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204 Denis Auroux

1 Introduction

Lefschetz fibrations have been the focus of a lot of attention ever since it was
shown by Donaldson that, after blow-ups, every compact symplectic 4-manifold
admits such structures [2]. We recall the definition:

Definition 1 A Lefschetz fibration on an oriented compact smooth 4-manifold
M is a smooth map f: M — S? which is a submersion everywhere except at
finitely many non-degenerate critical points p1, ..., p,, near which f identifies in
local orientation-preserving complex coordinates with the model map (21, z2) —
22+ 23.

The smooth fibers of f are compact surfaces, and the singular fibers present
nodal singularities; each singular fiber is obtained by collapsing a simple closed
loop (the wvanishing cycle) in the smooth fiber. The monodromy of the fibration
around a singular fiber is given by a positive Dehn twist along the vanishing
cycle.

Denoting by qi,...,q, € S? the images of the critical points (which we will
always assume to be distinct), and choosing a reference point ¢, € S?\ crit(f),
we can characterize the fibration f by its monodromy homomorphism

¢3 771(52 \ {q17’ .. 7q7’}7q*) - Ma‘pg7

where Map, = 7r0Diff+(Eg) is the mapping class group of a genus g surface.
It is a classical result (cf. [4]) that the monodromy morphism v is uniquely
determined up to conjugation by an element of Map, and the action of a braid
on 71(5?\ {¢;}) by “Hurwitz moves” (see Section B); moreover, if the fiber
genus is at least 2 then the monodromy determines the isomorphism class of
the Lefschetz fibration f.

The classification of Lefschetz fibrations is a difficult problem (essentially as
difficult as the classification of symplectic 4-manifolds), and is only understood
in genus 1 and 2 (with some assumptions on the nature of singular fibers in
the latter case). It is a classical result of Moishezon and Livne [7] that genus 1
Lefschetz fibrations are all holomorphic, and are classified by the number of
irreducible singular fibers (which is a multiple of 12) and the number of reducible
singular fibers. More recently, Siebert and Tian [9] have obtained a classification
result for genus 2 Lefschetz fibrations without reducible singular fibers and
with “transitive monodromy” (a technical assumption which we will not discuss
here). Namely, these fibrations are all holomorphic, and are classified by their
number of vanishing cycles, which is always a multiple of 10. In fact, all such
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A stable classification of Lefschetz fibrations 205

fibrations can be obtained as fiber sums of two standard holomorphic fibrations
fo and fi with respectively 20 and 30 singular fibers.

In higher genus, or even in genus 2 if one allows reducible singular fibers, the
classification appears to be much more complicated. However, we can attempt
to determine a minimal set of moves (ie, surgery operations) which can be used
to relate to each other any two Lefschetz fibrations with the same genus. In
this context, we consider stabilization by fiber sums with certain standard fi-
brations. (The fiber sum of two Lefschetz fibrations is obtained by deleting a
neighborhood of a smooth fiber in each of them, and gluing the resulting open
manifolds along their boundaries in a fiber-preserving manner). It was shown
in [1] that, given two genus 2 symplectic Lefschetz fibrations f, f’ with the
same numbers of singular fibers of each type (irreducible, reducible with genus
1 components, reducible with components of genus 0 and 2), for all large n the
fiber sums f#nfy and f'#nfy are isomorphic. More generally, as a corollary
of a recent result of Kharlamov and Kulikov about braid monodromy factor-
izations [B], a similar result holds for all Lefschetz fibrations with monodromy
contained in the hyperelliptic mapping class group.

Our goal is to obtain a similar stabilization result in the general case (without
assumptions on the fiber genus or on the monodromy). In this context we must
consider pairs of Lefschetz fibrations f, f with the same fiber genus and the
same numbers of singular fibers of each type (irreducible, or reducible of type
(h,g — h), ie, with components of genera h and g — h, for each 0 < h < %),
but we must also place two additional restrictions (which automatically hold
when g < 2 or in the hyperelliptic case). Namely, we must assume that the
intersection forms on the total spaces M and M’ have the same signature,
and we must assume that the fibrations f and f’ admit distinguished sections
s, 8" which represent classes in Ho(M,Z) (resp. Hy(M',7Z)) with the same self-
intersection number —k.

