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The E8–manifold, singular fibers and
handlebody decompositions
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Abstract The E8 –manifold has several natural framed link descriptions,
and we give an efficient method (via “grapes”) for showing that they are
indeed the same 4–manifold. This leads to explicit handle pictures for
the perturbation of singular fibers in an elliptic surface to a collection of
fishtails. In the same vein, we show how the degeneration of a regular fiber
to a singular fiber in an elliptic surface provides rich examples of Gromov’s
compactness theorem.
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0 Introduction

The E8–manifold is the 4–manifold obtained by plumbing together eight copies
of the cotangent disk bundle of the 2–sphere according to the Dynkin diagram
for the exceptional Lie group E8 (Figure 0.1a). As a handlebody, this is given
by the framed link shown in Figure 0.1b [10].† The boundary of E8 is the
Poincaré homology sphere (see for example [11]).

Alternatively, E8 may be obtained by taking the p–fold cover of the 4–ball
branched over the standard Seifert surface for the (q, r)–torus knot (pushed
into the interior of B4) where (p, q, r) is a cyclic permutation of (2, 3, 5).

In section 1, the calculus of framed links [10] is used to prove that these four
4–manifolds (E8 and the three branched covers) are diffeomorphic. This result

†Sometimes the tangent bundle is used, giving +2 framings, but by changing the
orientation of the 4–manifold, which negates the linking matrix of the corresponding
framed link, and then the orientation of alternate 2–spheres to restore the off diagonal
elements in the linking matrix, we get an orientation reversing diffeomorphism between
these two descriptions; as a complex manifold, −2 is natural.
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(a) E8–plumbing (b) E8–link

Figure 0.1

is not new. Algebraic geometers knew this at least as long ago as Kodaira, and
it is a special case of work of Brieskorn [2, 3] which we outline now.

Consider the solution Vε to x2 +y3 +z5 = ε in B6 ⊂ C3 . This variety is a non-
singular 4–manifold (for small ε 6= 0) which can be described as, for example,
the 2–fold branched cover of B4 along the curve y3 + z5 = ε (well known to be
the usual Seifert surface for the (3, 5)–torus knot). Similarly Vε can be viewed
as a 3 or 5–fold branched cover.

The variety V0 , equal to Vε for ε = 0, is a cone on ∂Vε and has an isolated
singularity at the origin. The singularity can be resolved to obtain a non-
singular complex surface, called Vres (see [7] for an exposition for topologists
of resolving singularities). Brieskorn proved that Vres is diffeomorphic to Vε
when the isolated singular point is a simple singularity or a rational double
point, and these are related to the simple Lie algebras [4]. If these 4–manifolds
are described using framed links, then the algebraic–geometrical proofs do not
immedately give a procedure for passing from one framed link to the other;
in particular it is not clear how complicated such a procedure might be. So a
method is given in section 1. The steps in Figure 1.7 from the E8–link to the
“bunch of grapes” (Figure 1.3b) are the most interesting.

Section 2 of the paper is concerned with the various singular fibers that can oc-
cur in an elliptic surface. These were classified by Kodaira [12] and a description
for topologists can be found in [7] or the book of Gompf and Stipsicz [5] (also
see section 2). A singular fiber, when perturbed, breaks up into a finite number
of the simplest singular fibers; these are called fishtails and each consists of an
immersed 2–sphere with one double point. Thus a neighborhood of a singular
fiber should be diffeomorphic to a neighborhood of several fishtails, and this is
known to be diffeomorphic to a thickened regular fiber, T 2 ×B2 , with several
2–handles attached to vanishing cycles. Constructing these diffeomorphisms is
the subject of Section 2.

This can be looked at from a different perspective. Gromov’s compactness the-
orem [6] for (pseudo)holomorphic curves in (almost) complex surfaces says that
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a sequence of curves can only degenerate in the limit by pinching loops in the
domain so as to bubble off 2–spheres, and then mapping the result by a holo-
morphic map (often just a branched covering) onto its image. When showing
that fishtails equal a singular fiber, one gets an idea of how a torus fiber degen-
erates onto the singular fiber (the limiting curve in Gromov’s sense). Section 3
contains a discussion of this degeneration for each of Kodaira’s singular fibers.

1 Handlebody descriptions of the E8–manifold

The E8–manifold can be constructed by adding 2–handles to the framed link
in S3 = ∂B4 drawn in Figure 0.1b, and again in Figures 1.1a and 1.1b using
successively abbreviated notation which we now explain.

(a) E8–link with sticks for twists (b) E8–link as grapes

Figure 1.1

Grapes

In Figure 1.1a the “stick” notation denotes a full left twist between the
vertical strands, while denotes a full right twist . The framings (when
not labelled) should be assumed to be −2. This convention, which will be used
throughout the paper, is convenient because handle slides typically occur for 2–
handles A and B with intersection number ±1 (where we identify a 2–handle
with its associated homology class), so sliding A over B yields the class A±B
with self-intersection (A±B)2 = A2 ± 2A · B +B2 = −2 + 2− 2 = −2.

