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814 András I Stipsicz and Zoltán Szabó

1 Introduction

Based on work of Freedman [7] and Donaldson [2], in the mid 80’s it became
possible to show the existence of exotic smooth structures on closed simply con-
nected 4–manifolds. On one hand, Freedman’s classification theorem of simply
connected, closed topological 4–manifolds could be used to show that various
constructions provide homeomorphic 4–manifolds, while the computation of
Donaldson’s instanton invariants provided a smooth invariant distinguishing
appropriate examples up to diffeomorphism, see [3] for the first such compu-
tation. For a long time the pair CP2#8CP2 (the complex projective plane
blown up at eight points) and a certain algebraic surface (the Barlow surface)
provided such a simply connected pair with smallest Euler characteristic [12].
Recently, by a clever application of the rational blow-down operation originally
introduced by Fintushel and Stern [4], Park found a smooth 4–manifold homeo-
morphic but not diffeomorphic to CP2#7CP2 [17]. Applying a similar rational
blow-down construction we show the following:

Theorem 1.1 There exists a smooth 4–manifold X which is homeomorphic

to CP2#6CP2 but not diffeomorphic to it.

Note that X has Euler characteristic χ(X) = 9, and thus provides the small-
est known closed exotic simply connected smooth 4–manifold. The proof of
Theorem 1.1 involves two steps. First we will construct a smooth 4–manifold
X and determine its fundamental group and characteristic numbers. Apply-
ing Freedman’s theorem, we conclude that X is homeomorphic to CP2#6CP2 .
Then by computing the Seiberg–Witten invariants of X we show that it is not
diffeomorphic to CP2#6CP2 . By determining all Seiberg–Witten basic classes
of X we can also show that it is minimal. This result, in conjunction with the
result of [15] gives:

Corollary 1.2 Let n ∈ {6, 7, 8}. Then there are at least n − 4 different

smooth structures on the topological manifolds CP2#nCP2 . The different

smooth 4–manifolds Z1(n), Z2(n), . . . , Zn−4(n) homeomorphic to CP2#nCP2

have 0, 2, . . . , 2n−5 Seiberg–Witten basic classes, respectively.

In Section 2 we give several constructions of exotic smooth structures on the
topological 4–manifold CP2#6CP2 by rationally blowing down various config-
urations of chains of 2–spheres. Since the generalized rational blow-down op-
eration is symplectic when applied along symplectically embedded spheres (see
[19]), the 4–manifolds that are constructed here all admit symplectic structures.
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An exotic smooth structure on CP2#6CP2 815

The computation of their Seiberg–Witten basic classes show that they are all
minimal symplectic 4–manifolds with isomorphic Seiberg–Witten invariants. It
is not known whether these examples are diffeomorphic to each other.

It is interesting to note that any two minimal symplectic 4–manifolds on the
topological manifold CP2#nCP2 n ∈ {1, . . . , 8} have (up to sign) identical
Seiberg–Witten invariants. As a corollary, Seiberg–Witten invariants can tell
apart only at most finitely many symplectic structures on the topological man-
ifold CP2#nCP2 with n ≤ 8.

Acknowledgements We would like to thank András Némethi, Peter Ozsváth,
Jongil Park and Ron Stern for enlightening discussions. The first author was
partially supported by OTKA T49449 and the second author was supported by
NSF grant number DMS 0406155.1

2 The topological constructions

In constructing the 4–manifolds encountered in Theorem 1.1 we will apply
the generalized rational blow-down operation [16] to certain configurations of
spheres in rational surfaces. In order to locate the particular configurations, we
start with a special elliptic fibration on CP2#9CP2 . The proof of the following
proposition is postponed to Section 5. (For conventions and constructions see
[9].)

Proposition 2.1 There is an elliptic fibration CP2#9CP2 → CP1 with a

singular fiber of type III∗ , three fishtail fibers and two sections.

The type III∗ singular fiber (also known as the Ẽ7 singular fiber) can be given
by the plumbing diagram of Figure 1. (All spheres in the plumbing have self–
intersection equal to −2.) If h, e1, . . . , e9 is the standard generating system
of H2(CP2#9CP2; Z) then the elliptic fibration can be arranged so that the
homology classes of the spheres in the III∗ fiber are equal to the classes given
in Figure 1. We also show in Section 5 that the two sections can be chosen to
intersect the spheres in the left and the right ends of Figure 1, respectively.

