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Z2{Systolic-Freedom

Michael H Freedman

Abstract We give the �rst example of systolic freedom over torsion coef-
�cients. The phenomenon is a bit unexpected (contrary to a conjecture of
Gromov’s) and more delicate than systolic freedom over the integers.
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0 Introduction

For closed Riemannian surfaces, whose topology is di�erent from the 2{sphere,

A � 2
�
L2 (0:1)

where A is area and L is the length of the shortest essential loop. The boundary
case is a round projective plane. See [9] and [5] for a discussion. For closed
manifolds of higher dimensions, such \systolic inequalities" have been the focus
of much research and many interesting counter-examples exist [1], [6], and [7].

We recall some de�nitions:

Let M be a closed Riemannian manifold of dimension n and let 0 � p; q � n;
p+ q = n.

systolek(M) = inf areak[�] (0:2)

where the in�mum is taken over all smooth oriented k{cycles � with [�] 6= 0 2
Hk(M ;Z):

Z2 − systolek(M) = inf areak(�) (0:3)

where the in�mum is taken over unoriented k{cycles �, [�] 6= 0 2 Hk(M ;Z2):

stable− systolek(M) = inf stable− areak[�] (0:4)
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where [�] 6= 0 2 Hk(M ;Z)=torsion and

stable− areak� = inf
1
i

�
inf
i[�]

areak(�)
�

where i = 1; 2; 3; : : : in the inner in�mum is over oriented cycles � representing
i[�]:

Gromov proved (see [8] for discussion and generalizations) that \stable systolic
rigidity" holds for any product of spheres Sp � Sq =: Mn , that is there a
constant c(n) so that for any Riemannian metric on Mn = Sp � Sq; p+ q = n:

vol(M) = stable−systolen(M) � c �stable−systolep(M) �stable−systoleq(M)
(0:5)

Surprisingly, he also discovered that the corresponding unstable statement is
false:

Let Mr = S3
r �R=(�; t) � (

p
r � �; t+ 1), where S3

r is the 3{sphere of radius r
and the identi�cation matches a point with its

p
r{rotation along Hopf �bers

displaced one unit in the real coordinate. For this r{family of metrics on
S3 � S1 , we have \(3; 1){systolic freedom"

systole4(Mr)
systole3(Mr) systole1(Mr)

=
O(r3)

O(r3) O(r1=2)
! 0 as r !1 (0:6)

This original example of systolic freedom has been vastly generalized by several
authors (see [1] for an overview and recent advances) to show that \freedom"
rather than \ridigidity" predominates for dimension n � 3.

This left the case of Z2 coe�cients open for n � 3. This case has a remarkable
relevance in quantum information theory, which is the subject of another paper
[4]. Classically, there is only one type of error: the \bit flip." In a quantum
mechanical context the algebra of possible errors has two generators: \bit flip"
and \relative phase." It is possible to map the problem of correcting these
(Fourier) dual errors onto the problem of specifying (Poincare) dual cycles in a
manifold. Torsion coe�cients for the cycles corresponds to �nite dimensional
quantum state spaces: Z2 {coe�cients correspond to expressing quantum states
in terms of qubits.

It is reported in [9] that Gromov conjectured Z2{rigidity, ie, systolic inequal-
ities like (0:1) and (0:5) would hold in this case of Z2 coe�cients. The
ease with which nonoriented cycles can be modi�ed to reduce area, particu-
larly in codimension equal to 1, is well known in geometric measure theory
and lends support to the idea that at least Z2 − (n − 1; 1){rigidity might
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hold. In fact, the opposite is the case. We will exhibit a family of Rieman-
nian metrics on S2 � S1 exhibiting Z2 − (2; 1){systolic freedom: the ratios
(Z2 − systole3=Z2 − systole2 � Z2 − systole1) approach zero as the parame-
ter approaches in�nity. Moreover, from this example, as in [1], quite general
Z2{freedoms can be found.

In section 3, we discuss the quanti�cation of systolic freedom and note that
the present example for Z2{freedom is measured by a function growing more
slowly than log whereas in Gromov’s original example freedom grows by a
power, and in an example of Pittet [11] freedom grows exponentially. It is now
of considerable interest, particularly in connection with quantum information
theory, whether the \weakness" of Z2{freedom is an artifact of the example or
inherent.

1 The Example

As raw material, we use a sequence of closed hyperbolic surfaces �g of genus
g !1 with the following three properties:

(i) �1(�g) � c1; �1 being the smallest eigenvalue of the Laplacian on func-
tions,

(ii) There exits an isometry � : �g ! �g , with order (�) � c2(log g)1=2 , and

(iii) The map �g ! �g=�(�) � � is a covering projection and the base surface
gS =: �g=�(�) � � has injectivity radius (gS) � c3(log g)1=2

where c1; c2; and c3 are positive constants independent of g .

