
Geometry & Topology Monographs
Volume 1: The Epstein Birthday Schrift
Pages 317–334

On the continuity of bending

Christos Kourouniotis

Abstract We examine the dependence of the deformation obtained by
bending quasi-Fuchsian structures on the bending lamination. We show
that when we consider bending quasi-Fuchsian structures on a closed sur-
face, the conditions obtained by Epstein and Marden to relate weak conver-
gence of arbitrary laminations to the convergence of bending cocycles are
not necessary. Bending may not be continuous on the set of all measured
laminations. However we show that if we restrict our attention to lami-
nations with non negative real and imaginary parts then the deformation
depends continuously on the lamination.
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The deformation of hyperbolic structures by bending along totally geodesic
submanifolds of codimension one was introduced by Thurston in his lectures
on The Geometry and Topology of 3–manifolds. The geometric and algebraic
properties of the deformation were studied in [4] and [3]. Epstein and Marden
[2] introduced the notion of a bending cocycle and used it to describe bending a
hyperbolic surface along a measured geodesic lamination. The same notion was
used in [5] to extend bending to a holomorphic family of local biholomorphic
homeomorphisms of quasi-Fuchsian space Q(S).

Epstein and Marden [2] give a careful analysis of the dependence of the bending
cocycle on the measured lamination. They consider the set of measured lami-
nations on H2 consisting of geodesics that intersect a compact subset K ⊂ H2 .
This is a subset of the space of measures on the space G(K) of geodesics in
H2 intersecting K , with the topology of weak convergence of measures. In this
topology, the bending cocycle does not depend continuously on the lamination.
One reason for this is the behaviour of the laminations near the endpoints of
the segment over which we evaluate the cocycle. For example, consider the
geodesic segment [eiθ, i] in H2 , for suitable θ in [0, π/2], and the measured
laminations µn , with weight 1 on the geodesic (1/n, n) and weight −1 on the
geodesic (−1/n,−n). Then {µn} converges weakly to the zero lamination, but
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the cocycle of µn relative to [eiθ, i] is approximately a hyperbolic isometry of
translation length 1. Epstein and Marden find conditions under which a se-
quence of measured laminations gives a convergent sequence of cocycles relative
to a given pair of points.

In this article we show that when the lamination is invariant by a discrete group
and we only consider cocycles relative to points in the orbit of a suitable point
x ∈ H2 , any sequence of measured laminations {µn} which converges weakly
gives rise to cocycles which converge up to conjugation. We show further that
the same conjugating elements can be used for the cocycles for µn corresponding
to the different generators of the group. Hence the laminations µn determine
bending homomorphisms which, after conjugation by suitable isometries, con-
verge to the bending homomorphism determined by µ0 . This implies that the
deformations converge in Q(S).

Theorem 1 Let S be a closed hyperbolic surface and Q(S) its space of quasi-
Fuchsian structures. Let {µn} be a sequence of complex measured geodesic
laminations, converging weakly to a lamination µ0 . Then the bending defor-
mations

Bµn : Dµn → Q(S)

converge to the deformation Bµ0 , uniformly on compact subsets of D = Dµ0 ∩
(
⋃∞
m=1

⋂∞
n=mDµn).

We also state an infinitesimal version of the Theorem.

Theorem 2 Let S be a closed hyperbolic surface and Q(S) its space of quasi-
Fuchsian structures. Let {µn} be a sequence of complex measured geodesic
laminations, converging weakly to a lamination µ0 . Then the holomorphic
bending vector fields Tµn on Q(S) converge to Tµ0 , uniformly on compact
subsets of Q(S).

These results do not necessarily imply the continuous dependence of the defor-
mation on the bending lamination, because the space of measured laminations
is not first countable. If however we restrict our attention to the subset of
measured laminations with non negative real and imaginary parts, then we can
apply results in [6] to obtain the following Theorem.

Theorem 3 The mapping ML++(S) ×Q(S) → T (Q(S)) : (µ, [ρ]) 7→ Tµ([ρ])
is continuous, and holomorphic in [ρ].
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The proof of Theorem 1 is based on the observation that, when the lamination
is invariant by a discrete group and we are considering cocycles with respect to
points x and g(x), for some g in the group, the effect of a lamination near the
endpoints of the segment [x, g(x)] is controlled by its effect near x, provided
that the lamination does not contain geodesics very close to the geodesic carry-
ing [x, g(x)]. This last condition can be achieved by choosing x to be a point
not on the axis of a conjugate of g (see Corollary 2.12).

In Section 1 we describe the space of measured laminations and we recall the
definition of bending. In the beginning of Section 2 we recall or modify cer-
tain results from [2] and [5] which provide bounds for the effect of bending
along nearby geodesics. Lemma 2.11 and the results following it examine the
consequences of the above condition on the choice of x.

The proof of Theorems 1, 2 and 3 is given in Section 3. The laminations µn
are replaced by finite approximations. The main result is Lemma 3.1, which
gives the basic estimate for the difference between the bending homomorphism
of µ0 and a conjugate of the bending homomorphism of µn . Then a diagonal
argument is used to obtain the convergence of bending.

1 The setting

We consider a closed surface S of genus greater than 1. We fix a hyperbolic
structure on S , and let ρ0 : π1(S)→ PSL(2,R) be an injective homomorphism
with discrete image Γ0 = ρ0(π1(S), such that S is isometric to H2/Γ0 .

