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18. On ramification theory of monogenic extensions

Luca Spriano

We discuss ramification theory for finite extensions L /K of acomplete discrete valua-
tionfield K. Thistheory dealswith quantities which measure wildness of ramification,
such as different, the Artin (resp. Swan) characters and the Artin (resp. Swan) conduc-
tors. When the residue field extension k1, /kx is separable there is a complete theory,
eg. [S], but in genera itisnot so. Inthe classical case (i.e. k1 /kx separable) proofs
of many results in ramification theory use the property that all finite extensions of val-
uation rings O, /O are monogenic which is not the case in general. Examples (e.g.
[Sp]) show that the classical theorems do not hold in general. Waiting for a beautiful
and general ramification theory, we consider a class of extensions L/K which has a
good ramification theory. We describe this class and we will call its elements well
ramified extensions. All classical results are generalizable for well ramified extensions,
for example a generalization of the Hasse—-Arf theorem proved by J. Borger. We also
concentrate our attention on other ramification invariants, more appropriate and general;
in particular, we consider two ramification invariants: the Kato conductor and Hyodo
depth of ramification.

Here we comment on some works on general ramification theory.

Thefirst direction aims to generalize classical ramification invariants to the general
case working with (one dimensional) rational valued invariants. In his papers de
Smit gives some properties about ramification jumps and considers the different and
differential [ Sm2]; he generalizesthe Hilbert formulaby using the monogenic conductor
[Sm1]. We discuss works of Kato [K3-4] in subsection 18.2. In [K2] Kato describes
ramification theory for two-dimensional local fields and he proves an analogue of the
Hasse-Arf theorem for those Galois extensionsin which the extension of the valuation
rings (with respect to the discrete valuation of rank 2) is monogenic.

The second direction aims to extend ramification invariants from one dimensional
to either higher dimensional or to more complicated objects which involve differential
forms (asin Kato’'sworks [K4], [K5]). By using higher local classfield theory, Hyodo
[H] defines generalized ramification invariants, like depth of ramification (see Theorem
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152 L. Spriano

5 below). We discuss relations of his invariants with the (one dimensional) Kato
conductor in subsection 18.3 below. Zhukov [Z] generalizes the classical ramification
theory to the case where |kk : k%.| = p (see section 17 of this volume). From the
viewpoint of this section the existence of Zhukov’s theory is in particular due to the
fact that in the case where |kk : k%.| = p one can reduce various assertions to the well
ramified case.

18.0. Notations and definitions

In this section we recall some general definitions. We only consider compl ete discrete
valuation fields K with residuefields kx of characteristic p > 0. We aso assumethat
|kx @ k| isfinite.

Definition. Let L/K beafinite Galois extension, G = Gal(L/K). Let
Go =Ga(L/L N Ky) betheinertia subgroup of G. Define functions

iG,SG:G — 7

by
| Inf sco,0) vi(o(e) — o) ifo 71
ZG(O):{m o ifo=1
and
inf o, \(0y ve(o(x)/z — 1) ifo 71,0 € Gy
sglo) =<¢ +o0 ifo=1
0 if o & Go.

Then sg(o) < ig(o) < sg(o)+1 andif kr /kk isseparable, then i (o) = sg(o)+1
for o € Go. Note that the functions i¢, s depend not only on the group G, but on
the extension L/K; we will denote i alsoby i, /x-.

Definition. The Swan function is defined as

—|k‘L :k‘K|SG(O'), ifO‘EGo\{l}
Swel)=d — 2. MWe(). ifo=1
reGo\{1}

0 if o € Go.

For acharacter x of G its Swan conductor
1
(1) sw(x) = swe(x) = (Swe, x) = 1€l > Swa(o)x(0)
ceG

isaninteger if kp/kx isseparable (Artin’s Theorem) and is not an integer in general

(e.g.[Sp, Ch. 1]).
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Part . Section 18. On ramification theory of monogenic extensions 153

18.1. Well ramified extensions

Definition. Let L/K be afinite Galois p-extension. The extension L/K is called
well ramified if O, = Ox[a] for some « € L.

