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Abstract The goal of this paper is to demonstrate that, at least for non-
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determine diffeomorphism type within the same homeomorphism type.
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1 Introduction

The goal of this paper is to demonstrate that, at least for nonsimply con-
nected 4-—manifolds, the Seiberg—Witten invariant alone does not determine
diffeomorphism type within the same homeomorphism type. The first exam-
ples which demonstrate this phenomenon were constructed by Shuguang Wang
[13]. These are examples of two homeomorphic 4-manifolds with m; = Zy and
trivial Seiberg—Witten invariants. One of these manifolds is irreducible and the
other splits as a connected sum. It is our goal here to exhibit examples among
symplectic 4—manifolds, where the Seiberg—Witten invariants are known to be
nontrivial. We shall construct symplectic 4-manifolds with 7y = Z, which have
the same nontrivial Seiberg—Witten invariant but whose universal covers have
different Seiberg—Witten invariants. Thus, at the very least, in order to deter-
mine diffeomorphism type, one needs to consider the Seiberg—Witten invariants
of finite covers.

Recall that the Seiberg—Witten invariant of a smooth closed oriented 4-manifold
X with b5 (X) > 1 is an integer-valued function which is defined on the set of
spin¢ structures over X (cf [14]). In case H1(X,Z) has no 2-torsion there is a
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natural identification of the spin¢ structures of X with the characteristic ele-
ments of Ho(X,Z) (ie, those elements k whose Poincaré duals k reduce mod 2
to w2(X)). In this case we view the Seiberg-Witten invariant as

SWx: {k € Hy(X,Z)|k = we(TX) (mod 2))} — Z.
The sign of SWx depends on an orientation of H°(X,R) ® det H? (X,R) ®
det HY(X,R). If SWx(83) # 0, then 3 is called a basic class of X. It is a
fundamental fact that the set of basic classes is finite. Furthermore, if 3 is a
basic class, then so is —3 with SWx(—3) = (—1)E*+sien)(X)/4 SW y(8) where
e(X) is the Euler number and sign(X) is the signature of X.

Now let {£0,...,£0,} be the set of nonzero basic classes for X. Consider
variables tg = exp(f) for each 3 € H?(X;Z) which satisfy the relations t,5 =
tatg. We may then view the Seiberg-Witten invariant of X as the Laurent
polynomial

SWx = SWx(0) + D SWx(8)) - (tg, + (—1) /1),
j=1

2 The Knot and Link Surgery Construction

We shall need the knot surgery construction of [3]: Suppose that we are given
a smooth simply connected oriented 4-manifold X with bT > 1 containing
an essential smoothly embedded torus T' of self-intersection 0. Suppose further
that 71 (X\7T) = 1 and that T is contained in a cusp neighborhood. Let K C S3
be a smooth knot and Mg the 3—manifold obtained from O—framed surgery on
K. The meridional loop m to K defines a 1-dimensional homology class [m]
both in S3\K and in Mg . Denote by T}, the torus S' xm C S* x Mg . Then
X is defined to be the fiber sum

Xk = X#r-1,S" x Mg = (X \ N(T)) U (5" x ($* \ N(K)),

where N(T) = D? x T? is a tubular neighborhood of T in X and N(K) is a
neighborhood of K in S2. If A denotes the longitude of K (A bounds a surface
in S3\ K) then the gluing of this fiber sum identifies {pt} x A with a normal
circle to T in X . The main theorem of [3] is:

Theorem [3] With the assumptions above, Xk is homeomorphic to X, and

SWx, = SWx - Ak(t)
where A is the symmetrized Alexander polynomial of K and t = exp(2[T]).

Geometry and Topology Monographs, Volume 2 (1999)



Nondiffeomorphic Symplectic 4-Manifolds 105

In case the knot K is fibered, the 3—manifold My is a surface bundle over the
circle; hence S! x My is a surface bundle over T2. It follows from [12] that
S1 x My admits a symplectic structure and T}, is a symplectic submanifold.
Hence, if T C X is a torus satisfying the conditions above, and if in addition
X is a symplectic 4-manifold and T is a symplectic submanifold, then the
fiber sum Xg = X #T:TmSl X My carries a symplectic structure [4]. Since
K is a fibered knot, its Alexander polynomial is the characteristic polynomial
of its monodromy ¢; in particular, Mg = S* X, X for some surface ¥ and
Ak (t) = det(ps — tI), where ¢, is the induced map on Hj.

There is a generalization of the above theorem in this case due to Ionel and
Parker [7] and to Lorek [8].