1After the submission of this paper the results of Theorem 1.1 and Corollary 1.2 have
been improved by finding infinitely many exotic smooth structures on CP

2#nCP2 for
n ≥ 5, see [6, 18].
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e −e3 4 e −e7 8e −e5 6

e −e4 5 e −e6 7 e −e8 9h−e −e −e1 2 3

h−e −e −e3 4 5

Figure 1: Plumbing diagram of the singular fiber of type III∗

2.1 Generalized rational blow-down

Let Lp,q denote the lens space L(p2, pq − 1), where p ≥ q ≥ 1 and p, q are
relatively prime. Let Cp,q denote the plumbing 4–manifold obtained by plumb-
ing 2–spheres along the linear graph with decorations di ≤ −2 given by the

continued fractions of − p2

pq−1 ; we have the obvious relation ∂Cp,q = Lp,q , cf

also [16]. Let K ∈ H2(Cp,q; Z) denote the cohomology class which evaluates on
each 2–sphere of the plumbing diagram as di + 2.

Proposition 2.2 [1, 16, 19] The 3–manifold ∂Cp,q = L(p2, pq − 1) bounds a

rational ball Bp,q and the cohomology class K|∂Cp,q
extends to Bp,q .

The following proposition provides embeddings of some of the above plumbings
into rational surfaces.

Proposition 2.3 • The 4–manifold C28,9 embeds into CP2#17CP2 ;

• C46,9 embeds into CP2#19CP2 , and finally

• C64,9 embeds into CP2#21CP2 .

Remark 2.4 The linear plumbings giving the configurations considered above
are as follows:

• C28,9 = (−2,−2,−12,−2,−2,−2,−2,−2,−2,−2,−4),

• C46,9 = (−2,−2,−2,−2,−12,−2,−2,−2,−2,−2,−2,−2,−6) and

• C64,9 = (−2,−2,−2,−2,−2,−2,−12,−2,−2,−2,−2,−2,−2,−2,−8).

Proof Let us consider an elliptic fibration on CP2#9CP2 with a type III∗

singular fiber, three fishtail fibers F1, F2, F3 and two sections s1, s2 as described
by the schematic diagram of Figure 2. Let Ai denote the intersection of Fi

with the section s2 , while Bi denotes the intersection of the fiber Fi with s1

(i = 1, 2, 3). First blow up the three double points (indicated by small circles)

Geometry & Topology, Volume 9 (2005)
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Figure 2: Singular fibers in the fibration

of the three fishtail fibers. To get the first configuration, further blow up at
A1, A2, A3 and smooth the transverse intersections B1, B2, B3 . Finally, apply
two more blow-ups inside the dashed circle as shown by Figure 3. By counting
the number of blow-ups, the desired embedding of C28,9 follows.

In a similar way, now blow up A1, A2, B3 , and smooth B1, B2 and A3 . Four
further blow-ups in the manner depicted by Figure 3 provides the embedding
of C46,9 .

Finally, by blowing up A1, B2, B3 , and smoothing B1, A2 and A3 , and then
performing six further blow-ups as before inside the dashed circle, we get the
embedding of C64,9 as claimed.

Lemma 2.5 For i = 0, 1, 2 the embedding C28+18i,9 ⊂ CP2#(17 + 2i)CP2

found above has simply connected complement.

Proof Since rational surfaces are simply connected, the simple connectivity
of the complement follows once we show that a circle in the boundary of the
complement is homotopically trivial. Recall that, since the boundary of the
complement is a lens space, it has cyclic fundamental group. In conclusion, ho-
motopic triviality needs to be checked only for the generator of the fundamental
group of the boundary. We claim that the normal circle to the (−2)–framed
sphere D in the III∗ fiber intersected by the dashed (−2)–curve S of Figure 2
(which is in the III∗ fiber but not in our chosen configuration) is a generator
of the fundamental group of the boundary 3–manifold. This observation easily

Geometry & Topology, Volume 9 (2005)
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Figure 3: Further blow-ups of the fishtail fiber

follows from the facts that for the boundary lens space the first homology is
naturally isomorphic to the fundamental group, and in the first homology the
normal circle in question is 13+8i times the generator given by the linking nor-
mal circle of the last sphere of the configuration (i = 0, 1, 2). Since for i = 0, 1, 2
we have that 13 + 8i is relatively prime to 28 + 18i, and the hemisphere of S

in the complement shows that the normal circle of D is homotopically trivial
in the complement, the proof of the lemma follows.

Remark 2.6 It is not hard to show that the 3–manifold ∂C28,9 does bound a

rational ball: we can embed C28,9 into 11CP2 and the closure of the comple-
ment of the embedding (with reversed orientation) can be easily seen to be an
appropriate rational ball. In turn, the embedding C28,9 ⊂ 11CP2 results from
the following observation. Attach a 4–dimensional 2–handle to C28,9 along the
(−1)–framed unknot K indicated by the plumbing diagram of Figure 4. By
subsequently sliding down the (−1)–framed unknots we arrive at a 0–framed
unknot, showing that the handle attachment along K embeds C28,9 into a 4–

manifold diffeomorphic to the connected sum S2 ×D2#11CP2 . By attaching a
3– and a 4–handle to this 4–manifold we get a closed 4–manifold diffeomorphic
to 11CP2 . The appropriate modification of the procedure gives the rational
balls B46,9 and B64,9 . In fact, by adding a cancelling 1–handle to K , doing
surgery along it, following the resulting 0–framed unknot during the blow-
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Figure 4: Plumbing diagram of the 4–manifold C28,9