In Figure 1.1b the circles are all required to lie in the hexagonal packing of the
plane. The convention is that a tangency between a pair of circles represents a
full twist between them, and that this twist is right-handed if and only if the line
joining their centers has positive slope. (In particular the drawings in Figure
1.1 represent identical link diagrams.) Framings are −2 as in our standing
convention. Any configuration of hexagonally packed circles representing a
framed link (and thus a 4–manifold) by these conventions will be refered to as
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“grapes”; each individual circle will be called a grape. It will be seen in what
follows that the framed links that arise in studying elliptic surfaces and related
4–manifolds can often be represented (after suitable handle-slides) by grapes;
this observation will streamline many of our constructions.

Typical handleslides over a grape are illustrated in Figure 1.2, using the stick
notation.

(a) (b)

Figure 1.2: Handleslides over a grape

Branched covers

The 4–manifold C2 which is the 2–fold branched cover of B4 along a mini-
mal genus Seifert surface F3,5 for the (3, 5)–torus knot in S3 , pushed into the
interior of B4 , is described in the next figures.

=

(a) Seifert surface F3,5

=

(b) Branched cover C2 as a bunch of grapes

Figure 1.3

Since torus knots are fibered, all Seifert surfaces of minimal genus are isotopic,
so the surface in Figure 1.3a will do. Note that the Seifert surface in the first
drawing consists of three stacked disks with ten vertical half twisted bands
joining them; the front four (large) 1–handles in the second drawing come from
the top disk and the upper five half-twisted bands, the back four (small) 1–
handles come from the middle disk and lower five half twisted bands, and the
0–handle is the bottom disk.
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By the algorithm in [1] for drawing framed link descriptions of branched covers
of Seifert surfaces, a half circle should be drawn in each 1–handle, and then
these eight half circles should be folded down to get the link shown in Figure
1.3b. The framing on each component is twice the twist in corresponding 1–
handle (which is −1), so is −2 and not drawn by convention. Now folding the
four smaller components over the top of the larger ones gives the bunch of eight
grapes shown in the second drawing.

In a similar way, we draw in Figure 1.4 the Seifert surface F2,5 for the (2, 5)–
torus knot, followed by its 3–fold branched cover C3 . In the algorithm (in [1])
two half circles are drawn in each of the four 1–handles, and then one set of
four is folded down followed by the other set. This produces the first drawing in
Figure 1.4b. The second drawing is obtained from the first by sliding the outer
2–handle over the inner 2–handle for each of the four pairs of 2–handles.† This
link clearly coincides with the bunch of grapes in Figure 1.3b, showing that C3

is diffeomorphic to C2 .

=

(a) Seifert surface F2,5

−→

(b) Branched cover C3 (same bunch of grapes)

Figure 1.4

Finally, Figure 1.5 shows the Seifert surface F2,3 for the (2, 3)–torus knot and
its 5–fold branched cover C5 (where denotes a full left twist in the vertical
strands). To pass from the first drawing in 1.5b to the second we perform
six handleslides, sliding each circle over its parallel neighbor, starting with the
outermost circles and working inward. Rotating the last drawing by a quarter
turn yields the same bunch of grapes,† showing that C5 is diffeomorphic to C2 .

†In fact there are two algorithms in [1] for drawing the cover (see Figures 5 and 6 in
[1]). The first (which is more natural but often harder to visualize) yields the grapes
directly. The second is derived from the first by sliding handles — the reverse of the
slides above in the present case.
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=

(a) Seifert surface F2,3

−→ =

(b) Branched cover C5 (same bunch of grapes)

Figure 1.5

Equivalence of handlebody decompositions

To show that these covers are diffeomorphic to E8 , we introduce a move on an
arbitrary cluster of grapes (configuration of hexagonally packed circles), called
a slip [13], which amounts to a sequence of handle slides and isotopies: Suppose
that such a cluster contains a grape (labelled A in Figure 1.6a) which is the
first of a straight string of grapes, in any of the six possible directions. If there
are no grapes in the dotted positions shown in Figure 1.5a, then grape A can
be moved by a slip to the other end of the the string, that is to the position of
the dotted grape B in the figure. (Note that this slip can be reversed.)

A B A1 A2 A3A1 A2
′ ′

(a) a slip (b) the anatomy of a slip

Figure 1.6

The handle slides and isotopies which produce the slip are indicated in Figure
1.6b: A = A1  A′1 → A2  A′2 → A3  · · · → An  B . Here Ai  A′i
is the obvious isotopy (folding under when moving horizontally, folding over
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when moving along the line inclined at −π/3 radians, and moving in the plane
of the paper by a regular isotopy when moving along the line inclined at π/3
radians) as the reader can easily check, and Ai+1 is obtained by sliding A′i over
its encircling grape (cf Figure 1.2b).

