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1. Higher dimensional local fields

Igor Zhukov

We give here basic definitions related to n-dimensional local fields. For detailed
exposition, see [P] in the equal characteristic case, [K1, §8] for the two-dimensional
case and [MZ1], [MZ2] for the general case. Several properties of the topology on the
multiplicative group are discussed in [F].

1.1. Main definitions

Suppose that we are given a surface S over a finite field of characteristic p, a curve
C ⊂ S , and a point x ∈ C such that both S and C are regular at x. Then one can

attach to these data the quotient field of the completion (̂ÔS,x)C of the localization at C

of the completion ÔS,x of the local ring OS,x of S at x. This is a two-dimensional local
field over a finite field, i.e., a complete discrete valuation field with local residue field.
More generally, an n-dimensional local field F is a complete discrete valuation field
with (n − 1)-dimensional residue field. (Finite fields are considered as 0-dimensional
local fields.)

Definition. A complete discrete valuation field K is said to have the structure of an
n-dimensional local field if there is a chain of fields K = Kn,Kn−1, . . . ,K1,K0
where Ki+1 is a complete discrete valuation field with residue field Ki and K0 is a
finite field. The field kK = Kn−1 (resp. K0 ) is said to be the first (resp. the last)
residue field of K .

Remark. Most of the properties of n-dimensional local fields do not change if one
requires that the last residue K0 is perfect rather than finite. To specify the exact
meaning of the word, K can be referred to as an n-dimensional local field over a finite
(resp. perfect) field. One can consider an n-dimensional local field over an arbitrary
field K0 as well. However, in this volume mostly the higher local fields over finite
fields are considered.
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6 I. Zhukov

Examples. 1. Fq((X1)) . . . ((Xn)). 2. k((X1)) . . . ((Xn−1)), k a finite extension of
Qp .

3. For a complete discrete valuation field F let

K = F {{T}} =

{+∞∑
−∞

aiT
i : ai ∈ F, inf vF (ai) > −∞, lim

i→−∞
vF (ai) = +∞

}
.

Define vK (
∑
aiT

i) = min vF (ai). Then K is a complete discrete valuation field with
residue field kF ((t)).

Hence for a local field k the fields

k {{T1}} . . . {{Tm}} ((Tm+2)) . . . ((Tn)), 0 6 m 6 n− 1

are n-dimensional local fields (they are called standard fields).

Remark. K ((X)) {{Y }} is isomorphic to K ((Y )) ((X)).

Definition. An n-tuple of elements t1, . . . , tn ∈ K is called a system of local param-
eters of K , if tn is a prime element of Kn, tn−1 is a unit in OK but its residue in
Kn−1 is a prime element of Kn−1, and so on.

For example, for K = k {{T1}} . . . {{Tm}} ((Tm+2)) . . . ((Tn)), a convenient system
of local parameter is T1, . . . , Tm, π, Tm+2, . . . , Tn , where π is a prime element of k.

Consider the maximal m such that char (Km) = p; we have 0 6 m 6 n. Thus,
there are n + 1 types of n-dimensional local fields: fields of characteristic p and fields
with char (Km+1) = 0, char (Km) = p, 0 6 m 6 n−1. Thus, the mixed characteristic
case is the case m = n− 1.

Suppose that char (kK) = p, i.e., the above m equals either n− 1 or n. Then the
set of Teichmüller representatives R in OK is a field isomorphic to K0.

Classification Theorem. Let K be an n-dimensional local field. Then
(1) K is isomorphic to Fq((X1)) . . . ((Xn)) if char (K) = p;
(2) K is isomorphic to k((X1)) . . . ((Xn−1)), k is a local field, if char (K1) = 0;
(3) K is a finite extension of a standard field k {{T1}} . . . {{Tm}} ((Tm+2)) . . . ((Tn))

and there is a finite extension of K which is a standard field if char (Km+1) = 0,
char (Km) = p.

Proof. In the equal characteristic case the statements follow from the well known
classification theorem for complete discrete valuation fields of equal characteristic. In
the mixed characteristic case let k0 be the fraction field of W (Fq) and let T1, ..., Tn−1 , π
be a system of local parameters of K . Put

K ′ = k0 {{T1}} . . . {{Tn−1}} .
Then K ′ is an absolutely unramified complete discrete valuation field, and the (first)
residue fields of K ′ and K coincide. Therefore, K can be viewed as a finite extension
of K ′ by [FV, II.5.6].

