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18. On ramification theory of monogenic extensions

Luca Spriano

We discuss ramification theory for finite extensions L/K of a complete discrete valua-
tion field K . This theory deals with quantities which measure wildness of ramification,
such as different, the Artin (resp. Swan) characters and the Artin (resp. Swan) conduc-
tors. When the residue field extension kL/kK is separable there is a complete theory,
e.g. [S], but in general it is not so. In the classical case (i.e. kL/kK separable) proofs
of many results in ramification theory use the property that all finite extensions of val-
uation rings OL/OK are monogenic which is not the case in general. Examples (e.g.
[Sp]) show that the classical theorems do not hold in general. Waiting for a beautiful
and general ramification theory, we consider a class of extensions L/K which has a
good ramification theory. We describe this class and we will call its elements well
ramified extensions. All classical results are generalizable for well ramified extensions,
for example a generalization of the Hasse–Arf theorem proved by J. Borger. We also
concentrate our attention on other ramification invariants, more appropriate and general;
in particular, we consider two ramification invariants: the Kato conductor and Hyodo
depth of ramification.

Here we comment on some works on general ramification theory.
The first direction aims to generalize classical ramification invariants to the general

case working with (one dimensional) rational valued invariants. In his papers de
Smit gives some properties about ramification jumps and considers the different and
differential [Sm2]; he generalizes the Hilbert formula by using the monogenic conductor
[Sm1]. We discuss works of Kato [K3-4] in subsection 18.2. In [K2] Kato describes
ramification theory for two-dimensional local fields and he proves an analogue of the
Hasse–Arf theorem for those Galois extensions in which the extension of the valuation
rings (with respect to the discrete valuation of rank 2) is monogenic.

The second direction aims to extend ramification invariants from one dimensional
to either higher dimensional or to more complicated objects which involve differential
forms (as in Kato’s works [K4], [K5]). By using higher local class field theory, Hyodo
[H] defines generalized ramification invariants, like depth of ramification (see Theorem
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152 L. Spriano

5 below). We discuss relations of his invariants with the (one dimensional) Kato
conductor in subsection 18.3 below. Zhukov [Z] generalizes the classical ramification
theory to the case where |kK : kpK | = p (see section 17 of this volume). From the
viewpoint of this section the existence of Zhukov’s theory is in particular due to the
fact that in the case where |kK : kpK | = p one can reduce various assertions to the well
ramified case.

18.0. Notations and definitions

In this section we recall some general definitions. We only consider complete discrete
valuation fields K with residue fields kK of characteristic p > 0. We also assume that
|kK : kpK | is finite.

Definition. Let L/K be a finite Galois extension, G = Gal(L/K). Let
G0 = Gal(L/L ∩Kur) be the inertia subgroup of G. Define functions

iG, sG:G→ Z

by

iG(σ) =

{
inf x∈OL\{0} vL(σ(x) − x) if σ 6= 1

+∞ if σ = 1

and

sG(σ) =


inf x∈OL\{0} vL(σ(x)/x − 1) if σ 6= 1, σ ∈ G0

+∞ if σ = 1

0 if σ 6∈ G0.

Then sG(σ) 6 iG(σ) 6 sG(σ)+1 and if kL/kK is separable, then iG(σ) = sG(σ)+1
for σ ∈ G0. Note that the functions iG, sG depend not only on the group G, but on
the extension L/K ; we will denote iG also by iL/K .

Definition. The Swan function is defined as

SwG(σ) =


−|kL : kK |sG(σ), if σ ∈ G0 \ {1}
−

∑
τ∈G0\{1}

SwG(τ ), if σ = 1

0 if σ 6∈ G0.

For a character χ of G its Swan conductor

(1) sw(χ) = swG(χ) = (SwG, χ) =
1
|G|

∑
σ∈G

SwG(σ)χ(σ)

is an integer if kL/kK is separable (Artin’s Theorem) and is not an integer in general
(e.g. [Sp, Ch. I]).
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Part I. Section 18. On ramification theory of monogenic extensions 153

18.1. Well ramified extensions

Definition. Let L/K be a finite Galois p-extension. The extension L/K is called
well ramified if OL = OK[α] for some α ∈ L.