Finally observe that the sequence of seven slips shown in Figure 1.7 takes the
grapes defining E8 (Figure 1.1b) to the grapes for the branched cover C2 (Figure
1.3b).

−→ −→

Figure 1.7: slippin’ an’ a slidin’

Note that in the middle picture, the single slip must be performed before the
last leg of the triple slip.

2 Singular fibers in elliptic surfaces

The E8–manifold occurs naturally as a neighborhood of (most of) a singular
fiber in an elliptic surface, and so the discussion in the last section suggests a
general study of such neighborhoods. We begin with a brief introduction to the
topology of elliptic surfaces and their singular fibers; much fuller accounts for
topologists appear in [5] and [7].

An elliptic surface is a compact complex surface E equipped with a holomorphic
map π : E → B onto a complex curve B such that the each regular fiber
(preimage of a regular value of π) is a non-singular elliptic curve — topologically
a torus — in E . Thus E is a T 2–bundle over B away from the (finitely many)
critical values of π . The fibers over these critical values are called the singular
fibers of the surface.

Each singular fiber C in E is a union of irreducible curves Ci , the components of
the fiber. Topologically the components are closed surfaces, possibly with self-
intersection or higher order singularities (for example a “cusp”), and distinct
components can intersect, either transversely or to higher order. Furthermore,
each component has a positive integer multiplicity mi , where

∑
miCi repre-

sents the homology class of a regular fiber. The multiplicity of C is then defined
to be the greatest common divisor of the multiplicities of its components. We
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shall limit our discussion to simple singular fibers, that is, fibers of multiplicity
one.† We also assume that E is minimal , that is, not a blow-up of another
elliptic surface, or topologically not a connected sum of an elliptic suface with
CP 2 . This precludes any exceptional components (non-singular rational curves
of −1 self-intersection) in singular fibers.

The singular fibers in minimal elliptic surfaces were classified by Kodaira [12],
and the simple ones fall into eight classes: two infinite families In and I∗n (where
n is a non-negative integer, positive in the first case since I0 represents a regular
fiber), three additional types II–IV and their “duals” II*–IV* (explained below).
In all cases the components are rational curves — topologically 2–spheres — and
so the singular fiber can be depicted by a graph of intersecting arcs representing
these components.

Fibers of type I–IV (Table 1)

The two simplest singular fibers are the fishtails (type I1) and the cusps (type
II). A fishtail consists of a single component, an immersed 2–sphere with one
positive double point, and is represented by a self-intersecting arc . A cusp
is a 2–sphere with one singular point which is locally a cone on a right handed
trefoil knot; this is denoted by a cusped arc .

The components in all other singular fibers (including those of ∗–type) are
smoothly embedded 2–spheres with self-intersection −2. In particular, a sin-
gular fiber of type III consists of two such 2–spheres which are tangent to first
order at one point, denoted by a pair of tangent arcs , and one of type IV
consists of three such 2–spheres intersecting transversely in one triple point,
denoted . Singular fibers of type In for n > 1, called necklace fibers, consist
of n such 2–spheres arranged in a cycle, each intersecting the one before it and
the one after it (which coincide if n = 2). For example I2 = and I5 = .
These graphs are reproduced in the first column of Table 1 below; note that all
components have multiplicity one in these types of fibers.

The second column in the table gives natural framed link descriptions for regular
neighborhoods of these fibers, following [7]. A neighborhood of a fishtail is
clearly a self-plumbing of the cotangent disk bundle τ∗ of the 2–sphere, of
euler class −2 (the homology class represented by the fishtail must have self-
intersection zero, so the euler class is −2 to balance the two positive points
of intersection arising from the double point) and this can be constructed as
a 0–handle with a round 1–handle ( = 1–handle plus a 2–handle) attached as
†All other fibers are either multiples of singular fibers or multiples of regular fibers,

and the latter have uninteresting neighborhoods, namely T 2 ×B2 .
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shown. Similarly a neighborhood of an n–component necklace fiber is a circular
plumbing of n copies of τ∗ , or equivalently surgery on a chain of circles in
S1×B3 ( = 0–handle plus a 1–handle). The cusp neighborhood is obtained by
attaching a single 2–handle along the zero framed right-handed trefoil. Fibers
of type II and III are gotten by attaching handles to the (2, 4) and (3, 3)–
torus links, respectively, with −2 framings on all components. (In section 3 we
will give explicit models for these neighborhoods in which the projection of the
elliptic surface is evident.)

type graph framed link monodromy

I1

0

V

In (n ≥ 2)
−2 −2 −2

V n

II
0

UV

III
−2 −2

UV U

IV
−2

−2

−2
(UV )2

Table 1: Singular fibers of type I–IV

The final column in the table gives the monodromy of the torus bundle around
each singular fiber with respect to a suitably chosen basis for the first homology
of a regular fiber,† given in terms of the generators

U =
(

1 0
−1 1

)
and V =

(
1 1
0 1

)
†More precisely, if we pick a base point b0 in B and a basis for the first homology

of the fiber over b0 , choose paths connecting b0 to each critical value pi of π , and
choose small loops γi around each pi , then we get a well defined 2×2–matrix for each
singular fiber, representing the monodromy of the torus bundle over the associated γi .
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of SL(2,Z). Note that (UV )6 = I = (UV U)4 (since UV U = V UV ). Also note
that if the chosen basis is viewed as a longitude and meridian of the regular
fiber (in that order) then U corresponds to meridianal Dehn twist, and V to a
longitudinal one.

