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Order 2 Algebraically Slice Knots

Charles Livingston

Abstract The concordance group of algebraically slice knots is the sub-
group of the classical knot concordance group formed by algebraically
slice knots. Results of Casson and Gordon and of Jiang showed that this
group contains in infinitely generated free (abelian) subgroup. Here it is
shown that the concordance group of algebraically slice knots also contain
elements of finite order; in fact it contains an infinite subgroup generated
by elements of order 2.
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1 Introduction

The classical knot concordance group, C , was defined by Fox [5] in 1962. The
work of Fox and Milnor [6], along with that of Murasugi [18] and Levine [14, 15],
revealed fundamental aspects of the structure of C . Since then there has been
tremendous progress in 3– and 4–dimensional geometric topology, yet nothing
more is now known about the underlying group structure of C than was known
in 1969. In this paper we will describe new and unexpected classes of order 2
in C .

What is known about C is quickly summarized. It is a countable abelian group.
According to [15] there is a surjective homomorphism of φ: C → Z∞⊕Z∞2 ⊕Z∞4 .
The results of [6] quickly yield an infinite set of elements of order 2 in C , all of
which are mapped to elements of order 2 by φ.

The results just stated, and their algebraic consequences, present all that is
known concerning the purely algebraic structure of C in either the smooth or
topological locally flat category. For instance, one can conclude that elements of
order 2 detected by homomorphisms to Z2 , such as the Fox–Milnor examples,
are not evenly divisible, but it remains possible that any given countable abelian
group is a subgroup of C , including such groups as the infinite direct sum of
copies of Q and Q/Z. Most succinctly, we know that C is isomorphic to a
direct sum Z∞⊕Z∞2 ⊕G, but all that is known about G is that it is countable
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and abelian. In particular, Fox and Milnor’s original question on the existence
of torsion of order other than 2 remains completely open. Other basic questions
regarding the structure of C appear in [10, 12, 13].

More is known about the pair (C, φ). Casson and Gordon [2, 3] showed that the
kernel of Levine’s homomorphism, A (the concordance group of algebraically
slice knots), is nontrivial; Jiang showed that Casson and Gordon’s examples
provide an infinitely generated free subgroup of A.

(We should observe here that Alexander polynomial 1 knots are known to rep-
resent classes in A. Freedman’s work [7] implies that all such knots are topo-
logically locally flat slice. Donaldson’s work [4] implies that some such knots
are not smoothly slice. Needless to say, the accomplishments of both [7] and
[4] have been revolutionary in the study of 4–manifolds. However, it is perhaps
surprising that neither has revealed any further group theoretic structure of
either C or the pair (C, φ).)

It is becoming clear that any unexpected complexity in C will appear in A,
that is, among algebraically slice knots: if any odd torsion exist, it obviously
must be in A, and recent work [17] showing that infinite collections of knots
that map to elements of order 4 under Levine’s homomophism are of infinite
order in C supports the conjecture that any 4–torsion must also be in A.

In this paper we construct an infinite family of order 2 elements in A. These
are the first such examples, and the first examples of any type showing that A
has any structure beyond that demonstrated by Jiang. Our methods apply in
the smooth setting, as did the original work of Casson and Gordon, but work
of Freedman [8] shows that they apply in the topological locally flat category
also.

Thanks are due to Larry Taylor for pointing out the particular problem being
addressed here, and to Zhenghan Wang for observing a simplification of our
original construction.

2 Basic building blocks

The basic idea of the construction of algebraically slice order 2 knots is to take
the connected sums of pairs of algebraically concordant negative amphicheiral
knots. If the knots aren’t concordant then the connected sum will be of order
2 in A. The trick is to find an infinite collection of such pairs so that it is
possible to prove that they have the desired properties. Our examples, Jn , will
be built as connected sums of pairs of knots KT that we first examine. For an
arbitrary knot, T , consider the knot KT illustrated in Figure 1 along with a
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surgery diagram of MT , the 2–fold branched cover of S3 branched over KT ,
drawn using the algorithm of Akbulut and Kirby [1]. The illustration indicates
that KT bounds a genus one Seifert surface so that one band in the surface has
the knot T tied in it and the other band has the mirror image of T , −T , tied
in it. (More precisely, in Figure 1 the tangle −T is obtained from the tangle T
by changing all the crossings.) The bands are twisted so that KT has Seifert
form (

1 1
0 −1

)
.

T -T T -T

T -T

2 -2

m1 m2

Figure 1

Lemma 2.1 The knot KT is of order 2 in the knot concordance group, C .

Proof Changing all the crossings in KT is easily seen to have the effect of
simply reversing its orientation; that is, KT is negative amphicheiral and is
hence of order 1 or 2 in C . (Stated differently, KT = −KT , so KT is of order
at most 2.)

The Alexander polynomial of KT is t2 − 3t+ 1, which is irreducible, since the
discriminant, 5, is not a perfect square. According to [6] this obstructs a knot
from being slice. It follows that the order of KT is exactly 2.

We will need to understand the 2–fold branched cover of S3 , MT .

Lemma 2.2 H1(MT ) = Z5 and is generated by the meridian labeled m1 in
Figure 1. Any homomorphism φ: H1(MT ) → Z5 taking value a on m1 takes
value 3a on m2 .

Proof A relation matrix for the homology H1(MT ) with respect to m1 and
m2 , computed using its surgery presentation, is given by the matrix(

2 1
1 −2

)
.
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This matrix presents the cyclic group Z5 . The relations imply that m2 =
−2m1 , or m2 = 3m1 .