downs of the (−1)–spheres as described above, and then doing another surgery
along the resulting 0–framed circle, we arrive at an explicit surgery description
of the 4–manifold B28,9 (and similarly of B46,9 and B64,9 ). Notice that this
procedure also shows that the rational homology balls B28+18i,9 we get in this
way admit handlebody decompositions involving only handles in dimensions 0,1
and 2, hence the maps π1(∂B28+18i,9) → π1(B28+18i,9) induced by the natural
embeddings are surjective. We just note here that the same argument works for
all linear plumbings (b1, . . . , bk) with bi ≤ −2 (i = 1, . . . , k) we get from the
plumbing (−4) by the repeated applications of the following two transformation
rules (cf also [11]):

• (b1, . . . , bk) −→ (b1 − 1, b2, . . . , bk,−2) and

• (b1, . . . , bk) −→ (−2, b1, . . . , bk−1, bk − 1).

We will give the details of the computation of Seiberg–Witten invariants in
Section 3 only for the rational blow-down of C28,9 ⊂ CP2#17CP2 . To make
this computation explicit, we fix the convention that the second homology group
H2(CP2#17CP2; Z) is generated by the homology elements h, e1, . . . , e17 (with
h2 = 1, e2

i = −1 i = 1, . . . , 17) and in this basis the homology classes of the
spheres in C28,9 can be given (from left to right on the linear plumbing of
Figure 4) as

e16 − e17, e10 − e16,

9h − 2e1 −
9
∑

3

3ei −
12
∑

10

2ei −
17
∑

13

ei, h − e1 − e2 − e3

e3 − e4, e4 − e5, e5 − e6, e6 − e7, e7 − e8, e8 − e9, e9 − e13 − e14 − e15,

where here the two sections s1 , s2 represent e1 and e9 , respectively.

Geometry & Topology, Volume 9 (2005)



820 András I Stipsicz and Zoltán Szabó

Definition 2.7 Let us define X1 as the rational blow-down of CP2#17CP2

along the copy of C28,9 specified above, that is,

X1 = (CP2#17CP2 − int (C28,9)) ∪L(784,251) B28,9.

Similarly, X2,X3 is defined as the rational blow-down of the configurations
C46,9 and C64,9 in the appropriate rational surfaces.

As a consequence of Freedman’s Classification of topological 4–manifolds we
have:

Theorem 2.8 The smooth 4–manifolds X1,X2,X3 are homeomorphic to the

rational surface CP2#6CP2 .

Proof Since the complements of the configurations are simply connected and
the fundamental group π1(∂Bp,q) surjects onto the fundamental group of Bp,q ,
simple connectivity of X1,X2,X3 follows from Van Kampen’s theorem. Com-
puting the Euler characteristics and signatures of these 4–manifolds, Freedman’s
Theorem [7] implies the statement.

2.2 A further example

A slightly different construction can be carried out as follows.

Lemma 2.9 The plumbing 4–manifold C32,15 embeds into CP2#16CP2 .

Recall that C32,15 is equal to the 4–manifold defined by the linear plumbing
with weights (−2,−9,−5,−2,−2,−2,−2,−2,−2,−3).

Proof We start again with a fibration CP2#9CP2 → CP1 with a singular fiber
of type III∗ , three fishtails and two sections, as shown by Figure 2. After blow-
ing up the double points of the three fishtail fibers, blow up at A1, A2 , smooth
the intersections at B1, B2, A3 and keep the transverse intersection at B3 . One
further blow-up as it is described by Figure 3 (performed inside the dashed
circle of Figure 2) and finally the blow-up of the transverse intersection of the
section s1 with the singular fiber of type III∗ provides the desired configuration
C32,15 in CP2#16CP2 .

Geometry & Topology, Volume 9 (2005)
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Figure 5: “Necklace” of spheres in CP
2#14CP2

Remark 2.10 Consider the configuration of curves in CP2#14CP2 given
above without the two last blow-ups. This configuration provides a “necklace”
of spheres as shown in Figure 5. Now C32,15 can be given from this picture by
blowing up the intersection of the (−7)– and the (−2)–framed circles, and then
blowing up the resulting (−8)–sphere appropriately one more time. Notice that
by blowing up the intersection of the (−7)– and the (−5)–curves instead, we
can get two disjoint configurations of (−8,−2,−2,−2,−2) and (−6,−2,−2),
ie, two “classical rational blow-down” configurations. Blowing them down we
would recover the existence of an exotic smooth structure on CP2#7CP2 .

Define Y as the generalized rational blow-down of CP2#16CP2 along the con-
figuration C32,15 specified above.