The fishtail neighborhood can also be obtained from a thickened regular fiber
N = T 2 × B2 by attaching a 2–handle with framing −1 to an essential em-
bedded circle C (or vanishing cycle) lying in a torus fiber in ∂N = T 2 × S1

(see for example [9]). This changes the trivial monodromy of ∂N by a Dehn
twist about C , giving V for the monodromy of the fishtail if C is the longitude
in the torus. Figure 2.1a shows the standard handlebody decomposition of N
with two 1–handles and a 0–framed “toral” 2–handle (where for convenience we
identify the horizontal and vertical directions with the meridian and longitude
on the torus fiber), and Figure 2.1b shows the result after attaching the last
2–handle along a vertical (longitudinal) vanishing cycle. This handlebody will
be denoted by NV , and simplifies to the one in the table by cancelling the
vertical 1 and 2–handles.

0 0

−1

(a) N = T 2 ×B2 (b) NV = Fishtail

Figure 2.1

Now it is well known that any simple singular fiber in an elliptic surface breaks
up into finitely many fishtails under a generic perturbation of the projection near
the fiber. To show this explicitly for the fibers of type I–IV (the argument for the
other types will be given later) observe that the factorization of the monodromy
given in Table 1 suggests a pattern of vanishing cycles. For the necklace fiber In
with monodromy V n one expects n longitudes. For the remaining types with
monodromies UV · · · the vanishing cycles should alternate between meridians
and longitudes.

More precisely, for any word W in U and V , consider the handlebody NW ob-
tained from N by attaching a sequence of 2–handles along −1–framed meridians
(for each U in W ) and longitudes (for each V ) in successive torus fibers in ∂N .
Then we have the following result (cf Theorem 1.25 in [7]).
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Theorem 1 A regular neighborhood of a singular fiber of type In , II, III or
IV is diffeomorphic to NV n , NUV , NUV U or N(UV )2 , respectively.

Before giving the proof, we describe a general procedure for simplifying NW ,
illustrated with the word W = (UV )3V (which arises as the monodromy of a
fiber of type I∗1 below). The associated handlebody is shown in Figure 2.2a.
Sliding each vanishing cycle over its parallel neighbor, working from the bottom
up, produces a bunch of grapes (all with framings −2 as usual) hanging from
the top horizontal and vertical cycles (Figure 2.2b) — the same process was
used to identify the branched covers C2 and C5 in the last section (Figure
1.5b). Now cancelling the 2–handles attached to these last two cycles with the
1–handles gives the handlebody RW in Figure 2.2c.† This process will be called
the standard reduction of the handlebody NW to the reduced form RW .

0

all
−1’s

0
−1

−1

(a) The handlebody N(UV )3V (b) Slide to grapes

0

 
isotopy

0 U U

V V V

(c) Cancel 1–handles to get reduced form R(UV )3V

Figure 2.2: Standard reduction

Observe that the first step of the reduction of NW (producing the grapes) can
be carried out in general, but that the cancellation of both 1–handles requires at
least one U and one V in W (and the final picture will look slightly different if
W does not start with UV ). In particular for W = V n the reduced form RV n

†Note that if one labels the upper row of grapes with U and the lower row with
V , as shown, then reading from left to right yields the truncation of W obtained by
deleting the initial UV .
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is obtained by cancelling the vertical 1–handle with the last vanishing cycle, as
shown in Figure 2.3.

0

all
−1’s

0

(a) The handlebody NV n (b) Reduced form RV n

Figure 2.3

We now return to the proof of the theorem. For the necklace fiber In , the
obvious handleslides of the right-hand loop of the toral 2–handle in RV n (Figure
2.3b) over the grapes yields the picture for the neighborhood of In given in Table
1. For the cusp, the reduced form RUV (shown in Figure 2.4a) is exactly the 0–
framed trefoil. For fibers of type III and IV, handleslides of the toral 2–handle
in RUV U and R(UV )2 are indicated in Figure 2.4, and an isotopy in each case
yields the corresponding picture in the table.

0

(a) II (b) III (c) IV

Figure 2.4

This completes the proof of Theorem 1.