Geometry & Topology Monographs, Volume 3 (2000) – Invitation to higher local fields



Part I. Section 1. Higher dimensional local fields 7

Alternatively, let t1, . . . , tn−1 be any liftings of a system of local parameters of kK .
Using the canonical lifting ht1,...,tn−1 defined below, one can construct an embedding
K ′ ↪→ K which identifies Ti with ti .

To prove the last assertion of the theorem, one can use Epp’s theorem on elimination
of wild ramification (see 17.1) which asserts that there is a finite extension l/k0 such
that e

(
lK/lK ′

)
= 1. Then lK ′ is standard and lK is standard, so K is a subfield of

lK . See [Z] or [KZ] for details and a stronger statement.

Definition. The lexicographic order of Zn : i = (i1, . . . , in) 6 j = (j1, . . . , jn) if and
only if

il 6 jl, il+1 = jl+1, . . . , in = jn for some l 6 n .
Introduce v = (v1, . . . , vn):K∗ → Zn as vn = vKn , vn−1(α) = vKn−1 (αn−1)

where αn−1 is the residue of αt−vn(α)
n in Kn−1, and so on. The map v is a valuation;

this is a so called discrete valuation of rank n. Observe that for n > 1 the valuation
v does depend on the choice of t2, . . . , tn . However, all the valuations obtained this
way are in the same class of equivalent valuations.

Now we define several objects which do not depend on the choice of a system of
local parameters.

Definition.
OK = {α ∈ K : v(α) > 0}, MK = {α ∈ K : v(α) > 0}, so OK/MK ' K0.

The group of principal units of K with respect to the valuation v is VK = 1 +MK .

Definition.

P (il, . . . , in) = PK (il, . . . , in) = {α ∈ K : (vl(α), . . . , vn(α)) > (il, . . . , in)}.

In particular, OK = P
(
0, . . . , 0︸ ︷︷ ︸

n

)
, MK = P

(
1, 0, . . . , 0︸ ︷︷ ︸

n−1

)
, whereas OK = P (0),

MK = P (1). Note that if n > 1, then

∩iM i
K = P

(
1, 0, . . . , 0︸ ︷︷ ︸

n−2

)
,

since t2 = ti−1
1 (t2/t

i−1
1 ).

Lemma. The set of all non-zero ideals of OK consists of all

{P (il, . . . , in) : (il, . . . , in) > (0, . . . , 0) , 1 6 l 6 n}.

The ring OK is not Noetherian for n > 1.
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8 I. Zhukov

Proof. Let J be a non-zero ideal of OK . Put in = min{vn(α) : α ∈ J}. If
J = P (in), then we are done. Otherwise, it is clear that

in−1 := inf{vn−1(α) : α ∈ J, vn(α) = in} > −∞.
If in = 0, then obviously in−1 > 0. Continuing this way, we construct (il, . . . , in) >
(0, . . . , 0), where either l = 1 or

il−1 = inf{vl−1(α) : α ∈ J, vn(α) = in, . . . , vl(α) = il} = −∞.
In both cases it is clear that J = P (il, . . . , in).

The second statement is immediate from P (0, 1) ⊂ P (−1, 1) ⊂ P (−2, 1) . . . .

For more on ideals in OK see subsection 3.0 of Part II.

1.2. Extensions

Let L/K be a finite extension. If K is an n-dimensional local field, then so is L.

Definition. Let t1, . . . , tn be a system of local parameters of K and let t
′

1, . . . , t
′

n

be a system of local parameters of L. Let v,v′ be the corresponding valuations. Put

E(L|K) :=
(
v
′

j(ti)
)
i,j

=


e1 0 . . . 0
. . . e2 . . . 0
. . . . . . . . . 0
. . . . . . . . . en

 ,

where ei = ei(L|K) = e(Li|Ki), i = 1, . . . , n. Then ei do not depend on the choice
of parameters, and |L : K| = f (L|K)

∏n
i=1 ei(L|K), where f (L|K) = |L0 : K0| .

