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The boundary of the deformation space of the
fundamental group of some hyperbolic

3{manifolds �bering over the circle

Leonid Potyagailo

Abstract By using Thurston’s bending construction we obtain a se-
quence of faithful discrete representations �n of the fundamental group
of a closed hyperbolic 3{manifold �bering over the circle into the isome-
try group Iso H4 of the hyperbolic space H4 . The algebraic limit of �n
contains a �nitely generated subgroup F whose 3{dimensional quotient
Ω(F )=F has in�nitely generated fundamental group, where Ω(F ) is the
discontinuity domain of F acting on the sphere at in�nity S3

1 = @H4 .
Moreover F is isomorphic to the fundamental group of a closed surface
and contains in�nitely many conjugacy classes of maximal parabolic sub-
groups.

AMS Classi�cation 57M10, 30F40, 20H10; 57S30, 57M05, 30F10,
30F35

Keywords Discrete (Kleinian) subgroups, deformation spaces, hyper-
bolic 4{manifolds, conformally flat 3{manifolds, surface bundles over the
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1 Introduction and statement of results

By a Kleinian (discontinuous) group G we mean a subgroup of the group
Conf(Sn) �= SO+(1; n + 1) of conformal transformations of R

n
= Sn =

Rn [ f1g which acts discontinuously on a non-empty set Ω(G) � Sn called
its domain of discontinuity. It may be connected or not; we will say that G
is a function group if there is a connected component ΩG � Ω(G) that is in-
variant under the action of the whole group: GΩG = ΩG . The quotient spaces
MG = ΩG=G and M(G) = Ω(G)=G are n{manifolds in the case in which G is
torsion-free. The complement �(G) = (SnnΩ(G)) � @Hn+1 is called the limit
set of G.

A �nitely generated Kleinian group G is called geometrically �nite if for some
" > 0 there exists an "{neighbourhood of HG=G in Hn+1=G which is of �nite
hyperbolic volume. Here HG � Hn+1 is the convex hull of �(G).
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Let us consider for n = 3 a hyperbolic 3{manifold M = H3=Γ (Γ � PSL2C)
�bering over the circle S1 with �ber a closed surface � . The notation is
M = � ~�S1 . A representation �: �1(M) ! Conf(S3) is called admissible if
the following conditions are satis�ed.

(1) �: Γ! Conf(S3) is faithful and �(Γ) = Γ0 is Kleinian.

(2) � preserves the type of each element, ie �(γ) is loxodromic for all γ 2 Γ.

(3) � is induced by a homeomorphism f�: Ω(Γ)! Ω(Γ0), namely f�γf
−1
� =

�(γ), γ 2 Γ.

The set of all admissible representations modulo conjugation in Conf(S3) is
called the deformation space Def(Γ) of the group Γ.

The set Def(Γ) inherits the topology of convergence on generators of Γ on com-
pact subsets in S3 because Def(Γ) �

(
Conf(S3)

�k
=�, k 2 N (� is conjugation

in Conf(S3)). As Def(Γ) is a bounded domain [13] two questions have arisen.
The �rst is to describe the cases when Def(Γ) is non-trivial and the second is to
study the boundary @Def(Γ), as was done for the classical Teichmüller space
[2], [10]. The answer to the �rst question is still unknown even in the case when
M is Haken. We will consider the case when M contains many totally geodesic
surfaces. Each of them produces a curve in Def(Γ) by Thurston’s \bending"
construction [19]. Our main interest is in groups which appear on the boundary
@Def(Γ). These are higher dimensional analogs of B{groups which arise as the
limits of sequences of quasifuchsian groups in classical Teichmüller space.

One of the most fundamental questions is to describe the topological type of
the orbifold M(Γ) = Ω(Γ)=Γ (a manifold in the case when Γ is torsion-free),
in particular, when Γ is a function group it is important to know when the
fundamental group �1(MG = ΩΓ=Γ) turns out to be �nitely generated, or even
more generally when it has �nite homotopy type.

In dimension 2 the famous theorem of Ahlfors [1] says that a �nitely generated
non-elementary Kleinian group G � Conf(R2) has a factor-space Ω(G)=G con-
sisting of a �nite number of Riemann surfaces S1; : : : ; Sn each having a �nite
hyperbolic area.