Fibers of type I*–IV* (Table 1*)

For the singular fibers of ∗–type, any pair of components intersect transversely
in at most one point and there are no “cycles” of components. Thus it is custom-
ary to represent these fibers by the dual tree with a vertex for each component
Ci and an edge joining any two vertices whose associated components intersect.
The multiplicities mi of the components, which are often greater than one, are
recorded as weights on the vertices of the tree. Note that the mi are uniquely
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determined by the equations
∑

imiCi · Cj = 0 since
∑

imiCi is homologous
to a regular fiber which is disjoint from Cj ; this translates into the condition
that the weight of each vertex is half the sum of the weights of its neighboring
vertices.

Regular neighborhoods of these fibers are the associated plumbings of the cotan-
gent disk bundle of S2 (see section 3 for explicit models which explain why
these plumbings appear) and can all (with the exception of I∗0 ) be represented
by grapes as in section 1, in fact in a variety of ways. We choose one, and
record it in Table 1* along with the associated weighted tree and monodromy.

type weighted tree grapes monodromy

I∗0 rr rrr��@@1

1

1

12
gg ggg (UV )3 = −I

I∗n (n > 0) rr rrr rr rp p p
�
@

@
�

1

1

1

1
2 2 2 2

g gg g��p p p ��g g (UV )3V n = −V n

II* r r r r r r r rr2 4 6 5 4 3 2 1

3

ggggggggg (UV )5 = (UV )−1

III* r r r r r r rr1 12 23 34

2

gggggggg (UV )4U = (UV U)−1

IV*
r r r r rrr
1 12 23

2

1

ggggggg (UV )4 = (UV UV )−1

Table 1*: Singular fibers of type I*–IV*

The reader should note the inverse relation between the monodromies of each
fiber of type II–IV and its starred counterpart, which provides one explanation
for their common label. This implies that neighborhoods of dual fibers (ie, II
and II*, III and III*, or IV and IV*) can be identified along their boundaries
to form a (closed) elliptic surface. Indeed one obtains in this way various
non-generic projections of the rational elliptic surface E(1), diffeomorphic to
CP 2#9CP 2 , whose generic projection has twelve fishtails (see eg [7, section 1]).

We now state the analogue of Theorem 1.
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Theorem 1∗ A regular neighborhood of a singular fiber of type I∗n , II*, III* or
IV* is diffeomorphic to N(UV )3V n , N(UV )5 , N(UV )4U or N(UV )4 , respectively.

Proof Proceeding as in the proof of Theorem 1, consider the handleslides of
the toral 2–handle over the grapes in the reduced forms, as shown in Figure
2.5.

(a) I∗0 (b) I∗n , n > 0

(c) II* or III* (d) IV*

Figure 2.5

After an isotopy, the toral 2–handle appears as in Figure 2.6, labelled with a
T ; note that its framing is now −2. With the exception of I∗0 , the grapes are
written in the usual hexagonally packed notation.

We should remark that one is guided in discovering the slides in Figure 2.5
by the multiplicities of the components of the singular fibers, which determine
the number of times the toral handle must slide over each grape to achieve the
simple pattern in Figure 2.6. However, one must still be very careful in choosing
where to perform the slide in order to avoid knotting and linking.

The argument is now completed by a sequence of slips. For singular fibers of
type I* (Figure 2.6a,b) a single slip of grape A over grape B does the job,
recovering the handlebodies given in Table 1*. For types II*–IV*, the sequence
of slips shown in Figure 2.7 will give the clusters of grapes given in the table.
Note that if T links only one of the grapes, then that grape can be slipped over
others while carrying T along for the ride.

This completes the proof of Theorem 1*.
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T

A

B

A

B

T

(a) I∗0 (b) I∗n , n > 0

T
T

(c) II* or III* (d) IV*

Figure 2.6

T

−→
T

−→
T

−→ T

(a) Slips for II*

T

−→
T

−→

T

(b) Slips for III*

T

−→
T

−→

T

(c) Slips for IV*

Figure 2.7

3 Gromov’s compactness theorem

In this section we state Gromov’s compactness theorem for pseudo-holomorphic
curves [6], and then show how this theorem is richly illustrated by the conver-
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gence of a sequence of regular fibers to a singular fiber in an elliptic surface.

Pseudo-holomorphic curves and cusp curves

A pseudo-holomorphic curve in an almost complex manifold V is a smooth map
f : S → V of a Riemann surface S into V whose differential at each point is
complex linear. This means df ◦ j = J ◦ df , where J is the almost complex
structure on V (a bundle map on τV with J2 = −I on each fiber) and j is the
(almost) complex structure on S .† We also write

f : (S, j)→ V

to highlight the complex structure on S , which may vary; the almost complex
structure on V is assumed fixed.