Theorem [7, 8] Let X be a symplectic 4-manifold with bt > 1, and let
T be a symplectic self-intersection 0 torus in X which is contained in a cusp
neighborhood. Also, let ¥ be a symplectic 2—manifold with a symplectomor-
phism ¢: ¥ — ¥ which has a fixed point ¢(zg) = 9. Let mg = St x, {0}
and Ty = S xmy C S x (! x4, ¥). Then X, = X#r-1,5' x (S! x, ) is a
symplectic manifold whose Seiberg—Witten invariant is

SWx, = SWx - A(t)
where t = exp(2[T]) and A(t) is the obvious symmetrization of det(p, —tI).

Note that in case K is a fibered knot and My = S! x, ¥, Moser’s theorem [9]
guarantees that the monodromy map ¢ can be chosen to be a symplectomor-
phism with a fixed point.

There is a related link surgery construction which starts with an oriented n—
component link L = {Kj,...,K,} in S® and n pairs (X;,T;) of smoothly
embedded self-intersection 0 tori in simply connected 4—manifolds as above.
Let

ar: m(S*\L) — Z

denote the homomorphism characterized by the property that it send the merid-
ian m; of each component K; to 1. Let N(L) be a tubular neighborhood
of L. Then if ¢; denotes the longitude of the component K;, the curves
vi = 4; + ap(l;)m; on ON(L) given by the ar(¢;) framing of K; form the
boundary of a Seifert surface for the link. In S x (S3\ N(L)) let T, = S' xm;
and define the 4-manifold X (X1,...X,;L) by
X(X1,.0 Xpi L) = (ST x (S*\ N(L)) U (X \ (T3 x D?))
i=1
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where S! x ON(K;) is identified with ON(T}) so that for each i:
[T:] = [T3], and [v] = [pt x 9D?].

Theorem [3] If each T; is homologically essential and contained in a cusp
neighborhood in X; and if each w1 (X \T;) = 1, then X (X;,... Xy; L) is simply
connected and its Seiberg—Witten invariant is

n
SWx(x1,.. XnmiL) = Ar(t1, . tn) - H SWE(U#F:T].XJ-
j=1
where t; = exp(2[T}]) and Ap(ti,...,t,) is the symmetric multivariable Alex-
ander polynomial.

3 2-bridge knots

Recall that 2-bridge knots, K, are classified by the double covers of S branched
over K, which are lens spaces. Let K(p/q) denote the 2-bridge knot whose
double branched cover is the lens space L(p,q). Here, p is odd and ¢ is rel-
atively prime to p. Notice that L(p,q) = L(p,q — p); so we may assume at
will that either ¢ is even or odd. We are first interested in finding a pair of
distinct fibered 2-bridge knots K(p/q;), i = 1,2 with the same Alexander poly-
nomial. Since 2-bridge knots are alternating, they are fibered if and only if their
Alexander polynomials are monic [2]. There is a simple combinatorial scheme
for calculating the Alexander polynomial of a 2-bridge knot K(p/q); it is de-
scribed as follows in [10]. Assume that ¢ is even and let b(p/q) = (b1,...,by)

where p/q is written as a continued fraction:

Eop+1

—2bp +1
2b3 +1_

L
£2b,,
There is then a Seifert surface for K (p/q) whose corresponding Seifert matrix
is:

bb 0 0 0 0
1 b, 1 0 0
Vip/e)=|0 0 b3 0 0
0 0 1 by 1
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Thus the Alexander polynomial for K(p/q) is
Ak (p/q)(t) = det(t - V(p/q) = V(p/9)")-
Using this technique we calculate:
Proposition 3.1 The 2-bridge knots K(105/64) and K(105/76) share the
Alexander polynomial
At) =t —5t3 4+ 1312 — 21t + 25 — 21t + 1372 — 573 14

In particular, these knots are fibered.

Proof The knots K(105/64) and K (105/76) correspond to the vectors
b(105/64) = (1,1,-1,-1,-1,-1,1,1)
b(105/76) = (1,1,1, -1, -1,1,1,1). O

4 The examples

Consider any pair of inequivalent fibered 2-bridge knots K; = K(p/q¢;), i = 1,2,
with the same Alexander polynomial A(t). Let K; = m; '(K;) denote the
branch knot in the 2-fold branched covering space m;: L(p,q;) — S, and let
m; = ﬂ[l(mi), with m; the meridian of K;. Then My, = S* X, 2 with double
cover My, = S* X2 2.

Let X be the K3—surface and let ' denote a smooth torus of self-intersection
0 which is a fiber of an elliptic fibration on X . Our examples are

XKi = X#F:Tﬁli (Sl X MK’L)

The gluing is chosen so that the boundary of a normal disk to F' is matched
with the lift lZ of a longitude to K;. A simple calculation and our above
discussion implies that X, and Xg, are homeomorphic [5] and have the same
Seiberg—Witten invariant:

Theorem 4.1 The manifolds Xk, are homeomorphic symplectic rational ho-
mology K3-surfaces with fundamental groups m(Xg,) = Z,. Their Seiberg—
Witten invariants are

SWxy, = det(goi* —721) = A1) - A(—7)
where T = exp([F]).
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5 Their universal covers

The purpose of this final section is to prove our main theorem.