18.1.1. Structuretheorem for well ramified extensions.

Definition. We say that an extension L/K isin case | if kr/ky is separable; an
extension L/K isincasellif |L: K| = |k, : kk| (i.e. L/K isferociously ramified
in theterminology of 17.0) and &, = ki (a) ispurely inseparable over k.

Extensionsin casel and case |l arewell ramified. An extension which issimultane-
ously in casel and case |l isthe trivial extension.

We characterize well ramified extensions by means of the function i in the fol-
lowing theorem.

Theorem 1 ([Sp, Prop. 1.5.2]). Let L/K be a finite Galois p-extension. Then the
following properties are equivalent:
() L/K iswell ramified;
(ii) for every normal subgroup H of G the Herbrand property holds:
forevery 177 € G/H

. 1 .
ig/u(r) = W Z ic(o);
oceTH
(iii) the Hilbert formula holds:
ve(Dryx) =Y iclo) =) (1Gi| - D),
o7l >0
for the definition of G; see subsection 18.2.

From the definition we immediately deducethat if M /K isa Galois subextension
of awell ramified L/K then L/M iswell ramified; from (ii) we concludethat M /K
iswell ramified.

Now we consider well ramified extensions L/K which are not in case | nor in
casell.

Example. (Well ramified extension not in case | and not in case Il). Let K bea
complete discrete valuation field of characteristic zero. Let (. € K. Consider a
cyclic extension of degree p? defined by L = K () where z aroot of the polynomial
F(X) = XP" — (L +um)a?, a € Ug, @ ¢ k%, u € Uk, = isaprimeof K. Then
e(LIK)=p= f(L|K)™, so L/K isnotincasel norincasell. Using Theorem 1, one
can show that O = Ok[z] by checking the Herbrand property.
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154 L. Spriano

Definition. A well ramified extension whichisnotincasel andisnotincasell issaid
tobeincaselll.

Note that in case 1l we have e(L|K) > p, f(L|K)™ > p.

Lemma 1. If L/K is a well ramified Galois extension, then for every ferociously
ramified Galois subextension E/K suchthat L/E istotally ramified either £ = K
or F=1L.

Proof. Supposethat thereexists K # E # L, suchthat E/K isferociously ramified
and L/E is totaly ramified. Let w1 be a prime of L such that Oy = Og[m1].
Let « € E besuchthat O = Og[a]. Then we have O = Ogla,m]. Let o
be a K-automorphism of E and denote o alifting of ¢ to G = Gal(L/K). Itis
not difficult to show that ic(c) = min{v(cm1 — 71),vr(ca — a)}. We show that
ic(0) =vp(omy — m1). Supposewe had ig(c) = v (ca — @), then

ig(o .
) S = vsloa— ) =i (o).
Furthermore, by Herbrand property we have
, 1 : ig(0) 1 .
7 0)= —F——= 1q(s) = + 1q(8).
e/K(0) TIE) SGOG%%L/E) a(s) LB E ; a(s)

So from (x) we deduce that

1 :
€(L|E) ;ZG(S) = 07

but thisis not possible because i (s) > 1 for dl s € G. We have shown that
(xx) ia(s) = vp(sm1 — m1) foral s e G.

Now note that o & Og[m1]. Indeed, from o = Y a;7i, a; € Ok, we deduce
a = ag (modm1) which isimpossible. By (xx) and the Hilbert formula (cf. Theorem
1) we have

(s %) ve(Dryk) =Y ials) =Y vplsm — 1) = v (f/(r1),
s71 s71

where f(X) denotesthe minimal polynomial of m; over K.
Now let theidead T, ={xz € Op : zO0g[m] C O} bethe conductor of O g[m1]
in Oy, (cf.[S, Ch.lll, §6]). We have (cf. loc.cit.)

