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Abstract We report on recent results of the authors concerning calcula-
tions of quantum invariants of Seifert 3–manifolds. These results include a
derivation of the Reshetikhin–Turaev invariants of all oriented Seifert man-
ifolds associated with an arbitrary complex finite dimensional simple Lie
algebra, and a determination of the asymptotic expansions of these invari-
ants for lens spaces. Our results are in agreement with the asymptotic
expansion conjecture due to J. E. Andersen [1], [2].
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1 Introduction

In 1988 E. Witten [34] proposed new invariants ZGk (X,L) ∈ C of an arbitrary
closed oriented 3–manifold X with an embedded colored link L by quantizing
the Chern–Simons field theory associated to a simple and simply connected
compact Lie group G, k being an arbitrary positive integer called the (quan-
tum) level. The invariant ZGk (X,L) is given by a Feynman path integral over
the (infinite dimensional) space of gauge equivalence classes of connections in
a G bundle over X . This integral should be understood in a formal way since,
at the moment of writing, it seems that no mathematically rigorous definition
is known, cf. [17, Sect. 20.2.A]. The invariants ZGk are called the quantum
G–invariants or Witten’s invariants associated to G.

Shortly afterwards, N. Reshetikhin and V. G. Turaev [27] defined in a mathe-
matically rigorous way invariants τ sl2(C)

r (X,L) ∈ C of the pair (X,L) by com-
binatorial means using irreducible representations of the quantum deformations
of sl2(C) at certain roots of unity, r being an integer ≥ 2 associated to the

Published 19 September 2002: c© Geometry & Topology Publications



70 Søren Kold Hansen and Toshie Takata

order of the root of unity. Later quantum invariants τgr (X,L) ∈ C associated
to other complex simple Lie algebras g were constructed using representations
of the quantum deformations of g at ‘nice’ roots of unity, see [32]. We call τgr
for the quantum g–invariants or the RT–invariants associated to g.

Both in Witten’s approach and in the approach of Reshetikhin and Turaev
the invariants are part of a topological quantum field theory (TQFT) (or more
correctly a family of TQFT’s). This implies that the invariants are defined for
compact oriented 3–dimensional cobordisms (perhaps with some extra structure
on the boundary), and satisfy certain cut-and-paste axioms, see [3], [9], [25],
[31]. The TQFT’s of Reshetikhin and Turaev can from an algebraic point of
view be given a more general formulation by using so-called modular (tensor)
categories [31]. The representation theory of the quantum deformations of g

at certain roots of unity, g an arbitrary finite dimensional complex simple Lie
algebra, induces such modular categories, see e.g. [20], [8], [21].

For an invariant to be powerful one should be able to calculate it. A problem
with the quantum invariants of knots and 3–manifolds is that they are rather
hard to calculate. In fact people have only been able to calculate these invariants
for certain (families of) knots and 3–manifolds. The lens spaces and more
generally the Seifert 3–manifolds constitute such a family, and there is a wealth
of literature about different calculations of quantum invariants of these spaces,
see [11, Introduction] for some references. In [11] the RT–invariant associated
to an arbitrary modular category is calculated for any Seifert manifold, cf. [11,
Theorem 4.1]. (Here and in the rest of this paper a 3–manifold means a closed
oriented 3–manifold. In particular, a Seifert manifold is an oriented Seifert
manifold.)

A solution to the above problem and to the general problem of understanding
the topological ‘meaning’ of the quantum invariants could be to determine re-
lationships between the quantum invariants and classical (well understood and
calculable) invariants. However, this seems to be a rather hard task. This leads
us into one of the themes in this article, namely asymptotic expansions of the
invariants. By using stationary phase approximation techniques together with
path integral arguments Witten was able [34] to express the leading asymptotics
of ZGk (X) in the limit k →∞ as a sum over the set of stationary points for the
Chern–Simons functional. The terms in this sum are expressed by such topo-
logical/geometric invariants as Chern–Simons invariants, Reidemeister torsions
and spectral flows, so here we see a way to extract topological information from
the invariants. A full asymptotic expansion of Witten’s invariant is expected on
the basis of a full perturbative analysis of the Feynman path integral, see [6],
[7], [5]. It is generally believed that the family of TQFT’s of Reshetikhin and
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Turaev is a mathematical realization of Witten’s family of TQFT’s. This belief
has together with known results concerning asymptotics of the RT–invariants
lead to a conjecture, the asymptotic expansion conjecture (AEC), which speci-
fies in a rather precise way the asymptotic behaviour of the RT–invariants. The
AEC was proposed by Andersen in [1], where he proved it for mapping tori of
finite order diffeomorphisms of orientable surfaces of genus at least two using
the gauge theoretic definition of the quantum invariants.