Then, we claim that, after repeatedly fiber summing f and f’ with a certain
“universal” Lefschetz fibration fg, constructed in Section Bl we eventually ob-
tain isomorphic Lefschetz fibrations:

Theorem 2 For every g there exists a genus g Lefschetz fibration fg with
the following property. Let f: M — S? and f': M' — S? be two genus g
Lefschetz fibrations, each equipped with a distinguished section. Assume that:

(i) the total spaces M and M' have the same Euler characteristic and signa-
ture;

(ii) the distinguished sections of f and f’ have the same self-intersection;

Geometry € Topology, Volume 9 (2005)
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(iii) f and f’ have the same numbers of reducible fibers of each type.

Then, for all large enough values of n, the fiber sums f#n fg and f'#n fg are
isomorphic.

A brief remark is in order about assumptions (i) and (ii) in this statement. First,
since the Euler characteristic is given by the formula x = 4 — 4g + r, where g
is the fiber genus and r is the total number of singular fibers, the first part of
(i) is equivalent to the requirement that f and f’ have the same numbers of
singular fibers. Moreover, in the hyperelliptic case the assumption on signature
can be eliminated, because the signature is given by Endo’s formula [3], which
involves only the number of singular fibers of each type; however, in general the
signature depends on the actual vanishing cycles. It is also worth mentioning
that, in general, it is not known whether every Lefschetz fibration admits a
section (although there are no known examples without a section). However,
all Lefschetz fibrations obtained by blowing up the base points of a pencil (and
in particular all those which arise from Donaldson’s construction) admit sections
of square —1.

The cases g = 0 and g = 1 of Theorem Plare trivial (in that case no stabilization
is needed), and the case g = 2 is proved in [] (taking f9 to be the holomorphic
genus 2 fibration with 20 singular fibers and total space a rational surface).
Thus we will only consider the case g > 3 in the proof.

As a corollary of Theorem [ and of Donaldson’s result, we have the following
statement for integral compact symplectic 4-manifolds (ie, such that [w] €
H?(X,R) is the image of an integer cohomology class):

Corollary 3 Let X, X’ be two integral compact symplectic 4-manifolds with
the same (2, ca, ¢1-[w], [w]?). Then X and X' become symplectomorphic after
sufficiently many blowups and symplectic sums with the total space Xg of the
fibration fg (for a suitable genus g ).

This corollary follows from Theorem Bl by considering pencils of the same (large)
degree d on X and X', and blowing up the d?[w]? base points. The resulting
Lefschetz fibrations have the same fiber genus (by the assumptions on ¢; - [w] and
[w]?), admit sections of square —1, and, if d is large enough, can be assumed
to contain only irreducible fibers.

The proof of Theorem [ actually gives a complete classification of Lefschetz
fibrations up to fiber sum stabilization. For example, considering only Lefschetz
fibrations with irreducible fibers, we have:
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A stable classification of Lefschetz fibrations 207

Theorem 4 For every g > 3 there exist Lefschetz fibrations f;‘, ff , fgC , ng
with the following property: if f is a genus g Lefschetz fibration without re-
ducible singular fibers, and if f admits a section, then there exist integers
a,b,c,d € Z such that for all large enough values of n the fiber sums f#n fgo

and (n + a) fé‘x #(n+0b) ff #(n+c) ff #(n+d) ff are isomorphic.

The Lefschetz fibrations f;‘, f , fgc , ng are constructed in Section Bl (and fg
is in fact nothing but their fiber sum).