We consider the space R of injective homomorphisms ρ : Γ0 → PSL(2,C)
obtained by conjugation with a quasiconformal homeomorphism φ of Ĉ: if
g ∈ Γ0 , acting on Ĉ as Möbius transformations, then ρ(g) = φ ◦ g ◦ φ−1 .

PSL(2,C) acts on the left on R by inner automorphisms. The quotient of R
by this action is the space Q(S) of quasi-Fuchsian structures on S , or quasi-
Fuchsian space of S . We denote the equivalence class in Q(S) of a homomor-
phism ρ ∈ R by [ρ]. Then [ρ] is a Fuchsian point if there is a circle in Ĉ left
invariant by ρ(Γ0), so that ρ(Γ0) is conjugate to a Fuchsian group of the first
kind. The subset of Fuchsian points in Q(S) is the Teichmüller space of S ,
T (S).

We fix a point [ρ] ∈ Q(S), represented by the homomorphism ρ : Γ0 →
PSL(2,C) obtained by conjugation with the quasiconformal homeomorphism
φ : Ĉ → Ĉ. We denote the image of ρ by Γ. The limit set of Γ0 is R̂. Then
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φ(R̂) is the limit set of Γ. If γ is a geodesic in H2 with endpoints u, v ∈ R̂,
we denote by φ∗(γ) the geodesic in H3 with endpoints φ(u), φ(v) in φ(R̂). In
this way, geodesics on the surface S ∼= H2/Γ0 are associated to geodesics in the
hyperbolic 3–manifold H3/Γ.

We want to study the deformation of quasi-Fuchsian structures by bending, [4],
[2], [5]. Bending is determined by a geodesic lamination on S with a complex
valued transverse measure.

A measured geodesic lamination on S lifts to a measured geodesic lamination
on H2 . The space G(H2) of unoriented geodesics in H2 is homeomorphic to a
Möbius strip without boundary. Let K be a compact subset of H2 , projecting
onto H2/Γ0 . The set G(K) of geodesics in H2 intersecting K is a compact
metrizable space.

A measured geodesic lamination on H2 determines a complex valued Borel
measure µ on G(K), with the property that if γ1 and γ2 are distinct geodesics
in the support of µ, then they are disjoint. The set of measured geodesic
laminations on S can be considered as a subset of M(G(K)), the set of complex
valued Borel measures on G(K). The set M(G(K)) has a norm, defined by

‖µ‖ = sup
{∣∣∣∣∫ fµ

∣∣∣∣ , f continuous complex valued function on G(K), |f | ≤ 1
}

We shall use the weak* topology on M(G(K)), with basis the sets of the form

U(µ, ε, f1, . . . , fm) =
{
ν ∈M(G(K)) :

∣∣∣∣∫ fiµ−
∫
fiν

∣∣∣∣ < ε, i = 1, . . . ,m
}

where µ ∈M(G(K)), fi , i = 1, . . . ,m are continuous functions on G(K), and
ε is a positive number.

A measured geodesic lamination µ on S is called finite if it is supported on a
finite set of simple closed geodesics in S . Then, for any compact subset K of
H2 , the measure on G(K) determined by the lift of µ to H2 has finite support.

Given a finite measured geodesic lamination µ on S , we define bending the
quasi-Fuchsian structure [ρ] on S as follows.

Let g1, . . . , gk be a set of generators of Γ0 . Choose a point x on H2 and,
for each gj , consider the geodesic segment [x, gj(x)]. Let γ1, . . . , γm be the
geodesics in the support of µ intersecting [x, gj(x)], and let z1, . . . , zm be the
corresponding measures. If γ1 (or γm) go through x (or gj(x) respectively),
we replace z1 (or zm ) by 1

2z1 (or 1
2zm).

If γ is an oriented geodesic in H3 and z ∈ C, we denote by A(γ, z) the element
of PSL(2,C) with axis γ and complex displacement z . We will use the same
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notation for one of the matrices in SL(2,C) corresponding to A(γ, z). In such
cases either the choice of the lift will not matter, or there will be an obvious
choice.

We orient the geodesics γ1, . . . , γm so that they cross the segment [x, gj(x)]
from right to left, and define the isometry

Ctµ(x, gj(x)) = A(φ∗(γ1), tz1) · · ·A(φ∗(γm), tzm).

For each generator gj , j = 1, . . . , k , define

ρtµ(gj) = Ctµ(x, gj(x)) ρ(gj).

For t in an open neighbourhood of 0 in C, the representation [ρtµ] is quasi-
Fuchsian, [4].

Any measured geodesic lamination µ on S can be approximated by finite lam-
inations so that the corresponding bending deformations converge, [2], [5]. In
this way, we obtain for any measured geodesic lamination on S a deformation
Bµ defined on an open set Dµ ⊂ Q(S)× C,

Bµ : Dµ → Q(S) : ([ρ], t) 7→ [ρtµ].

Bµ is a holomorphic mapping.

2 The lemmata

In the vector space C2 we introduce the norm

‖(z1, z2)‖ = max{|z1|, |z2|}.

A complex matrix A =
(
a b
c d

)
acts on C2 and has norm

‖A‖ = max {|a|+ |b|, |c| + |d|} .

We will use this norm on SL(2,C).

Lemma 2.1 ([2], 3.3.1) Let X be a set of matrices in SL(2,C) and c =
(0, 0, 1) ∈ H3 . Then the following are equivalent.

i) The closure of X is compact.

ii) There is a positive number M such that if A ∈ X then ||A|| ≤M .

iii) There is a positive number M such that if A ∈ X then ||A|| ≤ M and
||A−1|| ≤M .
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iv) There is a positive number R such that if A ∈ X then d(c,A(c)) ≤ R.