In this paper we explain recent results of the authors concerning the RT–
invariants of Seifert manifolds. Explicitly we state formulas for the invariants
τgr of all Seifert manifolds in terms of the Seifert invariants and standard data
for g, g being an arbitrary complex finite dimensional simple Lie algebra, cf.
Theorem 3.5. Moreover, we analyse more carefully the invariants τgr (X) for X
any lens space, thereby determining a formula for the large r asymptotics of
these invariants, cf. Theorem 4.2 and the remark following this theorem. This
formula is in agreement with the AEC.

A part of the paper is concerned with studying a certain family of finite dimen-
sional complex representations R = Rgr of SL(2,Z). These representations
are known from the study of theta functions and modular forms in connec-
tion with the study of affine Lie algebras, cf. [19], [18, Sect. 13]. They also
play a fundamental role in conformal field theory and (therefore) in the Chern–
Simons TQFT’s of Witten, see e.g. [10], [33], [34]. In case g = sl2(C), Jeffrey
[15], [16] has determined a nice formula for Rgr(U) in terms of the entries in
U ∈ SL(2,Z). Theorem 3.3 is a direct extension of Jeffrey’s result to arbitrary
g. The representations Rgr are of interest when calculating the RT–invariants
of the Seifert manifolds since certain matrices, which can be expressed through
Rgr , enter into the formulas of the invariants.

The paper is organized as follows. In Sect. 2 we introduce notation for the Seifert
manifolds and recall surgery presentations for these manifolds. In Sect. 3 we
explain our calculation of the g–invariants of the Seifert manifolds. In Sect. 4
we state the asymptotic expansion conjecture and determine the asymptotic
expansions of the g–invariants of the lens spaces. In the appendix we sketch
the proof of the formula for the entries in Rgr(U), U ∈ SL(2,Z), Theorem 3.3.
The paper is to some extend expository. Details and most technicalities, in
particular in connection to the proof of Theorem 3.3, will be given in [13].
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2 Seifert manifolds

For Seifert manifolds we will use the notation introduced by Seifert in his
classification results for these manifolds, see [29], [30], [11, Sect. 2]. That
is, (ε; g | b; (α1, β1), . . . , (αn, βn)) is the Seifert manifold with orientable base
of genus g ≥ 0 if ε = o and non-orientable base of genus g > 0 if ε = n
(where the genus of the non-orientable connected sum #kRP2 is k). (In [29],
[30] (ε; g | b; (α1, β1), . . . , (αn, βn)) is denoted (O, ε; g | b;α1, β1; . . . ;αn, βn), but
we leave out the O, since we are only dealing with oriented Seifert mani-
folds.) The pair (αj , βj) of coprime integers is the (oriented) Seifert invariant
of the j ’th exceptional (or singular) fiber. We have 0 < βj < αj . The in-
teger −b is equal to the Euler number of the Seifert fibration (ε; g | b) (which
is a locally trivial S1–bundle). More generally, the Seifert Euler number of
(ε; g | b; (α1, β1), . . . , (αn, βn)) is E = −

(
b+

∑n
j=1 βj/αj

)
. We note that lens

spaces are Seifert manifolds with base S2 and zero, one or two exceptional fibers.
According to [23, Fig. 12 p. 146], the manifold (ε; g | b; (α1, β1), . . . , (αn, βn)) has
a surgery presentation as shown in Fig. 1 if ε = o and as shown in Fig. 2 if
ε = n. The `g indicate g repetitions.

