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Abstract The goal of this paper is to demonstrate that, at least for non-
simply connected 4{manifolds, the Seiberg{Witten invariant alone does not
determine di eomorphism type within the same homeomorphism type.
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1 Introduction

The goal of this paper is to demonstrate that, at least for nonsimply con-
nected 4{manifolds, the Seiberg{Witten invariant alone does not determine
di eomorphism type within the same homeomorphism type. The rst exam-
ples which demonstrate this phenomenon were constructed by Shuguang Wang
[13]. These are examples of two homeomorphic 4{manifolds with 1 = Z, and
trivial Seiberg{Witten invariants. One of these manifolds is irreducible and the
other splits as a connected sum. It is our goal here to exhibit examples among
symplectic 4{manifolds, where the Seiberg{Witten invariants are known to be
nontrivial. We shall construct symplectic 4{manifolds with ; = Z, which have
the same nontrivial Seiberg{Witten invariant but whose universal covers have
di erent Seiberg{Witten invariants. Thus, at the very least, in order to deter-
mine di eomorphism type, one needs to consider the Seiberg{Witten invariants
of nite covers.

Recall that the Seiberg{Witten invariant of a smooth closed oriented 4{manifold
X with by (X) > 1 is an integer-valued function which is de ned on the set of
spin® structures over X (cf [14]). In case H1(X;Z) has no 2{torsion there is a
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natural identi cation of the spin® structures of X with the characteristic ele-
ments of Ho(X; Z) (ie, those elements k whose Poincare duals K reduce mod 2
to w2(X)). In this case we view the Seiberg{Witten invariant as

SWix: fk 2 Ha(X;2)jk  wo(TX) (mod 2))g ¥ Z:

The sign of SWx depends on an orientation of HO(X; R) CdatH2(X;R) 1
detH!(X;R). If SWx( ) & 0, then s called a basic class of X. It is a
fundamental fact that the set of basic classes is nite. Furthermore, if is a
basic class, then so is — with SWx (— ) = (—1)€*sigNC)=4 sw () where
e(X) is the Euler number and sign(’X) is the signature of X.

Now let £ 1;:::; g be the set of nonzero basic classes for X. Consider
variables t = exp( ) foreach 2 H2(X;Z) which satisfy the relations t . =
t t . We may then view the Seiberg{Witten invariant of X as the Laurent
polynomial
X .
SWx =SWx(0)+  SWx( j) (t; + (=1)Er=amCO=ly:
i=1

2 The Knot and Link Surgery Construction

We shall need the knot surgery construction of [3]: Suppose that we are given
a smooth simply connected oriented 4{manifold X with b*™ > 1 containing
an essential smoothly embedded torus T of self-intersection 0. Suppose further
that {(XnT) =1 and that T is contained in a cusp neighborhood. Let K  S3
be a smooth knot and Mk the 3{manifold obtained from O{framed surgery on
K. The meridional loop m to K de nes a 1{dimensional homology class [m]
both in S3nK and in Mk . Denote by T, the torus S m S Mk. Then
Xk is de ned to be the ber sum

Xk = X#tr=1,8" Mk =XnNT))L[(S" (S*nN(K));

where N(T) = D? T2 is a tubular neighborhood of T in X and N(K) is a
neighborhood of K in S2. If  denotes the longitude of K ( bounds a surface
in S n K) then the gluing of this ber sum identi es fptg with a normal
circle to T in X. The main theorem of [3] is:

Theorem [3] With the assumptions above, Xk is homeomorphic to X, and

SWxK = SWx K(t)
where  is the symmetrized Alexander polynomial of K and t = exp(2[T]).
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In case the knot K is bered, the 3{manifold Mg is a surface bundle over the
circle; hence St My is a surface bundle over T2. It follows from [12] that
S Mk admits a symplectic structure and Ty, is a symplectic submanifold.
Hence, if T X is a torus satisfying the conditions above, and if in addition
X is a symplectic 4{manifold and T is a symplectic submanifold, then the
ber sum Xk = X#7=1,,S' M carries a symplectic structure [4]. Since
K is a Dbered knot, its Alexander polynomial is the characteristic polynomial
of its monodromy ~; in particular, Mx = S -  for some surface  and
k(t) =det(® —tl), where * is the induced map on Hj.

There is a generalization of the above theorem in this case due to lonel and
Parker [7] and to Lorek [8].