Let Λ be a maximal geodesic lamination on S , and ψ : S → H3/Γ the pleated
surface representing the lamination Λ [1]. Let ψ̃ : H2 →H3 be the lift of ψ .

Lemma 2.2 ([5], 2.5) Let K be a compact disc of radius R about c =
(0, 0, 1) ∈ H3 , and M a positive number. There is a positive number N
with the following property. If [x, y] is a geodesic segment in H2 such that
ψ̃([x, y]) ⊂ K and {γi, zi}, i = 1, . . . ,m is a finite measured lamination with
support contained in Λ, whose leaves all intersect [x, y] and are numbered in
order from x to y , and such that

∑m
i=1 |Re zi| < M , then

‖A(γ1, z1) · · ·A(γm, zm)‖ ≤ N.

Lemma 2.3 ([2], 3.4.1, [5], 2.4) Let K be a compact subset of SL(2,C) , M
a positive number, and let γ be the geodesic (0,∞). Then there is a positive
number N with the following property. For any B,C ∈ K , and z ∈ C with
|z| ≤M , we have∥∥BA(γ, z)B−1 − CA(γ, z)C−1

∥∥ ≤ N ‖B −C‖ |z| .
In order to examine the effect of bending along nearby geodesics, in Lemma 2.5
and 2.6, we shall use the notion of a solid cylinder in hyperbolic space. A solid
cylinder C over a disk D in Hn is the union of all geodesics orthogonal to a
(n−1)–dimensional hyperbolic disc D in Hn . The radius of the cylinder is the
hyperbolic radius of the disc D . If x is the centre of D , we say that C is a
solid cylinder based at x. The boundary of C at infinity consists of two discs
D1 and D2 in ∂Hn . We say that the solid cylinder C is supported by D1 and
D2 . The geodesic orthogonal to D through its centre is the core of the solid
cylinder C . We shall denote the cylinder with core γ , basepoint x ∈ γ and
radius r by C(γ, x, r).

Lemma 2.4 ([5], 2.6) Let L be a compact set in H3 . Then there exists a
positive number M with the following property. If D is a disc of radius r ,
contained in L, and α, β are two geodesics contained in the solid cylinder
over D , then there is an element A ∈ SL(2,C) such that A(α) = β and
||A− I|| ≤Mr .

If C is a solid cylinder supported on the discs D1 and D2 , with D1 ∩D2 = ∅,
and γ1, γ2 are two geodesics, each having one end point in D1 and one in D2 ,
we say that γ1 and γ2 are concurrently oriented in C if their origins lie in the
same component of D1 ∪D2 .
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Lemma 2.5 Let m be a positive number and L a compact subset of H3 .
Then there are positive numbers M1 and M2 with the following property. If
γ1, γ2 are concurrently oriented geodesics contained in a cylinder of radius r ,
based at a point in L, and z1, z2 are complex numbers such that |zi| ≤ m, then
there are lifts of A(γi, zi) to SL(2,C) such that

‖A(γ1, z1)−A(γ2, z2)‖ ≤M1rmin{|z1|, |z2|}+M2|z1 − z2|.

Proof We assume that |z1| ≤ |z2|. We have

‖A(γ1, z1)−A(γ2, z2)‖ ≤ ‖A(γ1, z1)−A(γ2, z1)‖+ ‖A(γ2, z1)−A(γ2, z2)‖ .

Let B ∈ SL(2,C) be an element mapping the geodesic (0,∞) to γ2 , and
mapping the point c = (0, 0, 1) to a point in L. Then, by Lemma 2.1, there
is a constant K1 depending only on L, such that ||B|| ≤ K1 . By Lemma 2.4
there is an element C ∈ SL(2,C) such that C(γ2) = γ1 , and ||C − I|| ≤ K2r
for some constant K2 depending only on L.

By Lemma 2.3 there is a constant K3 such that

‖A(γ1, z1)−A(γ2, z1)‖ ≤ K3 ‖CB −B‖ |z1| ≤ K1K2K3r|z1|.

On the other hand,

‖A(γ2, z1)−A(γ2, z2)‖ ≤ ‖B‖ ‖A((0,∞), z1 − z2)− I‖
∥∥B−1

∥∥ ‖A((0,∞), z2)‖ .

By Lemma 2.1 and the fact that the entries of A((0,∞), z1 − z2) depend an-
alytically on z1 − z2 , there is a constant K4 , depending on L and m such
that

‖A(γ2, z1)−A(γ2,z2)‖ ≤ K4|z1 − z2|.

Lemma 2.6 ([5], 2.7) Let m be a positive number and L a compact subset
of H3 . Then there is a positive number M with the following property. Let C
be a solid cylinder of radius r based at a point in L. Let γ1, . . . , γk be geodesics
in C and z1, . . . , zk complex numbers with

∑k
i=1 |Re (zi)| ≤ m. Then∥∥∥∥∥A(γ1, z1) · · ·A(γk, zk)−A

(
γ1,

k∑
i=1

zi

)∥∥∥∥∥ ≤Mr

k∑
i=1

|zi|.

We want to show that if two geodesics on S are sufficiently close, then the
corresponding geodesics in H3/Γ will also be close, (Lemma 2.10).

On the continuity of bending

Geometry and Topology Monographs, Volume 1 (1998)

323



Lemma 2.7 Let K be a compact subset of H2 , and φ : ∂H2 → ∂H3 a home-
omorphism onto its image. Then there is a compact subset L of H3 such
that if γ is a geodesic of H2 intersecting K , then φ∗(γ) intersects L, i.e.
φ∗(G(K)) ⊂ G(L).

