗e1)|U

(1)
T |T1

(µ)−ZT
(De1,b1) = −N(α1), where

α1 ∈ Γ
(
P1 × S1(µ);Hom(γ∗, γ∗ ⊗ ev∗b0 TP2)

)
,

is a nonvanishing section. Thus, by Proposition 2.18A,

C
P(Le1⊕L∗e1)|U

(1)
T |T1

(µ)−ZT
(De1,b1) = −

〈
2λ− λ,P1

〉∣∣U (1)
T |T1

(µ)
∣∣ = −

∣∣U (1)
T |T1

(µ)
∣∣.

On the other hand, with the same notation as in (2) of the proof of Lemma 7.8,
near ZT ,

De1,b1φT1,T ([υe1, υb1];u, υ) = −(yb1 − xh)
−2

{
D

(1)
T ,h + εb1(υ)}u⊗ υ∗

+
{
D

(1)
T ,h + εe1(υ)}υ.

Thus, by Proposition 2.18B,

CZT
(De1,b1) =

∣∣ZT

∣∣ =
∣∣U (1)

T |T1
(µ)

∣∣.
We conclude that ∑

de1=0

CP(Le1⊕L∗e1)|UT1,T
(De1,b1) = 0. (7.14)

(3) Finally, suppose de1 > 0. The same argument as in (2) above shows that

C
P(Le1⊕L∗e1)|U

(1)
T |T1

(µ)−ZT
(De1,b1) = −

∣∣U (1)
T |T1

(µ)
∣∣,

Geometry & Topology, Volume 9 (2005)



692 Aleksey Zinger

but ZT is De1,b1–hollow. Thus, summing up over all bubble types T of appro-
priate form, we obtain

∑

de1>0

CP(Le1⊕L∗e1)|UT1,T
(De1,b1) = −

∣∣V(1,1)
2 (µ)

∣∣. (7.15)

The claim follows equations (7.14) and (7.15).

7.3 Rational cuspidal curves in Pn

In this subsection, we prove Theorem 1.1. In particular, we construct a tree
of chern classes, as mentioned in the third-to-last paragraph of Subsection 1.2.
The sum of these chern classes, with an appropriate sign, is the number that
appears on the right-hand side of the equation in Theorem 1.1. The tree is very
similar to that constructed in Subsection 3.1 of [20]; the main difference is that
here we focus on intersection numbers, instead of zeros of polynomial maps.
Theorem 1.1 follows immediately from Corollary 7.12 and Lemma 7.13.

We first introduce a little more notation. If d, N , and µ are as in the statement
of Theorem 1.1, k ≥ 1, and m ≥ 0, let Vk,m(µ) and Vk,m(µ) denote the
quotients of the disjoint unions of the spaces UT (µ̃) and UT (µ̃), respectively,
taken over all bubble types

T = ([N ] −M0, Ik; j, d) such that M0 ⊂ [N ], |M0| = m,

Ik = {0̂} ∪ {1̃, . . . , k̃}, de1, . . . , dek > 0,
∑

di = d,

by the natural action of the symmetric group Sk . Here µ̃ is the ([N ]−M0)⊔{0̂}–
tuple of constraints defined by

µ̃l = µl if l ∈ [N ] −M0; µ̃b0 =
⋂

l∈M0

µl.

By dimension-counting, the spaces Vk,m(µ) are smooth manifolds. We define
the vector bundle Ek,m → Vk,m(µ) and homomorphism αk,m : Ek,m → ev∗b0 TPn

over Vk,m(µ) by

Ek,m|UT (µ) =
⊕

i∈I+

Li, αk,m
(
(υi)i∈I+

)
=

∑

i∈I+

D
(1)
T ,iυi,

whenever T is a bubble type as above.