Lemma 2.11 The 4–manifold Y is homeomorphic to CP2#6CP2 .

Proof Let α be the homology element represented by the circle in ∂C32,15 we
get by intersecting the boundary of the neighborhood of the plumbing with the
sphere S in the III∗ fiber not used in the construction, cf Figure 2. Clearly α is
9 times the normal circle of the last sphere in the configuration. It follows that
this circle generates π1(∂C32,15). Since it also bounds a disk in CP2#16CP2 −
int C32,15 , the complement of the configuration is simply connected, and so
Van Kampen’s theorem and the fact that the fundamental group π1(∂B32,15)
surjects onto the fundamental group of B32,15 shows simple connectivity. As
before, the computation of the Euler characteristics and signature, together
with Freedman’s Theorem provides the result.

Geometry & Topology, Volume 9 (2005)
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3 Seiberg–Witten invariants

In order to prove Theorem 1.1, we will compute the Seiberg–Witten invariants of
the 4–manifolds constructed above. In order to make our presentation complete,
we briefly recall basics of Seiberg–Witten theory for 4–manifolds with b+

2 = 1.
(For a more thorough introduction to Seiberg–Witten theory, with a special
emphasis on the case of b+

2 = 1, see [16, 17, 22].)

Suppose that X is a simply connected, closed, oriented 4–manifold with b+
2 > 0

and odd, and fix a Riemannian metric g on X . Let L → X be a given complex
line bundle with c1(L) ∈ H2(X; Z) characteristic, ie, c1(L) ≡ w2(TX) (mod
2). Through its first Chern class, the bundle L determines a spinc structure
s on X . The associated spinor U(2)–bundles W±

s
satisfy L ∼= det(W±

s
). A

connection A ∈ AL on L, together with the Levi–Civita connection on TX

and the Clifford multiplication on the spinor bundles induces a twisted Dirac
operator

DA : Γ(W+
s

) → Γ(W−

s
).

For a connection A ∈ AL , section Ψ ∈ Γ(W+
s

) and g–self–dual 2–form η ∈
Ω+

g (X; R) consider the perturbed Seiberg–Witten equations

DAΨ = 0, F+
A = i(Ψ ⊗ Ψ∗)0 + iη,

where F+
A is the self–dual part of the curvature FA of the connection A and

(Ψ ⊗ Ψ∗)0 is the frace–free part of the endomorphism Ψ ⊗ Ψ∗ . For generic
choice of the self–dual 2–form η the Seiberg–Witten moduli space — which is
the quotient of the solution space to the above equations under the action of
the gauge group G = Aut(L) = Maps(X; R) — is a smooth, compact manifold
of dimension

dL =
1

4
(c2

1(L) − 3σ(X) − 2χ(X))

(provided dL ≥ 0). By fixing a ’homology orientation’ on X , that is, orienting
H2

+(X; R), the moduli space can be equipped with a natural orientation. A nat-
ural 2–cohomology class β can be defined in the cohomology ring of the moduli

space, and by integrating β
dL
2 on the fundamental cycle of the moduli space

we get the Seiberg–Witten invariant SWX,g,η(L). This value is independent of
the choice of the metric g and perturbation 2–form η provided the manifold X

satisfies b+
2 (X) > 1. In case of b+

2 (X) = 1, however, this independence fails to
hold. Let ωg denote the unique self–dual 2–form inducing the chosen homology
orientation. It can be shown that SWX,g,h(L) depends only on the sign of the
expression

(2πc1(L) + [η]) · [ωg].

Geometry & Topology, Volume 9 (2005)
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By fixing a sign for the above expression we say that we fixed a chamber for L,
and going from one chamber to the other we cross a wall. It has been shown
[13] that by crossing a wall the value of the Seiberg–Witten invariant changes
by ±1. To specify a chamber, we need to fix a cohomology class (or its Poincaré
dual) with nonnegative square which can play the role of [ωg] for some metric.
To remove the ambiguity on sign, we require this element to pair positively with
the element representing the given homology orientation.

It is not hard to see that if b+
2 (X) = 1 and b−2 (X) ≤ 9 then dL ≥ 0 implies

that c2
1(L) ≥ 0, hence for choosing the perturbation term η small in norm, the

sign of (2πc1(L) + [η]) · [ωg] will be independent of the choice of the metric g .
Consequently, by restricting ourselves to Seiberg–Witten invariants with small
perturbation, on a manifold X homeomorphic to CP2#nCP2 with n ≤ 9 the
function

SWX : H2(X; Z) → Z

is a diffeomorphism invariant. For such a manifold a cohomology class K ∈
H2(X; Z) is called a Seiberg–Witten basic class if SWX(K) 6= 0.