Proof We consider the Poincaré disk model of hyperbolic space. There, it is
clear that if K is a compact subset of B2 , then there is a positive number m
such that if γ is a geodesic in G(K) with end-points u, v , then |u − v| ≥ m.
Since φ−1 is uniformly continuous, there is a positive number M such that
|φ(u) − φ(v)| ≥ M , and hence there is a compact subset of B3 intersecting
φ∗(γ).

Lemma 2.8 ([5], 2.2) Let ε and η be two positive numbers. Then there is
a positive number δ with the following property. If D1 and D2 are discs in
S2 , with spherical radius ≤ δ , and the spherical distance between D1 and D2

is ≥ η , then the solid cylinder supported by D1 and D2 has hyperbolic radius
r ≤ ε.

Lemma 2.9 Let K be a compact subset of Bn , and d a positive number.
Then there is a positive number δ with the following property. If C is a solid
cylinder in Bn , over a disc with radius r ≤ δ and centre at a point in K , then
the spherical radius of each of the discs supporting C is ≤ d.

Proof The radii of the supporting discs are given by continuous functions of
the core geodesic, the base point and the radius of the cylinder. For a fixed
base point, they tend to zero with the radius of the cylinder. The result follows
by compactness.

Lemma 2.10 Let [ρ] be a quasi-Fuchsian structure on S , K a compact subset
of H2 , and L a compact subset of H3 such that φ∗(G(K)) ⊂ G(L). Let r be a
positive number. Then there is a positive number δ with the following property.
If γ ∈ G(K), x ∈ γ ∩K and 0 ≤ r1 ≤ δ , then there is some point x′ ∈ L such
that for any geodesic α contained in the solid cylinder C(γ, x, r1), the geodesic
φ∗(α) is contained in the solid cylinder C(φ∗(γ), x′, r) ⊂ H3 .

Proof We work in the Poincaré disc model of the hyperbolic plane and space,
B2 and B3 . Since L is a compact subset of B3 , there is a number η2 > 0 such
that if u and v are the endpoints of any geodesic in B3 intersecting L, then the
spherical distance between u and v is ≥ η2 . Then, by Lemma 2.8, there is a
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positive number δ2 , such that any solid cylinder with core a geodesic γ ∈ G(L)
and supported on discs of spherical radius ≤ δ2 , has hyperbolic radius ≤ r .

Since φ : S1 → S2 is uniformly continuous, there is a positive number δ1 , such
that any arc in S1 of length ≤ δ1 is mapped into a disc in S2 , of radius ≤ δ2 .
Then, by Lemma 2.9, there is a positive number δ such that any solid cylinder
of radius ≤ δ and based at a point in K , is supported on two arcs of length
≤ δ1 .

Recall that, if X is a subset of H2 , we denote by G(X) the set of geodesics
in H2 which intersect X . To simplify notation, we will write G(x) for the set
of geodesics through the point x ∈ H2 , and G(x, y) for the set of geodesics
intersecting the open geodesic segment (x, y).

If Γ is a group of isometries of H2 , we denote by G′Γ the set of geodesics in H2

which do not intersect any of their translates by Γ:

G′Γ = {γ ∈ G(H2) : ∀g ∈ Γ, g(γ) ∩ γ = ∅ or g(γ) = γ}.

In the following Lemma we consider the angle between unoriented geodesics to
lie in the interval [0, π2 ].

Lemma 2.11 Let ` and θ be positive numbers. Then there is a positive
number ζ with the following property. Let x, y ∈ H2 , γ the geodesic carrying
the segment [x, y], g ∈ PSL(2,R) and γ′ ∈ G′〈g〉 , such that:

i) The hyperbolic distance d(x, y) ≤ `.
ii) The geodesic segments [x, y] and [g(x), g(y)] intersect, and the angle

between γ and g(γ) is α ≥ θ .

iii) γ′ intersects the segment [x, y] and the angle between γ and γ′ is β .

Then β ≥ ζ .

Proof Without loss of generality, we may asume that x = i ∈ H2 and y = ti.
The angle of intersection between the geodesics δ and g(δ) is a continuous
function of δ . Hence there is a neighbourhood U of γ ∈ G(H2) disjoint from
G′〈g〉 , that is consisting of geodesics δ such that g(δ) intersects δ .

There is a positive number r such that the (two dimensional) solid cylinder
C(γ, i

√
t, r) has the property: if δ ⊂ C(γ, i

√
t, r) then δ ∈ U . Then it is

easy to show, using hyperbolic trigonometry, that there is a positive number
ζ such that any geodesic δ intersecting [x, y] at an angle ≤ ζ is contained in
C(γ, i

√
t, r), and hence δ /∈ G′〈g〉 .
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Corollary 2.12 If g is a hyperbolic isometry of H2 and x ∈ H2 does not lie
on the axis of g , then there is a positive number ζ with the following property.
If µ is any geodesic lamination invariant by g , then no leaf of the lamination
intersects the geodesic segment [x, g(x)] at an angle smaller than ζ .

Lemma 2.13 Let `, θ and ε be positive numbers. Then there is a positive
number r with the following property. Let x, y ∈ H2 with d(x, y) ≤ ` , and
let γ be the geodesic carrying the segment [x, y]. Let g ∈ PSL(2,R) be such
that [x, y] intersects [g(x), g(y)] at the point x0 , and at an angle α ≥ θ . If
δ ∈ G′〈g〉 ∩ G(D(x0, r)), then δ intersects both γ and g(γ), and the points of

intersection lie in D(x0, ε).