18.1.1. Structure theorem for well ramified extensions.

Definition. We say that an extension L/K is in case I if kL/kK is separable; an
extension L/K is in case II if |L : K| = |kL : kK | (i.e. L/K is ferociously ramified
in the terminology of 17.0) and kL = kK(a) is purely inseparable over kK .

Extensions in case I and case II are well ramified. An extension which is simultane-
ously in case I and case II is the trivial extension.

We characterize well ramified extensions by means of the function iG in the fol-
lowing theorem.

Theorem 1 ([Sp, Prop. 1.5.2]). Let L/K be a finite Galois p-extension. Then the
following properties are equivalent:
(i) L/K is well ramified;
(ii) for every normal subgroup H of G the Herbrand property holds:

for every 1 6= τ ∈ G/H

iG/H (τ ) =
1

e(L|LH )

∑
σ∈τH

iG(σ);

(iii) the Hilbert formula holds:

vL(DL/K ) =
∑
σ 6=1

iG(σ) =
∑
i>0

(|Gi| − 1),

for the definition of Gi see subsection 18.2.

From the definition we immediately deduce that if M/K is a Galois subextension
of a well ramified L/K then L/M is well ramified; from (ii) we conclude that M/K
is well ramified.

Now we consider well ramified extensions L/K which are not in case I nor in
case II.

Example. (Well ramified extension not in case I and not in case II). Let K be a
complete discrete valuation field of characteristic zero. Let ζp2 ∈ K. Consider a
cyclic extension of degree p2 defined by L = K(x) where x a root of the polynomial

f (X) = Xp2 − (1 + uπ)αp, α ∈ UK , α 6∈ kpK , u ∈ UK , π is a prime of K . Then
e(L|K) = p = f (L|K)ins, so L/K is not in case I nor in case II. Using Theorem 1, one
can show that OL = OK[x] by checking the Herbrand property.
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154 L. Spriano

Definition. A well ramified extension which is not in case I and is not in case II is said
to be in case III.

Note that in case III we have e(L|K) > p, f (L|K)ins > p.

Lemma 1. If L/K is a well ramified Galois extension, then for every ferociously
ramified Galois subextension E/K such that L/E is totally ramified either E = K
or E = L.

Proof. Suppose that there exists K 6= E 6= L, such that E/K is ferociously ramified
and L/E is totally ramified. Let π1 be a prime of L such that OL = OE[π1].
Let α ∈ E be such that OE = OK[α]. Then we have OL = OK[α, π1]. Let σ
be a K -automorphism of E and denote σ̃ a lifting of σ to G = Gal(L/K). It is
not difficult to show that iG(σ̃) = min{vL(σ̃π1 − π1), vL(σα − α)}. We show that
iG(σ̃) = vL(σ̃π1 − π1). Suppose we had iG(σ̃) = vL(σα − α), then

(∗) iG(σ̃)
e(L|E)

= vE(σα − α) = iE/K (σ).

Furthermore, by Herbrand property we have

iE/K (σ) =
1

e(L|E)

∑
s∈σ Gal(L/E)

iG(s) =
iG(σ̃)
e(L|E)

+
1

e(L|E)

∑
s6=σ̃

iG(s).

So from (∗) we deduce that

1
e(L|E)

∑
s6=σ̃

iG(s) = 0,

but this is not possible because iG(s) > 1 for all s ∈ G. We have shown that

(∗∗) iG(s) = vL(sπ1 − π1) for all s ∈ G.

Now note that α 6∈ OK[π1]. Indeed, from α =
∑
aiπ

i
1, ai ∈ OK , we deduce

α ≡ a0 (modπ1) which is impossible. By (∗∗) and the Hilbert formula (cf. Theorem
1) we have

(∗ ∗ ∗) vL(DL/K ) =
∑
s6=1

iG(s) =
∑
s6=1

vL(sπ1 − π1) = vL(f ′(π1)),

where f (X) denotes the minimal polynomial of π1 over K.
Now let the ideal Tπ1 = {x ∈ OL : xOK[π1] ⊂ OL} be the conductor of OK[π1]

in OL (cf. [S, Ch. III, §6]). We have (cf. loc.cit.)