Cusp curves are generalizations of pseudo-holomorphic curves in which one
allows the domain to be a singular Riemann surface S̄ , obtained by crushing
each component Ci of a smoothly embedded 1–manifold C in S to a point
pi . Each singular point pi is to be viewed as a transverse double point of S̄
with distinct complex structures on the two intersecting sheets. To make this
precise, consider (following Hummel [8]) the smooth surface Ŝ obtained from
S − C by one-point compactifying each end separately, and let α : Ŝ → S be
the natural projection. A complex structure j̄ on S̄ is by definition a complex
structure ĵ on Ŝ . The pair (S̄, j̄) is then called a singular Riemann surface,
and a map

f̄ : (S̄, j̄)→ V

is called a cusp curve if f̂ = f̄ ◦ α : (Ŝ, ĵ) → V is pseudo-holomorphic. This
setup is illustrated in Figure 3.1. Note that because of dimension limitations
a tangency has been drawn at the singular points pi , but these should be
thought of as transverse intersections; indeed f̄ can map these to transverse
double points as for example occur in the core of a plumbing. Examples of cusp
curves are given below.

We also need the notion of a deformation of S onto S̄ , which by definition
is any continuous map d : S → S̄ which sends each Ci to pi , and S − ∪Ci
diffeomorphically onto S̄ − ∪pi .

Gromov’s compactness theorem

Let fk : (S, jk) → V (for k = 1, 2, . . . ) be a sequence of pseudo-holomorphic
curves. Suppose that V has a Hermitian metric and that there is a uniform
†The complex structure on S is determined by j , since almost complex structures

are integrable in complex dimension 1.
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C

C

S Ŝ S

V

α

f ff̂

p

p

–

–

Figure 3.1

bound for the areas of the images fk(S). (The last condition is automatic if V
is symplectic and all fk(S) belong to the same homology class [8, page 82].)

Then Gromov’s compactness theorem states that some subsequence of fk weakly
converges to a cusp curve f̄ : (S̄, j̄)→ V , where weakly converges means (for k
now indexing the subsequence):

(1) there exist deformations dk : S → S̄ such that the complex structures
(d−1
k )∗jk on S̄ minus the singular points converge in the C∞ topology to

j̄ away from the singular points;

(2) fk ◦ d−1
k converges in C∞ and uniformly to f̄ away from the singular

points;

(3) the areas of the fk(S) converge to the “area” of f̄(S̄) ( = area of f̂(Ŝ)).

Remarks

• If the complex structures jk are all identical, then the curves Ci above
must be null-homotopic and thus bound disks in S (see section 3 in Chap-
ter V of [8]). The standard example is given by the sequence of pseudo-
holomorphic curves fk : S2 → S2 × S2 defined by fk(z) = (z, 1/(k2z))
which converges to the two curves S2× 0∪ 0× S2 . This process is called
bubbling off because of the appearance of the extra 2–sphere 0 × S2 . A
sequence of circles that pinch to (0, 0) is Ck = {z : |z| = 1/k}.

• When the complex structures jk are not identical, then we may assume
that they determine hyperbolic structures (taking out three points if S =
S2 or one point if S = T 2 ) and then S̄ is the limit in the sense of
degeneration of hyperbolic structures. This will be the case with the
fishtail singularities below.
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• That the deformations dk are necessary can be seen by considering the
case S = V = T 2 with fk : T 2 → T 2 equal to the kth power of a Dehn
twist around a meridian. This sequence weakly converges to the identity
if we take dk = fk , but has no weakly convergent subsequence if the dk
are independent of k .

Examples

Our collection of examples arise from the fact that a sequence of regular fibers
in an elliptic surface which converge to a singular fiber form an illustration of
Gromov’s Theorem.

To study this convergence, it is useful to have explicit models for the projection
of the elliptic surface near the singular fibers. In particular, neighborhoods of
the singular fibers with finite monodromy — namely those of type I∗0 , II, II*, III,
III*, IV and IV* — can be obtained by taking the quotient of T 2×B2 by a finite
group action followed by resolving singular points and, perhaps, blowing down.
Since the finite group action preserves a natural complex structure on T 2 , it
follows that all regular fibers in these neighborhoods have the same complex
structure, so the circles that are pinched in the compactness theorem are all
null-homotopic. Thus in these cases, only bubbling off occurs. In the other
cases — namely In and I∗n for b ≥ 1 — the monodromy is infinite, and the
complex structure differs from fiber to fiber. Thus pinching of essential circles
is allowed, and in fact necessary in these cases.

We now discuss each of the different types of singular fibers.

Type I A neighborhood of the fishtail I1 is obtained from T 2×B2 by adding
a 2–handle to a vanishing cycle, for example a meridian of the torus. This
indicates that there is no bubbling off, and that, after removing a point from
the torus to make it hyperbolic, a shortest geodesic representing the meridian
shrinks (neck stretching) to a point in the limit. Near this point, using local
coordinates (z,w), the projection to S2 is given by the product zw and the
preimage of zero is the two axes. Nearby the preimage is zw = ε which is an
annulus. Note that the point that was removed to get a hyperbolic structure
turns out to be a removable singularity, that is, the pseudo-holomorphic map
on the punctured torus extends to the torus, and this is true in the limit.