The rest of this paper is organized as follows: in Section [ we review the descrip-
tion of Lefschetz fibrations by mapping class group factorizations; in Section
we introduce the concept of universal positive factorization and construct the
Lefschetz fibrations fg ; and in Sections EHB we prove Theorem B

This work was partially supported by NSF grant DMS-0244844.

2 Mapping class group factorizations

The monodromy of a Lefschetz fibration can be encoded in a mapping class
group factorization by choosing an ordered system of generating loops 71, ...,
for 71(S*\{q1,...,q}), such that each loop ~; encircles only one of the points g;
and []~; is homotopically trivial. The monodromy of the fibration along each
of the loops 7; is a Dehn twist 7;; we can then describe the fibration in terms of
the relation 7q-...-7 = 1 in Mapy. The choice of the loops v; (and therefore of
the twists 7;) is of course not unique, but any two choices differ by a sequence
of Hurwitz moves exchanging consecutive factors: 7; - 7,41 — (Ti+1)7_i—1 - T; O
Ti * Tig1 — Tit1 - (Ti)7, ., where we use the notation (7)y = O, de, if T is a
Dehn twist along a loop d then (7)4 is the Dehn twist along the loop ¢(0).

Definition 5 A factorization F' = 7 -...- 7, in Map, is an ordered tuple
of positive Dehn twists. We say that two factorizations are Hurwitz equivalent
(F ~ F’) if they can be obtained from each other by a sequence of Hurwitz
moves.

A Lefschetz fibration is thus characterized by a factorization of the identity
element in Map,, uniquely determined up to Hurwitz equivalence and simul-
taneous conjugation of all factors by a same element of Map,, ie, up to the
equivalence relation generated by the moves

Tl'---'Ti'Ti—l-l'---'Tr‘—’Tl'---'7i+1'(7—i)ﬂ-+1'---'Tr V1§i<7“,
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T Tp e (T1)p ... (Tr)p V¢ € Mapy.

We will actually be considering Lefschetz fibrations equipped with a distin-
guished section. The section determines a marked point in each fiber, and so
we can lift the monodromy to a relative mapping class group. In fact, even
though the normal bundle to the section s is not trivial (it has degree —k for
some k > 1), we can restrict ourselves to the preimage of a large disc A con-
taining all the critical values of f, and fix a trivialization of the normal bundle
to s over A. Deleting a small tubular neighborhood of the section s, we can
now view the monodromy of f as a homomorphism

¢: ﬂ-l(A \ {qb' .. >q7“}) - Mapg,lv

where Map, 1 is the mapping class group of a genus g surface with one boundary
component. The product of the Dehn twists 7; = ¥(7;) is not the identity, but
the central element Té“ € Mapy, 1, where T is the boundary twist, ie, the Dehn
twist along a loop parallel to the boundary.

With this understood, a Lefschetz fibration with a distinguished section of
square —k is described by a factorization of Té“ as a product of positive Dehn
twists in Mapy 1, up to Hurwitz equivalence and global conjugation.

A word about notations: while we use the multiplicative notation for factoriza-
tions, and sometimes write 7 ... 7. = Tf to express the fact that 7 -... -7,
is a factorization of Tf, it is important not to confuse a factorization (a tu-
ple of Dehn twists) with the product of its factors (an element in Mapg ).
We will also use multiplicative notation for the concatenation of factorizations
(F - F' is the factorization consisting of the factors in F', followed by those in
F’, and (F)" is the concatenation of n copies of F'), and we will denote by
(F')4 the factorization obtained by conjugating each factor of F' by the element
¢ € Mapg 1.

To finish this section, we establish the following properties of Hurwitz equiva-
lence for factorizations of central elements:
Lemma 6 Let T be a central element in a group G. Then:

(a) if F'- F" is a factorization of T, then F" - F' is also a factorization of T,
and F' - F" ~ F" . F';

(b) if F is a factorization of T" whose factors generate G, then F' ~ (F), for
all p € G;

(¢c) if F is a factorization of T', and F' is any factorization, then F'-F ~ F-F".
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A stable classification of Lefschetz fibrations 209

Proof (see also Lemma 6 in [IJ).