We will return to the construction of the family f�gg at the end of this section.
Let Mg = (�g �R)=(x; t) � (�x; t+ 1) be the Riemannian \mapping torus" of
� . We can also think of Mg = �g � [0; 1]=(x; 0) � (�x; 1). By two theorems of
Lickorish [10], we may �rst write �−1 out in the mapping class group of �g as
a product of Dehn twists �i along simple loops γi � �g :

�−1 = �ng � : : : � �2 � �1 (1:1)

and second perform Dehn surgeries along pushed-in copies of fγig:n
γ1 �

�1
2

+
1

3ng

�
; γ2 �

�1
2

+
2

3ng

�
; : : : γi �

�1
2

+
i

3ng

�
; : : : γng �

�1
2

+
1
3

�o
to obtain a di�eomorphic copy of �g � [0; 1] whose product structure induces
[�−1]: �g � 0! �g � 1.
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Thus, ng Dehn surgeries on Mg produce the mapping torus for �−1 � � , ie
�g � S1 .

In [4], we will �nd upper bounds on both ng and max length (γi) in order
to compute a lower bound on the Z2{freedom function. To merely establish
Z2{freedom, we do not need these estimates. To convert �g � S1 to S2 � S1

an additional 2g Dehn surgeries are needed: Do half (a \sub kernel") of these
surgeries at level 1

2 + 1
6ng

and the dual half at level 1
2 . The result of all ng + 2g

Dehn surgeries is topologically S2�S1 , and once these surgeries are metrically
speci�ed, we obtain a sequence of Riemannian 3{manifolds (S2�S1)g =: S2�
S1
g .

In section 2 where Z2{freedom is established, four metrical properties of these
surgeries will be referenced.

They are:

(A) The core curves for the Dehn surgeries are taken, for convenience, to be
geodesics in �g � [0; 1] so that the boundaries @Ti;� of their � neighbor-
hoods are Euclidean flat. (1.2)
Also � > 0 is chosen very small. See (D).

(B) The replacement solid tori T 0i;� have @T 0i;� isometric to @Ti;� and are de-
�ned as twisted products D2� [0; 2��]=� where �(�) is a constant slightly
larger than � so that the meridians in Ti;� have length 2�� and � is an
isometric rotation of the disk D2 adjusted to equal the holonomy obtained
by traveling orthogonal to the surgery slopes in @Ti;� from @D2 � pt back
to itself. (1.3)

(C) The geometry on the disk D2 above is rotationally symmetric and has a
product collar on its boundary as long as the boundary itself. (1.4)

(D) Finally, � > 0 is so small that the total volume of all the replacement
solid tori, [iT 0i;� is o(g). (1.5)

With speci�cations: (A) : : : (D), Dehn surgery yields a precise-smooth Rieman-
nian manifold for which all the relevant notions of p{area are de�ned. We could
work in this category but there is no need to do so since perturbing to a smooth
metric will not e�ect the status of (Z2) systolic freedom versus rigidity.

It is now time to return to the construction of the family f�gg. We follow an
approach of [13] and [14] in considering the co-compact torsion free Fuchscian
group Γ(−1;p) , the group of unit norm elements of the type −1;p

Q quaternion
algebra where p is prime and p � 3 mod 4. The group Γ may be explicitly
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written as:

Γ(−1;p) =
� ����a+ b

p
p − c+ d

p
p

c+ d
p
p a− bpp

���� : a; b; c; d 2 Z; det = 1
��
� id. (1:6)

Analogous to the congruence of SL(2; R), we have for integers N > 2 the
normal subgroups of Γ−1;p ,

Γ(−1;p)(N) =
� ����1 +N(a+ b

p
p) N(−c+ d

p
p)

N(c+ d
p
p) 1 +N(a− bpp)

���� : a; b; c; d 2 Z
��
� id.

(1:7)
which are known ([13] and [12]) to satisfy (i).

In Lemma 2 [14] it is proved that:

inj: rad: (H2=Γ−1;p(N)) = O(logN) (1:8)

and in the proof of Theorem 6 that genus (H2=Γ−1;p(N)) =: genus (�(N)) =:
genus (�g) =: genus (N) satis�es:

O(N2) � genus (N) � O(N3) (1:9)

so
inj: rad:�g = O(log g) (1:10)

Now choose a sequence of h and g to satisfy log g = O(log h)2 and so that
N(h) divides N(g). Thus, we have a covering projection �g −! �h . Let � be
the shortest essential loop in �h , by (1:10) length(�) = O(log h). Choosing a
base point on �; [�] 2 Γ(−1;p)(N(h))=Γ(−1;p)(N(g)) satis�es:

order [�] � O(log(h)) = O(log g)1=2 (1:11)

since the translation length of � = O(log g)1=2 must be multiplied by O(log g)1=2

before it reaches length O(log g), a necessary condition to be an element in the
subgroup Γ(−1;p)(N(g)).