The expression “unramified extension” can be used for extensions L/K with
en(L|K) = 1 and Ln−1/Kn−1 separable. It can be also used in a narrower sense,
namely, for extensions L/K with

∏n
i=1 ei(L|K) = 1. To avoid ambiguity, sometimes

one speaks of a “semiramified extension” in the former case and a “purely unramified
extension” in the latter case.

1.3. Topology on K

Consider an example of n-dimensional local field

K = k {{T1}} . . . {{Tm}} ((Tm+2)) . . . ((Tn)).

Expanding elements of k into power series in π with coefficients in Rk , one can write
elements of K as formal power series in n parameters. To make them convergent power
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Part I. Section 1. Higher dimensional local fields 9

series we should introduce a topology in K which takes into account topologies of the
residue fields. We do not make K a topological field this way, since multiplication is
only sequentially continuous in this topology. However, for class field theory sequential
continuity seems to be more important than continuity.

1.3.1.

Definition.
(a) If F has a topology, consider the following topology on K = F ((X)). For a

sequence of neighbourhoods of zero (Ui)i∈Z in F , Ui = F for i � 0, denote
U{Ui} =

{∑
aiX

i : ai ∈ Ui
}

. Then all U{Ui} constitute a base of open neigh-

bourhoods of 0 in F ((X)). In particular, a sequence u(n) =
∑
a(n)
i Xi tends to 0

if and only if there is an integer m such that u(n) ∈ XmF [[X]] for all n and the
sequences a(n)

i tend to 0 for every i.

Starting with the discrete topology on the last residue field, this construction is used
to obtain a well-defined topology on an n-dimensional local field of characteristic
p.

(b) Let Kn be of mixed characteristic. Choose a system of local parameters t1, . . . , tn
= π of K . The choice of t1, . . . , tn−1 determines a canonical lifting

h = ht1,...,tn−1 : Kn−1 → OK
(see below). Let (Ui)i∈Z be a system of neighbourhoods of zero in Kn−1,
Ui = Kn−1 for i� 0. Take the system of all U{Ui} =

{∑
h(ai)πi, ai ∈ Ui

}
as

a base of open neighbourhoods of 0 in K . This topology is well defined.
(c) In the case char (K) = char (Kn−1) = 0 we apply constructions (a) and (b) to

obtain a topology on K which depends on the choice of the coefficient subfield of
Kn−1 in OK .

The definition of the canonical lifting ht1,...,tn−1 is rather complicated. In fact, it is
worthwhile to define it for any (n − 1)-tuple (t1, . . . , tn−1) such that vi(ti) > 0 and
vj(ti) = 0 for i < j 6 n. We shall give an outline of this construction, and the details
can be found in [MZ1, §1].

Let F = K0((t1)) . . . ((tn−1)) ⊂ Kn−1. By a lifting we mean a map h : F → OK
such that the residue of h(a) coincides with a for any a ∈ F .

Step 1. An auxiliary lifting Ht1,...,tn−1 is uniquely determined by the condition

Ht1,...,tn−1

(p−1∑
i1=0

· · ·
p−1∑
in−1=0

t1
i1 . . . tn−1

in−1api1,...,in−1

)

=
p−1∑
i1=0

· · ·
p−1∑
in−1=0

t
i1
1 . . . t

in−1
n−1 (Ht1,...,tn−1(ai1,...,in−1 ))p.
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10 I. Zhukov

Step 2. Let k0 be the fraction field of W (K0). Then K ′ = k0{{T1}} . . . {{Tn−1}}
is an n-dimensional local field with the residue field F . Comparing the lifting H =
HT1,...,Tn−1 with the lifting h defined by

h
( ∑
r∈Zn−1

θrT1
r1 . . . Tn−1

rn−1
)

=
∑

r∈Zn−1

[θr]T r1
1 . . . T

rn−1
n−1 ,

we introduce the maps λi : F −→ F by the formula

h(a) = H(a) + pH(λ1(a)) + p2H(λ2(a)) + . . .

Step 3. Introduce ht1,...,tn−1 : F −→ OK by the formula

ht1,...,tn−1 (a) = Ht1,...,tn−1 (a) + pHt1,...,tn−1 (λ1(a)) + p2Ht1,...,tn−1(λ2(a)) + . . . .