(a) To prove that any cyclic permutation of the factors amounts to a Hurwitz
equivalence, it suffices to prove that if 7 € G and 7 - F” is a factorization
of T then 7-F"” ~ F” . 7. Denote by ¢ the product of the factors in F”:
using Hurwitz moves to move all the factors in F” to the left of 7, we have
7+ F" ~ F" (7). The result then follows from the observation that ¢ = 71T
commutes with 7.

(b) Let 7 be any of the factors in F': then by (a) we can perform a cyclic
permutation of the factors and obtain a factorization F’ such that F' ~ F’ - 7.
Moving 7 to the left of F’, we have F' -7~ 7-(F'); = (7- F'),. Applying (a)
again we have (7 F'), ~ (F),. So, for any factor 7 of F, we have F ~ (F);,
and similarly F' ~ (F),-1. The result then follows from the assumption that
the factors of F' generate G, by expressing ¢ in terms of the factors.

(¢) Simply move all the factors of F' to the left of the factors in F”’, to obtain
F'-F~F-(F)p=F-F (since T is central). D

3 Universal positive factorizations

Let us first recall a presentation of Mapy; due to Matsumoto [6], which is a
reformulation of Wajnryb’s classical presentation [I0] in a form that is more
convenient for our purposes (see Theorem 1.3 and Remark 1.1 of [6]):

Theorem 7 (Matsumoto) For g > 2, the mapping class group Mapg i Is
generated by the Dehn twists ao, ..., asqs along the loops cy, ..., ca, represented
in Figure[l, with the relations:

(i) aia; =aja; if ;Ne; =0, and a;a5a; = ajaa; if ¢;Nej #0;

(ii) (a0a2a3a4)10 = (aoa1a2a3a4)6?

)12'

(iii) for g > 3: (apaiazazasasag)® = (apasasasasag

Figure 1: The Dehn-Lickorish-Humphries generators of Mapg 1
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210 Denis Auroux

The relations (i) are the braid relations, and realize Map, 1 as a quotient of an
Artin group, while (ii) is a reformulation of the chain relation, and (iii) is a
reformulation of the lantern relation (see [6]).

The subgroup of Map, 1 generated by ai,...,as, is the hyperelliptic subgroup,
and is closely related to the braid group Bag41 (realizing the genus g surface as
a double cover of the disc branched in 2g+1 points, the Dehn twists ay, ..., az,
are the lifts of the standard generators of Bagy1).

Lemma 8 For every integer 1 < n < 2g, let

_ 2g—n+1
Rn—(an+1’an+2'---’a2g) g=nTe.
1 1
: H(ai RZ RS R ai+2g—n) : H (ai LR B az’+n—1)-
i=n 1=2g—n—+1
Then (ay - ... ay,_1)?" - (Ry,)? is a factorization of Ty in Mapyg,1 .
Proof We work in the braid group Bsg41 with generators zi,...,2,, and

consider the expression obtained from R,, after replacing each a; by x;. Then
it is easy to see that a’ = (z1...2,-1)" is the full twist rotating the n leftmost
strands by 27, while @” = (2,41 ... 224)? " is the full twist rotating the 2g+
1—n rightmost strands by 2. Moreover, b’ = Hllzn(a:, ... Tjt2g—n) is the braid
which exchanges the n leftmost strands with the 2g — n + 1 rightmost strands
in the counterclockwise direction, while b’ = Hil:2g—n+1(xi ... Titn—1) does the
same for the 2g—n+1 leftmost strands and the n rightmost strands. Hence the
product b'b” corresponds to a full rotation of the n leftmost strands around the
2g—n+1 rightmost strands, and a’a”b'b” is the full twist A? = (z; ... 29,)29 L.