We discovered in [7] that the weakest topological version of Ahlfors’ theorem
does not hold starting already with dimension 3. Namely we constructed a
�nitely generated function group F � Conf(S3) such that the group �1(ΩF =F )
is not �nitely generated. Afterwards it was pointed out in [15] that this group
is in fact not �nitely presented.

It has also been shown that there exists a �nitely generated Kleinian group
with in�nitely many conjugacy classes of parabolics [6].

Leonid Potyagailo

Geometry and Topology Monographs, Volume 1 (1998)

480



In [14] we constructed a �nitely generated group F1 such that �1(ΩF1=F1) is not
�nitely generated and having in�nitely many non-conjugate elliptic elements;
moreover F1 appears as an in�nitely presented subgroup of a geometrically
�nite Kleinian group in H4 without parabolic elements. On the other hand,
it was shown in [4] that a �nitely generated but in�nitely presented group can
also appear as a subgroup of a cocompact group in SO(1; 4).

Theorem 1 Let Γ = �1(M) be the fundamental group of a hyperbolic 3{
manifold M �bering over the circle with �ber a closed surface � . Suppose that
Γ is commensurable with the reflection group R determined by the faces of a
right-angular polyhedron D � H3 . Then there exists a �nite-index subgroup
L � Γ and a path �t: [0; 1[7! Def(Γ) such that �t converges to a faithful
representation �1 2 @Def(Γ) (as t! 1) and the following hold:

(1) �1(FL) contains in�nitely many conjugacy classes of maximal parabolic
subgroups,

(2) �1(Ω�1(FL))=�1(FL) is in�nitely generated,

where FL = L \ �1� is isomorphic to the fundamental group of a closed hy-
perbolic surface which �nitely covers � and �1(FL) acts discontinuously on an
invariant component Ω�1(FL) � S3 .

Remark Groups satisfying all the conditions of Theorem 1 do exist. An
example of Thurston, of the reflection group in the faces of the right-angular
dodecahedron, which is commensurable with a group of a closed surface bundle,
is given in [18].

Acknowledgement This paper was prepared several years ago while the au-
thor had a Humboldt Fellowship at the Rühr-Universität in Bochum. The
author is deeply grateful to Heiner Zieschang and to the Humboldt Foundation
for this opportunity. I would also like to thank Nicolaas Kuiper (who died re-
cently) for reading a preliminary version of the manuscript and to express my
gratitude to the referee for many useful remarks and corrections.

2 Outline of the proof

Before giving a formal proof of the Theorem let us describe it informally.

Our construction is inspired essentially by papers [6], [8] and [14]. In the �rst
two a free Kleinian group of �nite rank satisfying the conclusion (2) was pro-
duced, whereas now we give an example of a closed surface group with this
property. Our present construction is essentially easier than that of [14]. Also,
we produce a curve in the deformation space whose limit point is the group in
question.
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Step 1 We start with an uniform lattice Γ � PSL2C commensurable with
the reflection group R whose limit set is the Euclidean 2{sphere @B1 { the
boundary of the ball B1 � S3 . There exists a Fuchsian subgroup H2 � Γ
leaving invariant a vertical plane � whose intersection with B1 is a round
circle, its limit set �(H2) (see �gure 1). The group H2 also leaves invariant a
geodesic plane w2 � B1 . Consider the action of the group Γ in the outside ball
B�1 = S3nB1 . For some �nite-index subgroup Γ1 of Γ we construct a new group
G1 obtained by Maskit’s Combination theorem from Γ1 and ��Γ1�� combined
along the common subgroup H2 = Stab w2 , where �� is the reflection in � .
The new group G1 is still isomorphic to some subgroup G� � R of �nite index
essentially because the same construction can be done inside B1 by reflecting
the picture along the geodesic plane w2 . Thus G1 belongs to the deformation
space Def(G�1). One can obtain a fundamental domain R(G1) � B�1 of G1

which is situated in a small neighbourhood of the spheres @B1 and ��(@B1).