Tπ1DL/K = f ′(π1)OL

and then (∗ ∗ ∗) implies Tπ1 = OL , OL = OK[π1], which contradicts α 6∈ OK[π1].
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Theorem 2 (Spriano). Let L/K be a Galois well ramified p-extension. Put K0 =
L ∩Kur . Then there is a Galois subextension T/K0 of L/K0 such that T/K0 is in
case I and L/T in case II.

Proof. Induction on |L : K0|.
Let M/K0 be a Galois subextension of L/K0 such that |L : M | = p. Let T/K0

be a Galois subextension of M/K0 such that T/K0 is totally ramified and M/T is
in case II. Applying Lemma 1 to L/T we deduce that L/M is ferociously ramified,
hence in case II.

In particular, if L/K is a Galois p-extension in case III such that L ∩Kur = K ,
then there is a Galois subextension T/K of L/K such that T/K is in case I, L/T in
case I and K 6= T 6= L.

18.1.2. Modified ramification function for well ramified extensions.
In the general case one can define a filtration of ramification groups as follows.

Given two integers n,m > 0 the (n,m)-ramification group Gn,m of L/K is

Gn,m = {σ ∈ G : vL(σ(x) − x) > n +m, for all x ∈Mm
L }.

Put Gn = Gn+1,0 and Hn = Gn,1, so that the classical ramification groups are the
Gn . It is easy to show that Hi > Gi > Hi+1 for i > 0.

In case I we have Gi = Hi for all i > 0; in case II we have Gi = Hi+1 for all i > 0,
see [Sm1]. If L/K is in case III, we leave to the reader the proof of the following
equality

Gi = {σ ∈ Gal(L/K) : vL(σ(x) − x) > i + 1 for all x ∈ OL}
= {σ ∈ Gal(L/K) : vL(σ(x) − x) > i + 2 for all x ∈ML} = Hi+1.

We introduce another filtration which allows us to simultaneously deal with case I,
II and III.

Definition. Let L/K be a finite Galois well ramified extension. The modified t-th
ramification group G[t] for t > 0 is defined by

G[t] = {σ ∈ Gal(L/K) : iG(σ) > t}.

We call an integer number m a modified ramification jump of L/K if G[m] 6= G[m+1].

From now on we will consider only p-extensions.

Definition. For a well ramified extension L/K define the modified Hasse–Herbrand
function sL/K (u), u ∈ R>0 as

sL/K (u) =
∫ u

0

|G[t]|
e(L|K)

dt.
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Put gi = |Gi|. If m 6 u 6 m + 1 where m is a non-negative integer, then

sL/K (u) =
1

e(L|K)
(g1 + · · · + gm + gm+1(u−m)).

We drop the index L/K in sL/K if there is no risk of confusion. One can show that
the function s is continuous, piecewise linear, increasing and convex. In case I, if
ϕL/K denotes the classical Hasse–Herbrand function as in [S, Ch. IV], then sL/K (u) =
1 + ϕL/K (u − 1). We define a modified upper numbering for ramification groups by
G(sL/K (u)) = G[u].

If m is a modified ramification jumps, then the number sL/K (m) is called a modified
upper ramification jump of L/K .

For well ramified extensions we can show the Herbrand theorem as follows.

Lemma 2. For u > 0 we have sL/K (u) =
1

e(L|K)

∑
σ∈G

inf(iG(σ), u).

The proof goes exactly as in [S, Lemme 3, Ch.IV, §3].

Lemma 3. Let H be a normal subgroup of G and τ ∈ G/H and let j(τ ) be the
upper bound of the integers iG(σ) where σ runs over all automorphisms of G which
are congruent to τ modulo H . Then we have

iLH/K (τ ) = sL/LH (j(τ )).

For the proof see Lemme 4 loc.cit. (note that Theorem 1 is fundamental in the proof).
In order to show Herbrand theorem, we have to show the multiplicativity in the tower
of extensions of the function sL/K .

Lemma 4. With the above notation, we have sL/K = sLH/K ◦ sL/LH .

For the proof see Prop. 15 loc.cit.

Corollary. If L/K is well ramified and H is a normal subgroup of G = Gal(L/K),
then the Herbrand theorem holds:

(G/H)(u) = G(u)H/H for all u > 0 .