We now construct the tree mentioned above. Each node is a tuple

σ = (r; k,m;φ),
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where r ≥ 0 is the distance to the root σ0 = (0; 1, 0; ·), k ≥ 1, and m ≥ 0. The
tree satisfies the following properties. If r > 0 and

σ∗ ≡ (r − 1; k∗,m∗;φ∗)

is the node from which σ is directly descendant, we require that k∗ ≤ k ,
m∗ ≤ m, and at least one of the inequalities is strict. Furthermore, φ specifies
a splitting of the set [k] into k∗ disjoint subsets and an assignment of m−m∗

of the elements of the set

[m] ≡
{
(1, 1), . . . , (1,m)

}

to these subsets. This description inductively constructs an infinite tree. How-
ever, we will need to consider only the nodes

σ ≡ (r; k,m;φ) such that 2k +m ≤ n+ 2.

We will write σ ⊢ σ∗ to indicate that σ is directly descendant from σ∗ .

For each node in the above tree, except for the root, we now define a linear
map between vector bundles. If σ = (r; k,m;φ) and s ≥ 1, let

{σs = (s; ks,ms;φs) : 0 ≤ s ≤ r}

be the sequence of nodes such that σr = σ and σs ⊢ σs−1 for all s > 0. Put

Vσ = Vk,m(µ), Eσ = Ek,m −→ Vσ, ασ = αk,m,

Xσ = Yσ × Vσ, Xσ,s = Yσ,s × Vσ,

where

Yσ = Yσ,r, Yσ,0 = {pt}, Yσ,s = PFσs × Yσ,s−1 if s > 0,

Mσ =
∏

i∈Im φ

Mi+φ−1(i), Fσ =
⊕

i∈Im φ

γσ;i −→ Mσ.

For the purposes of the last line above, we view φ as a map from [k]− [k∗] and
a subset of [m] to [k∗] in the notation of the previous paragraph. Then,

γσ;i −→ Mi+φ−1(i)

is the “tautological” line bundle, ie the universal tangent bundle at the marked
point i. Let

Oσ = Oσ,r, Oσ,1 = ev∗b0 TPn, Oσ,s = Oσ,s−1

/
Im ν̄σ,s−1 if s > 1,

where ν̄σ,s ∈ Γ
(
Xσ,s; Hom(γFσs

,Oσ,s)
)

is a generic section. Since ks−1 ≤ ks ,
ms−1 ≤ ms , and one of the inequalities is strict,

1

2
dimXσ,s ≤

1

2
dimXσ =

(
n+ 2 − 2k −m

)
+

s=r∑

s=1

(∣∣ Im φs
∣∣ − 1

)

= n+ 1 − k − r < rk Oσ,1 − (r − 1).
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Thus, we see inductively that each bundle Oσ,s is well-defined and a generic
section ν̄σ,s of Hom(γFσ,s,Oσ,s) does not vanish. Let

πσ : ev∗b0 TPn −→ Oσ

be the projection map. We define

α̃σ ∈ Γ
(
Xσ; Hom(γ∗Fσ

⊗ Eσ; γ
∗
Fσ

⊗Oσ)
)

by{
α̃σ(τ ⊗ υ)

}
(w) = τ(w) · πσασ(υ) ∈ Oσ.

Lemma 7.10 With notation as above,
∣∣S1(µ)

∣∣ =
〈
c
(
L∗e1 ⊗ ev∗b0 TPn

)
,V1(µ)

〉
−

∑

σ⊢σ0

N
(
α̃σ

)
.

Furthermore, for every node σ∗ 6= σ0 ,

N
(
α̃σ∗

)
=

〈
c
(
γ∗Fσ∗ ⊗Oσ∗

)
c
(
γ∗Fσ∗ ⊗Eσ∗

)−1
,Xσ∗

〉
−

∑

σ⊢σ∗

N
(
α̃σ

)
.

Proof This lemma is obtained by the usual argument from the estimate (3b)
of Proposition 3.5 via Propositions 2.18A and 2.18B. If σ∗ 6= σ0 , the proof is
the same as the proof of Lemma 3.3 in [20]. For the first identity, apply the

proof of Lemma 3.3 with α⊥
σ0

= D
(1)

T ,e1 .

Lemma 7.11 For every node σ 6= σ0 ,
〈
c
(
γ∗Fσ

⊗Oσ

)
c
(
γ∗Fσ

⊗Eσ
)−1

,Xσ
〉

=
〈
c(ev∗b0 TPn)c(Ek,m)−1,Vk,m(µ̃)

〉
.