w2

w1

B1

Ig1

I 0g1

‘

� �3 �1

�2

�

Figure 1

Step 2 There is another geodesic plane w1 � B1 disjoint from w2 whose
stabilizer in Γ1 is H1 (see �gure 2). Denote by B2 the ball ��(B1). Take
a sphere � � B�1 passing through the circle w3 \ B2 { the limit set of the
group ��H1�� { and tangent to the isometric spheres of some element g1 2 Γ1 ,
where H1 is a subgroup of Γ1 stabilizing w1 . We now construct a family
of Euclidean spheres �t (0 � t � 1; �1 = �) and corresponding groups Gt
obtained as before from G1 and ��tG1��t by using the combination method
along common closed surface subgroups. We prove then that there is a path
�t: t 2 [0; 1[ 7! � 2 Def(L0) such that �0 = L0; �t = Gt where L0 is some
�nite-index subgroup of R . One can equally say that �t is obtained by using
Thurston’s bending deformation. The main point is now to prove that the limit
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Figure 2

group G1 = lim
t!1

�t(L0) is discontinuous and has a fundamental domain obtained

from the part of R(G1) by doubling along the sphere �. The group G1 is also
isomorphic to L0 and so contains a fundamental group N of a closed surface
bundle over the circle which is isomorphic to the group L = Γ\L0 . Let F be the
fundamental group of the �ber given by �1(FL = F \ L). Since two isometric
spheres of the element g1 2 Γ1 are tangent to �, we get a new accidental
parabolic element g = g1 � g2; g2 = ��g1�� in the group G1 . By a choice of
g1 made from the very beginning we assure that g 2 F , so we have a pseudo-
Anosov action of some element t 2 N nF such that the orbit tn �g � t−n (n 2 Z)
gives us in�nitely many conjugacy classes of maximal parabolic subgroups of
F . Now Scott’s compact core theorem implies that �1(ΩF )=F is not �nitely
generated. End of outline

3 Preliminaries

We will consider the Poincar�e model of hyperbolic space H3 in the unit ball B1

equipped with the hyperbolic metric �. By a right-anguled polyhedron D � H3

we mean a polyhedron all of whose dihedral angles are �=2.
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Consider the tesselation of H3 by images of D under the reflection group R
from Theorem 1. Denote by W � H3 the collection of geodesic planes w such
that there exists r 2 R , for which r(w) \ @D is a face of D .

It is easy to see that if �1 and �2 are two faces of D with �1 \ �2 = ;, then
also the geodesic planes ~�1 � �1 and ~�2 � �2 have no point in common. One
can easily show that the distance between �1 and �2 , as well as that of ~�1 and
~�2 , is realized by a common perpendicular ‘ for which ‘ \ intD 6= ;.
Let Γ0 = R \ Γ which is a subgroup of a �nite index in both groups R and
Γ. By passing to a subgroup of a �nite index and preserving notation, we may
assume that Γ0 is a normal subgroup in R , jR : Γ0j <1. For a plane w 2W
we write Hw = Stab(w;Γ0) = fg 2 Γ0; gw = wg. It is not hard to see that Hw

is a Fuchsian group of the �rst kind commensurable with the reflection group
determined by the edges of some face of the polyhedron r(D1); r 2 R .

Let us now �x two disjoint planes w1 and w2 from W containing opposite faces
of D and let ‘ be their common perpendicular; up to conjugation in Isom H3

we can assume that ‘ is a Euclidean diameter of B1 . Denote B�1 = S3ncl(B1)
as well (where cl(�) is the closure of a set). We have the following:

Lemma 1 For every horosphere �3 in B�1 centered at the point � 2 ‘ \ @B1

(see �gure 1) there exists "0 > 0 such that for every "{close sphere �1 � B�1
to �3 (" < "0 ) orthogonal to the plane �2 there exists a geodesic plane w and
an element g1 2 [Hw;Hw] (commutator subgroup) such that:

Ig1 \ �1 6= ; and g1(Ig1 \ �1) = I 0g1
\ �1;

where Ig1 ; I
0
g1

= Ig−1
1

are isometric spheres of g1:
(1)

Proof Up to further conjugation in Isom B1 preserving ‘ we may assume that
�3 is the vertical plane tangent to @B1 at � 2 ‘ \ @B1 . Take w = w1 and let
g1 2 [Hw1 ;Hw1 ] be any primitive element corresponding to a simple dividing
loop on the surface w1=Hw1 .