Theorem [7, 8] Let X be a symplectic 4{manifold with b* > 1, and let
T be a symplectic self-intersection 0 torus in X which is contained in a cusp
neighborhood. Also, let  be a symplectic 2{manifold with a symplectomor-
phism ~: ¥  which has a xed point ”(Xg) = Xo. Let mg = S! - fxog
and To=S' mp S! (S' - ). Then X- = X#7=1,S* (S! - )isa
symplectic manifold whose Seiberg{Witten invariant is

SWx. = SWx (t)
where t = exp(2[T]) and (t) is the obvious symmetrization of det(* —tl).

Note that in case K is a bered knot and M =S' - , Moser’s theorem [9]
guarantees that the monodromy map ” can be chosen to be a symplectomor-
phism with a xed point.

There is a related link surgery construction which starts with an oriented n{

embedded self-intersection 0 tori in simply connected 4{manifolds as above.
Let

L 1(S:nL) 1z

denote the homomorphism characterized by the property that it send the merid-
ian m; of each component K; to 1. Let N(L) be a tubular neighborhood
of L. Then if “; denotes the longitude of the component K;j, the curves
Vi = i+ oL(¢i)m;j on @N(L) given by the (%) framing of K; form the
boundary of a Seifert surface for the link. In St (S3nN(L)) let T, =S m;
and de ne the 4{manifold X (X1;::: Xn;L) by

r
XXy Xm L) =St (S3nNL) L Xin(Ti D?)
i=1
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where ST @N(K;) is identi ed with @N (T;) so that for each i:
[Tm]=[Til; and [yi]=[pt @D

Theorem [3] If each T; is homologically essential and contained in a cusp
neighborhood in X; and ifeach (X nT;) =1, then X(Xq;::: Xn;L) is simply
connected and its Seiberg{Witten invariant is

h'd
SWix(xqixn) = L(t1;i115th) SWE@#e =, X;
j=1
where tj = exp(2[T;]) and | (ty;:::;t,) is the symmetric multivariable Alex-
ander polynomial.

3 2{bridge knots

Recall that 2{bridge knots, K, are classi ed by the double covers of S® branched
over K, which are lens spaces. Let K(p=q) denote the 2{bridge knot whose
double branched cover is the lens space L(p;q). Here, p is odd and q is rel-
atively prime to p. Notice that L(p;q) = L(p;q — p); SO we may assume at
will that either g is even or odd. We are rst interested in nding a pair of
distinct bered 2{bridge knots K(p=g;), i = 1;2 with the same Alexander poly-
nomial. Since 2{bridge knots are alternating, they are bered if and only if their
Alexander polynomials are monic [2]. There is a simple combinatorial scheme
for calculating the Alexander polynomial of a 2{bridge knot K(p=q); it is de-
scribed as follows in [10]. Assume that q is even and let b(p=q) = (by;:::;bn)
where p=q is written as a continued fraction:

E = 2b; +1
a —%2 +1
2b3+1
.+1_
2bp,
There is then a Seifert surface for K(p=q) whose corresponding Seifert matrix
is: o 1

bp 0 0 0 O
1 b, 1 00
V(p=g)=BO 0 by 0 O
0 0 1 b 1
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Thus the Alexander polynomial for K(p=q) is
K (p=q)(t) = det(t V (p=q) — V (p=0)"):

Using this technique we calculate:

Proposition 3.1 The 2{bridge knots K(105=64) and K(105=76) share the
Alexander polynomial
()=t =53+ 13t — 21t + 25 — 21t L + 13t 2 — 5t 3 + ™4

In particular, these knots are bered.

Proof The knots K(105=64) and K(105=76) correspond to the vectors
b(105=64) = (1;1;—-1;-1;—-1;,—-1;1;1)
b(105=76) = (1;1;1;—1;—1;1;1;1): O

4 The examples

Consider any pair of inequivalent bered 2{bridge knots K; = K(p=g;), i = 1,2,

with the same Alexander polynomial (t). Let K; = i_l(Ki) denote the
branch knot in the 2{fold branched covering space : L(p;qi) ¥ S2, and let
mj = i_l(mi), with m; the meridian of K;. Then M, = st -, with double

cover M, =S* -2

Let X be the K3{surface and let F denote a smooth torus of self-intersection
0 which is a ber of an elliptic bration on X. Our examples are

Xk; = X#tp=1,, (S' N,):

The gluing is chosen so that the boundary of a normal disk to F is matched
with the lift 5 of a longitude to K;. A simple calculation and our above
discussion implies that Xk, and Xk, are homeomorphic [5] and have the same
Seiberg{Witten invariant:

Theorem 4.1 The manifolds Xk, are homeomorphic symplectic rational ho-
mology K3{surfaces with fundamental groups 1(Xk;) = Zp. Their Seiberg{
Witten invariants are

SWx,, =det"f — D= () (=)
where =-exp([F]).
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5 Their universal covers

The purpose of this nal section is to prove our main theorem.