It is a standard fact that, because of the presence of a metric with positive
scalar curvature, the Seiberg–Witten map vanishes for the smooth 4–manifolds
CP2#nCP2 with n ≤ 9. Therefore in order to show that the manifolds Xi

(i = 1, 2, 3) given in Definition 2.7 provide exotic structures on CP2#6CP2 we
only need to show that SWXi

6= 0. We will go through the computation of the
invariants of X1 only, the other cases follow similar patterns.

Theorem 3.1 There is a characteristic cohomology class K̃ ∈ H2(X1; Z) with

SWX(K̃) 6= 0.

Corollary 3.2 The 4–manifold X1 is not diffeomorphic to CP2#6CP2 .

Proof The corollary easily follows from Theorem 3.1, together with the facts
that SW

CP
2#6CP2 ≡ 0 and that the Seiberg–Witten function is a diffeomorphism

invariant for manifolds homeomorphic to CP2#nCP2 with n ≤ 9.

Proof of Theorem 3.1 Let K ∈ H2(CP2#17CP2; Z) denote the character-
istic cohomology class which satisfies

K(h) = 3 and K(ei) = 1 (i = 1, . . . , 17).

(The Poincaré dual of K is equal to 3h −∑17
i=1 ei .) It can be shown that the

restriction K|
CP

2#17CP2− int C28,9
extends as a characteristic cohomology class

Geometry & Topology, Volume 9 (2005)



824 András I Stipsicz and Zoltán Szabó

to X1 : if µ denotes the generator of H1(∂C28,9; Z) which is the boundary of a
normal disk to the left–most circle in the plumbing diagram of Figure 4 then

PD(K|∂C) = 532µ = 19 · (28µ) ∈ H1(∂C28,9; Z);

since H1(B28,9; Z) is of order 28, the extendability trivially follows. (See also
Proposition 2.2.) Let K̃ denote the extension of K|

CP
2#17CP2− int C28,9

to

X1 . Using the gluing formula for Seiberg–Witten invariants along lens spaces,
see eg [4, 16], and the fact that the dimensions of the moduli spaces defined
by K and K̃ are equal, we have that the invariant SWX1

(K̃) is equal to
the Seiberg–Witten invariant of CP2#17CP2 evaluated on K , in the cham-
ber corresponding to a metric which we get by pulling out C28,9 along the
’neck’ L(784, 251) × [−T, T ] far enough. For such a metric the period point
provided by the harmonic 2–form ωg will be orthogonal to the configuration
C28,9 , hence the chamber can be represented by the Poincaré dual of any ho-

mology element α ∈ H2(CP2#17CP2; Z) of nonnegative square represented in
CP2#17CP2 − int C28,9 . For example,

α = 7h − 2e1 − 3e2 −
9
∑

3

2ei − e10 − e12 − 2e13 − e16 − e17

is such an element. (Simple computation shows that α is orthogonal to all
second homology elements in C28,9 , α · α = 0 and α · h = 7.)

It is known that in the chamber corresponding to PD(h) the Seiberg–Witten
invariant of CP2#17CP2 vanishes, since this is the chamber containing the
period point of a positive scalar curvature metric, which prevents the exis-
tence of Seiberg–Witten solutions. Since the wall–crossing phenomenon is well–
understood in Seiberg–Witten theory (the invariant changes by one once a wall
is crossed), the proof of the theorem reduces to determine whether PD(α) and
PD(h) are in the same chamber with respect to K or not. Since K(h) = 3 > 0
and h · α > 0, the inequality K(α) < 0 would imply the existence of a wall
between PD(h) and PD(α), hence SWX1

(K̃) = SW
CP

2#17CP2(K) 6= 0, where

the invariant of CP2#17CP2 is computed in the chamber containing PD(α).
Simple computation shows that K(α) = −4, concluding the proof.

Proof of Theorem 1.1 Now Theorem 2.8 and Corollary 3.2 provide a proof
of the main theorem of the paper.

In fact, with a little more effort we can determine all the Seiberg–Witten basic
classes of X1 :

Geometry & Topology, Volume 9 (2005)
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Proposition 3.3 If L ∈ H2(X1; Z) is a Seiberg–Witten basic class of X1 then

L is equal to ±K̃ . Consequently X1 is a minimal 4–manifold.

Proof We start by studying H2(X1 −B28,9; Z) = H2(CP2#17CP2 −C28,9; Z).

Clearly this is given by the subgroup of elements of H2(CP2#17CP2; Z) that
have trivial intersection in homology with all the spheres in C28,9 . A quick
computation gives the following basis for this subgroup:

A1 = e13 − e14, A2 = e14 − e15, A3 = e11 − e12, A4 = 3h − e13 −
9
∑

1

ei,

A5 = −2e1 + 2e2 − e11, A6 = 4h − e1 − 2e2 −
9
∑

3

ei − 2e11 − e12 − e13,

A7 = h − e2 − e10 − e11 − e16 − e17.

Let L be a Seiberg–Witten basic class of X1 ; then L is uniquely determined
by its restriction L′ ∈ H2(X1 − B28,9; Z). Following the argument in [15] we
determine the basic classes of X1 in two steps.