Since A? is a central element in Bgyi1, we also have a”b'b"a’ = A2,

We now lift things to the double cover; since A? lifts to the hyperelliptic element
H (rotating the surface about its central axis by 7), we deduce from the above
calculation that (ay-...-an—1)" R, and R, -(ay-...-a,—1)" are factorizations
of H, and hence that (ai-...-an_1)"-(Rp)?-(a1-...-a,_1)" is a factorization of
H? = Tjy. Since T is central in Map, 1, the result follows by Lemma Bl(a). D

It is in fact not hard to check explicitly that the factorization considered
in Lemma B is Hurwitz equivalent to the standard hyperelliptic factorization

(al e agg)4g+2.
From now on we assume that g > 3. By Theorem 1.4 of [B], (apazazas)® =
(aparazazas)® = (a1a0a3a4)'® and (agaiazazasasag)® = (apasazasasag)'? =
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A stable classification of Lefschetz fibrations 211

(arazazagasag)™®. Hence, we can define new factorizations of Tj by substitution
into the factorization of Lemma

Definition 9 Let A = (ag-az-az-as)'’-(Rs)?, B = (ap-a1-az-a3-a4)®- (Rs5)?,
C = (ap-ai-as-az-as-as-ag)?-(R7)?, D = (ap-az-az-as-as-ag)*?- (R7)? (where
for g = 3 we take R7 to be the empty factorization), and Fo =.A-B-C - D.

A, B, C, D are factorizations of the central element T in which every factor is
one of the (a;)o<i<2g, and every generator appears at least once (except possibly
for D, which does not involve a; when g = 3).

We also define fg, f;‘, f , fgc ) f;) to be the Lefschetz fibrations with mon-
odromy factorizations Fy, A, B, C, D respectively (so f;‘, f ) fgc , f;) are ir-
reducible and admit sections of square —1, while fgo is their fiber sum and
admits a section of square —4). Let us mention that, as a consequence of
Lemma[6(b), when performing a fiber sum with fgo the choice of the identifica-
tion diffeomorphism between fibers is irrelevant, and all possible ways in which
the fiber sum can be carried out are equivalent.

The factorizations A, B,C,D form a “universal” set of positive factorizations,
in the sense that their factors are exactly the generators of Map, i (out of se-
quence, and with some repetitions), and every relation in the presentation of
Theorem [ can be interpreted either as a Hurwitz equivalence or as a substitu-
tion replacing one of these factorizations by another one of them. We will see
below that these properties are the key ingredients for the proof of Theorem B
since many other groups related to braid groups or mapping class groups can
be presented in a similar manner, the methods used here may also be relevant
to the study of factorizations in these groups.

4 Stable equivalence of factorizations

In this section, we prove the following result, which implies Theorem Ht

Theorem 10 Let F,F’ be two factorizations of the same element of Mapg
as a product of positive Dehn twists along non-separating curves. Then there
exist integers a,b,c,d,k,l such that F - (A)*- (B)?-(C)°- (D)* ~ F'- (A)*+.
(B)b_l . (C)c—i-k . (D)d—k.

In order to prove this result, we consider factorizations where the factors are
either positive Dehn twists or their inverses, and the equivalence relation =
generated by the following moves:
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e Hurwitz moves involving only positive Dehn twists;

e creation or cancellation of pairs of inverse factors: a; - ai_l = ai_l ca; = 0;

e defining relations of the mapping class group: a; - a; = a; - a; if ¢; Ne; =0,
_ . 10 — 6
ai-aj-a;=a;-a;-aj if ¢;Nej #0, (ag-az-a3-as)” = (ap-a1-a2-az-as)’,

and (ag-a1-as-as-aq-as-ag)’ = (ap-az-az-ayq-as-ag)'>.

Lemma 11 If the factors of F are Dehn twists along non-separating curves,
then there exists a factorization F in which every factor is of the form a;-tl for
some 0 < ¢ < 2¢g, and such that F = F.