Theorem 5.1 Xk 10s=64y and Xy (105=76) are homeomorphic but not di eo-
morphic symplectic 4{manifolds with the same Seiberg{Witten invariant.

Let K; = K(105=64) and K; = K(105=76). We have already shown that Xk,
and Xk, are homeomorphic symplectic 4{manifolds with the same Seiberg{
Witten invariant. Suppose that f: Xk, ¥ Xk, is a di eomorphism. It then
satis es T (SWxKl) = SWx,, Since these are both Laurent polynomials in
the single variable = exp([F]), and [F] = [Tm;] in Xk;, after appropriately
orienting Tp,, We must have

T [Ty ] = [T |-

We study the induced di eomorphism f: X, ¥ X, of universal covers. The
universal cover RKi of Xk, is obtained as follows. Let #i: S® ¥ L(p;q;)
be the universal covering (p = 105, g1 = 64, g2 = 76) which induces the
universal covering i kKi ¥ Xk; , and let (i be the p{component link
(i = # 1(K;). The composition of the maps > #;: S® ¥ S3 is a dihedral
covering space branched over Kj, and the link C; = C(p=g;) is classically known
as the ‘dihedral covering link’ of K(p=g;). This is a symmetric link, and in fact,
the deck transformations . of the cover #: S ¥ L(p;q;) permute the link
components. The collection of linking numbers of (; (the dihedral linking
numbers of K(p=q;)) classify the 2{bridge knots [2]. The universal cover X,
is obtained via the construction )’QKi = X(Xy;:::Xp; Lj) of section 2, where
each (X;T;i) = (K3;F). Hence it follows from section 2 that

h'd
SWkKi = ti(tl ]_; - t| p) SWE(l)#F K3 =
=1 '
=2 —1=2
¢, (a5 ot tigp) (til;j _ti;jl )
=1
where ti;; = exp([2Ti;;]) and Ti; is the ber F in the jth copy of K3. Let
Li:1; o1 Lip denote the components of the covering link (i in S3, and let Mi;j

denote a meridian to Li;j. Then [Tj;] = [S? m;;;] in Hg()’QK,,Z) and so
A [Tiz] = [Til.

Now we have f (SW?Kl) = SW>QK2 as elements of the integral group ring of
Hg()’QKZ; Z). The formula given for SW*Ki shows that each basic class may be
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P
written in the form = ?:1 aj[Ti;j]. Thusif is a basic class of Xk, , then
X X
fO)=FfC aMyuD= bl
i=1 j=1
for some integers, by;:::;by. But since  [T1] =[T,] in Hx(Xk,;Z) we have

X X

( aMl=F( MDh=FH ()=HF()=

=t =t X x

i (0 bi[Tzi) = by[T2]:
j=1 j=1

P

P_ by

Py -
Hence j_,aj= j—;

=1

by equating all the variables t;;; in SW%%K.- The coe cient of a xed term t¥
in Pj(t) is

> X X
fSW%K_( aj [Ti;j]) ] aj = kg:
"=t j=1

Our argument above (and the invariance of the Seiberg{Witten invariant under
di eomorphisms) shows that f takes P1(t) to Pa(t); ie, P1(t) = Py(t) as
Laurent polynomials.

The reduced Alexander polynomials ¢ (t;:::;t) have the form
(G = (2 — P2 g (1)

where the polynomial p (t) is called the Hosokawa polynomial [6]. Consider

the matrix:
(@) 1

p
"p—l "p—2
(p=q) = o :

(Burde has shown that this is the linking matrix of [(p=q).)

It is a theorem of Hosokawa [6] that rc(pzq)(l) can be calculated as the deter-
minant of any (p—1) by (p—1) minor %(p=q) of (p=q). In particular, we have
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the following Mathematica calculations. (Note that K(105=64) = K(105=—41)
and K (105=76) = K (105= — 29).)

det( °(105= —41))=105 = 13%> 61°> 127° 463%> 631* 1358281*

det( °(105= — 29))=105 = 139* 211* 491% 8761° 10005451*:

This means that 1 (1) & 1 (1). However, if we let Q(t) = (12 —t~1%)P~2,
then Pj(t) = L (t) Q(t). For ju—1j small enough, P1(u)=Q(u) & P,(u)=Q(u).
Hence for u & 1 in this range, P1(u) & P2(u). This contradicts the existence
of the di eomorphism T and completes the proof of Theorem 5.1.
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