Remarks. 1. Observe that for a standard field K = k {{T1}} . . . {{Tn−1}} , we have

hT1,...,Tn−1 :
∑

θiT1
i1 . . . Tn−1

in−1 7→
∑

[θi]T
i1
1 . . . T

in−1
n−1 ,

where Tj is the residue of Tj in kK , j = 1, . . . , n− 1.
2. The idea of the above construction is to find a field k0{{t1}} . . . {{tn−1}} isomor-

phic to K ′ inside K without a priori given topologies on K and K ′. More precisely,
let t1, . . . , tn−1 be as above. For a =

∑∞
−∞ pih(ai) ∈ K ′ , let

ft1,...,tn−1 (a) =
∞∑
−∞

piht1,...,tn−1 (ai)

Then ft1,...,tn−1 : K ′ −→ K is an embedding of n-dimensional complete fields such
that

ft1,...,tn−1(Tj ) = tj , j = 1, . . . , n− 1

(see [MZ1, Prop. 1.1]).
3. In the case of a standard mixed characteristic field the following alternative

construction of the same topology is very useful.
Let K = E{{X}}, where E is an (n− 1)-dimensional local field; assume that the

topology of E is already defined. Let {Vi}i∈Z be a sequence of neighbourhoods of
zero in E such that
(i) there is c ∈ Z such that PE(c) ⊂ Vi for all i ∈ Z;
(ii) for every l ∈ Z we have PE(l) ⊂ Vi for all sufficiently large i.

Put

V{Vi} =
{∑

biX
i : bi ∈ Vi

}
.

Then all the sets V{Vi} form a base of neighbourhoods of 0 in K . (This is an easy but
useful exercise in the 2-dimensional case; in general, see Lemma 1.6 in [MZ1]).

4. The formal construction of ht1,...,tn−1 works also in case char (K) = p, and
one need not consider this case separately. However, if one is interested in equal
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Part I. Section 1. Higher dimensional local fields 11

characteristic case only, all the treatment can be considerably simplified. (In fact, in
this case ht1,...,tn−1 is just the obvious embedding of F ⊂ kK into OK = kK[[tn]]. )

1.3.2. Properties.
(1) K is a topological group which is complete and separated.
(2) If n > 1, then every base of neighbourhoods of 0 is uncountable. In particular,

there are maps which are sequentially continuous but not continuous.
(3) If n > 1, multiplication in K is not continuous. In fact, UU = K for every open

subgroup U , since U ⊃ P (c) for some c and U 6⊂ P (s) for any s. However,
multiplication is sequentially continuous:

αi → α, 0 6= βi → β 6= 0 =⇒ αiβ
−1
i → αβ−1.

(4) The map K → K, α 7→ cα for c 6= 0 is a homeomorphism.
(5) For a finite extension L/K the topology of L = the topology of finite dimensional

vector spaces over K (i.e., the product topology on K |L:K| ). Using this property
one can redefine the topology first for “standard” fields

k {{T1}} . . . {{Tm}} ((Tm+2)) . . . ((Tn))

using the canonical lifting h, and then for arbitrary fields as the topology of finite
dimensional vector spaces.

(6) For a finite extension L/K the topology of K = the topology induced from L.
Therefore, one can use the Classification Theorem and define the topology on K
as induced by that on L, where L is taken to be a standard n-dimensional local
field.

Remark. In practical work with higher local fields, both (5) and (6) enables one to use
the original definition of topology only in the simple case of a standard field.

1.3.3. About proofs. The outline of the proof of assertions in 1.3.1–1.3.2 is as follows.
(Here we concentrate on the most complicated case char (K) = 0, char (Kn−1) = p;
the case of char (K) = p is similar and easier, for details see [P]).

Step 1 (see [MZ1, §1]). Fix first n − 1 local parameters (or, more generally, any
elements t1, . . . , tn−1 ∈ K such that vi(ti) > 0 and vj(ti) = 0 for j > i ).

Temporarily fix πi ∈ K ( i ∈ Z ), vn(πi) = i, and ej ∈ PK(0), j = 1, . . . , d, so
that {ej}dj=1 is a basis of the F -linear space Kn−1. (Here F is as in 1.3.1, and α

denotes the residue of α in Kn−1. ) Let {Ui}i∈Z be a sequence of neighbourhoods of
zero in F , Ui = F for all sufficiently large i. Put

U{Ui} =
{∑
i>i0

πi ·
d∑
j=1

ejht1,...,tn−1(aij) : aij ∈ Ui, i0 ∈ Z
}
.