Proof We use pair creations and Hurwitz moves to replace every factor in F
by a factorization involving only the aiﬂ. Let 7 be a factor in F'. Since 7 is a
Dehn twist along a non-separating curve, there exist gg,...,gr € {agﬂ, . ,aécgl}

such that 7 = (H]f 9;) "0 (Hlf gj). We proceed by induction on k. If k =0

then 7 is already one of the generators. Otherwise, if g is one of the generators,

say a;, then we can write 7 = (a; '7a;) = a; ' - a; - (a; '7a;) = a; ' - 7 - a; (using

a pair creation and a Hurwitz move). Similarly, if g, = a; ! then we can write
-1 _

— (o =Y — (e 1y D :
T = (a;Ta; ") = (jTa; ") -a;-a;  =a;-7-a; . Since 7 is conjugated to one of

the generators by a word of length k& — 1, this completes the proof. m]

Lemma 12 Under the assumptions of Theorem[Id, F = F’.

Proof We first use Lemmal[l[lto replace F' and F’ by equivalent factorizations
F and F’ whose factors are all of the form afcl. Next, recall that if a group G
admits a presentation with generators {a;, i € I} and relations {r;, j € J},
then it is generated as a monoid by the elements {ai,ai_l, i € I}, and a
presentation of G as a monoid is given by the set of relations R’ = {r;, j € J}U
{aiai_l =1, ai_la,- =1, i € I}. Hence, if ' and F’ are factorizations of the
same element, then we can rewrite one into the other by successively applying
the rewriting rules given by the set of relations R’. However, in the case of
the mapping class group, each rewriting is one of the moves that generate the
equivalence relation = (either one of the defining relations of Map, 1, or the
creation or cancellation of a pair of inverses). O

Denote by =" the equivalence relation generated by Hurwitz moves and by
the defining relations, ie, without allowing creations of pairs of inverse factors.

Then we have:
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Lemma 13 Under the assumptions of Theorem [I], there exists an integer n
such that F - (A" =T F- (A)".

Proof By Lemmal[? F = F”, so we can transform F into F’ by a sequence of
Hurwitz moves, pair creations/cancellations, and defining relations. Call F' =
Fy, Fy,...,F, = F’ the successive factorizations appearing in this sequence
of moves; let n; be the number of factors of the form a; 1 appearing in the
factorization Fj, and let n = sup{ng,...,nm}.

Recall that the factors of A generate Mapg 1; therefore, by Lemma B(a), for
every i € {0,...,2g} there exists a factorization A; whose factors are elements
of {ao,...,as}, and such that A~ a; - A; ~ A; - a;. (For example A; can be
obtained by cyclically permuting the factors of A and deleting an occurrence of
ai). Let F;" be the factorization obtained from Fj by replacing each factor of
the form ai_l by the factorization A;. Then we claim that, for all 0 < j < m,

Fj+ (A =t FjJ’-_',-l (AT

Indeed, if Fj;, is obtained from F}; by a Hurwitz move or by applying a defining
relation, then the negative factors are not involved and the claim is obvious. If
Fj14 is obtained from Fj} by deleting a pair of mutually inverse factors a;-a;
F;Srl is obtained from Fjr by deleting an occurrence of the subword a; - A;.

Hence, we can write F;r =F-a;- A;- Fj’ and F;Srl = F}- F for some F}, F},
and the claim follows from the sequence of Hurwitz moves

Fj-ai-AZ--F;’-(A)"‘"J' NFJ{.A.F;/.(A)n—nj NFJ{.FJ{/.(A)H—%H,

where in the last step we have used Lemma [fl(c). The argument is the same for
creations of pairs of inverses. The proof is then completed by observing that
Fyf =F and F,; = F', since F and F’ contain no negative factors. m]

We can now proceed with the proof of Theorem By Lemma [[3], there exists
n such that F - (A)" =1 F'- (A)™, so we can transform F - (A)" into F’- (A)"
by a sequence of Hurwitz moves and applications of the defining relations. Let
Fo=F-(A)", Fy, ..., F, = F'-(A)" be the successive factorizations appearing
in this sequence of moves. If Fj; is obtained from F; by a Hurwitz move, or
by applying one of the braid relations, then we have Fj;; ~ F;. For example,
a braid relation of the form a;-a;-a; = a;-a;-a; can be viewed as a succession
of two Hurwitz moves a; - a; - a; ~ a; - (a;)q; - @i ~ aj - a; - (ai)ajai, where
(@i)aja; = (aja;) " asaja; = a;.