Suppose �rst that Ig1 \ �3 = ;. In this case we proceed as follows. Put
� = �w1 ��w2 2 R , where �wi denotes the reflection in plane wi (i = 1; 2). Then
� is a hyperbolic element whose invariant axis is ‘. Consider the sequence of
planes �n(w1). We claim that, for some n, �n(Ig1) \ �3 6= ;. In fact this
follows directly from the fact that the �xed point � of the hyperbolic element
� is a conical limit point of Γ0 , and so the approximating sequence �n(Ig1)
should intersect a �xed horosphere (or equivalently by sending � to the in�nity
and passing to the half-space model one can see that � becomes now a dilation
z 7! �z (� > 0) which implies that the translations of the image of Ig1 by
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powers of the dilation will intersect a �xed horosphere at in�nity). Since Γ0

is normal in R it now follows that �ng1�
−n 2 [H�n(w1);H�n(w1)] � Γ0 and

�n(Ig1) = I�ng1�−n . The latter is true since � preserves each Euclidean plane
passing through B1 \ ‘ and, hence (�ng1�

−n)j�n(Ig1 ) is an Euclidean isometry.
So up to replacing w1 by �n(w1) and g1 by �ng1�

−n if needed, we may assume
that Ig1 \ �3 6= ;. The same conclusion is then obviously true for a plane
�1 � B�1 su�ciently close to �3 .

For ‘1 = Ig1\�1 we now claim that g1(‘1) = ‘2 = I 0g1
\�1 . Indeed, g1 = ��2 ��Ig1

where �2 is orthogonal to �1 and contains ‘ (�gure 1). Evidently

g1(‘1) = ��2 (Ig1 \ �1) = ��2(Ig1) \ �1 = I 0g1
\ �1 (2)

since ��2(�1) = �1 . The lemma is proved.

So we can suppose that w1 2 W is chosen satisfying all the conclusions of
Lemma 1. Let w2 2 W be a geodesic plane disjoint from w1 and let ‘ be
their common perpendicular passing through the origin of B1 . Now consider
the Euclidean plane � orthogonal to ‘ (�gure 2) such that

� \ @B1 = � \ w2 :

It is not hard to see that Stab(�;Γ) = Stab(w2;Γ) = Hw2 . Reflecting our
picture in the plane � we get

B2 = ��(B1) ; w3 = ��(w2) and
Hw3 = ��Hw1�� :

By Lemma 1 we can now �nd a Euclidean sphere � centered on ‘ which goes
through the circle w3 \ @B2 and is tangent to Ig1 (�gure 2). Moreover, by
Lemma 1, � is tangent also to I 0g1

.

Denote �0 = �−1
� (�).

Lemma 2 There exists a subgroup Γ1 � Γ0 of �nite index such that the
following conditions hold:

(a) The boundary of the isometric fundamental domain P(Γ1) � B�1 lies in
a regular "{neighbourhood of @B�1

(
B�1 = S3ncl(B1); " > 0

�
.

(b) � \ Iγ = ; ; γ 2 Γ1nfg1; g
−1
1 g.

(c) For subgroups H1 = Γ1 \Hw1 ;H2 = Γ1 \Hw2 there exists another fun-
damental domain R(Γ1) � B�1 of Γ1 such that

R(Γ1) \ (� [ �0) = P(H) \ (� [ �0);

where P(H) is an isometric fundamental domain for the group H =
hH1;H2i.

(d) g1 2 Γ1 \ [H1;H1].
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Proof This Lemma can be obtained by repeating the arguments of [14, Main
Lemma]. We just sketch these considerations. First, we choose a subgroup
~Γ � Γ0 of a �nite index satisfying conditions (a) and (b) such that g1 2 ~Γ by
using the property of separability of in�nite cyclic subgroups in Γ0 [9].

To obtain (c) we will �nd Γ1 by using Scott’s LERF {property of the group Γ0

with respect to its geometrically �nite subgroups (see [16], [17]). To this end
we proceed as follows: the group H is geometrically �nite as a result of Klein{
Maskit free combination from H1 and H2 , which are both geometrically �nite
subgroups of Γ0 . The LERF property now says that for the element g1 there
exists a subgroup of Γ0 of �nite index which contains H and does not contain
g1 . Call this subgroup Γ1 . Evidently, g1 2 [H1;H1] � Γ1 by construction. For
the complete proof, see [14, Main Lemma].

Let us introduce the following notation: Ω−1 = B�1n
S
γ2Γ1

γ(�−) where �− is
the component of S3n� for which w3 2 �− . Let Γ01 = Stab(Ω−1 ;Γ1).

The complete proof of the following assertion can be also found in [14, Lemma 3].

Lemma 3 The group G1 = hΓ01; ��Γ01��i is discontinuous and

(1) G1
�= Γ01 �H2 (��Γ01��).

