
Geometry & Topology Monographs
Volume 2: Proceedings of the Kirbyfest
Pages 473–488

A polynomial invariant of diffeomorphisms
of 4–manifolds

Daniel Ruberman

Abstract We use a 1–parameter version of gauge theory to investigate the
topology of the diffeomorphism group of 4–manifolds. A polynomial invari-
ant, analogous to the Donaldson polynomial, is defined, and is used to show
that the diffeomorphism group of certain simply-connected 4–manifolds has
infinitely generated π0 .
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1 Introduction

The issue of whether topological and smooth isotopy coincide for diffeomor-
phisms of 4–manifolds was recently resolved in the author’s paper [16]. That
work defined an invariant, roughly analogous to the degree–0 part of the Don-
aldson invariant of a 4–manifold, which serves as an effective obstruction to
smooth isotopy. In the current paper, we will extend the definition of the
invariant to give a polynomial-type invariant, which is analogous to the full
Donaldson polynomial. As an application of the polynomial invariant, we will
show that π0 of the diffeomorphism group of certain 4–manifolds is infinitely
generated.

It is worth stating this last result somewhat more precisely. For any compact 4–
manifold X , one can consider its (orientation-preserving) diffeomorphism group
Diff +(X). Taking the induced map on homology defines a homomorphism from
Diff +(X) to the automorphism group of the intersection form of X ; in many
cases this map is a surjection. Let us denote by Diff H(X) ⊂ Diff +(X) the
kernel of this map.
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Theorem A Let Zn (n ≥ 2) denote the connected sum

#knCP2#lnCP
2

where kn = 2n and ln = 10n + 1. Then there is a homomorphism

D : π0(Diff H(Zn))→ R[[H2(Zn)∗]]

with infinitely generated image.

The numbers appearing in the definition of Zn are less obscure than might
appear at first glance; the manifold Zn is diffeomorphic to the elliptic surface
E(n), connected sum with CP2 and two copies of CP

2 . As will become ev-
ident in the proof, the conclusion that the image of D is infinitely generated
derives from the fact that E(n) supports infinitely many smooth structures
which become diffeomorphic upon connected-sum with CP2 .

Acknowledgement The author was partially supported by NSF Grant 4-
50645.

2 Invariants of diffeomorphisms

Let us start with a brief review of the definition of the 0–degree invariant
discussed in [16]. The conditions discussed below having to do with orientations
are used in defining the invariant as an element of Z, rather than merely modulo
2. The data necessary for the definition are:

(1) A smooth, simply-connected, oriented, homology-oriented 4–manifold Y
with b2+ > 2.

(2) An SO(3) bundle P → Y such that w2(P ) 6= 0, and with dim(M(P )) =
−1. (Here M(P ) is the moduli space of anti-self-dual connections on P .)

(3) An integral lift c ∈ H2(Y ; Z) of w2(P ).

(4) An orientation-preserving diffeomorphism f of Y such that f∗(P ) ∼= P ,
and such that the quantity α(f)β(f) = 1.

The product αβ ∈ {±1} in the last item indicates, roughly, whether f preserves
or reverses the orientation of the moduli space. The numbers α and β are
themselves defined as follows:

• Composing a projection of H2(Y ; R) onto H2
+(Y ) with f∗ defines an

isomorphism of H2
+(Y ) with itself; the sign of the determinant (which is

independent of all choices) determines the spinor norm, α(f) ∈ {±1}.
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• The condition that f∗P ∼= P implies that f∗w2 = w2 , or in other words
that f∗c− c is divisible by 2 in H2(Y ). One thereby can define β(f) =

(−1)( f
∗c−c

2
)2

.

Under these conditions, for a generic metric g ∈ Met(Y ), the moduli space
M(P ; g0) (connections which are g0–anti-self-dual) is empty. If one considers
instead a generic path gt ∈ Met(Y ) of metrics from g0 to g1 = f∗g0 , then one
can construct the 1–parameter moduli space

M̃(P ; {gt}) =
⋃

t∈[0,1]

M(P ; gt).