First we select some smoothly embedded spheres and tori in CP2#17CP2 that
have trivial intersection number in homology with all the spheres in the em-
bedded configuration C28,9 . To this end note that A1 , A2 , A3 , A5 , A7 can
be represented by spheres and A4 , A6 by tori. In addition, we will also use
the classes A8 = A1 + A4 and A9 = A1 + A2 + A4 — these classes can be
represented by tori. In this first round we only search for basic classes L that
satisfy the additional adjunction inequalities

(Ai)
2 + |L(Ai)| ≤ 0 (3.1)

for 1 ≤ i ≤ 9. L is determined by its evaluation on A1, . . . , A7 , so the ad-
junction inequality on these elements leaves 8100 characteristic classes L′ ∈
H2(X1−B28,9; Z) to consider. By the dimension formula, for a Seiberg–Witten
basic class of X1 we have L2 = (L′)2 ≥ 3, and (L′)2 ≡ 3 mod 8. This test
weeds out most of the classes: among the 8100 classes there are only 22 with the
right square. Among these 22 there are 20 that violate the adjunction inequal-
ity (3.1) along A8 or A9 . The remaining 2 classes evaluate as ±(0, 0, 0, 1, 1, 2, 2)
on A1, . . . , A7 and thus correspond to ∓K .

To finish the computation let us assume that there is a Seiberg–Witten basic
class L of X1 that violates the adjunction inequality (3.1) with one of Ai . Note
that any spinc structure on ∂C28,9 that extends to B28,9 has an extension to
C28,9 with square equal to −b2(C28,9) = −11. Using such an extension and
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the gluing formula along the lens space ∂C28,9 we get a Seiberg–Witten basic

class L1 of CP2#17CP2 in a chamber perpendicular to the C28,9 configuration,
satisfying dL = dL1

(where dL, dL1
denote the formal dimensions of the Seiberg–

Witten moduli spaces). Now using the adjunction relation for spheres and tori
of negative self–intersection [5, 14] we get another basic class L2 of CP2#17CP2

in a similar chamber with d(L2) > d(L1). By the gluing formula again, L2 gives
rise to a basic class L3 of X1 with d(L3) > d(L). Since we consider Seiberg–
Witten invariants with small perturbation term only, X1 has a unique chamber.
Therefore it has only finitely many basic classes, consequently the above process
has to stop, see also [15]. It can stop only at a basic class that satisfies all the
adjunction inequalities for embedded spheres and tori and has positive formal
dimension. Since dK = d−K = 0, our previous search rules this case out.

Remark 3.4 A similar computation applied to X2,X3 and Y provides
the same result, hence these manifolds are also minimal, homeomorphic to
CP2#6CP2 but not diffeomorphic to it. In particular, Seiberg–Witten invari-
ants do not distinguish these 4–manifolds from each other.

Proof of Corollary 1.2 According to Proposition 3.3 and [15, Theorems 1.1,
1.2], there are 4–manifolds X,P,Q homeomorphic to CP2#nCP2 with n =
6, 7, 8, resp., admitting exactly two Seiberg–Witten basic classes. Blowing up
X in at most two and P in at most one point, the application of the blow-up
formula for Seiberg–Witten invariants implies the corollary.

4 Symplectic structures

Since our operation is a special case of the generalized rational blow-down
process, which is proved to be symplectic when performed along symplectically
embedded spheres [19], we conclude:

Theorem 4.1 The 4–manifolds X1,X2,X3 and Y constructed above admit

symplectic structures.

Proof The 2–spheres in the configurations are either complex submanifolds
or given by smoothings of transverse intersections of complex submanifolds,
which are known to be symplectic. Furthermore, all geometric intersections are
positive, hence the result of [19] applies.
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In the rest of the section we study the limit of Seiberg–Witten invariants in de-
tecting exotic smooth 4–manifolds with symplectic structures which are home-
omorphic to small rational surfaces.

Proposition 4.2 Suppose that the smooth 4–manifold X is homeomorphic

to S2 × S2 or CP2#nCP2 with n ≤ 8 and X admits a symplectic structure

ω . If X has more than one pair of Seiberg–Witten basic classes then X is not

minimal.

Proof By [13] we know that if c1(X) · [ω] > 0 and X is simply connected then
X is a rational surface, hence under the above topological constraint it admits
no Seiberg–Witten basic classes. Therefore we can assume that c1(X) · [ω] < 0.
Suppose now that ±K and ±L are both pairs of basic classes and K 6= ±L.
Notice that by the dimension formula for the Seiberg–Witten moduli spaces it
follows that K2 > 0 and L2 > 0. Suppose furthermore that X is minimal.
By a theorem of Taubes [20] we can assume that K = −c1(X) and we can
choose the sign of L to satisfy L · [ω] > 0. Let a denote the Poincaré dual
of the cohomology class 1

2 (K − L). By [21] and the fact that SWX(−L) 6= 0,
the nontrivial homology class a can be represented by a pseudo–holomorphic
curves. It follows then that (K − L) · [ω] > 0.