TmDr/x = f'(m1)0r
andthen (x x x) implies T, =O0p, Or = Og[m], which contradicts o O g [m1]. O
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Part . Section 18. On ramification theory of monogenic extensions 155

Theorem 2 (Spriano). Let /K be a Galois well ramified p-extension. Put Ko =
L N Ky. Thenthereis a Galois subextension 7'/ K of L/Kq suchthat 7/ Kg isin
casel and L/T incasell.

Proof. Inductionon |L : Ko|.

Let M/Kq beaGalois subextension of L/Ky suchthat |L: M| =p. Let T/Ky
be a Galois subextension of M /Ky such that T/ Ky istotaly ramified and M /T is
in case ll. Applying Lemmalto L/T wededucethat L/M is ferociously ramified,
hencein casell. 0

In particular, if L/K isaGalois p-extensionin caselll suchthat L N Ky = K,
then thereis a Galois subextension 7'/K of L/K suchthat T/K isincasel, L/T in
caseland K #T # L.

18.1.2. Modified ramification function for well ramified extensions.
In the general case one can define a filtration of ramification groups as follows.
Given two integers n,m > 0 the (n, m)-ramification group G, ,,, of L/K is
Gnm ={o € G: vp(o(x) —z) > n+m, foral z € M7}

Put G,, = G,+10 and H,, = G,, 1, so that the classical ramification groups are the
G,. Itiseasy toshow that H; > G; > H;4, for i > 0.

Incasel wehave G; = H; forall i > 0; incasell wehave G,; = H;4+; foral ¢ > 0,
see[Sm1]. If L/K isin caselll, we leave to the reader the proof of the following
equality

G;={oe€eGa(L/K):vp(o(x) —x) >i+1 foradlze Or}
={o e Ga(L/K) :vp(o(x) —x) >i+2 foralzeMr}=H;1.

We introduce another filtration which allows us to simultaneously deal with casel,

[1and 1.

Definition. Let L/K be afinite Galois well ramified extension. The modified ¢-th
ramification group G[t] for ¢ > O isdefined by

Gt ={oc € GaA(L/K) : ig(o) > t}.
Wecall aninteger number m amodified ramificationjumpof L/K if G[m] # G[m+1].
From now on we will consider only p-extensions.

Definition. For awell ramified extension L/K define the modified Hasse-Herbrand
function s,/ (u), u € Ryo as

_ (" G
EL/K(U)—/O €(L|K) dt.
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156 L. Spriano
Put g; = |G;|. If m <u < m+1where m isanon-negative integer, then

sk (u) = (gr+ -+ gm + gm+1(u —m)).

1
e(L|K)
Wedrop theindex L/K in sk if thereisno risk of confusion. One can show that
the function s is continuous, piecewise linear, increasing and convex. In case |, if
@1,k denotesthe classical Hasse-Herbrand functionasin[S, Ch. IV], then s,/ (u) =
1+ ¢k (u—1). We define a modified upper numbering for ramification groups by
G(sr/x(u)) = Glu].

If m isamodified ramification jumps, thenthe number s, x (m) iscalled amodified
upper ramification jump of L/K.

For well ramified extensions we can show the Herbrand theorem as follows.

1 > inf(ic(o), u).
ge

Lemma?2. For v > 0 we have =——
u 5L/K(U) (LIEK) :

The proof goes exactly asin [S, Lemme 3, Ch.lV, §3].

Lemma 3. Let H be a normal subgroup of G and 7 € G/H and let j(7) be the
upper bound of the integers i (o) where o runsover all automorphisms of G which
are congruent to 7 modulo H. Then we have

ipn k(1) =5p,L0(G(7))

For the proof seeLemme 4 |oc.cit. (notethat Theorem 1isfundamental in the proof).
In order to show Herbrand theorem, we have to show the multiplicativity in the tower
of extensions of the function s, /.

Lemma 4. With the above notation, we have s,/ = spu /) 0 51 /1.
For the proof see Prop. 15 loc.cit.

Corollary. If L/K iswell ramified and H isa normal subgroup of G = Gal(L/K),
then the Herbrand theorem holds:

(G/H)(u) =Gw)H/H forall u>0.