The count of points, with signs, in this 0–dimensional moduli space defines an
invariant D(f) (or DY (f ;P ) if one needs to keep track of the manifold and/or
the bundle).

The independence of D(f) from the choice of initial metric g0 ∈ Met(Y ) and
of the choice of generic path are proved using a 2–parameter moduli space

˜̃M =
⋃

(s,t)∈I×I
M(P,Ks,t).

Here Ks,t is a 2–parameter family of metrics giving a homotopy from one path
of metrics gs = Ks,0 to ks = Ks,1 . The proof in each case uses a choice of
‘boundary conditions’ for the endpoints of the homotopy. A fundamental point
is that the parameter space Met(Y ) is simply connected, so that an arbitrary
assignment of metrics on the boundary of the (s, t) square I× I can be filled in
smoothly. So for instance, to verify independence from the choice of path, use a
2–parameter family in which the endpoints are fixed: K0,t = g0 and K1,t = g1 .
To verify that the initial metrics g0 and k0 give the same value for D(f), use an
arbitrary path from g0 to k0 for K0,t with the proviso that the right endpoints
K1,t are equal to f∗K0,t .

In both arguments, the principle used is that on the one hand, the boundary of
the 2–parameter moduli space ˜̃M, which is a compact 1–manifold, consists of
algebraically 0 points. On the other hand, the boundary is also the union of the
1–parameter moduli spaces associated to the four sides of the (s, t) square. In
the first case, the right and left sides of the square are fixed at generic metrics
defining empty moduli spaces, so the boundary is the difference between the
invariant computed with the two different paths on the top and bottom. In the
second case, one must account for the additional part of the boundary, given
by the difference between the (algebraic) count of points on the left and right
sides. However, the choice of boundary conditions takes care of this, because
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there is an isomorphism between M̃(P ;K0,t) and M̃(P ; f∗K0,t) and so the
contributions from the two sides cancel.

2.1 A polynomial invariant of diffeomorphisms

It is natural to try to extend D(f) to a polynomial in H0(Y )⊕H2(Y ), by consid-
ering an SU(2) or SO(3) bundle P for which the ASD moduli space M(P ) has
positive odd dimension, and cutting down by divisors. Recall that in the con-
struction of the usual Donaldson polynomial, the divisor associated to a surface
Σ in Y is defined in several steps. One first considers the space of irreducible
connections on Σ, together with the restriction map rΣ : B∗,Σ(Y ) → B∗(Σ).
Here B∗,Σ(Y ) consists of connections whose restriction to Σ is irreducible. An
important remark (cf [5, section 9.2.3]) is that for a generic surface Σ ⊂ Y , the
moduli space M(P ) is contained in B∗,Σ(Y ). There is a natural line bundle
L → B∗(Σ), and one chooses a section, which is then pulled back to B∗,Σ(Y ).
If these constructions are done with some care, then the zero-set of the pulled-
back section defines a divisor VΣ . Since we are only concerned with intersections
of VΣ with M(P ), we will follow the standard notational abuse and drop the
superscript Σ. A similar construction gives a codimension–4 submanifold Vx
of B∗(Y ) which represents the dual of µ of a point x ∈ Y .

Now these constructions depend on a number of choices, e.g. the specific rep-
resentative of the homology class [Σ], and the choice of section of LΣ . If the
‘space’ of possible choices were simply-connected, then one could incorporate
them into the parameter space Π, and proceed precisely as in the definitions
in Section 2 of [16]. The space of sections of LΣ is certainly contractible,
and hence simply-connected. One can in fact make sense of the space of 2–
cycles [1], and its fundamental group turns out to be precisely H3(Y ). For our
purposes, though, we do not need this remarkable fact, and will work directly
with the condition that H3(Y ) = 0. By Poincaré duality, this is equivalent to
assuming H1(Y ) = 0. For simplicity, we will in fact assume that π1(Y ) = 0.
Thus H1(Y ) = 0, which in turn is the condition needed to incorporate the
0–dimensional class.