Proof Since g−1(x0) ∈ [x, y], we have d(g−1(x0), x0) ≤ `. We consider the
geodesic segment [x′, y′] of length 3` on the geodesic γ , centred at x0 .

Let U be a neighbourhood of γ ∈ G(H2) disjoint from G′〈g〉 . There is r1 such
that any geodesic which intersects D(x0, r1) and does not intersect [x′, y′], lies
in U , and hence it is not in G′〈g〉 . So, if δ ∈ G′〈g〉 ∩ G(D(x0, r1)), δ intersects
the segment [x′, y′]. Similarly, there is r2 such that if δ ∈ G′〈g〉 ∩G(D(x0, r2)),
δ intersects the segment [g(x′), g(y′)].

By Lemma 2.11, the angle at the points of intersection is greater than a constant
ζ . If r satisfies 0 < r < min(r1, r2) and sinh r < sin ζ sinh ε, then it has the
required property.

The following Lemma shows that, under certain conditions, taking integrals
along geodesic segments describes weak convergence of measures.

Lemma 2.14 Let {µn} be a sequence of measured geodesic laminations on
H2 , invariant by g ∈ PSL(2,R) , and assume that µn converge weakly to a
measured lamination µ. Let γ be a geodesic in H2 , such that γ and g(γ)
intersect at one point. Then, for every geodesic segment [u, v] on γ and for
every continuous function f : [u, v]→ [0, 1], with f(u) = f(v) = 0, the sequence∫

[u,v] fµn converges to
∫

[u,v] fµ.

Proof Since γ intersects g(γ) at one point, there is a neighbourhood U of
γ in G(H2) which is disjoint from G′〈g〉 . We define a continuous function

f̃ : G(H2) → [0, 1] by letting f̃(δ) = f(y) if y ∈ [u, v] and δ ∈ G(y) − U , and
extending continuously to the rest of G(H2). Then, for any measured geodesic
lamination ν invariant by g ,

f̃ν(G(u, v)) =
∫

[u,v]
fν.
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3 The theorems

We fix a reference point [ρ0] ∈ T (S), and we consider a point [ρ] ∈ Q(S). Let
g1, . . . , gk ∈ PSL(2,R) be a set of generators for Γ0 = ρ0(π1(S)). Let x ∈ H2

be a point which does not lie on the axis of any conjugate of the generators gj .

Let θ be the minimum of the angles between the geodesics carrying the segments
[g−1
j (x), x] and [x, gj(x)], for j = 1, . . . , k . Let d and d′ be the maximum and

the minimum, respectively, of the distances between x and gj(x), for j =
1, . . . , k .

Let K be a compact disc in H2 containing in its interior the points x, gj(x),
g−1
j (x), for j = 1, . . . , k , and projecting onto S0 = H2/Γ0 . Let L be a compact

disc in H3 such that φ∗(G(K)) ⊂ G(L).

We consider a positive integer m, and a positive number r(m) such that d/m
is less than the number δ(K,L, r(m)) given by Lemma 2.10.

Let µ be a complex measured geodesic lamination on H2 , invariant by the
group Γ0 , with ||µ|| < M0 . We consider one of the generators gj , j = 1, . . . , k ,
and to simplify notation we drop the suffix j for the time being. Let γ denote
the geodesic carrying the segment [x, g(x)]. We divide the segment [x, g(x)]
into m equal subsegments, by the points

x = x0, x1, . . . , xm−1, xm = g(x).

If [x, y] is a geodesic segment in H2 and ν is a measure on a set of geodesics
in H2 , we introduce the notation∫ ′

[x,y]
ν =

1
2
ν (G (x)) + ν (G (x, y)) +

1
2
ν (G (y))

We define two new measures on the set G(H2) of geodesics in H2 in the follow-
ing way. For every i = 1, . . . ,m, let γ̃i be a geodesic in suppµ, intersecting γ
in [xi−1, xi]. We define, for i = 1, . . . ,m,

µ̃(γ̃i) =
∫ ′

[xi−1,xi]
µ.

For every i = 1, . . . ,m − 1, let γ′i be the geodesic in suppµ intersecting the
open segment (xi−1, xi+1) as near as possible to xi . Let λi : [x0, xm] → [0, 1],
i = 1, . . . ,m− 1, be continuous functions satisfying

(1) supp (λi) ⊂ [xi−1, xi+1] and
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(2)
∑m−1

i=1 λi (x) = 1 for all x ∈ [x0, xm].

Then, in particular, [x0, x1] ⊂ λ−1
i (1) and [xm−1, xm] ⊂ λ−1

m−1(1). We define,
for i = 1, . . . ,m− 1,

µ′(γ′i) =
∫

[xi−1,xi+1]
λiµ

Now we define

Ci = A(φ∗(γ̃i), µ̃(γ̃i)) for i = 1, . . . ,m

and

Di = A(φ∗(γ′i), µ
′(γ′i)) for i = 1, . . . ,m− 1.

We want to bound the norm ||C1C2 · · ·Cm −D1D2 · · ·Dm−1||.

We put ai =
∫ ′

[xi−1,xi]
λiµ and bi =

∫ ′
[xi,xi+1] λiµ. Then µ′(γ′i) = ai + bi , for

i = 1, . . . ,m − 1, and µ̃(γ̃1) = a1 , µ̃(γ̃m) = bm−1 , and for i = 2, . . . ,m − 1,
µ̃(γ̃i) = bi−1 + ai .