It is known that the upper ramification jumps (with respect the classical function ϕ )
of an abelian extension in case I are integers. This is the Hasse–Arf theorem. Clearly
the same result holds with respect the function s. In fact, if m is a classical ramification
jump and ϕL/K (m) is the upper ramification jump, then the modified ramification jump
is m + 1 and the modified upper ramification jumps is sL/K (m + 1) = 1 + ϕL/K(m)
which is an integer. In case II it is obvious that the modified upper ramification jumps
are integers. For well ramified extensions we have the following theorem, for the proof
see the end of 18.2.
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Theorem 3 (Borger). The modified upper ramification jumps of abelian well ramified
extensions are integers.

18.2. The Kato conductor

We have already remarked that the Swan conductor sw(χ) for a character χ of the
Galois group GK is not an integer in general. In [K3] Kato defined a modified Swan
conductor in case I, II for any character χ of GK ; and [K4] contains a definition of
an integer valued conductor (which we will call the Kato conductor) for characters of
degree 1 in the general case i.e. not only in cases I and II.

We recall its definition. The map K∗ → H1(K,Z/n(1)) (cf. the definition of
Hq(K) in subsection 5.1) induces a pairing

{ , }:Hq(K)×Kr(K)→ Hq+r(K),

which we briefly explain only for K of characteristic zero, in characteristic p > 0 see
[K4, (1.3)]. For a ∈ K∗ and a fixed n > 0, let {a} ∈ H1(K,Z/n(1)) be the image
under the connecting homomorphism K∗ → H1(K,Z/n(1)) induced by the exact
sequence of GK -modules

1 −→ Z/n(1) −→ K∗s
n−→ K∗s −→ 1.

For a1, ..., ar ∈ K∗ the symbol {a1, ..., ar} ∈ Hr(K,Z/n(r)) is the cup product
{a1} ∪ {a2} ∪ · · · ∪ {ar}. For χ ∈ Hq(K) and a1, . . . , ar ∈ K∗ {χ, a1, ..., ar} ∈
Hq+r
n (K) is the cup product {χ} ∪ {a1} ∪ · · · ∪ {ar}. Passing to the limit we have the

element {χ, a1, ..., ar} ∈ Hq+r(K).

Definition. Following Kato, we define an increasing filtration {filmHq(K)}m>0 of
Hq(K) by

filmH
q(K) = {χ ∈ Hq(K) : {χ|M , Um+1,M} = 0 for every M }

where M runs through all complete discrete valuation fields satisfying OK ⊂ OM ,
MM =MKOM ; here χ|M denotes the image of χ ∈ Hq(K) in Hq(M ).

Then one can show Hq(K) = ∪m>0 filmHq(K) [K4, Lemma (2.2)] which allows
us to give the following definition.

Definition. For χ ∈ Hq(K) the Kato conductor of χ is the integer ksw(χ) defined
by

ksw(χ) = min{m > 0 : χ ∈ filmH
q(K)}.

This integer ksw(χ) is a generalization of the classical Swan conductor as stated in
the following proposition.

Geometry & Topology Monographs, Volume 3 (2000) – Invitation to higher local fields



158 L. Spriano

Proposition 1. Let χ ∈ H1(K) and let L/K be the corresponding finite cyclic
extension and suppose that L/K is in case I or II. Then

(a) ksw(χ) = sw(χ) (see formula (1) ).
(b) Let t be the maximal modified ramification jump. Then

ksw(χ) =

{
sL/K (t)− 1 case I

sL/K (t) case II.

Proof. (a) See [K4, Prop. (6.8)]. (b) This is a computation left to the reader.

We compute the Kato conductor in case III.

Theorem 4 (Spriano). If L/K is a cyclic extension in case III and if χ is the corre-
sponding element of H1(K), then ksw(χ) = sw(χ) − 1. If t is the maximal modified
ramification jump of L/K , then ksw(χ) = sL/K (t)− 1.