Let � be the translation determined by [�]. We have just checked condition
(ii) order (�) > O(log g)1=2 . Factor the previous covering as:

�g −! �g=h�i −! �h (1:12)

and set �g=h�i =: gS: Since gS covers �h , we conclude condition (iii):

inj: rad: (gS) � inj: rad: (�h) � O(log h) = O(log g)1=2: (1:13)
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2 Veri�cation of Freedom

We regard the Riemannian manifold S2 � S1
g as essentially speci�ed in

section 1. Technically, there is the parameter � to be analyzed in [4] which
controls the \thickness" of the Dehn surgeries. On two occasions, we demand
this to be su�ciently small (the cost is an increase in the maximum absolute
value of the Riemann curvature tensor as a function of g). The �rst occurrence
is in the next proposition.

Proposition 2.1 vol (S2 � S1
g ) = Z2 − systole3(S2 � S1

g ) = O(g)

Proof V olume (Mg) = vol (�g � [0; 1] = area(�g) = 2�X (�g) = O(g)). By
choosing � > 0 small enough as a function of g , the Dehn �llings contribute
negligible volume so this property is retained by S2 � S1

g .

The next proposition is more subtle.

Proposition 2.2 Z2 − systole2(S2 � S1
g) = O(g)

Proof According to [3] a non-oriented minimizer among all nonzero codimen-
sion one cycles always exists and is smooth provided the ambient dimension is
at most 7. Let Xg � S2 � S1

g be this minimizer. For a contradiction, assume
area(Xg) < O(g).

The Dehn surgeries in section 1 were con�ned to �g � [1
2 ; 1], so the surfaces

�g � t, t 2 (0; 1
2) persist as submanifolds of S2 � S1

g . By Sard’s theorem, for
almost all t� 2 (0; 1

2), �g � t� intersects Xg transversely. Let Wt , t 2 (0; 1
2)

denote the intersection. By the co-area formula.

O(g) > area(Xg) �
Z 1=2

t=0
length (Wt) dt (2:1)

Consequently, for some transverse t� 2 (0; 1
2),

length (Wt�) < O(g) (2:2)

Since both �g � t� and Xg represent the nonzero element of H2(S2 � S1
g ;Z2),

the complement S2 � S1
g n (�g � t� [ Xg) can be two colored into black and

white regions (change colors when crossing either surface) and the closure B of
the black points is a piecewise smooth Z2{homology between �g � t� and Xg .
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For homological reasons, the reverse Dehn surgeries S2 � S1
g  Mg have cores

with zero (mod 2) intersection with Xg . This means that the tori @Ti;� =
@T 0i;� each meet Xg in a null homologous, probably disconnected, 1{manifold
Xg \ @Ti;� � @Ti;� . Again, if � is a su�ciently small function of g , we may
\cut o�" Xg along these tori to form

X 0g = (Xg n [iTi;�) [ �i;
where �i denotes a bounding surface for Xg \ @Ti;� in @Ti;� , with negligible
increase in area. In particular, we still have:

area (X 0g) < O(g) (2:3)

More speci�cally choose �i to be the \black" piece of @Ti;� , ie �i � B . If we
set

B0 = closure(B n [iTi;�)
and recall

[iTi;� \�g � t� = ;;
we see that B0 is a Z2{homology from X 0g to �g � t� .
It is time to use property (i): Wt� separates �g � t� into two subsurfaces
meeting along their boundaries: One subsurface sees black on the positive side,
the other on its negative side. An inequality of Buser’s [2], a converse to the
Cheeger’ isoperimetric inequality, states that area > constant � length, in the
presence of bounded sectional curvatures, yields an upper bound on �1 . Thus,
the smaller of these two subsurfaces, call it Y � �g � t� must satisfy:

area (Y ) � c4 length (Wt�) (2:4)

where c4 is independent of g . Combining with line (2.2), we have:

area (Y ) � O(log g) (2:5)

Now modify X 0g to Z by cutting along Wt� and inserting two parallel copies of
Y . This may be done so that the result is disjoint from �g � t� but bordant to
it by a slight modi�cation B00 of B0 , with B00 still disjoint from �g � t� . See
Figure 2.1 and Figure 2.2.

combining (2.3) and (2.5):

area (Z) � 3 � O(log g) = O(log g) (2:6)

Now reverse the Dehn surgeries and consider:

(B00; �g � t�; Z) �Mg n�g � (t� � �) �Mg: (2:7)
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Z

X 0

B0

B00

�g � t0

�g � t0

�g � (t0 � �)

Figure 2.1

after

before
modi�cation

modi�cation

Figure 2.2

The middle term of line (2.7) is di�eomorphic to �g�R, which is a codimension
0 submanifold of R3 . This proves that B00 and in particular Z is orientable.
But this looks absurd. Apparently, we have constructed an oriented surface Z
oriented-homologous to the �ber �g � t� of Mg of smaller area (compare line
(2.6) with the �rst line in the proof of proposition 1.1).