It isknown that the upper ramification jumps (with respect the classical function ¢)
of an abelian extension in case | are integers. Thisis the Hasse-Arf theorem. Clearly
the sameresult holdswith respect thefunction s. Infact, if m isaclassical ramification
jumpand ¢y, i (m) isthe upper ramification jump, then the modified ramification jump
is m + 1 and the modified upper ramification jumpsis s,/ (m +1) = 1+ ¢ /x(m)
which isan integer. In casell it is obvious that the modified upper ramification jumps
areintegers. For well ramified extensions we have the following theorem, for the proof
seethe end of 18.2.
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Part . Section 18. On ramification theory of monogenic extensions 157

Theorem 3 (Borger). The modified upper ramification jumps of abelian well ramified
extensions are integers.

18.2. The Kato conductor

We have already remarked that the Swan conductor sw(y) for a character y of the
Galois group G'i isnot an integer in general. In [K3] Kato defined a modified Swan
conductor in case |, Il for any character y of Gy ; and [K4] contains a definition of
an integer valued conductor (which we will call the Kato conductor) for characters of
degree 1 in the general casei.e. not only in cases| and I1.

We recall its definition. The map K* — H(K,Z/n(1)) (cf. the definition of
H9(K) in subsection 5.1) induces a pairing

{, }: HY(K) x K.(K) — H""(K),
which we briefly explain only for K of characteristic zero, in characteristic p > 0 see
[K4, (1.3)]. For a € K* and afixed n > 0, let {a} € HY(K,Z/n(1)) betheimage
under the connecting homomorphism K* — HY(K,Z/n(1)) induced by the exact
sequence of G x-modules

1—7Z/n(l) — K 5 K — 1.

For ai,...,a, € K* the symbol {ai,...,a,} € H"(K,Z/n(r)) is the cup product
{a1} U{az} U---U{a,}. For x € HY(K) and ay, ...,a, € K* {x,a1,...,a,} €
HI"(K) isthecup product {x}U{a1} U---U{a,}. Passingto thelimit we havethe
element {x,as,...,a,} € H''"(K).

Definition. Following Kato, we define an increasing filtration {fil,, H(K)},,>0 of
HI(K) by
fil,, HI(K) = {x € H(K) : {x|p,Um+1,m} =0 forevery M}
where M runs through al complete discrete valuation fields satisfying Ox C Oy,
Mpr = Mg Ony; here x|a denotestheimageof y € HY(K) in H1(M).
Then one can show HY(K) = U,,>ofil,,, H1(K) [K4, Lemma (2.2)] which alows
us to give the following definition.

Definition. For y € H?(K) the Kato conductor of x istheinteger ksw(y) defined
by
ksw(x) = min{m > 0: y € fil,,, H1(K)}.

Thisinteger ksw(x) isageneralization of the classical Swan conductor as stated in
the following proposition.
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158 L. Spriano

Proposition 1. Let y € H(K) and let L/K be the corresponding finite cyclic
extension and supposethat L/K isincasel or II. Then

(@ ksw(x) =sw(x) (seeformula (1)).

(b) Let ¢ bethe maximal modified ramification jump. Then

s k(t)—1 casel
ksw()={ "/
5L/K(t) casell.
Proof. (a) See[K4, Prop. (6.8)]. (b) Thisis acomputation left to the reader. O

We compute the Kato conductor in case 1.

Theorem 4 (Spriano). If L/K isacyclic extension in case lll and if x isthe corre-
sponding element of H1(K), then ksw(x) = sw(x) — 1. If ¢ isthe maximal modified
ramification jump of L/K, then ksw(x) = s,k (t) — 1.