For In with n > 1, there are n parallel vanishing cycles, so we remove n points
from T 2 , interspersed so that the n meridians are not homotopic. Then these
meridians shrink as in the case of I1 , and we get a necklace of n spheres in the
limit. Note that these spheres have multiplicity one, so their sum is homologous

Robion Kirby and Paul Melvin

Geometry and Topology Monographs, Volume 2 (1999)

250



to a regular fiber and hence has square zero. This implies that each 2–sphere
has self-intersection −2.

Type I* First consider the case I∗0 . The monodromy is of finite order, namely
two, so we begin with a simple Z2–action. View the torus as the unit square
with opposite sides identified, or equivalently the quotient of C by the lattice
〈1, i〉 (with the induced complex structure). Let σ2 be the involution on T 2

which rotates the square (or C) by π (Figure 3.2a). Clearly the quotient
X = T 2/σ2 is a 2–sphere, and the projection T 2 → X is a 2–fold cover branched
over four points corresponding to the center a and vertex b of the square, and
the two pairs c and c′ of midpoints on opposite edges.

ac'
1

σ6

b'

ζ

c ''

b
c

ac

b c'

1

i
σ2

(a) (b)

Figure 3.2: Automorphisms of T 2

Set E = T 2×B2/σ2× τ2 and D = B2/τ2
∼= B2 , where τr is the rotation of B2

by 2π/r . Then the natural projection E → D has a singular fiber over 0 ∈ D ,
namely X , and is a T 2–bundle over D − 0 with monodromy −I . The space
E is a 4–manifold except at the four branch points on X which are locally
cones on RP 3 . These singular points can be resolved by removing the open
cones on RP 3 and gluing in cotangent disk bundles of S2 with cores A, B, C
and D . This gives a neighborhood N(I∗0) of the singular fiber I∗0 , as shown
in Figure 3.3. Note that 2X + A + B + C + D is homologous to a regular
fiber and hence has square zero, which implies that X · X = −2. The second
picture is the standard (dual) plumbing diagram, where the vertex weights are
the multiplicities.

Now the picture for Gromov’s compactness theorem is clear (Figure 3.4). The
torus bubbles off four 2–spheres at the branch points (labelled a–d) and then
double covers X while the four bubbles hit A–D with multiplicity one. (Note
that the complex structures on all the torus fibers are the same since the group
action is holomorphic, and so we expect to see only bubbling off.) The picture
is drawn so that the branched covering transformation σ2 corresponds to a
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A

B

C

D

-2

-2

-2

-2

-2

X

= 2

1

1 1

1

Figure 3.3: N(I∗0)

π–rotation about the vertical axis through the branched points. As above,
tangencies in the picture of I∗0 correspond to transverse double points in N(I∗0).

f

a

b
c

d

a

b

c

d

bubbling off

A

B

C

D
Xx

–

S = T 2 S̄ I∗0

Figure 3.4: Degeneration to I∗0

For I∗n with n > 0, as in the cases In above, the monodromy is of infinite order.
Nonetheless, this case is related to I∗0 in that we perform the same construction
and in addition shrink n pairs of meridional circles, each pair having the same
image under the double covering map. We get S̄ as drawn in Figure 3.5, and
it is mapped onto the singular fiber in the obvious way: each sphere labelled
with a lower case letter maps one-to-one onto the sphere with the corresponding
upper case letter and subscript, with the exception of x1 and xn which map
by 2–fold covers to X1 and Xn .

f

a

b

x
x '

c

d
xn

xn− xn−

a

b

c

d

A

B

C

D

X

pinching meridians

and

bubbling off

X

Xn

x

Xn−'
–

S = T 2 S̄ I∗n

Figure 3.5: Degeneration to I∗n
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Type II View the torus as the hexagon with opposite sides identified, or
equivalently the quotient C/〈1, ζ〉 where ζ = exp(2πi/6). Let σ6 be the au-
tomorphism of T 2 of order 6 which rotates the hexagon (or C) by 2π/6. The
generic orbit of this action has six points. However, the center a of the hexagon
is a fixed point with stabilizer Z6 , the vertices form an orbit with two points
b, b′ and stabilizer Z3 , and the midpoints of the sides form an orbit with three
points c, c′, c′′ and stabilizer Z2 (see Figure 3.2b). The quotient X = T 2/σ6

is again a 2–sphere, and the projection T 2 → X is a 6–fold (irregular) cover
branched over three points with branching indices 6, 3, and 2.

Set E = T 2×B2/σ6×τ6 and D = B2/τ6
∼= B2 . The projection E → D has the

singular 2–sphere X over 0 ∈ D , and is a bundle over D− 0 with monodromy( 1 1
−1 0

)
(= UV for U and V as in section 2). As before, E is a manifold except

at the three branch points on X which are locally cones on L(6, 1), L(3, 1),
and L(2, 1). These singularities can be resolved by cutting out the cones and
gluing in the disk bundles over S2 of Euler class −6, −3, and −2 respectively.
The torus fiber is homologous to 6X+A+2B+3C , and setting its square equal
to zero and solving gives X · X = −1. This gives the first picture in Figure
3.6, which is followed by a sequence of blowdowns to produce the neighborhood
N(II) of the cusp.