Theorem 5.1 Xy (105/64) and X (105/76) are homeomorphic but not diffeo-
morphic symplectic 4—-manifolds with the same Seiberg—Witten invariant.

Let Ky = K(105/64) and Ky = K(105/76). We have already shown that X,
and Xk, are homeomorphic symplectic 4-manifolds with the same Seiberg-
Witten invariant. Suppose that f: Xg, — Xk, is a diffeomorphism. It then
satisfies fi(SWxy, ) = SWx,, . Since these are both Laurent polynomials in
the single variable 7 = exp([F]), and [F] = [Tj3,] in Xk, , after appropriately
orienting T3,,, we must have

Je [Tfm] = [Tfnz]'

We study the induced diffeomorphism f : X K — X K, of universal covers. The
universal cover X K, of Xk, is obtained as follows. Let ¥;: S® — L(p,q)
be the universal covering (p = 105, ¢1 = 64, g2 = 76) which induces the
umversal covering 19 c X k; — Xk, , and let L; be the p—component link
L = = ¥;1(K;). The composition of the maps ¢ o ¥;: S% — 53 is a dihedral
covering space branched over K;, and the link L; = L(p/ gi) is classically known
as the ‘dihedral covering link’ of K (p/q;). This is a symmetric link, and in fact,
the deck transformations 7; ;. of the cover ;: S3 — L(p,q;) permute the link
components. The collection of linking numbers of L; (the dihedral linking
numbers of K(p/q;)) classify the 2-bridge knots [2]. The universal cover X,
is obtained via the construction X K, = X(X1,...Xp; L;) of section 2, where
each (X;,T;) = (K3, F). Hence it follows from section 2 that

p
SWXK,L :Aﬁi(ti,17"'7ti,P HSWE #FK3:
7j=1

p
12 —-1/2
R | G

where ¢;; = exp([2T;;]) and T;; is the fiber F' in the jth copy of K3. Let
L;1,...,L;, denote the components of the covering link L; in @’3, and let m; ;
denote a meridian to L; ;. Then [T;;] = [S* x m; ;] in H2(Xk,;Z), and so
Vi, [Ti4) = [Ti].

Now we have f, (SwW Xr ) =8W X, as elements of the integral group ring of
1 2
Hy(Xk,;Z). The formula given for SW %, shows that each basic class may be

i
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written in the form 8 =3>2"_, a;(T;;]. Thus if § is a basic class of Xk, , then

P P
= f*(z a;[T1,]) Z b; (12,51
j=1 J=1

for some integers, by,...,b,. But since f,[T1] = [I5] in Hy(Xk,;Z) we have
p p R o
Z T2 Jx Z f*ﬁl*(ﬁ) = 192*f*(/6) =
J=1 J=1 . p p
D2.(D b[Ta5]) = Y b;[Th).
j=1 j=1
Hence Z§:1 aj = Z§:1 bj.

Form the 1-variable Laurent polynomials F;(t) = A; (t,...,t)- (t1/2 — = 1/2)p
by equating all the variables ¢; ; in SW PR The coefficient of a fixed term t*
in P(t) is

Z{SWX&(Z a;[T; 5]) | Zaj = k}.

Our argument above (and the invariance of the Seiberg-Witten invariant under
diffeomorphisms) shows that f,. takes Pj(t) to Px(t); ie, Pi(t) = Pa(t) as
Laurent polynomials.

The reduced Alexander polynomials Aj (¢,...,t) have the form
Ap (t... t)= ({7t 12p2. v, (1),

where the polynomial V. (t) is called the Hosokawa polynomial [6]. Consider
the matrix:

o €1 ‘e Ep—l
gp—l o e gp_2
Alp/q) = :
€1 €9 e o

(Burde has shown that this is the linking matrix of L(p/q).)

It is a theorem of Hosokawa [6] that V i /q)(l) can be calculated as the deter-
minant of any (p—1) by (p—1) minor A’'(p/q) of A(p/q). In particular, we have
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the following Mathematica calculations. (Note that K (105/64) = K(105/—41)
and K (105/76) = K(105/ — 29).)
det(A'(105/ — 41))/105 = 132 - 612 - 1277 - 463% - 631" - 1358281*
det(A’(105/ — 29))/105 = 139% - 2114 - 491% - 87612 - 10005451*.

This means that V (1) # V (1). However, if we let Q(t) = (tH/2—¢=1/2)2p=2,
then Pi(t) = V (t)-Q(t). For [u—1| small enough, P (u)/Q(u) # P2(u)/Q(u).
Hence for uw # 1 in this range, Pj(u) # P»(u). This contradicts the existence
of the diffeomorphism f and completes the proof of Theorem 5.1.
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