The collection of all such sets U{Ui} is denoted by BU .
Step 2 ([MZ1, Th. 1.1]). In parallel one proves that
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12 I. Zhukov

– the set BU has a cofinal subset which consists of subgroups of K ; thus, BU is
a base of neighbourhoods of zero of a certain topological group Kt1,...,tn−1 with the
underlying (additive) group K ;

– Kt1,...,tn−1 does not depend on the choice of {πi} and {ej};
– property (4) in 1.3.2 is valid for Kt1,...,tn−1 .
Step 3 ([MZ1, §2]). Some properties of Kt1,...,tn−1 are established, in particular,

(1) in 1.3.2, the sequential continuity of multiplication.
Step 4 ([MZ1, §3]). The independence from the choice of t1, . . . , tn−1 is proved.

We give here a short proof of some statements in Step 3.
Observe that the topology of Kt1,...,tn−1 is essentially defined as a topology of a

finite-dimensional vector space over a standard field k0{{t1}} . . . {{tn−1}}. (It will be
precisely so, if we take {πiej : 0 6 i 6 e − 1, 1 6 j 6 d} as a basis of this vector
space, where e is the absolute ramification index of K , and πi+e = pπi for any i. )
This enables one to reduce the statements to the case of a standard field K .

If K is standard, then either K = E((X)) or K = E{{X}}, where E is of smaller
dimension. Looking at expansions in X , it is easy to construct a limit of any Cauchy
sequence in K and to prove the uniqueness of it. (In the case K = E{{X}} one should
use the alternative construction of topology in Remark 3 in 1.3.1.) This proves (1) in
1.3.2.

To prove the sequential continuity of multiplication in the mixed characteristic case,
let αi → 0 and βi → 0, we shall show that αiβi → 0.

Since αi → 0, βi → 0, one can easily see that there is c ∈ Z such that vn(αi) > c,
vn(βi) > c for i > 1.

By the above remark, we may assume that K is standard, i.e., K = E{{t}}. Fix an
open subgroup U in K ; we have P (d) ⊂ U for some integer d. One can assume that
U = V{Vi} , Vi are open subgroups in E . Then there is m0 such that PE(d− c) ⊂ Vm
for m > m0. Let

αi =
∞∑
−∞

a(r)
i tr, βi =

∞∑
−∞

b(l)
i t

l, a(r)
i , b(l)

i ∈ E.

Notice that one can find an r0 such that a(r)
i ∈ PE(d − c) for r < r0 and all i.

Indeed, if this were not so, one could choose a sequence r1 > r2 > . . . such that
a

(rj )
ij

/∈ PE(d− c) for some ij . It is easy to construct a neighbourhood of zero V ′rj in

E such that PE(d− c) ⊂ V ′rj , a(rj )
ij

/∈ Vrj . Now put V ′r = E when r is distinct from
any of rj , and U ′ = V{V ′r} . Then aij /∈ U ′ , j = 1, 2, . . . The set {ij} is obviously
infinite, which contradicts the condition αi → 0.

Similarly, b(l)
i ∈ PE(d − c) for l < l0 and all i. Therefore,

αiβi ≡
m0∑
r=r0

a(r)
i tr ·

m0∑
l=l0

b(l)
i t

l mod U,
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and the condition a(r)
i b(l)

i → 0 for all r and l immediately implies αiβi → 0.

1.3.4. Expansion into power series. Let n = 2. Then in characteristic p we have
Fq ((X)) ((Y )) = {

∑
θijX

jY i}, where θij are elements of Fq such that for some i0
we have θij = 0 for i 6 i0 and for every i there is j(i) such that θij = 0 for j 6 j(i).

On the other hand, the definition of the topology implies that for every neighbourhood
of zero U there exists i0 and for every i < i0 there exists j(i) such that θXjY i ∈ U
whenever either i > i0 or i < i0, j > j(i).

So every formal power series has only finitely many terms θXjY i outside U .
Therefore, it is in fact a convergent power series in the just defined topology.