On the other hand, if Fjy; is obtained from Fj by applying the relation (ii)
from Theorem [ then we can write I; = F} - (ag - a2 - a3 - ay)'? - FY for some

Geometry € Topology, Volume 9 (2005)



214 Denis Auroux

FLFY and Fyqq = Fj-(ap-a1-az-a3- ay)’ - FY'. Tt is then easy to check, using
Lemmalfl(a) and (c), that F;-B ~ Fj;1-.A; and vice-versa if we apply relation
(ii) backwards. Similarly, if Fj,; is obtained from F}; by applying relation (iii),
then F;-D ~ Fjq - C, and vice-versa if we apply relation (iii) backwards.

Hence, if we concatenate each F; with suitable numbers of copies of A, B, C
and D (depending on j), then we can realize each step as a Hurwitz equivalence.
Since we always trade a copy of A for a copy of B, and a copy of C for a copy
of D, Theorem [I{ follows.

We can now prove Theorem

Proof of Theorem @l Let F' be a factorization in Map, ; associated to the
Lefschetz fibration f: then the product of the factors in F' is equal to 1",
for some integer m > 1 (such that the chosen section of f has self-intersection
—m). The result then follows by applying Theorem[[Mto F' and F' = (A)™. O

5 Proof of Theorem

Let F' and F’ be factorizations in Map,; describing the monodromies of the
Lefschetz fibrations f and f’. Assumption (ii) on the self-intersection numbers
of the distinguished sections implies that the products of the factors in F' and
F' are equal to each other, and are of the form T§" for some m > 1. We first
deal with the reducible singular fibers, using the following lemma:

Lemma 14 If 7,7' are Dehn twists along separating curves of the same type,
then there exists an integer n and a factorization F" involving only Dehn twists
along non-separating curves, such that 7 - (A)" ~ 7' - F".

Proof 7,7’ are conjugated to each other in Map, 1, so there exist gi,...,gx €
{aF!, ... ,aétgl} such that 7/ = (H'f g;) 7 (H'f gj)- It is enough to consider the
case k = 1 (iterating k times in the general case). If 7/ = al-_lTai then, with the
same notations as in the proof of Lemmall3, we have 7-A ~ 7-a;-A; ~ a;-7"-A; ~
7 (a;); - A;, and the result follows by setting F” = (a;), - A;. Similarly, if
T’:aﬂai_l then 7- A~A-7~Ai-a;-7~A -7 a; ~ 7 (A - ay. O

The manner in which we use this lemma is the following: let s be the number
of reducible singular fibers of f and f’. Without loss of generality, we can
assume that the homologically trivial vanishing cycles correspond to the first
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s factors of F and F’, and that they are ordered according to types (this can
always be ensured by performing Hurwitz moves). Call these factors 7, ..., 7s
for F', and 7{,...,7, for F’. Then assumption (iii) on the numbers of reducible
singular fibers implies that 7; and Tj/» are conjugated for each 1 < j < s.
Hence, applying Lemma [ to each pair (75, 7']/- ), and adding sufficiently many
copies of A to F (using Lemma [Bl(c) to move them to the beginning of the
factorization), we can replace each 7; by T]/-, at the expense of generating extra
Dehn twists along nonseparating curves. After suitable Hurwitz moves, we
conclude that there exists an integer N and factorizations F, F’ involving only
Dehn twists along non-separating curves, such that F - (A)N ~ 7] -....7}. F
and F' - (AN ~ 7] ... 7L F.