We will initially define a polynomial D(f) of degree d, under one of two hy-
potheses. We assume that either w2(P ) 6= 0 , or that invariants are being
computed in the ‘strong’ stable range: d ≥ 2c2(P )+ 2. Either of these assump-
tions will ensure, via the standard counting argument of Donaldson theory, the
compactness of all of the low-dimensional moduli spaces which appear in the
definition. In Section 3, we will prove a blow-up formula, which will then be
used to define D(f) in all degrees.
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For a collection of homology classes [Σi] ∈ H2(Y ), represented by embedded
surfaces Σi , one could consider divisors VΣi , in sufficient numbers so that the
moduli space (⋃

t

M(P ; {gt})
)
∩
(⋂

i

VΣi

)
is 0–dimensional. (The 0–dimensional class could be included, in a similar
manner.) Let us write

D(P ; {gt}, VΣ1 , . . . , VΣd)

for the algebraic count of points in this intersection. D(P ; {gt}, VΣ1 , . . . , VΣd)
is readily seen to be independent of the choice path connecting g0 and f∗g0 , by
the same argument as outline above. However, the argument that this count
is independent of representatives of the divisors and of initial metric g0 breaks
down. To see this (and what to do about it) consider, as in the discussion above
two initial metrics g0 = K0,0 and k0 = K0,1 , with a generic path K0,t between
them. Following that construction, we take a 2–parameter family of metrics
Ks,t (with K1,t = f∗K0,t) and an associated 2–parameter moduli space ˜̃MYM .

Intersecting with the divisors VΣ gives a null-cobordism of ∂ ˜̃MYM . A priori,
f does not match up the right and left sides of this cobordism, as one would
need in order to get a cobordism between top and bottom.

Indeed, f induces an isomorphism between⋃
t

M(P ;K0,t) ∩
(⋂

i

VΣi

)
and

⋃
t

M(P ;K1,t) ∩
(⋂

i

f∗VΣi

)
(1)

where f∗VΣ is the inverse image of VΣ under the diffeomorphism f∗ : B(P )→
B(P ) induced by f . There is no good reason to expect that f∗VΣ = VΣ .
Among other things, f(Σ) might not even be homologous to Σ. In order to get
a diffeomorphism invariant, some restrictions are needed; here is one approach.

Let V (or V(f) if the diffeomorphism needs to be specified) be the subgroup of
H2(Y ) fixed by the action of f∗ ; the invariant will be a polynomial in H0(Y )⊕V .
Represent an element in V by a generic surface Σ in Y , and choose a generic
3–chain C giving a homology between Σ and f(Σ). (From a technical point of
view, it would perhaps be preferable to let C be the image of an oriented 3–
manifold via a smooth map to Y , but we will ignore this point for the moment.)
As in Donaldson’s original work [4], consider a line bundle LΣ → B∗(C) and a
section sΣ whose pull-back to B(Y ) defines the divisor VΣ . Using the action
of f , we get a section of Lf(Σ) , whose divisor is Vf(Σ) . Now LΣ and Lf(Σ) are
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equivalent when pulled back to B(C), and a choice of homotopy between their
corresponding sections gives a cobordism VC between VΣ and Vf(Σ) .

By analogy with D(P ; {gt}, VΣ1 , . . . , VΣd), we define, for any 3–chain C1 and
generic metric g , the invariant

D(P ; g, VC1 , VΣ2 , . . . , VΣd) = #
[
M(P ; g)

⋂
(VC1 ∩ VΣ2 · · · ∩ VΣd)

]
.

The term corresponding to the 3–chain can go in any slot, in place of the
corresponding VΣ .

Using the cobordisms VC , we can finally give the actual definition of a polyno-
mial invariant.

Definition 2.1 Let f : Y → Y be an orientation preserving diffeomorphism.
Assume that:

(1) H1(Y ) = 0.

(2) P is an SO(3) or SU(2) bundle such that f∗P ∼= P .

(3) w2(P ) 6= 0 or (if P is an SU(2) bundle) d ≥ 2c2(P ) + 2.

(4) α(f)β(f) = 1.