Definition. Ω ⊂ Zn is called admissible if for every 1 6 l 6 n and every jl+1, . . . , jn
there is i = i(jl+1, . . . , jn) ∈ Z such that

(i1, . . . , in) ∈ Ω, il+1 = jl+1, . . . , in = jn ⇒ il > i.

Theorem. Let t1, . . . , tn be a system of local parameters of K . Let s be a section of
the residue map OK → OK/MK such that s(0) = 0. Let Ω be an admissible subset
of Zn. Then the series∑

(i1,...,in)∈Ω

bi1,...,int
i1
1 . . . t

in
n converges (bi1,...,in ∈ s(OK/MK))

and every element of K can be uniquely written this way.

Remark. In this statement it is essential that the last residue field is finite. In a more
general setting, one should take a “good enough” section. For example, for K =
k {{T1}} . . . {{Tm}} ((Tm+2)) . . . ((Tn)), where k is a finite extension of the fraction
field of W (K0) and K0 is perfect of prime characteristic, one may take the Teichmüller
section K0 → Km+1 = k {{T1}} . . . {{Tm}} composed with the obvious embedding
Km+1 ↪→ K .

Proof. We have∑
(i1,...,in)∈Ω

bi1,...,int
i1
1 . . . t

in
n =

∑
b∈s(OK/MK )

(
b ·

∑
(i1,...,in)∈Ωb

t
i1
1 . . . t

in
n

)
,

where Ωb = {(i1, . . . , in) ∈ Ω : bi1,...,in = b}. In view of the property (4), it
is sufficient to show that the inner sums converge. Equivalently, one has to show
that given a neighbourhood of zero U in K , for almost all (i1, . . . , in) ∈ Ω we
have t

i1
1 . . . t

in
n ∈ U . This follows easily by induction on n if we observe that

t
i1
1 . . . t

in−1
n−1 = ht1,...,tn−1(t1i1 . . . tn−1

in−1 ).
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To prove the second statement, apply induction on n once again. Let r = vn(α),
where α is a given element of K . Then by the induction hypothesis

t−rn α =
∑

(i1,...,in−1)∈Ωr

bi1,...,in
(
t1
)i1 . . . (tn−1

)in−1 ,

where Ωr ⊂ Zn−1 is a certain admissible set. Hence

α =
∑

(i1,...,in−1)∈Ωr

bi1,...,int
i1
1 . . . t

in−1
n−1 t

r
n + α′,

where vn(α′) > r. Continuing this way, we obtain the desired expansion into a sum
over the admissible set Ω = (Ωr × {r}) ∪ (Ωr+1 × {r + 1}) ∪ . . .

The uniqueness follows from the continuity of the residue map OK → Kn−1.

1.4. Topology on K∗

1.4.1. 2-dimensional case, char (kK) = p .

Let A be the last residue field K0 if char (K) = p, and let A = W (K0) if
char (K) = 0. Then A is canonically embedded into OK , and it is in fact the subring
generated by the set R.

For a 2-dimensional local field K with a system of local parameters t2, t1 define a
base of neighbourhoods of 1 as the set of all 1 + ti2OK + tj1A[[t1, t2]], i > 1, j > 1.
Then every element α ∈ K∗ can be expanded as a convergent (with respect to the just
defined topology) product

α = ta2
2 t

a1
1 θ
∏

(1 + θijt
i
2t
j
1)

with θ ∈ R∗, θij ∈ R, a1, a2 ∈ Z. The set S = {(j, i) : θij 6= 0} is admissible.

1.4.2. In the general case, following Parshin’s approach in characteristic p [P], we
define the topology τ on K∗ as follows.

Definition. If char (Kn−1) = p, then define the topology τ on

K∗ ' VK × 〈t1〉 × · · · × 〈tn〉 × R∗

as the product of the induced from K topology on the group of principal units VK and
the discrete topology on 〈t1〉 × · · · × 〈tn〉 × R∗ .

If char (K) = char (Km+1) = 0, char (Km) = p, where m 6 n− 2, then we have a
canonical exact sequence

1 −→ 1 + PK
(
1, 0, . . . , 0︸ ︷︷ ︸

n−m−2

)
−→ O∗K −→ O∗Km+1

−→ 1.