Furthermore,
〈
c1

(
L∗e1 ⊗ ev∗b0 TPn

)
,V1(µ)

〉
=

〈
c(ev∗b0 TPn)c(E1,0)

−1,V1,0(µ̃)
〉
.

Proof For the first identity, see the proof of [20, Corollary 3.5]. The second
equality is clear from the fact that dimV1(µ) = rk ev∗b0 TPn

Corollary 7.12

∣∣S1(µ)
∣∣ =

∑

(1,0)≤(k,m)

{
(−1)k+m−1km(m− 1)!

×

n+2−(2k+m)∑

l=0

(
n+ 1

l

)〈
alη̃b0,n+2−(2k+m)−l,Vk,m(µ̃)

〉
}
.
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Proof This corollary follows from Lemma 7.10 and Lemma 7.11 via straight-
forward combinatorics; see [20, Corollary 3.6 and Lemma 3.7].

Lemma 7.13 For all k ≥ 1 and l ≥ 0,

∑

m≥0

(−1)mkm(m− 1)!
〈
alη̃b0,n+2−(2k+m)−l,Vk,m(µ̃)

〉

= (k − 1)!
〈
alηb0,n+2−2k−l,Vk(µ)

〉
.

Proof See the proof of Corollary 3.10 in [20], which uses (3.2) along with [11,
Subsection 3.2].

8 Low-degree numbers

We now give some low-degree enumerative numbers for rational curves in pro-
jective spaces. In all five tables, the top row lists the degree d of the map.
In Tables 1 and 2, the constraints are assumed to be 3d−2 points in general
position in Pn . In Tables 3 and 4, the constraints are p points and q lines
in P3 , as specified by the second row. Similarly, in Table 5, the constraints are
p points, q lines, and r two-planes in P4 .

The formulas of Theorems 1.2 and 1.3 give zeros in degrees one, two, and three.
From classical algebraic geometry, one would expect these low-degree numbers,
as well as the first three degree-four numbers listed in Tables 3 and 4, to vanish.
In addition, as expected, the fourth number in Table 3 (Table 4) is the same
as the degree-four number of Table 1 (Table 2). Similarly, all degree-one and
-two numbers |S1(µ)| and several degree-three and -four numbers, as listed in
Table 5, are zero, as the case should be. Finally, observe that the third number
of Table 5 is the same as the long-known number of plane cubic cuspidal curves
that pass through seven general points.

d 1 2 3 4 5 6 7 8

|V
(2)
1 (µ)| 0 0 0 60 56,400 49,177,440 56,784,765,120 91,466,185,097,280

Table 1: One-component rational triple-pointed curves in P2
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d 1 2 3 4 5 6 7 8

|S
(1)
1 (µ)| 0 0 0 1, 296 499, 680 271, 751, 040 227, 509, 931, 520 287, 190, 836, 432, 640

Table 2: One-component rational tacnodal curves in P2

d 4 4 4 4 4 4 5 5 5 6

(p, q) (6,1) (5,3) (4,5) (3,7) (2,9) (1,11) (8,1) (7, 3) (6, 5) (10, 1)
1
6
|V

(2)
1 (µ)| 0 0 0 60 1,280 19, 640 8 264 4, 360 4, 680

Table 3: One-component rational triple-pointed curves in P3

d 4 4 4 4 4 4 5 5 5 6

(p, q) (6, 1) (5, 3) (4, 5) (3, 7) (2, 9) (1, 11) (8,1) (7,3) (6,5) (10,1)
1
2
|S

(1)
1 (µ)| 0 0 0 1, 296 27, 648 426, 672 960 9, 792 111, 840 112, 320

Table 4: One-component rational tacnodal curves in P3

d 3 3 3 3 4 4 4 4 5

(p, q, r) (4, 0, 1) (3, 1, 2) (3, 0, 4) (2, 1, 5) (6, 0, 0) (5, 1, 1) (5, 0, 3) (4, 1, 4) (7, 1, 0)

|S1(µ)| 0 0 24 240 0 0 0 1, 680 120

Table 5: One-component rational cuspidal curves in P4
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