Let Σ1, . . . ,Σd be generic surfaces carrying homology classes in V = ker(f∗−1),
and suppose that −2p1(P )− 3(b+2 (Y ) + 1) = 2d− 1. Let C1, . . . , Cd be generic
3–chains in Y such that ∂Ci = f(Σi)− Σi . For a metric g0 on Y , let {gt} be
a smooth path such that g1 = f∗g0 . Define

DY (f ; Σ1, . . . ,Σn) =D(P ; {gt}, VΣ1 , . . . , VΣd)
+D(P ; g1, VC1 , VΣ2 , . . . , VΣd)
+D(P ; g1, Vf(Σ1), VC2 , . . . , VΣd)
...

+D(P ; g1, Vf(Σ1), Vf(Σ2), . . . , VCd).

(2)

The term ‘generic’ for a metric g means that the moduli space is smooth of the
expected dimension, with no reducibles. All surfaces Σi and 3–chains Cj , as
well as sections of associated line bundles (and homotopies of such) are to be in
general position, so the intersections with M(P ; g) is smooth of the expected
dimension as well. Without loss of generality, one can demand that the same
is true of intersections with divisors Vf(Σ) and Vf(C) as well.
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Remark This definition seems complicated, so some explanation may be help-
ful. The idea of the invariants under discussion is to use the moduli space
associated to a path in the space of choices of parameters used in defining an
ordinary invariant of a single 4–manifold. The parameter space involved in the
usual degree–d Donaldson invariant is roughly Met(Y )× (C2)d where C2 is the
space of 2–cycles in the relevant homology classes. The role of a path in the
kth factor of C2 is played by a 3–chain Ck . In these terms, the definition says
to take a ‘path’ from (g0,Σ1, . . . ,Σd) to (f∗g0, f(Σ1), . . . , f(Σd)) which is a
composition of paths, each having non-constant projection into one factor at a
time.

Theorem 2.2 Under hypotheses (1)–(4) in Definition 2.1, DY (f ; Σ1, . . . ,Σn)
does not depend on the choice of initial generic metric g0 and path gt , on the
choice of surfaces representing [Σi], or on the choice of 3–chains Ci .

Proof The independence of D(f) from choice (relative to the endpoints) of
the path gt is identical to that given before, because the only term which could
possibly change is the first. The independence from the initial point g0 is more
elaborate, as suggested by the discussion above. Let k0 be another generic
metric, and Ks,t a 2–parameter family of metrics with

• K0,t a generic path from g0 to k0 ;
• Ks,0 = a generic path from g0 to g1 = f∗g0 ;
• Ks,1 = a generic path from k0 to k1 = f∗k0 ;
• K1,t = f∗K0,t .

As before, we get a 2–parameter moduli space

˜̃M(P ; {Ks,t}) =

 ⋃
(s,t)∈I×I

M(P ;Ks,t)

⋂ (VΣ1 ∩ VΣ2 · · · ∩ VΣd) (3.0)

which is a compact oriented 1–manifold.

Treating the 3–chains Cj as parameters, in the spirit of the preceding remarks,
we consider the following collection of 2–parameter moduli spaces, which again
are 1–dimensional manifolds with boundary.

˜̃M(P ; {K1,t}, C1) = M̃(P ; {K1,t})
⋂

(VC1 ∩ VΣ2 · · · ∩ VΣd) (3.1)

˜̃M(P ; {K1,t}, C2) = M̃(P ; {K1,t})
⋂(

Vf(Σ1) ∩ VC2 · · · ∩ VΣd

)
(3.2)

...
...

...
...

˜̃M(P ; {K1,t}, Cd) = M̃(P ; {K1,t})
⋂(

Vf(Σ1) ∩ Vf(Σ2) · · · ∩ VCd
)

(3.d)
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The boundary of each of the 1–dimensional moduli spaces (3.0), (3.1), . . . , (3.d)
has algebraically 0 points. As discussed before, the boundary of each 2–
parameter moduli space can alternatively be described as the sum of the al-
gebraic counts of points in appropriate 1–parameter moduli spaces. This leads
to d+ 1 equations:

0 = D(P ; {ks}, VΣ1 , . . . , VΣd)−D(P ; {gs}, VΣ1 , . . . , VΣd) (4.0)
−D(P ; {K0,t}, VΣ1 , . . . , VΣd) +D(P ; {K1,t}, VΣ1 , . . . , VΣd)

0 = D(P ; k1, VC1 , VΣ2 , . . . , VΣd)−D(P ; g1, VC1 , VΣ2 , . . . , VΣd) (4.1)
−D(P ; {K1,t}, VΣ1 , VΣ2 , . . . , VΣd) +D(P ; {K1,t}, Vf(Σ1), VΣ2 , . . . , VΣd)

...
...