Before the proof we explain how to compute the Kato conductor ksw(χ) where
χ ∈ H1(K). Consider the pairing H1(K)×K∗ → H2(K), ( q = 1 = r ). It coincides
with the symbol (·, ·) defined in [S, Ch. XIV]. In particular, if χ ∈ H1(K) and
a ∈ K∗, then {χ, a} = 0 if and only if the element a is a norm of the extension
L/K corresponding to χ. So we have to compute the minimal integer m such that
Um+1,M is in the norm of the cyclic extension corresponding to χ|M when M runs
through all complete discrete valuation fields satisfying MM =MKOM . The minimal
integer n such that Un+1,K is contained in the norm of L/K is not, in general, the
Kato conductor (for instance if the residue field of K is algebraically closed)

Here is a characterization of the Kato conductor which helps to compute it and does
not involve extensions M/K , cf. [K4, Prop. (6.5)].

Proposition 2. Let K be a complete discrete valuation field. Suppose that |kK : kpK | =
pc <∞, and Hc+1

p (kK) 6= 0. Then for χ ∈ Hq(K) and n > 0

χ ∈ filnH
q(K) ⇐⇒ {χ,Un+1K

M
c+2−q(K)} = 0 in Hc+2(K),

for the definition of Un+1K
M
c+2−q(K) see subsection 4.2.

In the following we will only consider characters χ such that the corresponding
cyclic extensions L/K are p-extension, because ksw(χ) = 0 for tame characters χ,
cf. [K4, Prop. (6.1)]. We can compute the Kato conductor in the following manner.

Corollary. Let K be as in Proposition 2. Let χ ∈ H1(K) and assume that the
corresponding cyclic extension L/K is a p-extension. Then the minimal integer n
such that

Un+1,K ⊂ NL/KL∗

is the Kato conductor of χ.
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Proof. By the hypothesis (i.e. Un+1,K ⊂ NL/KL
∗ ) we have ksw(χ) > n. Now

Un+1,K ⊂ NL/KL
∗, implies that Un+1Kc+1(K) is contained in the norm group

NL/KKc+1(L). By [K1, II, Cor. at p. 659] we have that {χ,Un+1Kc+1(K)} = 0 in
Hc+2(K) and so by Proposition 2 ksw(χ) 6 n.

Beginning of the proof of Theorem 4. Let L/K be an extension in case III and let
χ ∈ H1(K) be the corresponding character. We can assume that Hc+1

p (kK) 6= 0,

otherwise we consider the extension k = ∪i>0kK(T p
−i

) of the residue field kK ,
preserving a p-base, for which Hc+1

p (k) 6= 0 (see [K3, Lemma (3-9)]).
So by the above Corollary we have to compute the minimal integer n such that

Un+1,K ⊂ NL/KL∗.
Let T/K be the totally ramified extension defined by Lemma 1 (here T/K is

uniquely determined because the extension L/K is cyclic). Denote by Uv,L for
v ∈ R, v > 0 the group Un,L where n is the smallest integer > v.

If t is the maximal modified ramification jump of L/K , then

(1) UsL/T (t)+1,T ⊂ NL/TL∗

because L/T is in case II and its Kato conductor is sL/T (t) by Proposition 1 (b). Now
consider the totally ramified extension T/K . By [S, Ch. V, Cor. 3 §6] we have

(2) NT/K (Us,T ) = UsT/K (s+1)−1,K if Gal(T/K)s = {1}.

Let t′ = iT/K (τ ) be the maximal modified ramification jump of T/K . Let r be the
maximum of iL/K (σ) where σ runs over all representatives of the coset τ Gal(L/T ).
By Lemma 3 t′ = sL/T (r). Note that r < t (we explain it in the next paragraph), so

(3) t′ = sL/T (r) < sL/T (t).

To show that r < t it suffices to show that for a generator ρ of Gal(L/K)

iL/K (ρp
m

) > iL/K (ρp
m−1

)

for |T : K| 6 pm 6 |L : K|. Write OL = OK(a) then

ρp
m

(a) − a = ρp
m−1

(b)− b, b =
p−1∑
i=0

ρp
m−1i(a).

Then b = pa + πif (a) where π is a prime element of L, f (X) ∈ OK[X] and
i = iL/K (ρp

m−1
). Hence iL/K (ρp

m

) = vL(ρp
m

(a) − a) > min (i + vL(p), 2i), so

iL/K (ρp
m

) > iL/K (ρp
m−1

), as required.
Now we use the fact that the number sL/K (t) is an integer (by Borger’s Theorem).