(2) G1 is isomorphic to a subgroup G�1 � R of �nite index.

Sketch of proof (1) This follows from the fact that the plane � is strongly
invariant under H2 in Γ01 by [14, Lemma 3.c], which means H2� = � and
γ� \ � = ; ; γ 2 Γ01nH2 . One can now get assertion (1) from Maskit’s First
Combination theorem [11].

(2) Consider the reflection �w2 in the geodesic plane w2 � B1 . We claim that
the group G�1 = hΓ01; �w2Γ01�w2i is isomorphic to G1 . Indeed, w2 is also strongly
invariant under H2 in Γ01 and we again observe that G�1 = Γ01 �H2 (�w2Γ01�w2) �=
G1 because �w2 jw2

= �� j�= id.

Now �w2 2 R . Therefore, G�1 � R and G�1 has a compact fundamental domain
R(G�1) = R(Γ01) \ �w2(R(Γ01)). The covering H3

�
(G�1 \ Γ0) ! H3

�
G�1 is �nite

since jR : Γ0j < 1 and, hence, the manifold M (G�1 \ Γ0) = H3
�

(G�1 \ Γ0) is
compact. Thus, the covering M(G�1 \ Γ0) ! M(Γ0) is �nite as well and so
jΓ0 : G�1 \ Γ0 j<1.

Corollary 4 There exists a path �t: [0; 1] ! Def(G�1) such that �0 = G�1
and �1 = G1 .

Leonid Potyagailo

Geometry and Topology Monographs, Volume 1 (1998)

486



Proof By choosing a continuous family of spheres �t for which �t \ � =
w2\� = �(H2); �0 � w2; �1 = �; t 2 [0; 1), we construct the family of groups
Gt = hΓ01; ��tΓ01��ti by the arguments of Lemma 3. Consider now the action of
Γ01 in B�1 where p1: B�1 ! B�1=Γ1 is the covering map. The surfaces p1(�t) are
all embedded and parallel due to condition (b). If now ΩGt is the component
of G1 containing 1 then the manifold MGt = ΩGt=Gt is homeomorphic to
the double of the manifold M−1 = Ω−1 =Γ

0
1 along the boundary p1(�). Thus,

for all t 2 [0; 1], MGt are all homeomorphic and there exists a continuous
family of homeomorphisms ft: Ω(G�1)! Ω(Gt) such that Gt = ftG

�
1f
−1
t , G1 =

f1G
�
1f
−1
1 .

By construction the domain R(G1) = R(Γ01) \ �� (R(Γ01)) is fundamental for
the action of G1 in ΩG1 .

Claim 5 R(G1) \� =
(
P(H3) [ Ig1 [ I 0g1

�
\ �.

Proof Recall that �+(�−) means the right (left) component of S3n�
(Ig1 2 �+). Then �+ \ � \ R(Γ01) = P(H1) \ � =

(
Ig1 [ I 0g1

�
\ � by (b)

and (c) of Lemma 2.

Also, �� (�− \� \ ��(R(Γ01))) = �+ \ ��(�) \ R(Γ01) � P(H1) \ �0 , so �− \
� \R(G1) = �� (P(H1)) \ � = P(H3) \ �.

Let us consider now the family of spheres �t centered on the y{axis (�gure 2)
such that �t \w3 = �\w3; �1 = �; �0 = �0; t 2 [0; 1], where �t \ ext(B1)\
ext(B2) � ext(�) \ ext(B1) \ ext(B2) (recall ext(�) is the exterior of a set in
R

3
), �t \ Ig1 = ; (t > 0). Denote by ��t the corresponding reflections. As

before take the domain Ω� = ΩG1nG1(�−0 ) and the group G01 = Stab(Ω�; G1),
where �−0 = ext (�0) is the unbounded component of R

3n�0 .

Denote Gt = hG01; ��tG01��ti. Evidently, G1 = lim
t!1
Gt .

Lemma 6 The groups Gt are discontinuous, t 2 [0; 1].