We put Dl
i = A(φ∗(γ′i), ai) and Dr

i = A(φ∗(γ′i), bi). With this notation we have

‖C1 · · ·Cm −D1 · · ·Dm−1‖ ≤
‖C1 · · ·Cm−1‖

∥∥Cm −Dr
m−1

∥∥
+ ‖C1 · · ·Cm−2‖

∥∥∥Cm−1 −Dr
m−2D

l
m−1

∥∥∥ ∥∥Dr
m−1

∥∥
+ · · ·+ ‖C1 · · ·Cs−1‖

∥∥∥Cs −Dr
s−1D

l
s

∥∥∥ ‖Dr
sDs+1 · · ·Dm−1‖

+ · · ·+
∥∥∥C1 −Dl

1

∥∥∥ ‖Dr
1D2 · · ·Dm−1‖ .

Then, by Lemma 2.2, there is a positive number M1 , depending on L and
M0 , which is an upper bound for the norm of the factors of the form C1 · · ·Cs ,
Dr
sDs+1 · · ·Dm−1 . By Lemma 2.6, there is a positive number M2 , depending on

L and M0 , such that each factor of the form Cs −Dr
s−1D

l
s has norm bounded

by M2r(m)µ̃(γ̃s). Then

‖C1 · · ·Cm −D1 · · ·Dm−1‖ ≤ M0M
2
1M2r(m). (1)

In the following we want to examine the behaviour of D1 · · ·Dm−1 as m→∞
and as the lamination µ changes. For this we must consider more carefully the
leaves of the lamination near x.

By Lemma 2.13, there is an open set U ⊂ G(K), depending on d, θ and d′/m
such that, if δ is any geodesic in U ∩ suppµ, then δ intersects the geodesics
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γ and g(γ) at a distance less than d′/m from x. Let χ : G(K) → [0, 1] be
a continuous function, with suppχ ⊂ U and χ|G(x) = 1. We introduce the
notation

a′ =
∫

[x0,x1]
χµ a′′ =

∫ ′
[x0,x1]

(1− χ)µ

b′ =
∫

[xm−1,xm]
(χ ◦ g−1)µ b′′ =

∫ ′
[xm−1,xm]

(1− χ ◦ g−1)µ

P = A(φ∗(γ′1), a′) Q = A(φ∗(γ′1), a′′)

R = A(φ∗(γ′m−1), b′′) S = A(φ∗(γ′m−1), b′),

and we have

D1 = PQDr
1 Dm−1 = Dl

m−1RS.

Let {µn} be a sequence of complex measured geodesic laminations on the sur-
face S0 , converging weakly in M (G (K)) to a measured lamination µ0 . Then,
by the Uniform Boundedness Principle, there is a positive number M0 such
that ||µn|| ≤M0 for all n ≥ 0.

For each positive integer m, for each i = 1, . . . ,m−1, for each j = 1, . . . , k and
for each measured lamination µn , n ≥ 0, we define as above the points xj,m,i ,
the geodesics γ′n,j,m,i , the functions λj,m,i , the quantities an,,j,m,i , bn,j,m,i ,
a′n,j,m , b′n,j,m and the isometries Dn,j,m,i , Pn,j,m , Qn,j,m , Rn,j,m , Sn,j,m .

Let Bn,j,m = Dn,j,m,1 · · ·Dn,j,m,m−1 . We want to find a bound for the norm of
the difference between B0,j,mgj and some conjugate of Bn,j,mgj .

Lemma 3.1 With the above notation, there exist positive numbers N1,N2

and functions r : N→ R, ε : N× N→ R such that

lim
m→∞

r(m) = 0, lim
n→∞

ε(m,n) = 0 for each m ∈ N

and ∥∥∥P0,1,mP
−1
n,1,mBn,j,mgjPn,1,mP

−1
0,1,m −B0,j,mgj

∥∥∥ ≤ N1r(m) +N2ε(m,n).
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Proof To simplify notation, we drop the index m for the time being, and
write, for example, Dn,j;i for Dn,j,m,i . We have∥∥∥P0,1P

−1
n,1Bn,jgjPn,1P

−1
0,1 −B0,jgj

∥∥∥ ≤∥∥∥P0,1P
−1
n,1Bn,jgjPn,1P

−1
0,1 − P0,jP

−1
n,jBn,jgjPn,jP

−1
0,j

∥∥∥ (2)

+
∥∥∥P0,jP

−1
n,jBn,jgjPn,jP

−1
0,j g

−1
j − P0,jP

−1
n,jBn,jS

−1
n,jS0,j

∥∥∥ ‖gj‖
+
∥∥∥P0,jP

−1
n,jBn,jS

−1
n,jS0,j −B0,j

∥∥∥ ‖gj‖ .
We will find upper bounds for the three terms of the right hand side of the
above inequality.

The first term of (2) is bounded above by∥∥∥P0,1P
−1
n,1 − P0,jP

−1
n,j

∥∥∥∥∥∥Bn,jgjPn,1P−1
0,1

∥∥∥
+
∥∥∥P0,jP

−1
n,jBn,jgj

∥∥∥ ∥∥∥Pn,jP−1
0,j − Pn,jP−1

0,j

∥∥∥ .
By Lemma 2.2, the factors containing gj are bounded above by M1 . We con-
sider the other factor in each term. Recall that Pn,j = A(φ∗(γ′n,j;1), a′n,j). We
have ∥∥∥P0,jP

−1
n,j − P0,1P

−1
n,1

∥∥∥ ≤
‖P0,j‖

∥∥∥P−1
n,j −A(φ∗(γ′0,j;1),−a′n,j)

∥∥∥ (3)

+
∥∥A(φ∗(γ′0,j;1), a′0,j − a′n,j)−A(φ∗(γ′0,1;1), a′0,1 − a′n,1)

∥∥
+ ‖P0,1‖

∥∥∥A(φ∗(γ′0,1;1),−a′n,1)− P−1
n,1

∥∥∥ .
By Lemma 2.5, there is a positive constant M ′ such that the first and the third
term of the right hand side of (3) are bounded by M0M1M

′r(m). To find a
bound for the second term we consider two cases.