0 = D(P ; k1, Vf(Σ1), Vf(Σ2), . . . , VCd)−D(P ; g1, Vf(Σ1), Vf(Σ2), . . . , VCd) (4.d)

−D(P ; {K1,t}, Vf(Σ1), Vf(Σ2), . . . , VΣd) +D(P ; {K1,t}, Vf(Σ1), Vf(Σ2), . . . , Vf(Σd))

Adding these equations together, most of the terms cancel in pairs, leaving the
difference between the invariant calculated with the paths {ks} and {gs}, plus

D(P ; {K1,t}, Vf(Σ1), Vf(Σ2), . . . , Vf(Σd))−D(P ; {K0,t}, VΣ1 , . . . , VΣd).

However, the isomorphism (1), coupled with the orientation hypothesis that
α(f)β(f) = 1, means that the two terms are equal, and so the invariant doesn’t
depend on the choice of initial metric g0 .

The other choices of parameters involved in the definition of D(f) are: the
specific surface representing [Σi], the choice of section defining VΣi , the choice
of 3–chain Ci with ∂Ci = f(Σi)−Σi , and the section defining VCi . As remarked
earlier, the verification that, for fixed Σi , the choices of section don’t affect the
value of D(f) is virtually identical to arguments given above, because sections
vary in a contractible space. A similar remark applies to the choice of VC , given
a specific 3–chain C .

The independence from the choice of Σ’s and C ’s differs in that a substitute
must be found for one basic mechanism: the existence of the family Ks,t derives
from the fact that the space of metrics is simply connected. The idea is the same
for all of the choices; we will illustrate the point in the simplest instance. So
suppose that two 3–chains C1 and C ′1 are given, both of which have boundary
f(Σ1)− Σ1 . The only place in equation (2) in which C1 enters is in the term

D(P ; g1, VC1 , VΣ2 , . . . , VΣd).

Because the 3–chains have the same boundary, it follows that C ′1 −C1 is a 3–
cycle which is a boundary of a 4–chain ∆, by our hypothesis that H3(Y ) = 0.
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One can use restriction to connections on ∆ to define a 1–dimensional moduli
space ˜̃M. Taking the boundary of this moduli space gives

D(P ; g1, VC1 , VΣ2 , . . . , VΣd) = D(P ; g1, VC′1 , VΣ2 , . . . , VΣd)

by the standard argument.

A similar technique may be used to incorporate the 0–dimensional class. The
invariant is readily checked to be multilinear, and so defines a polynomial in-
variant in P [H0(Y )⊕V(f)]. Some other basic properties are summarized in the
following theorem; they are analogous to properties which hold for the degree
0 part, and are proved in the same way.

Theorem 2.3 Let f and g be diffeomorphisms for which invariants DY (f)
and DY (g) are defined.

(1) The polynomials of a composition are defined on H0(Y )⊕V(f, g), where
V(f, g) = V(f) ∩ V(g), and satisfy

DY (f ◦ g) = DY (g ◦ f) = DY (f) +DY (g).

(2) The polynomial of f−1 is −DY (f).

(3) If f and g are isotopic, then D(f) = D(g).

Because the applications are all to simply-connected manifolds, we haven’t
stated the theorems in maximum generality. The weakest set of hypotheses
which would give rise to an invariant of the type described in this section would
seem to be that H1(Y ; Q) = 0, and that w2(P ) is not the pullback of a class
in H2(Bπ1(Y ); Z2). The invariant would then be Q rather than in Z–valued.