Our final calculation regarding KT is of its Casson–Gordon invariants. Asso-
ciated to any representation χ: H1(MT ) → Z5 there is a rational invariant,
denoted σ1(τ(KT , χ)) in [2]. We do not need the exact value of this invariant,
but only its dependence on T . Let K0 be the Figure 8 knot, obtained when T
is trivial. Work of Litherland [16] on computing τ for satellite knots yields the
desired result, Lemma 2.3 below. Here, σp , p ∈ Q/Z, denotes the Tristram–
Levine signature of a knot [19], given by the signature of the hermetian matrix

(1− ep2πi)V + (1− e−p2πi)V t,

where V denotes the Seifert matrix of the knot.

Lemma 2.3 If χa: H1(MT )→ Z5 takes value a on m1 then

σ1(τ(KT , χa)) = σ1(τ(K0, χ)) + 2σa/5(T ) + 2σ3a/5(−T ).

Proof The knot KT is a satellite knot with companion T , winding number
0, and with orbit K ′−T , the knot formed from KT by removing the knot T in
the left band. Applying σ1 to the equation given as Corollary 2 in [16] gives:

σ1(τ(KT , χa)) = σ1(τ(K ′−T , χa)) + 2σa/5(T ).

Repeating this companionship argument to remove the −T from the band in
K ′−T yields the desired result. The second signature is evaluated at 3a/5 be-
cause, according to Lemma 2.2, χ takes that value on m2 . (In Litherland’s
notation, χ(xi) = 3a, viewed as an element of Z5 .)

Remark We should remind the reader here that both the Casson–Gordon
invariant and the Tristram–Levine signature functions are symmetric under a
sign change; that is, σ1(τ(KT , χa)) = σ1(τ(KT , χ−a)) and σp(T ) = σ−p(T ).

Our ultimate examples, Ji , will be of the form K0#KTi for particular Ti which
yield nontrivial signature values in the formula of Lemma 2.3. Explicit examples
will be obtained by letting Ti be connected sums of (2, 7)–torus knots, so we
conclude this section with the following computation.

Lemma 2.4 For the T the (2, 7)–torus knot and a 6= 0 mod 5, σa/5(T ) +
σ3a/5(−T ) = 4 or -4 depending on whether a = ±2 mod 5 or a = ±1 mod 5.
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Proof The signature function of T , σp , is given (by definition) as the signature
of the form (1− ep2πi)V + (1− e−p2πi)V t where V is a Seifert matrix for T :

1 1 0 0 0 0
0 1 1 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 0 1 1
0 0 0 0 0 1

 .

The signature of this form is easily computed to be:

σp(T ) =


0, if 0 < p < 1/14)
2, if 1/14 < p < 3/14
4, if 3/14 < p < 5/14
6, if 5/14 < p < 7/14.

The result now follows, since one of the signatures of T that appears will be
either 2 or 6 while the signature of −T that appears will be either −6 or −2,
respectively.

3 Infinite 2–torsion among algebraically slice knots

Definition Let T represent the (2, 7)–torus knot, let Ti = #iT , let Ki = KTi

and let Ji = K0#Ki .

If i = 0 then #iT denotes the unknot. It follows that J0 is the connected sum
of the Figure 8 knot with itself and is hence slice. Also note that the definition
makes sense for i < 0, letting #iT denote the connected sum of −i copies of
the (2,−7)–torus knots in that case.

Lemma 3.1 Each knot, Ji , is algebraically slice and of order at most two in
C (and hence also in A).

Proof Since each Ki is of order two, the connected sum of two of them is of
order 1 or 2. Also, since all the Ki have the same Seifert form, the Seifert form
of an order two knot, the connected sum of two of them is algebraically slice.

Theorem 3.2 For i 6= j , the knots Ji and Jj are not concordant.
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Proof For arbitrary i and j , if Ji and Jj are concordant then Ji#Jj is slice.
Expanding, we have that K0#Ki#K0#Kj is slice. Since K0 is of order 2, this
implies that Ki#Kj is slice.

The 2–fold branched cover of S3 branched over Ki#Kj has first homology
splitting naturally as Z5 ⊕ Z5 . There is a Q/Z valued nonsingular symmetric
linking form on this homology group. Since the covering space is a connected
sum, the linking form splits along the given direct sum decomposition. Further-
more, the linking form takes the same value on the merdians m1 in each of the
two individual branched covering spaces, since the surgery matrices determine
the linking form and are the same for both covering spaces.

According to Casson and Gordon, if Ki#Kj is slice, there is some vector v ∈
Z5⊕Z5 with self linking 0 so that for any Z5 valued character that vanishes on
v the associated Casson–Gordon invariant must vanish. With the given linking
form, v must be a multiple of either (2, 1) or (2,−1), and hence we can consider
the χ that takes value 1 on the m1 generator of H1(MTi) and value ±2 on
the m1 generator of H1(MTj ).

Applying Lemma 2.3 along with the additivity of Casson–Gordon invariants [9]
shows that if Ki#Kj is slice then

σ1(τ(MT0 , χ1)) + 2σ1/5(Ti) + 2σ2/5(−Ti) + σ1(τ(MT0 , χ2))

+ 2σ2/5(Tj) + 2σ1/5(−Tj) = 0.

Consider first the case that i = 0 = j . In this case Ki#Kj is slice, so the above
formula yields that

σ1(τ(MT0 , χ1)) + σ1(τ(MT0 , χ2)) = 0.

Hence we can simplify the equation to find that if Ki#Kj is slice, then

2σ1/5(Ti) + 2σ2/5(−Ti) + 2σ2/5(Tj) + 2σ1/5(−Tj) = 0.

From Lemma 2.4 this simplifies to be 8(j − i) = 0. Clearly, if i 6= j this yields
a contradiction.

Corollary 3.3 A contains a subgroup isomorphic to Z∞2 .
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