(1) The segment [x0, xj;1] intersects the same geodesics in supp (χµn) as does
the segment [x0, x1;1].

(2) The two segments intersect different sets of geodesics in supp (χµn).

Let zn,i =
∫

[x0,xi;1] χ(µ0 − µn) = a′0,i − a′n,i .

In case (1), zn,j = zn,1 , and the geodesics γ′0,j;1, γ
′
0,1;1 lie in a (2–dimensional)

solid cylinder of radius d/m based at x0 . The segments [x0, xj;1] and [x0, x1;1]
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induce concurrent orientations on the geodesics γ′0,j;1 and γ′0,1;1 respectively.
So, by Lemma 2.5,∥∥A(φ∗(γ′0,j;1), zn,j)−A(φ∗(γ′0,1;1), zn,1

∥∥ ≤M0M
′r(m).

Note that if µn satisfies the conditions of case (1) for large enough n, then µ0

also satisfies these conditions.

In case (2), the orientations induced by the segments [x0, xj;1] and [x0, x1,1]
on the geodesics γ′0,j;1 and γ′0,1;1 respectively, are not concurrent. Hence, by
Lemma 2.5,∥∥A(φ∗(γ′0,j;1), zn,j)−A(φ∗(γ′0,1;1), zn,1)

∥∥ ≤M0M
′r(m) +M ′′|zn,j + zn,1|.

Note that, in this case,

a′0,j + a′0,1 =
∫

[x0,xj;1]
χµ0 +

∫
[x0,x1;1]

χµ0 = χµ0(G)

and similarly for µn . Hence zn,j + zn,1 = χµ0(G) − χµn(G). Let

ε0(m,n) = sup
s≥n
|χmµ0(G)− χmµs(G)|.

Now we turn our attention to the second term of equation (2). This term
involves only the generator gj , so we drop the subscript j from the notation.
We have∥∥P0P

−1
n BngPnP

−1
0 g−1 − P0P

−1
n BnS

−1
n S0

∥∥ ≤∥∥P0P
−1
n Bn

∥∥∥∥S−1
n

∥∥ ∥∥SngP−1
n g−1 − S0gP0g

−1
∥∥∥∥gP−1

0 g−1
∥∥ .

We consider the term SngP
−1
n g−1 , which is equal to

A

(
φ∗(γ′n;m−1),

∫
[x;m−1,x;m]

(χ ◦ g−1)µn

)
A

(
φ∗(g(γ′n;1),

∫
[x0,x;1]

χµn

)
.

Since µn is invariant by g , and x;m = g(x0), we have∫
[x;m,g(x;1)]

(χ ◦ g−1)µn =
∫

[x0,x;1]
χµn.

We have to consider two cases:

(1) The segments [x;m−1, x;m] and [x;m, g(x;1)] intersect the same geodesics
in supp ((χ ◦ g−1)µn).

(2) The segments [x;m−1, x;m] and [x;m, g(x;1)] intersect different sets of geod-
esics in supp ((χ ◦ g−1)µn).
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In case (1), we let zn =
∫

[x;m−1,x;m](χ ◦ g−1)µn =
∫

[x;m,g(x;1)](χ ◦ g−1)µn . The
geodesics γ′n;m−1and g(γ′n;1)lie in a solid cylinder of radius d/m, based at x;m ,
and the orientations induced by the segments [x;m−1, x;m] and [x;m, g(x;1)] are
not concurrent. Hence, by Lemma 2.6,

∥∥SngPng−1 − I
∥∥ ≤ M0M2r(m). As

before, if µn satisfies the conditions of case (1) for large enough n, then µ0 also
satisfies these conditions. Hence∥∥SngPng−1 − S0gP0g

−1
∥∥ ≤ 2M0M2r(m).

In case (2), since µn is invariant by g , and x;m = g(x0), we have∫
[x;m,g(x;1)]

(χ ◦ g−1)µn +
∫

[x;m−1,x;m]
(χ ◦ g−1)µn = χµn(G)

and if n is large enough, the same is true of µ0 . Then∥∥SngPng−1 − S0gP0g
−1
∥∥ ≤∥∥SngPng−1 −A(φ∗(γ′n;m−1), χµn(G))

∥∥
+
∥∥A(φ∗(γ′n;m−1), χµn(G)) −A(φ∗(γ′0;m−1), χµ0(G))

∥∥
+
∥∥A(φ∗(γ′0;m−1), χµ0(G)) − S0gP0g

−1
∥∥ .

By Lemma 2.5 and Lemma 2.6, this is bounded above by M ′r(m)+M ′′ε(m,n).