Before the proof we explain how to compute the Kato conductor ksw(x) where
x € HY(K). Consider the pairing H(K) x K* — H(K), (¢ =1=r). It coincides
with the symbol (-,-) defined in [S, Ch. XIV]. In particular, if y € HY(K) and
a € K*, then {x,a} = 0 if and only if the element « is a norm of the extension
L/K corresponding to x. So we have to compute the minimal integer m such that
Upm+1,m 181N the norm of the cyclic extension corresponding to x|,; when M runs
through all complete discrete valuation fields satisfying M; = Mg Op,. The minimal
integer n such that U,+1 x IS contained in the norm of L/K isnot, in general, the
Kato conductor (for instance if the residue field of K isalgebraically closed)

Hereis a characterization of the Kato conductor which helpsto computeit and does
not involve extensions M /K, cf. [K4, Prop. (6.5)].

Proposition 2. Let K beacompletediscretevaluation field. Supposethat |kx : k% | =
p°¢ < oo, and HS(kk) 7 0. Thenfor x € HI(K) and n >0

x €fil, HI(K) <= {x,UmKX, (K)}=0 in H*¥K),

for the definition of U,.«1 K, (K) see subsection 4.2.

In the following we will only consider characters x such that the corresponding
cyclic extensions L/K are p-extension, because ksw(y) = 0 for tame characters y,
cf. [K4, Prop. (6.1)]. We can compute the Kato conductor in the following manner.

Corollary. Let K be as in Proposition 2. Let y € H(K) and assume that the
corresponding cyclic extension L/K is a p-extension. Then the minimal integer n
such that

Up+1,x C Np/xL*
is the Kato conductor of .
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Proof. By the hypothesis (i.e. Un+1,x C Np/xL*) we have ksw(x) > n. Now
Up+1,x C Np/xL*, implies that U,+1K +1(K) is contained in the norm group
Np/kKce1(L). By [KL, 11, Cor. at p. 659] we have that {x,U,+1K.+1(K)} =0 in
H*?(K) and so by Proposition 2 ksw(y) < n. O

Beginning of the proof of Theorem 4. Let L/K be an extension in case Il and let
X € HYK) be the corresponding character. We can assume that H<*(kx) 7 0,
otherwise we consider the extension k = U;sokx (TP ) of the residue field kg,
preserving a p-base, for which Hgﬂ(k) Z0 (see[K3, Lemma (3-9)]).

So by the above Corollary we have to compute the minimal integer n such that
Un+1,k C N g L*.

Let T/K be the totally ramified extension defined by Lemma 1 (here T'/K is
uniquely determined because the extension L/K is cyclic). Denote by U, ; for
v e R,v >0 thegroup U, ; where n isthe smallest integer > v.

If ¢ isthe maximal modified ramification jump of L/K, then

(1) UsL/T(t)+1,T - NL/TL*

because L/T isincasell and its Kato conductor is sy, ,(t) by Proposition 1 (b). Now
consider the totally ramified extension 7/ K. By [S, Ch. V, Cor. 3 §6] we have

(2 Nr/gUst) = Usy e (s+1-1.x If GaA(T/K)s = {1}.

Let t' = ip/k(7) bethemaximal modified ramificationjumpof 7'/ K. Let r bethe
maximum of i,/ (o) where o runsover all representatives of the coset 7 Gal(L/T).
By Lemma3 ¢’ = s ,p(r). Notethat » < ¢ (weexplainitin the next paragraph), so
(©) t'=s5p)7(r) < spr(t).

To show that r < ¢ it sufficesto show that for a generator p of Gal(L/K)

. m . m—1
ir/k(P’ ) > i kP’ )

for |T: K| <p™ < |L:K|. Write Or = Ok(a) then

p—1

m m—1 m—1.
PPla)—a=p"" (B =b b= o ()
=0
Then b = pa + 7' f(a) where 7 is a prime element of L, f(X) € Ox[X] and
. . m—1 . m m . . .
i =ipg(e? ). Hence ip/k(p? ) = vp(p? (a) —a) = min(i + vr(p), 2i), SO

. m . m—1 .
ip/k(PP ) >ip K (pP ), asrequired.