3 Some basic theorems of 1–parameter gauge theory

In this section we will state (and sketch proofs of) analogues of the basic
connected-sum and blowup formulas for the Donaldson invariant. Undoubt-
edly, more elaborate versions of the gluing principles in gauge theory will work
in the 1–parameter context, but we will state only those theorems which we
actually use. The simple situation in which we work may be summarized in the
following definition.
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Definition 3.1 Suppose that f and g are diffeomorphisms of manifolds X
and Y , which are the identity near base points x and y . The connected sum
f#g is the obvious diffeomorphism on the connected sum X#Y ; it depends up
to isotopy only on the isotopy classes of f and g relative to neighborhoods of
the base points.

A useful (cf [13]) technical device for the ordinary Donaldson polynomial is
the fact that no (rational) information is lost if one replaces a manifold by
its connected sum with CP

2 . A similar principle holds for the 1–parameter
invariants. To state this, let L0 → CP

2 be the complex line bundle such that
c1(L0) is Poincaré dual to the exceptional curve E in CP

2 .

Theorem 3.2 Suppose that the polynomial invariant D(f, P ) is defined for a
diffeomorphism f : Y → Y . Then the invariant D(f#id

CP
2 , P#(L0 ⊕R)) is

defined, and satisfies

D(f#id
CP

2 , P#(L0 ⊕R))(E,E) = −2D(f, P ). (5)

Proof Choose a path of metrics and a collection of 3–chains Ci with ∂Ci =
f(Σi) − Σi which define D(f, P ). The path can assumed to be constant near
the connected sum point, so it extends to give a path of metrics on Y#CP2 .
Similarly, the 3–chains can be assumed to miss the connected sum point, so
they are 3–chains in the connected sum in a natural way.

Now we use a standard gluing argument: choose a metric on Y#CP2 with
a long tube along the S3 . For sufficiently long tube length, we can cal-
culate each term in the definition of the invariant. The 3–chain C with
∂C = f(C)− C may be taken to be degenerate, so that the last two terms (of
the form D(P ; g1, Vf(Σ1), Vf(Σ2), . . . , Vf(Σd), Vf(E), VC)) are 0 for dimensional
reasons. The moduli spaces corresponding to the other terms in the definition,
may all be described by the Kuranishi model for the 1–parameter moduli space,
as in [16]. The local picture, and hence the calculation of the coefficients, is the
same as in the proof of the usual blowup formula.

Following the scheme laid out in [13], we can extend the definition of the invari-
ants D(f) outside the ‘stable range’ by repeatedly blowing up to increase the
energy, and then using (5). The result is that the invariant of f is a collection
of rational-valued polynomials of arbitrary degree in H0(Y ) ⊕ V(f). Follow-
ing [9] we introduce the notion of a diffeomorphism being of simple type, and
assemble the polynomials into a formal power series D(f), which we will call
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the Donaldson series of f . In the examples discussed below and in the next
section, the power series are determined by a set of basic classes, as in the main
theorem of [9]. It would be of interest to know if such a structure theorem holds
more generally under the simple type hypothesis.

There is also a version of the connected sum theorem; the proof is a simple
dimension-counting argument and will be omitted.

Theorem 3.3 Suppose that fi : Yi → Yi are diffeomorphisms, where Yi
(for i = 1, 2) are 4–manifolds satisfying b2+(Yi) ≥ 2. Then any invariant
D(f1#f2, P1#P2) which is defined must vanish.

The remaining case to investigate is when b2+(Y1) ≥ 2 and b2+(Y2) = 1. The
result is more complicated, and it depends on the behavior of the diffeomor-
phism f2 . The basic idea is that the evaluation of the 1–parameter invariant
on homology classes supported in Y1 is, in some circumstances, the product of
an ordinary Donaldson invariant of Y1 with a term related to the wall-crossing
phenomenon characteristic of gauge theory on manifolds with b2+ = 1. A com-
pletely general treatment would run into unresolved problems associated with
that theory (under the general rubric of the Kotschick–Morgan conjecture—
cf [7, 8]). We will state a relatively simple version, which avoids these techni-
calities, but which suffices for the main application. A reasonable extension of
this statement, parallel to the Kotschick–Morgan conjecture, would be that the
restriction of D(f1#f2) to H2(Y1) depends in some universal fashion on D(f1)
and the action of f2 on cohomology. The full polynomial (ie including H2(Y2))
is also of interest.