Since F and F’ are factorizations of the same element (7 ... T;)_ngm'N ,
can apply Theorem [[0 to them. It follows that there exist integers a, b, c,d, k,
such that F - (_A)N—i-a . (B)b . (C)c . (D)d ~ F'. (A)N—i-a—i-l . (B)b—l . (C)c—i-k . (D)d—k.
This implies that the fiber sums f = f# (N + a)f!;4 # bféB # cfgc # dng and
f'=f'#(N +a+ l)fé4 #(b— l)ng #(c+ k:)ff# (d — k:)ff are isomorphic.
Performing additional fiber sums if necessary, we can assume that N +a =b =
¢ = d. Then, in order to complete the proof of Theorem B it is sufficient to
prove that k =1 = 0. For this purpose we use the following lemmas to compare
the Euler—Poincaré characteristics and signatures of the total spaces M and
M’ of f and f':

we

Lemma 15 y(M') — x(M) = x(M') — x(M) + 101 — 9.

Proof Recall that the Euler characteristic of a genus g Lefschetz fibration
over S? with r singular fibers is equal to 4 — 4g + r. Hence, we just have to
compare the numbers of singular fibers of f and f/ . Since f;‘ has 10 more
singular fibers than ff , and fgc has 9 fewer singular fibers than f;) , the result

follows. D
Lemma 16 o(M') —o(M) =o(M') —o(M)—61+5k.

Proof By Novikov additivity, it is sufficient to show that the signatures of the
total spaces M4, Mg, Mc, Mp of f;‘, gB, fgc, ng satisfy the relations o(M4) =
o(Mp) —6 and o(M¢g) =o(Mp) + 5.

These signatures can be computed explicitly via an algorithm due to Ozbagci [g].
Since Ozbagci’s formula is a sum of individual contributions which each depend
only on one of the factors and on the product of all the preceding factors, it
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is sufficient to carry out the algorithm for the portions of A and B (resp. C
and D) which differ from each other; the contributions from the common part
(R5)? (resp. (R7)?) will be the same in both cases.

In fact, after a closer look at the signature formula it is easy to convince oneself
that o(My) — o(Mp) and o(M¢c) — o(Mp) do not depend on g, and can be
computed for a fixed low value of g (e.g., g = 3).

Then, rather than Ozbagci’s somewhat complicated formula, one can use the
following simple recipe to determine the signature — the underlying principle
being that, given a Lefschetz fibration f: M — S? admitting a section, the
complement to the fiber and section classes in Ho(M,Z) is generated by certain
linear combinations of the Lefschetz thimbles of f.

Given the set of vanishing cycles (d1,...,0,) (ie, loops in the fiber ¥, such that
each monodromy factor 7; is the Dehn twist along d;), form the r X r matrix
() whose entries are given by

0 it >4,
qi; = § —1 if i = 7,
(5,6j ifi > 7,

where §; - 0; is the intersection number in H;(2,,Z). In a suitable sense, @ is
the matrix of the intersection pairing on the space of formal linear combinations
of Lefschetz thimbles, and its antisymmetrization A = Q — Q! describes the
intersection pairing between vanishing cycles inside 4.

Viewing ) and A as bilinear forms, the kernel of A is the space of all com-
binations of Lefschetz thimbles which have homologically trivial boundary in
Hy(¥4,7Z), and can hence be completed to 2-cycles inside M. The restric-
tion Q' = QKera is now a (degenerate) symmetric bilinear form, of rank
ba(M)—2; and Q' has the same signature as the intersection form on Hy(M,Z),
ie 0(Q') =o(M).

Applying this formula, we easily check that for g = 3, o(My) = —48, o(Mp) =
—42, o(M¢) = —35, and o(Mp) = —40. O

The proof of Theorem 2 can now be completed by observing that, since y(M') =
x(M) and o(M’) = o(M) by assumption (i), and since M and M’ are diffeo-
morphic by construction, we must have 10/ = 9k and 61 = 5k, which implies
that k =1=0.
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