Let @
@t be the divergenceless flow in the interval direction on Mg . Lift Z to eZ

in the in�nite cyclic cover �g � R and consider the flow through the lift eB00 ,
the lift of B00 . The divergence theorem states that the flux through eZ is equal
to the flux through �g � t� . Since @

@t is orthogonal to �g � t� ,

area (�g � t�) � area ( eZ) = area(Z) (2:8)

completing the contradiction.

Proposition 2.3 Z2 − systole1(S2 � S1
g) � O(log g)1=2
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Proof We actually show that any homotopically essential loop obeys this esti-
mate. The long collar condition C (section 1) implies that any arc in T 0i;� with
end points on @T 0i;� can be replaced with a shorter arc with the same end points
lying entirely within @T 0i;� . It follows that any essential loop in S2� S1

g can be
homotoped to a shorter loop lying in the complement of the Dehn surgeries.

Thus, it is su�cient to show that any homotopically essential loop γ in Mg

has length γ � O(log g)1=2 . For a contradiction, suppose the opposite. Since
the bundle projection �: Mg ! [0; 1]= 0 � 1 is length nonincreasing, degree
��γ < O(log g)1=2 . Lift γnpt. to an arc eγ in �g�R. The lift eγ joins some point
(p; t) to (�dp; t+d) where d = degree ��γ . Since d < O(log g)1=2 and since con-
dition (ii) requires order(�) � O(log g)1=2 , we see that p and �dp di�er by a non-
trivial covering translation of the cover �g ! gS . Nevertheless, any non-trivial
covering translation moves each point of the total space at least twice the injec-
tivity radius of the base, a quantity guaranteed by (iii) to be � O(log g)1=2 . Now
using that the projection �g�R! �g is also length nonincreasing, we see that
length (eγ) � O(log g)1=2 . Since length (eγ) = length (γ), the same estimate
applies to γ .

Theorem 2.4 The family fS2 � S1
gg exhibits Z2{systolic freedom.

Proof From propositions 2.1, 2.2, and 2.3, we have:
Z2 − systole3(S2 � S1

g)
Z2 − systole2(S2 � S1

g) � Z2 − systole1(S2 � S1
g )
� O(g)
O(g) O(log g)1=2

! 0:

Many further examples in higher dimensions can now be generated. It is easy
to check that if C is a circle of radius O(g)

O(log g)1=2 then (S2 � S1
g ) � C has

Z2−(2; 2){freedom. As in [1], two further 1{surgeries give a family of metrics on
S2 � S2 with Z2 − (2; 2){freedom. Curiously, the homotopy theoretic methods
in [1] do not resolve whether CP 2 has Z2{freedom. The di�culty is that a
crucial \meromorphic map" CP 2 ! S2 � S2 has even degree. Whether CP 2

admits a metric of volume = � in which every surface, orientable or not, of
area � 1 is null homotopic is an open question. I would like to thank M. Katz
for his explanation of this di�culty, and for orienting me within the literatures
on systolic inequalities.

3 Curvature Normalization

The precise arithmetic of both the theorem and Gromov’s example (See intro-
duction.) suggests that the amount of systolic freedom exhibited in a parameter
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family should be quanti�ed. The natural way to do this is to homothetically
rescale each metric in the family (say g is the parameter) to make the spaces
as small as possible while keeping all sectional curvatures bounded between −1
and +1.

Given a family exhibiting (p; q){freedom, for some choice of coe�cients, �rst
rescale the members of the family to obtain bounded curvature and then write
the \denominator" = systolep(g) � systoleq(g) as a function of the rescaled
\numerator" = volume = systolen(g). The function F (n) = d(n)

n measures
the \freeness" of the family.

In the constructions of Gromov and Babenko{Katz, F (n) grows like a positive
power of n. Pittet [11] replaced a Nil geometry construction of [1] with an
analogous Solv geometry construction to realize what our de�nition interprets
as an exponentially growing F (n). When properly rescaled the growth function
for the examples in this paper will be considerably slower than root log (to
be estimated in [4]). Perhaps the most interesting question to arise from our
example is whether manifolds are \nearly" Z2{rigid, ie, do their Z2{freeness
functions even when maximized over all families of metrics grow with extreme
slowness. A negative answer would be very interesting both within geometry
and for the implication for quantum codes. A positive answer would require a
new technical idea: eg, translating some as yet unproved upper bound on the
e�ciency of quantum codes into di�erential geometry.

I would like to thank David Meyer for may helpful discussions on the theme of
systolic geometry.

The author is supported by Microsoft Research-Theory Group.
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