Proof First, let us prove the lemma for t 6= 1. By Claim 5 we have now that
R(G1) \ �t = P(H3) \�t . Moreover we claim also that

g�t \ �t = ;; g 2 G1nH3; H3�t = �t;
where H3 = ��H1�� :

(3)

To prove (3) we only need to show that g(�t \ �(H3)) \ (�t \ �(H3)) = ;,
but this can be shown from the fact that each point of �(H3) is a point of
approximation (see [14, Claim 1]).
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All conditions of Maskit’s First Combination theorem are now satis�ed for the
groups G01 and ��tG

0
1��t (t 6= 1) [11] and we obtain also

Gt �= G01 �H3 (��tG
0
1��t) (4)

where the Gt are all discontinuous, t 2 [0; 1).

Let us now consider the group G1 and the domain R(G1) = R(G1)\��(R(G1)).
Our goal now is to show that R(G1) is a fundamental domain for the action of
G1 in ΩG1 (1 2 ΩG1). If now hg1; γ1; : : : ; γ‘i is a set of generators of G01 then
S = hg1; γ1; : : : ; γ‘; g2; γ

0
1; : : : ; γ

0
‘i are generators of G1 , where γ0i = �� � γi � ��

and g2 = �� � g1 � �� . Observe that the element g1 is included in S because
some of its isometric spheres belong to the boundary @R(G01)

We want to apply the Poincar�e Polyhedron theorem [12]. Indeed, an arbitrary
cycle of edges in @R(G1) consists either of edges situated in @(R(G1))\ int(�),
and @(��(R(G1))) \ ext(�), or is an edge cycle ‘1 = Ig1 \ Ig2 ; ‘2 = I 0g1

\ I 0g2
,

where Igk ; I
0
gk

are the isometric spheres of gk and g−1
k (k = 1; 2). The sum

of angles in any cycle of the �rst type is 2� because R(G1) is a fundamental
domain [12].

We now claim that the element g = g−1
2 � g1 is parabolic with a �xed point

d = Ig1 \ Ig2 . Indeed, g−1
2 � g1 =

(
�� � �Ig1

�2 because g1 = ��2 � �Ig1 and �2 is
orthogonal to � (�gure 2). Now it is easy to check that g(d) = d, gIg1 � int(Ig2)
and g(int(Ig1)) = ext (g(Ig1 )), therefore the elements g and g0 = g1 �g �g−1

1 are
parabolics.

All conditions of the Maskit{Poincar�e theorem are valid at the edges ‘i also
and, hence, G1 is discontinuous. Lemma 6 is proved.

Lemma 7 The group G0 is isomorphic to a subgroup L0 � R of a �nite index.

Proof We repeat our construction of G0 by modelling it in H3 so as to get
the required isomorphism.

Recall that we started from the group Γ01 � Isom(H3) and showed that G1 =
hΓ01; ��Γ01��i �= G�1 = hΓ01; �w2Γ01�w2i (see Lemma 4). Next we constructed G0

by using reflection in �0 = �0 such that �0 \ w3 = �(H3); �0 \B1 = ;; w3 =
��(w1).

Let � = �w2(w1) � H3; � 2 W . Again let us take the subgroup G��1 of G�1
which is G��1 = Stab(H3nG�1(�−); G�1), where �− is a subspace H3n� not
containing w2 .
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By construction the fundamental domain R(G�1) = R(Γ01) \ �w2(R(Γ01)) of the
group G�1 satis�es R(G�1)\ � = P(H 03 = Stab(�;G�1)). Again by Maskit’s First
Combination theorem we have a group L0 :

L0 = G��1 �H03 (��G��1 ��) (5)

We constructed an isomorphism ’1: G�1 ! G1 in Lemma 4 such that �� � ’1 �
�w2 = ’1 , therefore ’1(H 03) = H3 and ’1(G��1 ) = G01 . It follows now from (4)
and (5) that the map ’1

��
G��1

can be extended to an isomorphism ’: L0 ! G0 .

Index jR : L0j is �nite because L0 has a compact fundamental domain. The
Lemma is proved.

Recall that we identify [�] 2 Def(L0) with �(L0).

Lemma 8 There exists a path �t: [0; 1] ! cl(Def(L0)) such that �0 = L0 ,
�1 = G1 2 @Def(L0), �t([0; 1)) � Def(L0).

Proof We have constructed a path �t: [0; 1] ! Def(G�1) in Corollary 4 such
that �0 = G�1 , �1 = G1 and �t is a family of admissible representations. Let
further �t

��
G��1

= �0t . Obviously, the representations �0t are also admissible and
�01(G��1 ) = G01 . We can easily extend our family �0t to a family of admissible
representations �t: L0 ! Def(L0) by the formula �t = ��t�

0
t��t , where �t are

the spheres constructed in Corollary 4.