Suppose first that (K−L)2 ≥ 0. Then the Light Cone Lemma [13, Lemma 2.6]
implies that K ·(K−L) > 0 and L·(K−L) > 0 unless L = rK for some r ∈ Q.
The two inequalities imply K2 > L2 , contradicting the fact that the moduli
space corresponding to the spinc structure determined by L is of nonnegative
formal dimension. If L = rK and K · (K − L) = 0, then the fact K2 > 0
implies that r = 1, hence L = K , contradicting our assumption K 6= ±L.

Finally we have to examine the case when (K − L)2 < 0. In this case, by [21,
Proposition 7.1] for generic almost–complex structure the pseudo–holomorphic
representative of the homology class a = PD(1

2(K − L)) contains a sphere
component of square (−1), contradicting the minimality of X .

Proposition 4.3 Suppose that (X1, ω1) and (X2, ω2) are simply connected

minimal symplectic 4–manifolds with b+
2 = 1 and b−2 ≤ 8. If X1 and X2 are

homeomorphic and have nonvanishing Seiberg–Witten invariants then we can

choose the homeomorphism f : X1 → X2 so that

SWX2
(L) = ±SWX1

(f∗(L))

for all characteristic classes L ∈ H2(X2; Z).

Geometry & Topology, Volume 9 (2005)



828 András I Stipsicz and Zoltán Szabó

Proof According to Proposition 4.2 both X1 and X2 has two basic classes
±c1(Xi, ωi). According to Taubes’ theorem [20] (using an appropriate homology
orientation) we have

SWXi
(c1(Xi, ωi)) = 1, SWXi

(−c1(Xi, ωi)) = −1.

According to Freedman [7] the required homomorphism f can be induced by
an isomorphism

g : H2(X2; Z) −→ H2(X1; Z)

that maps c1(X2, ω2) to c1(X1, ω1) and preserves the intersection form. The
existence of such g is trivial when b−2 is zero or one; the general case follows
from the large automorphism group of the second cohomology group H2 given
by reflecting on cohomology classes with squares 1, −1 and −2. In particular,
for the intersection form of CP2#nCP2 (2 ≤ n ≤ 8) it is easy to use reflections
along the Poincaré duals of h, ei , h − ei − ej and h − ei − ej − ek to map a
given characteristic class L with L2 = 9 − n to 3h − e1 − . . . − en . Depending
on whether g respects the chosen homology orientations on X1 and X2 or not,
we have SWX2

(L) = ±SWX1
(f∗(L)).

The above result together with the blow-up formula for Seiberg–Witten invari-
ants imply the following:

Corollary 4.4 The Seiberg–Witten invariants can distinguish at most finitely

many symplectic 4–manifolds homeomorphic to a rational surface X with Euler

characteristic e(X) < 12.

5 Appendix: singular fibers in elliptic fibrations

For the sake of completeness we give an explicit construction of the elliptic
fibration CP2#9CP2 → CP1 used in the paper. The existence of such fibration
is a standard result in complex geometry; in the following we will present it in
a way useful for differential topological considerations.

Notice first that to verify the existence of a fibration with singular fibers of type
III∗ (also known as the Ẽ7–fiber) and three fishtail fibers is quite easy. As it
is shown in [10] (see also [9, pp. 35–36]) the monodromy of an Ẽ7–fiber can
be chosen to be equal to

(

0 −1
1 0

)

, while for a fishtail fiber the monodromy is
conjugate to ( 1 1

0 1 ). Since
(

0 −1
1 0

)(

1 1
0 1

)

(

(

0 1
−1 0

)−1(
1 1
0 1

)(

0 1
−1 0

)

)

(

1 1
0 1

)

=

(

1 0
0 1

)

,
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the genus–1 Lefschetz fibration with the prescribed singular fibers over the
disk extends to a fibration over the sphere S2 . Simple Euler characteristic
computation and the classification of genus–1 Lefschetz fibrations show that the
result is an elliptic fibration on CP2#9CP2 . The existence of the two sections
positioned as required by the configuration of Figure 2 is, however, less apparent
from this picture. One could repeat the above computation in the mapping class
group of the typical fiber with appropriate marked points, arriving to the same
conclusion. Here we rather use a more direct way of describing a pencil of
curves in CP2 and following the blow-up procedure explicitly.