We shall show that UsL/K (t),K ⊂ NL/KL∗ .
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By (3) we have Gal(T/K)sL/T (t) = {1} and so we can apply (2). By (1) we have
UsL/T (t)+1,T ⊂ NL/TL∗, and by applying the norm map NT/K we have (by (2) )

NT/K (UsL/T (t)+1,T ) = UsT/K (sL/T (t)+2)−1,K ⊂ NL/KL∗.

Thus it suffices to show that the smallest integer > sT/K (sL/T (t) + 2)− 1 is sL/K (t).
Indeed we have

sT/K (sL/T (t) + 2)− 1 = sT/K (sL/T (t)) +
2

|T : K| − 1 = sL/K (t)− 1 +
2
pe

where we have used Lemma 4. By Borger’s theorem sL/K (t) is an integer and thus we
have shown that ksw(χ) 6 sL/K (t)− 1.

Now we need a lemma which is a key ingredient to deduce Borger’s theorem.

Lemma 5. Let L/K be a Galois extension in case III. If kL = kK(a1/f ) then
a ∈ kK \ kpK where f = |L : T | = f (L/K)ins . Let α be a lifting of a in K and let
M = K(β) where βf = α.

If σ ∈ Gal(L/K) and σ′ ∈ Gal(LM/M ) is such that σ′|L = σ then

iLM/M (σ′) = e(LM |L)iL/K (σ).

Proof. (After J. Borger). Note that the extension M/K is in case II and LM/M is in
case I, in particular it is totally ramified. Let x ∈ OL such that OL = OK[x]. One can
check that xf − α ∈ ML \M2

L . Let g(X) be the minimal polynomial of β over K .
Then g(X+x) is an Eisenstein polynomial over L (because g(X+x) ≡ Xf +xf−α ≡
Xf mod ML ) and β − x is a root of g(X + x). So β − x is a prime of LM and we
have

iLM/M (σ′) = vLM (σ′(β − x)− (β − x)) = vLM (σ′(x) − x) = e(LM |L)iL/K (σ).

Proof of Theorem 3 and Theorem 4. Now we deduce simultaneously the formula for
the Kato conductor in case III and Borger’s theorem. We compute the classical Artin
conductor A(χ|M ). By the preceding lemma we have
(2)

A(χ|M ) =
1

e(LM |M )

∑
σ′∈Gal(LM/M )

χ|M (σ′)iLM/M (σ′)

=
e(LM |L)
e(LM |M )

∑
σ′∈Gal(LM/M )

χ|M (σ′)iL/K (σ) =
1

e(L|K)

∑
σ∈G

χ(σ)iL/K (σ).

Since A(χ|M ) is an integer by Artin’s theorem we deduce that the latter expression is
an integer. Now by the well known arguments one deduces the Hasse–Arf property for
L/K .
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The above argument also shows that the Swan conductor (=Kato conductor) of
LM/M is equal to A(χ|M )−1, which shows that ksw(χ) > A(χ|M )−1 = sL/K (t)−1,
so ksw(χ) = sL/K (t)− 1 and Theorem 4 follows.

18.3. More ramification invariants

18.3.1. Hyodo’s depth of ramification. This ramification invariant was introduced
by Hyodo in [H]. We are interested in its link with the Kato conductor.

Let K be an m-dimensional local field, m > 1. Let t1, . . . , tm be a system of
local parameters of K and let v be the corresponding valuation.

Definition. Let L/K be a finite extension. The depth of ramification of L/K is

dK(L/K) = inf{v(Tr L/K (y)/y) : y ∈ L∗} ∈ Qm.

The right hand side expression exists; and, in particular, if m = 1 then dK(L/K) =
vK (DL/K ) − (1 − vK (πL)), see [H]. The main result about the depth is stated in the
following theorem (see [H, Th. (1-5)]).

Theorem 5 (Hyodo). Let L be a finite Galois extension of an m-dimensional local
field K . For l > 1 define

j(l) = jL/K (l) =

{
max{i : 1 6 i ∈ Zm, |ΨL/K (UiK

top
m (K))| > pl} if it exists

0 otherwise

where ΨL/K is the reciprocity map; the definition of UiK
top
m (K) is given in 17.0. Then

(3) (p− 1)
∑
l>1

j(l)/pl 6 dK(L/K) 6 (1− p−1)
∑
l>1

j(l).