A

B

C

-6

-3

-2

-1

X

AB

C

-2-5

-1

A B

-4 -1 -4
-1

0

A

B

A

=

Figure 3.6: Blowing down to N(II)

In the compactness theorem, the torus fiber bubbles off a 2–sphere at each of
the six branch points a, b, b′, c, c′, c′′ . The torus then 6–fold covers X while
bubble a hits A, the two bubbles b, b′ hit B , and the three bubbles c, c′, c′′

hit C . Finally this map is composed with the sequence of three blowdowns to
give a degeneration to the cusp. Since the blowdowns burst all but the first
bubble, this amounts to one bubble which maps onto the cusp while the torus
is mapped (by the constant holomorphic map) to the singular point of the cusp
(Figure 3.7).

Type II* We use the same construction for E as in the previous case for II,
but the orientation is changed. This is because the rational elliptic surface E(1)
equals II and II* glued along their common boundary. So E is now desingular-
ized by removing the cones on L(6, 5), L(3, 2), and L(2, 1) and replacing them
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f

a
a

bubbling off

A

X

x

–

S = T 2 S̄ II

Figure 3.7: Degeneration to II

by linear plumbings (of disk bundles of Euler class −2) of length 5, 2 and 1
respectively (Figure 3.8). This is N (II*); note that X ·X = −2 by the usual
calculation.

-2

-2 -2 -2

-2
-2-2

-2
-2

21 4
3

4

2

3 5 6
=

Figure 3.8: N(II*)

For the compactness theorem, the torus bubbles off a linear graph of five bubbles
at the fixed point a, a line of two bubbles at each of the two points b, b′ with
stabilizer Z3 , and one bubble at each of the three points c, c′, c′′ with stabilizer
Z2 (see Figure 3.9). Then the torus 6–fold covers X ; each of the five bubbles
in the linear graph 5–fold cover (with two branch points), 4–fold cover, 3–
fold cover, 2–fold cover (still with two branch points where they intersect their
neighbors), and 1–fold cover, the long arm of II*; the pair of two bubbles each
will 2–fold cover and 1–fold cover, providing multiplicities 4 and 2 since there
are two pairs; the three single bubbles all map onto the short arm of II* giving
multiplicity 3. Note that the labels for the bubbles have been chosen so that
bubble ai maps to Ai by an i–fold branched covering, and similarly for the b
and c–bubbles.

We can now abbreviate the description for III and IV and their duals for the
arguments are similar to II and II* with no new techniques.

Type III Again consider the torus as the square with opposite sides identified
and let σ4 be rotation by π/2. This has fixed points at the center of the square
and at the vertex, and an orbit of two points equal to the midpoints of the
sides with stabilizer Z2 . We resolve the quotient T 2 × B2/σ4 × τ4 by cutting
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''
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''

'
''

S = T 2 S̄ II*

Figure 3.9: Degeneration to II*

out cones and gluing in disk bundles, and a sequence of blowdowns gives the
neighborhood N(III) shown in Figure 3.10.

A

B

C

-4

-4

-2

-1

X

AB

C

-3-3

-1

A B

-2 -2

Figure 3.10: Blowing down to N(III)

Now, as in II, the torus bubbles off 2–spheres which map and then in some
cases blow down, to give a composition in which two bubbles survive and map
onto the two curves in III and the torus maps to the point of tangency (Figure
3.11).

f
A X B

a
a

bubbling off

xb
b

–

S = T 2 S̄ III

Figure 3.11: Degeneration to III

Type III* As with II*, we reverse orientation, cut out the cones and replace
them with linear plumbings to get N (III*) (Figure 3.12).

We then get a degeneration of the torus fiber very similar to II*, using the torus
as a 4–fold branched cover of S2 with three branch points of indices 4, 4, and
2 (Figure 3.13).
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Figure 3.12: N(III*)
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C

X

B

'

–

'

S = T 2 S̄ III*

Figure 3.13: Degeneration to III*

Type IV Here we define a Z3 action on the torus by simply squaring the
action given in II. The center and any two adjacent vertices of the hexagon
represent the three fixed points a, b and c ( = b′ in Figure 3.2b). Proceeding
as before, we get the singular fiber drawn in Figure 3.14. Blowing down once
gives N (IV).

−3

−3

−3

−1
A

B

C

X

−2

AB

C

−2

−2

Figure 3.14: Blowing down to N(IV)

The torus now bubbles off three 2–spheres which hit the three curves in IV
while the torus maps to the triple point (Figure 3.15).

Type IV* Arguments similar to those above give N (IV*) (Figure 3.16) as
well as the degeneration of the torus fiber (Figure 3.17).
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Figure 3.15: Degeneration to IV
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Figure 3.16: N(IV*)
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Figure 3.17: Degeneration to IV*
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