Geometry & Topology Monographs, Volume 3 (2000) – Invitation to higher local fields



Part I. Section 1. Higher dimensional local fields 15

Define the topology τ on K∗ ' O∗K × 〈t1〉 × · · · × 〈tn〉 as the product of the discrete
topology on 〈t1〉 × · · · × 〈tn〉 and the inverse image of the topology τ on O∗Km+1

.

Then the intersection of all neighbourhoods of 1 is equal to 1 +PK
(
1, 0, . . . , 0︸ ︷︷ ︸

n−m−2

)
which

is a uniquely divisible group.

Remarks. 1. Observe that Km+1 is a mixed characteristic field and therefore its
topology is well defined. Thus, the topology τ is well defined in all cases.

2. A base of neighbourhoods of 1 in VK is formed by the sets

h(U0) + h(U1)tn + ... + h(Uc−1)tc−1
n + PK (c),

where c > 1, U0 is a neighbourhood of 1 in VkK , U1, . . . , Uc−1 are neighbourhoods
of zero in kK , h is the canonical lifting associated with some local parameters, tn is
the last local parameter of K . In particular, in the two-dimensional case τ coincides
with the topology of 1.4.1.

Properties.
(1) Each Cauchy sequence with respect to the topology τ converges in K∗.
(2) Multiplication in K∗ is sequentially continuous.
(3) If n 6 2, then the multiplicative group K∗ is a topological group and it has a

countable base of open subgroups. K∗ is not a topological group with respect to
τ if m > 3.

Proof. (1) and (2) follow immediately from the corresponding properties of the topol-
ogy defined in subsection 1.3. In the 2-dimensional case (3) is obvious from the
description given in 1.4.1. Next, let m > 3, and let U be an arbitrary neighbourhood
of 1. We may assume that n = m and U ⊂ VK . From the definition of the topology
on VK we see that U ⊃ 1 + h(U1)tn + h(U2)t2n , where U1, U2 are neighbourhoods of
0 in kK , tn a prime element in K , and h the canonical lifting corresponding to some
choice of local parameters. Therefore,

UU + P (4) ⊃ (1 + h(U1)tn)(1 + h(U2)t2n) + P (4)

= {1 + h(a)tn + h(b)t2n + h(ab)t3n : a ∈ U1, b ∈ U2} + P (4).

(Indeed, h(a)h(b) − h(ab) ∈ P (1). ) Since U1U2 = kK (see property (3) in 1.3.2), it
is clear that UU cannot lie in a neighbourhood of 1 in VK of the form 1 + h(kK)tn +
h(kK)t2n + h(U ′)t3n +P (4), where U ′ 6= kK is a neighbourhood of 0 in kK . Thus, K∗

is not a topological group.

Remarks. 1. From the point of view of class field theory and the existence theorem
one needs a stronger topology on K∗ than the topology τ (in order to have more open
subgroups). For example, for n > 3 each open subgroup A in K∗ with respect to the
topology τ possesses the property: 1 + t2nOK ⊂ (1 + t3nOK)A.
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16 I. Zhukov

A topology λ∗ which is the sequential saturation of τ is introduced in subsection 6.2;
it has the same set of convergence sequences as τ but more open subgroups. For
example [F1], the subgroup in 1 + tnOK topologically generated by 1 + θtinn . . . t

i1
1

with (i1, . . . , in) 6= (0, 0, . . . , 1, 2), in > 1 (i.e., the sequential closure of the subgroup
generated by these elements) is open in λ∗ and does not satisfy the above-mentioned
property.

One can even introduce a topology on K∗ which has the same set of convergence
sequences as τ and with respect to which K∗ is a topological group, see [F2].

2. For another approach to define open subgroups of K∗ see the paper of K. Kato
in this volume.

1.4.3. Expansion into convergent products. To simplify the following statements
we assume here char kK = p. Let B be a fixed set of representatives of non-zero
elements of the last residue field in K .

Lemma. Let {αi : i ∈ I} be a subset of VK such that

(∗) αi = 1 +
∑
r∈Ωi

b(i)
r t

r1
1 . . . trnn ,

where b ∈ B, and Ωi ⊂ Zn+ are admissible sets satisfying the following two conditions:
(i) Ω =

⋃
i∈I Ωi is an admissible set;

(ii)
⋂
j∈J Ωj = ∅, where J is any infinite subset of I .

Then
∏
i∈I αi converges.