Now we use the fact that the number s,/ (t) isaninteger (by Borger’s Theorem).
We shall show that Us, . t),x C Np/xL".
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By (3) wehave Gal(T/K)s, (1) = {1} and sowe canapply (2). By (1) we have

Us y+1,7 C N 7 L*, and by applying the norm map Nz, we have (by (2))

Lyt
NT/K(USL/T(t)'*'l,T) = UBT/K(SL/T(t)"'Z)*l,K C NL/KL*

Thus it suffices to show that the smallest integer > s¢ /g (sr /7 (t) +2) — 1 is s,/ (t).
Indeed we have

2
5 5 t)+2)—1=s 5 t))+t ——— —1=5 t)—1+ —
1/ (L/7(t) +2) 1/ 6L/7(t)) T K] /K (1) pe:
where we have used Lemma4. By Borger’stheorem s,k (¢) isan integer and thuswe
have shown that ksw(x) < sz/x(t) — 1.

Now we need alemmawhich is akey ingredient to deduce Borger’s theorem.

Lemmab. Let L/K bea Galoisextensionin caselll. If kr, = ki (a/?) then
a € ki \ kb where f = |L: T|= f(L/K)™. Let o bealifting of a in K and let
M = K(3) where 57 = qa.

If o € Gal(L/K) and ¢’ € Gal(LM /M) issuchthat ¢’|;, = o then

irv/m(0’) = e(LM|L)ig k(o).

Proof. (After J. Borger). Notethat the extension M /K isincasell and LM /M isin
casel, in particular it istotally ramified. Let x € O suchthat Oy = Ok[x]. Onecan
check that =/ — a € My \ M2. Let g(X) bethe minimal polynomia of 5 over K.
Then ¢(X +z) isan Eisenstein polynomial over L (because ¢(X +z) = X/ +2f —a =
X7 mod My )and 3 — z isaroot of g(X +z). So 3 —x isaprimeof LM andwe
have

ipnym(0') = v’ (B — ) — (6 — x)) = vpam (o' (x) — ) = e(LM|L)ip )k (0).
il

Proof of Theorem 3 and Theorem 4. Now we deduce simultaneously the formula for
the Kato conductor in case |11 and Borger's theorem. We compute the classical Artin
conductor A(x/|ar). By the preceding lemmawe have

2
—; O_l . O_/
AN =Zamn J/EG%M/M)X’M( Yizar/n (o)
- (LML) Niv ooy = L N
= (LTI U/EGaKZLM/M)X’M( )ik (0) e(L|K)JeZGX( )iz ().

Since A(x|a) isaninteger by Artin’s theorem we deduce that the latter expressionis
an integer. Now by the well known arguments one deduces the Hasse-Arf property for
L/K.

Geometry & Topology Monographs, Volume 3 (2000) — Invitation to higher local fields



Part . Section 18. On ramification theory of monogenic extensions 161

The above argument also shows that the Swan conductor (=Kato conductor) of
LM /M isequal to A(x|ar)—1, whichshowsthat ksw(x) > A(x|an)—1=s1,x(t)—1,
S0 ksw(x) = s,k (t) — 1 and Theorem 4 follows. O

18.3. Moreramification invariants

18.3.1. Hyodo's depth of ramification. This ramification invariant was introduced
by Hyodo in [H]. We areinterested in its link with the Kato conductor.

Let K bean m-dimensiona local field, m > 1. Let ¢4, ...,t,, beasystem of
local parametersof K and let v be the corresponding valuation.

Definition. Let L/K beafinite extension. The depth of ramification of L/K is
dr(L/K) =inf{v(Tr,x(y)/y) :y € L"} € Q™.

The right hand side expression exists; and, in particular, if m =1 then dx(L/K) =
v (D k) — (1 — vk (mr)), see[H]. The main result about the depth is stated in the
following theorem (see[H, Th. (1-5)]).