Let N be a simply-connected manifold with b2+ = 1, and let L → N be a
complex line bundle with c1(L)2 = −1. Note that this implies that w2(PN ) 6= 0,
where PN is the SO(3) bundle over N associated to L ⊕ R. A choice of
orientation for H2

+(N) picks out a positive sheet of the hyperboloid H = {α ∈
H2

+(N) |α2 = 1}. Inside H lie the walls W , where a wall is the orthogonal
complement (intersected with H) of a class x ∈ H2(N ; Z) satisfying x ≡ c1(L)
(mod 2) and x2 = 1. The walls are transversally oriented, and form a locally
finite something or other. Note that any metric g on N determines a unique
self-dual harmonic form ωg ∈ H , called its period point.

Let fN be a diffeomorphism of N which is the identity near a point of N , which
has the property that f∗N preserves w2(PN ), and satisfies α(fN )β(fN ) = 1.
Such diffeomorphisms were constructed on N = CP2#2CP2 in section 3 of [16],
and easily extend to arbitrary connected sums CP2#kCP

2 . Let gN0 be a metric
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on N , which is fixed by f near the connected sum point, and whose period point
does not lie on any of the walls. Join gN0 to f∗(gN0 ) by a path whose induced
path γ of period points is transverse to W . Using the transverse orientation of
W , the intersection number of this path with W is well-defined.

Theorem 3.4 Let f be the diffeomorphism of Z = Y#N gotten by gluing
fN to the identity of Y . Then DZ(f) = 2(γ · W)DY .

4 Applications to the topology of the diffeomorphism

group

The 1–parameter invariants, as extended in the previous section, fit together
naturally to give a homomorphism which will show that π0(Diff H) can be
infinitely generated, proving Theorem A of the introduction. (Recall that
Diff H(Z) is the subgroup of the diffeomorphism group consisting of diffeo-
morphisms which act trivially on homology.)

There is a small technical observation to be made in order to draw conclusions
about π0(Diff ) from our results. Namely, two diffeomorphisms are in the same
path component of Diff if and only if they are isotopic. This seems a little
surprising at first, because there is no smoothness required for a path in Diff .
The proof relies on simple properties of the Whitney C∞ topology on smooth
maps, and is quite standard in the subject—compare [14, Definition 3.9 and
Problem 4.6] and [2].

Combining this observation, the definition of the Donaldson series of a diffeo-
morphism, and Theorem 2.3, we get the following result.

Theorem 4.1 Let Y be a 4–manifold with b2+ an even number ≥ 4. Then
the Donaldson series defines a homomorphism

D : π0(Diff H(Y ))→ R[[H2(Y )∗]].

The proof of Theorem A will be completed by showing that for the manifolds
Zn described in the introduction, the image is infinitely generated.

Proof of Theorem A Suppose that Z is of the form Y#N , where N =
CP2#2CP2 , and notice that restriction defines a homomorphism

r∗Y : R[[H2(Z)∗]]→ R[[H2(Y )∗]].
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Let f be a diffeomorphism of the form idZ#fN , as discussed before Theo-
rem 3.4. In particular, fN should be chosen as a composition of reflections in
two different (−1)–spheres, as in [16]; the intersection number γ · W is com-
puted in that paper to be −2. Suppose finally that Y has simple type in the
sense of [9], so that its Donaldson series DY is determined by a finite set of
basic classes κi(Y ) ∈ H2(Y ; Z). Rewriting Theorem 3.4 in terms of the Don-
aldson series of f , we see that r∗Y D(f) = −4DY . In particular, r∗Y D(f) has
the form described by the structure theorem of [9], and so is determined by
the same set of basic classes κi(f) = κi(Y ). Moreover, the coefficients βi(f) in
the expression of the series as a sum of exponentials of the κi , are equal to the
corresponding coefficients for Y .