Furthermore, these inequalities are the best possible (cf. [H, Prop. (3-4) and Ex. (3-5)]).

For i ∈ Zm , let Gi be the image of UiK
top
m (K) in Gal(L/K) under the reciprocity

map ΨL/K . The numbers j(l) are called jumping number (by Hyodo) and in the
classical case, i.e. m = 1, they coincide with the upper ramification jumps of L/K .

For local fields (i.e. 1-dimensional local fields) one can show that the first inequality
in (3) is actually an equality. Hyodo stated ([H, p.292]) “It seems that we can define
nice ramification groups only when the first equality of (3) holds.”

For example, if L/K is of degree p, then the inequalities in (3) are actually
equalities and in this case we actually have a nice ramification theory. For an abelian
extension L/K [H, Prop. (3-4)] shows that the first equality of (3) holds if at most
one diagonal component of E(L/K) (for the definition see subsection 1.2) is divisible
by p.
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Extensions in case I or II verify the hypothesis of Hyodo’s proposition, but it is not
so in case III. We shall show below that the first equality does not hold in case III.

18.3.2. The Kato conductor and depth of ramification.
Consider an m-dimensional local field K, m > 1. Proposition 2 of 18.2 shows (if

the first residue field is of characteristic p > 0 ) that for χ ∈ H1(K), χ ∈ filnH1(K) if
and only if the induced homomorphism Km(K)→ Q/Z annihilates Un+1Km(K) (cf.
also in [K4, Remark (6.6)]). This also means that the Kato conductor of the extension
L/K corresponding to χ is the m-th component of the last ramification jump j(1)
(recall that j(1) = max{i : 1 6 i ∈ Zm, |Gi| > p} ).

Example. Let L/K as in Example of 18.1.1 and assume that K is a 2-dimensional
local field with the first residue field of characteristic p > 0 and let χ ∈ H1(K) be
the corresponding character. Let j(l)i denotes the i-th component of j(l). Then by
Theorem 3 and by the above discussion we have

ksw(χ) = j(1)2 = sL/K (pe/(p− 1))− 1 =
(2p− 1)e
p− 1

− 1.

If T/K is the subextension of degree p, we have

dK(T/K)2 = p−1(p− 1)j(2)2 =⇒ j(2)2 =
pe

p− 1
− 1.

The depth of ramification is easily computed:

dK(L/K)2 = dK(T/K)2 + dK(L/T )2 =
(p− 1)
p

(
2pe
p− 1

− 1

)
.

The left hand side of (3) is (p− 1)(j(1)/p + j(2)/p2), so for the second component we
have

(p− 1)

(
j(1)2

p
+

j(2)2

p2

)
= 2e− (p2 − 1)

p2 6= dK(L/K)2.

Thus, the first equality in (3) does not hold for the extension L/K .

If K is a complete discrete valuation (of rank one) field, then in the well ramified
case straightforward calculations show that

e(L|K)dK(L/K) =

{ ∑
σ 6=1 sG(σ) case I,II∑
σ 6=1 sG(σ) − e(L|K) + 1 case III

Let χ ∈ H1(K) and assume that the corresponding extension L/K is well ramified.
Let t denote the last ramification jump of L/K ; then from the previous formula and
Theorem 4 we have

e(L|K) ksw(χ) =

{
dL(L/K) + t case I,II

dL(L/K) + t− 1 case III
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In the general case, we can indicate the following relation between the Kato con-
ductor and Hyodo’s depth of ramification.

Theorem 6 (Spriano). Let χ ∈ H1(K,Z/pn) and let L/K be the corresponding cyclic
extension. Then

ksw(χ) 6 dK(L/K) +
t

e(L|K)

where t is the maximal modified ramification jump.

Proof. In [Sp, Prop. 3.7.3] we show that

(∗) ksw(χ) 6
[

1
e(L|K)

(∑
σ∈G

SwG(σ)χ(σ) −ML/K

)]
,

where [x] indicates the integer part of x ∈ Q and the integer ML/K is defined by

(∗∗) dL(L/K) +ML/K =
∑
σ 6=1

sG(σ).

Thus, the inequality in the statement follows from (∗) and (∗∗).
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