The third term of equation (2) is bounded by

‖P0‖
∥∥P−1

n BnS
−1
n − P−1

0 B0S
−1
0

∥∥ ‖S0‖ ‖g‖ .
But∥∥P−1

n BnS
−1
n − P−1

0 B0S
−1
0

∥∥ =∥∥∥QnDr
n;1Dn;2 · · ·Dn;m−2D

l
n;m−1Rn −Q0D

r
0;1D0;2 · · ·D0;m−2D

l
0;m−1R0

∥∥∥
and by Lemma 2.2, this is bounded by

M2
1(
∥∥∥Dl

n;m−1Rn −Dl
0;m−1R0

∥∥∥+
m−2∑
i=2

‖Dn,i −D0,i‖+

+
∥∥QnDr

n;1 −Q0D
r
0;1

∥∥). (4)

Note that QnDr
n;1 = A

(
φ∗(γ′n;1),

∫
[x0,x;1] λ;1(1− χ)µn

)
and hence∥∥QnDr

n;1 −Q0D
r
0;1

∥∥ ≤M ′r(m) +M ′′ε1(m,n)

where ε1(m,n) = sups≥n
∣∣∣∫[x0,x;1] λ;1(1− χm)(µs − µ0)

∣∣∣, and similarly for the
other terms of (4), for suitable εi , i = 2, . . . ,m− 1.
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To complete the proof of Lemma 3.1 we must show that r(m) and ε(m,n) =∑m−1
i=0 εi(m,n) have the required properties. It is clear that we can choose a

sequence r(m), with limm→∞ r(m) = 0, such that the pair r = r(m), δ = d/m
satisfy the conditions of Lemma 2.10. Lemma 2.14 implies that, for each m,
limn→∞ ε(m,n) = 0.

We let En,j,m = Cn,j,m,1 · · ·Cn,j,m,m and Hn,m = P0,1,mP
−1
n,1,m . Then, combin-

ing the above result with (1), we have∥∥Hn,mEn,j,mgjH
−1
n,m − E0,j,mgj

∥∥ ≤M(r(m) + ε(m,n). (5)

If g1, . . . , gk is a set of generators for Γ0 , the space R of homomorphisms
ρ : Γ0 → PSL(2,C) with quasi-Fuchsian image is a subspace of PSL(2,C)k ,
and Q(S) is a subspace of the quotient by the adjoint action on the left,
PSL(2,C)k

/
PSL(2,C). Let

ρn,m =
(
Hn,mEn,j,mgjH

−1
n,m, j = 1, . . . , k

)
ρn,m = (E0,j,mgj , j = 1, . . . , k)

and let [ρn,m] denote the equivalence class of ρn,m in PSL(2,C)k
/
PSL(2,C).

Let n(m) be a sequence such that n(m) ≥ m and ε(n(m),m) ≤ 1/m. Then
limm→∞ ρn(m),m = ρµ0 . As m → ∞, [ρn,m] converge, uniformly in n, to the
bending deformation [ρµn ], [5]. Hence, limm→∞[ρn(m),m] = limm→∞[ρµn(m)

] =
limn→∞[ρµn ], and we have

lim
n→∞

[ρµn ] = [ρµ0 ]. (6)

To complete the proof of Theorem 1, it remains to show that the convergence is
uniform in compact subsets of D . If ([ρ], t) ∈ D , each bound used in the proof
of (6) depends at most linearly on t, while it depends on ρ only in terms of the
endpoints of a finite number of geodesics φ∗(γ). The endpoints of the geodesic
φ∗(γ) are, for each γ , holomorphic functions of [ρ]. Hence each bound can be
chosen uniformly on each compact subset of D .

Note that D contains in its interior the set Q(S)× {0}. If the laminations µn
are real for all but a finite number of n, then D also contains the set Q(S)×R,
but this is not true in the general case.

To prove Theorem 2 we recall that the bending vector field Tµ is defined by

Tµ([ρ]) =
∂

∂t
Bµ([ρ], t).
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The vector fields Tµn are holomorphic, and Bµn([ρ], t) converge to Bµ0([ρ], t)
for ([ρ], t) ∈ D . It follows that Tµn converge to Tµ0 , uniformly on compact
subsets of Q(S).

We conclude with the proof of Theorem 3. We consider the subset of ML(S)
consisting of measured laminations with non negative real and imaginary parts,
and we denote it by ML++(S). We identify ML++(S) with a subset of the
set of pairs of positive measured laminations ML+

R (S) × ML+
R (S). If ν ∈

ML++(S), then Re ν and Im ν are in ML+
R (S) and they satisfy the condition

supp (Re ν) ∪ supp (Im ν) is a geodesic lamination. (7)

Conversely, any pair ν1, ν2 of positive measured laminations satisfying (7) de-
fine a measure ν = ν1 + iν2 ∈ML++(S). The mapping is a homeomorphism of
ML++(S) onto a subset of ML+

R (S)×ML+
R (S). But ML+

R (S) is homeomor-
phic to R6g−6 , [6]. Thus ML++(S) is first countable, and Theorem 2 implies
that µ 7→ Tµ is continuous. Theorem 3 then follows by the continuity of the
evaluation map.
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Math. 67, Birkhaüser (1987) 48–106

[4] C Kourouniotis, Deformations of hyperbolic structures, Math. Proc. Camb.
Phil. Soc. 98 (1985) 247–261

[5] C Kourouniotis, Bending in the space of quasi-Fuchsian structures, Glasgow
Math. J. 33 (1991) 41–49

[6] R C Penner, J L Harer Combinatorics of train tracks, Annals of Math. Studies
125, Princeton University Press (1992)

Department of Mathematics
University of Crete
Iraklio, Crete, Greece

Email: chrisk@math.uch.gr

Received: 15 November 1997

Christos Kourouniotis

Geometry and Topology Monographs, Volume 1 (1998)

334