Under composition of diffeomorphisms the Donaldson series add. For diffeo-
morphisms f, g ∈ Diff H(Z) whose series are determined by basic classes, this
implies the following statement. The set of basic classes for f ◦ g is the union
of the set of basic classes for f and for g , leaving out those basic classes which
f and g have in common but whose coefficients cancel. In other words, a basic
class κi(f) = κj(g) is removed from the union if the coefficient βi(f) = −βj(g).

In the paragraphs which follow, we will show that if Z is any one of the man-
ifolds described in the statement of Theorem A, then it admits a series of
diffeomorphisms {fj} (j = 1, . . . ,∞) which are all homotopic to the identity,
with the property that fm has at least m different basic classes. We claim that
the image under D of the subgroup of π0(Diff H(Z)) generated by the fj is
infinitely generated. Suppose that the diffeomorphisms have been indexed so
that fm has at least one basic class which does not occur in the list of basic
classes for the fj for j < m. Note that if K1, . . . ,Kn are distinct elements in
H2(Y ), then the exponentials exp(K1), , . . . , exp(Kn) are linearly independent
elements in the power series ring R[[H2(Y )∗]]. Thus in any any linear relation

m∑
j=1

ajD(fj) = 0

the coefficient am must be 0. The claim follows immediately by induction, and
so we have that π0(Diff H(Z)) is infinitely generated.

Let Yn denote #2n−1CP2#10n−1CP2 for n odd, and #2n−1CP2#10nCP2 for
n even. The manifold Zn will be simply Yn#N , where N = CP2#2CP2 as
before. Let E(n) be the simply-connected elliptic surface with pg = n − 1
and no multiple fiber, and let E(n; p) denote the result of a single logarithmic
transform on a fiber in E(n). The standard convention is that E(n; 1) is the
same as E(n).
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We will make use of the following facts about these manifolds.

(1) For n odd, E(n; p) ' Yn , and for n even, E(n; p)#CP2 ' Yn .

(2) E(n; p)#CP2 decomposes completely into a connected sum of CP2 ’s and
CP

2 ’s. See [11] or [10, 12] for more details.

(3) The diffeomorphism group of Yn#CP2 acts transitively on elements in
H2(Zn) of given square, divisibility, and type (ie characteristic or not) [17].

(4) The Donaldson series for E(n; p) is given [6] by

DE(n;p) = exp(Q/2)
sinhn−1(f)

sinh(fp)

where fp is the multiple fiber (and therefore the regular fiber f = pfp in
homology).

(5) The Donaldson series for E(n; p)#CP2 is DE(n;p)e
−E

2

2 cosh(E) where E
is dual to the exceptional class.

The argument differs in minor details between the cases when n is even or odd;
for simplicity we will concentrate on n odd. The main point of this is that
E(n; p) is not spin when n is odd.

Let S0 denote the standard (complex) 2–sphere in CP2 , viewed as a submani-
fold in Yn#CP2 , and let S′p denote the analogous sphere in E(n; p)#CP2 . Us-
ing the first two items, choose a diffeomorphism of E(n; p)#CP2 with Yn#CP2 .
Since S′p is not characteristic, any initial choice of diffeomorphism may be var-
ied by a self-diffeomorphism of Yn#CP2 to ensure that the image of S′p is
homologous to S0 . Denote this image, viewed as a sphere in Yn#CP2 or in
Zn , by Sp . Note that the homology of Yn may be identified with the orthogo-
nal complement to Sp , with respect to the intersection pairing, and hence the
image of H2(E(n; p)) is H2(Yn).

As in [16], the (−1)–spheres Sp ± E1 + E2 in Zn give rise to reflections ρ±p ,
and we set

fp = (ρ+
p ◦ ρ−p ) ◦ (ρ+

0 ◦ ρ−0 )−1.

Because Sp and S0 are homologous, the action of fp on homology is trivial,
and thus [15, 3] fp is homotopic to the identity. The image of D(fp) under
r∗Y is the Donaldson series of E(n; p), and so is given by the formula in item 4
above. Expanding the hyperbolic sines, we see that E(n; p) has (n− 1)p basic
classes, and so there are the same number of basic classes for r∗Y (D(fp). Thus
the fp generate an infinitely generated subgroup of Diff H(Zn).
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