Observe that �1 = � and now take a new continuous family of spheres �t for
which �t \ w3 = �(Hs) = w3 \ B2 and �1 = ~w3; �2 = �0 where ~w3 is the
sphere containing w3 (t 2 [0; 1]).

Again we have a path �0t(L
0) = hG01; ��tG01��ti. Composing the path �t with �0t

and with the path corresponding to spheres �t connecting �0 with �1 we get
required path �t . The Lemma is proved.

4 Proof of Theorem 1

(1) Denote by F = �1� a �xed �ber group of our initial manifold M , and let
also F0 = Γ0 \ F .

By J�rgensen’s theorem [5] the limit �1 = lim
t!1

�t is an isomorphism �1: L0 !
G1 . Let us consider the subgroup L = L0 \ Γ0; jΓ0 : Lj < 1. Put also
FL = L\F0 for its normal subgroup. We have also the curve �t(L) � Def(L).
Let N = �1(L); F = �1(FL). Let us show that g = g−1

2 � g1 2 F . To this
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end let us recall that the element g1 was chosen from the very beginning being
in [Hw1 ;Hw1 ] (Lemma 1). Recalling also that �−1

1 (g1) = g1 and denoting
�−1

1 (g2) = g02 , by construction we get g02 = �� � g1 � ��; � = �w2(w1); g1 2
[Hw1 ;Hw1 ] � [F0; F0] (see Lemma 1). The group Γ0 was chosen to be normal
in the reflection group R , and since [Γ0;Γ0] � F , it is straightforward to see
that

r[F0; F0]r−1 � F0; r 2 R :

Hence, g02 2 F0 , and for the element g0 = (g02)−1 � g1 we immediately obtain
g0 2 FL = F0 \ L0 . It follows that �1(g0) = g = g−1

2 � g1 2 F0 \ G1 = F as was
promised.

We have that N is isomorphic to the semi-direct product of F and the in�nite
cyclic group Z, so taking the element t 2 NnF projecting to the generator of
N=F , we observe that the elements

gn = tngt−n 2 F ; g 2 F ; n 2 Z (6)

are all parabolics. Since N contains no abelian subgroups of rank bigger than
1 and tn 62 F (n 2 Z) one can easily see that the elements (6) are also non-
conjugate in F . We have proved (1) of the Theorem.

(2) By the construction, the fundamental polyhedron R(G1) of the group G1

contains only one conjugacy class of parabolic elements g of rank 1. There is
a strongly invariant cusp neighborhood Bg �= [0; 1] �R1 � [0;1) which comes
from the construction of R(G1). So each parabolic gn of type (6) gives rise to
submanifold

Bgn
�
hgni �= Tn � [0;1); Tn �= S1 � S1 (7)

in the manifold M(F) = ΩN
�
F . Therefore M(F) contains in�nitely many

parabolic ends (7) bounded by tori Tn . They all are non-parallel in M(F)
and therefore by Scott’s \core" theorem the group �1(M(F)) is not �nitely
generated [16].

Remark By using the argument of [14] one can prove:

Theorem 2 There is a (non-faithful) represention �1+" which is "{close to
�1 for some small " > 0 such that the group �1+"(FL) is in�nitely generated,
has in�nitely many non-conjugate elliptic elements. Moreover, �1+"(FL) is a
normal in�nitely presented subgroup of a geometrically �nite group �1+"(L)
without parabolics.
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To prove the theorem one can continue to deform the group for 1 < t � 1 + "
(these representations will no longer be faithful) in order to get an elliptic
element gt whose isometric spheres form an angle �(t) instead of being tangent.
To do this in our Lemma 2, instead of the sphere � tangent to the isometric
spheres of g1 , one needs to consider a nearby sphere �1+" forming angle �(")
with them. If �(") = �

2n
and n > 0 is large enough the group �1+"(FL)

is Kleinian, has in�nitely many non-conjugate elliptic elements of the order
n (obtained as above as an orbit of g1+" by a pseudo-Anosov automorphism
of the �1+"(FL)). The construction gives us that �1+"(FL) is a normal and
�nitely generated but in�nitely presented subgroup of the geometrically �nite
group �1+"(L) without parabolic elements. In particular �1+"(L) is a Gromov
hyperbolic group (see [14, Lemmas 5{7]).
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