Let

C1 = {[x : y : z] ∈ CP2 | p1(x, y, z) = (x − z)z2 = 0} and

C2 = {[x : y : z] ∈ CP2 | p2(x, y, z) = x3 + zx2 − zy2 = 0}

be two given complex curves in the complex projective plane CP2 . The curve
C1 is the union of the lines L1 = {(x − z) = 0} and L2 = {z = 0}, with the
latter of multiplicity two. C2 is an immersed sphere with one positive transverse
double point — blowing this curve up nine times in its smooth points results
a fishtail fiber, see also [8, Section 2.3]. L2 intersects C2 in a single point
P = [0 : 1 : 0] (hence this point is a triple tangency between the two curves),
and L1 (also passing through P ) intersects C2 in two further (smooth) points
R = [1 :

√
2 : 1] and Q = [1 : −

√
2 : 1], cf Figure 6. Therefore the pencil

L

L
P

R
Q

C

1

22

Figure 6: Curves generating the pencil

Ct = C[t1:t2] = {(t1p1 + t2p2)
−1(0)} (t = [t1 : t2] ∈ CP1)

of elliptic curves defined by C1 and C2 provides a map f from CP2 to CP1

well–defined away from the three base points P,Q,R. In order to get the
desired fibration we will perform seven infinitely close blow-ups at the base
point P and two further blow-ups at R and Q, resp. We will explain only
the first blow-up at P , the rest follows a similar pattern. After the blow-up
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of P we would like to have a pencil on the blown-up manifold. We take C̃2

to be the proper transform of C2 , while C̃1 will be the proper transform of
C1 together with a certain multiple of the exceptional divisor, chosen so that
the two curves represent the same homology class. Under this homological
condition the two curves can be given as zero sets of holomorphic sections of
the same holomorphic line bundle, hence C̃1 and C̃2 define a pencil on the
blown-up manifold. Since [C1] = [C2] = 3h ∈ H2(CP2; Z), it is easy to see that
[C̃2] = 3h − e1 ∈ H2(CP2#CP2; Z), where (as usual) e1 denotes the homology
class of the exceptional divisor of the blow-up. Now it is a simple matter to see
that the proper transform of C1 is the union of the proper transforms of L1

and L2 , which transforms represent h− e1 and 2h − 2e1 in H2(CP2#CP2; Z).
Therefore in the pencil we need to take the curve given by the proper transform
of C1 together with the exceptional curve, the latter with multiplicity two.
Since e1 is part of C̃1 , we further have to blow up its intersection with C̃2 .
The same principle shows that in the further blow-ups the exceptional divisors
e2, e3, e4, e5, e6 come with multiplicities 3, 4, 3, 2 and 1. Finally, after blowing
up for the seventh time, the two curves defining the pencil get locally separated,
and hence e7 will not lie in any of the curves of the new pencil anymore — it
will be a section, that is, it intersects all the curves in the pencil transversally
in one point. (Notice that we used seven blow-ups to separate the curves C1

and C2 at P , where they intersected each other of order seven: L2 being a
linear curve of multiplicity two, intersected the cubic curve C2 of order six,
while L1 simply passed through the intersection point P .) After blowing up
the two further base points Q,R, we get a fibration on the nine–fold blow-up
CP2#9CP2 with a fishtail fiber, a singular fiber of type III∗ and three sections
provided by the exceptional divisors e7, e8 and e9 . (To recover the homology
classes of the spheres in the type III∗ fiber indicated by Figure 1 one needs to
rename the exceptional divisors of the blow-ups; we leave this simple exercise
to the reader.) A final simple calculation shows that the resulting fibration has
three fishtail fibers:

Proposition 5.1 The pencil

{C[t1:t2] = (t1p1 + t2p2)
−1(0) | [t1 : t2] ∈ CP1}

contains four singular curves: C1, C2 and C3, C4 . Furthermore the latter two

curves are homeomorphic to C2 and give rise to fishtail fibers after blowing up

the base points of the pencil.

Proof Since L2 = {z = 0} ⊂ C1 , all other curves of the pencil are contained
in {z = 1}∪ {P}. The curve Ct = C[t1:t2] has a singular point if and only if for
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the polynomial pt(x, y) = t1(x− 1) + t2(x
3 + x2 − y2) we can find (x0, y0) ∈ C2

with

pt(x0, y0) = 0,
∂pt

∂x
(x0, y0) = 0 and

∂pt

∂y
(x0, y0) = 0.

Since ∂pt

∂y
(x, y) = −2t2y , it vanishes if t2 = 0 (providing C1 ) or y = 0. In the

latter case the above system reduces to

t1(x − 1) + t2(x
3 + x2) = 0 and t1 + t2(3x

2 + 2x) = 0,

which admits a nontrivial solution (t1, t2) if and only if the determinant

(x − 1)(3x2 + 2x) − (x3 + x2) = 2x(x2 − x − 1)

vanishes. The solution x = 0 implies t1 = 0, giving C2 , while x = 1
2(1 ±√

5) give the two singular points on the curves C3 and C4 . Simple Euler
characteristic computation shows that the two curves will give rise to fishtail
fibers in the elliptic fibration.
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