Theorem 5 (Hyodo). Let L be a finite Galois extension of an m-dimensional local
field K. For [ > 1 define

max{i:1<icZ™, |V kUiKa(K)| =p'} ifitexists
0 otherwise

0 =) = {
where W, i isthereciprocity map; the definition of UiKﬁgp(K) isgivenin17.0. Then
©) (-1 i0/r <dx(L/EK)<@-pHD i),

=1 >1

Furthermore, theseinequalities are the best possible (cf. [H, Prop. (3-4) and Ex. (3-5)]).

For i € Z™, let G' betheimage of UiKﬁgp(K) in Gal(L/K) under thereciprocity
map W, k. The numbers j(I) are called jumping number (by Hyodo) and in the
classical case, i.e. m =1, they coincide with the upper ramification jumpsof L/K.

For local fields (i.e. 1-dimensional local fields) one can show that the first inequality
in (3) is actually an equality. Hyodo stated ([H, p.292]) “ It seems that we can define
nice ramification groups only when the first equality of (3) holds!

For example, if L/K is of degree p, then the inequalities in (3) are actually
equalities and in this case we actually have a nice ramification theory. For an abelian
extension L/K [H, Prop. (3-4)] shows that the first equality of (3) holds if at most
one diagonal component of E(L/K) (for the definition see subsection 1.2) isdivisible
by p.
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Extensionsin case| or Il verify the hypothesis of Hyodo's proposition, but it is not
soin case l11. We shall show below that the first equality does not hold in case lll.

18.3.2. The Kato conductor and depth of ramification.

Consider an m-dimensional local field K, m > 1. Proposition 2 of 18.2 shows (if
thefirst residuefieldisof characteristic p > 0) that for y € HY(K), x € fil,, HY(K) if
and only if theinduced homomorphism K,,(K) — Q/Z annihilates U,,+1 K, (K) (cf.
alsoin [K4, Remark (6.6)]). This also means that the Kato conductor of the extension
L/K corresponding to x is the m-th component of the last ramification jump j(1)
(recall that j(1) =max{i:1<i€zZ™, |GY>p}).

Example. Let L/K asin Example of 18.1.1 and assumethat K isa2-dimensional
local field with the first residue field of characteristic p > 0 and let y € HY(K) be
the corresponding character. Let j(I); denotes the i-th component of j(/). Then by
Theorem 3 and by the above discussion we have

) 2p—1
Sw(x) = §(2)2 = 51 oe/ 0~ 1) ~ 1= 2Dy
If T/K isthe subextension of degree p, we have
d(T/K)e=p 0~ Di@2 = D= -T7 -1

The depth of ramification is easily computed:

dx(L/K)2 =dg(T/K)2+dg(L/T)2 = L ; D (;fel - 1) '

Theleft hand side of (3) is (p — 1)(j(1)/p +j(2)/p?), sofor the second component we
have

. . 2
(p— 1) <'% +%) =2e — (pp2 l) 7/dK(L/K)2.

Thus, the first equality in (3) does not hold for the extension L/ K.

If K isacomplete discrete valuation (of rank one) field, then in the well ramified

case straightforward cal cul ations show that
casel,ll

(LK) dx (L) K) = { 2 o156(0)
Yo salo) —e(L|K)+1  caselll

Let y € HY(K) and assume that the corresponding extension L/K iswell ramified.
Let ¢ denote the last ramification jump of L/K; then from the previous formula and
Theorem 4 we have

e(L|K) ksw(x) = { di(L/K)+1 case I

d(L/K)+t—1  caselll
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In the general case, we can indicate the following relation between the Kato con-
ductor and Hyodo's depth of ramification.

Theorem 6 (Spriano). Let x € HY(K,Z/p™) andlet L/K bethecorrespondingcyclic
extension. Then

t
< -
where ¢ isthe maximal modified ramification jump.
Proof. In[Sp, Prop. 3.7.3] we show that
1
< | —— _
(*) ksw(x) < [e(L|K) (;SNG(U)X(U) ML/K)] ;
where [z] indicates the integer part of x € Q and theinteger M,k isdefined by
() dr(L/K)+ My :ZSG(U)‘
o7l
Thus, the inequality in the statement follows from (x) and (x:x). O
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