Proof. Fix a neighbourhood of 1 in VK ; by definition it is of the form (1 + U ) ∩
VK , where U is a neighbourhood of 0 in K . Consider various finite products of
b(i)
r t

r1
1 . . . trnn which occur in ( ∗ ). It is sufficient to show that almost all such products

belong to U .
Any product under consideration has the form

(∗∗) γ = bk1
1 . . . bkss t

l1
1 . . . t

ln
n

with ln > 0, where B = {b1, . . . , bs}. We prove by induction on j the following
claim: for 0 6 j 6 n and fixed lj+1, . . . , ln the element γ almost always lies in U
(in case j = n we obtain the original claim). Let

Ω̂ = {r1 + · · · + rt : t > 1, r1, . . . , rt ∈ Ω}.

It is easy to see that Ω̂ is an admissible set and any element of Ω̂ can be written as a
sum of elements of Ω in finitely many ways only. This fact and condition (ii) imply
that any particular n-tuple (l1, . . . , ln) can occur at the right hand side of ( ∗∗ ) only
finitely many times. This proves the base of induction ( j = 0 ).

For j > 0, we see that lj is bounded from below since (l1, . . . , ln) ∈ Ω̂ and
lj+1, . . . , ln are fixed. On the other hand, γ ∈ U for sufficiently large lj and arbitrary
k1, . . . , ks, l1, . . . , lj−1 in view of [MZ1, Prop. 1.4] applied to the neighbourhood of
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Part I. Section 1. Higher dimensional local fields 17

zero t
−lj+1
j+1 . . . t−lnn U in K . Therefore, we have to consider only a finite range of values

c 6 lj 6 c′ . For any lj in this range the induction hypothesis is applicable.

Theorem. For any r ∈ Zn+ and any b ∈ B fix an element

ar,b =
∑

s∈Ωr,b

br,bs t
s1
1 . . . tsnn ,

such that br,br = b, and br,bs = 0 for s < r. Suppose that the admissible sets

{Ωr,b : r ∈ Ω∗, b ∈ B}

satisfy conditions (i) and (ii) of the Lemma for any given admissible set Ω∗ .
1. Every element a ∈ K can be uniquely expanded into a convergent series

a =
∑
r∈Ωa

ar,br ,

where br ∈ B, Ωa ⊂ Zn is an admissible set.
2. Every element α ∈ K∗ can be uniquely expanded into a convergent product:

α = tann . . . t
a1
1 b0

∏
r∈Ωα

(
1 + ar,br

)
,

where b0 ∈ B, br ∈ B, Ωα ⊂ Z+
n is an admissible set.

Proof. The additive part of the theorem is [MZ2, Theorem 1]. The proof of it is parallel
to that of Theorem 1.3.4.

To prove the multiplicative part, we apply induction on n. This reduces the statement
to the case α ∈ 1+P (1). Here one can construct an expansion and prove its uniqueness
applying the additive part of the theorem to the residue of t−vn(α−1)

n (α−1) in kK . The
convergence of all series which appear in this process follows from the above Lemma.
For details, see [MZ2, Theorem 2].

Remarks. 1. Conditions (i) and (ii) in the Lemma are essential. Indeed, the infinite

products
∞∏
i=1

(1 + ti1 + t−i1 t2) and
∞∏
i=1

(1 + ti1 + t2) do not converge. This means that the

statements of Theorems 2.1 and 2.2 in [MZ1] have to be corrected and conditions (i)
and (ii) for elements εr,θ (r ∈ Ω∗) should be added.

2. If the last residue field is not finite, the statements are still true if the system
of representatives B is not too pathological. For example, the system of Teichmüller
representatives is always suitable. The above proof works with the only ammendment:
instead of Prop. 1.4 of [MZ1] we apply the definition of topology directly.
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18 I. Zhukov

Corollary. If char (Kn−1) = p, then every element α ∈ K∗ can be expanded into a
convergent product:

(∗ ∗ ∗) α = tann . . . t
a1
1 θ
∏

(1 + θi1,...,int
i1
1 . . . t

in
n ), θ ∈ R∗, θi1,...,in ∈ R,

with {(i1, . . . , in) : θi1,...,in 6= 0} being an admissible set. Any series ( ∗ ∗ ∗ ) converges.
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