For completeness we will also state the results in terms of the non-normalized
Seifert invariants due to W. D. Neumann, see [14]. For a Seifert manifold X
with non-normalized Seifert invariants {ε; g; (α1, β1), . . . , (αn, βn)} the invari-
ants ε and g are as above. The (αj , βj) are here pairs of coprime integers with
αj > 0 but not necessarily with 0 < βj < αj . These pairs are not invariants
of X , but can be varied according to certain rules. In fact, X has a surgery
presentation as shown in Fig. 1 with b = 0 if ε = o and as shown in Fig. 2 with
b = 0 if ε = n. The Seifert Euler number of X is −

∑n
j=1 βj/αj (which is an

invariant of the Seifert fibration X ). For more details, see [14, Sect. I.1].
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Figure 1: Surgery presentation of (o; g | b; (α1, β1), . . . , (αn, βn))
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Figure 2: Surgery presentation of (n; g | b; (α1, β1), . . . , (αn, βn))

3 Quantum invariants of Seifert manifolds

In this section we explain our calculation of the g–invariants of the Seifert
manifolds, g being an arbitrary complex finite dimensional simple Lie algebra.
Our starting point is a formula for the RT–invariants associated to an arbitrary
modular category of the Seifert manifolds, derived in [11].

The RT–invariants of the Seifert manifolds for modular categories
Let us first give some preliminary remarks on modular categories. We use
notation as in [31]. Let (V, {Vi}i∈I) be an arbitrary modular category with
braiding c and twist θ . The ground ring is K = HomV(I, I), where I is the
unit object. Let i 7→ i∗ be the involution in I determined by the condition that
Vi∗ is isomorphic to the dual of Vi . An element i ∈ I is called self-dual if i = i∗ .
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For such an element we have a K–module isomorphism HomV(V ⊗ V, I) ∼= K ,
V = Vi . The map x 7→ x(idV ⊗ θV )cV,V is a K–module endomorphism of
HomV(V ⊗ V, I), so is a multiplication by a certain εi ∈ K . By the definition
of the braiding and twist we have (εi)2 = 1. In particular εi ∈ {±1} if K is a
field. There is a distinguished element in I denoted 0, such that V0 = I.

The S– and T –matrices of V are the matrices S = (Sij)i,j∈I , T = (Tij)i,j∈I
given by Sij = tr(cVj ,Vi ◦ cVi,Vj ) and Tij = δijvi , where tr is the categorical
trace of V , δij is the Kronecher delta equal to 1 if i = j and zero elsewhere,
and vi ∈ K such that θVi = viidVi .

Assume that V has a rank D , i.e. an element of K satisfying

D2 =
∑
i∈I

dim(i)2,

where dim(i) = dim(Vi) = tr(idVi). We let

∆ =
∑
i∈I

v−1
i dim(i)2.

Moreover, let τ = τ(V ,D) be the RT–invariant associated to (V, {Vi}i∈I ,D), cf.
[31, Sect. II.2]. For a tuple of integers C = (m1, . . . ,mt), let

GC = TmtS · · ·Tm1S.

The Rademacher Phi function is defined on PSL(2,Z) = SL(2,Z)/{±1} by

Φ
([

p r
q s

])
=
{ p+s

q − 12(sign(q))s(s, |q|) , q 6= 0,
r
s , q = 0,

(1)

see [26]. Here, for q 6= 0, the Dedekind sum s(s, q) is given by

s(s, q) =
1

4|q|

|q|−1∑
j=1

cot
πj

q
cot

πsj

q
(2)

for |q| > 1 and s(s,±1) = 0. We put ao = 2 and an = 1. Moreover, let
b
(o)
j = 1 and b

(n)
j = δj,j∗ , j ∈ I . Given pairs (αj , βj) of coprime integers we let

Cj = (a(j)
1 , . . . , a

(j)
mj ) be a continued fraction expansion of αj/βj , j = 1, 2, . . . , n,

i.e.
αj
βj

= a(j)
mj −

1

a
(j)
mj−1 −

1

· · · − 1

a
(j)
1

.
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Theorem 3.1 [11] Let M = (ε; g | b; (α1, β1), . . . , (αn, βn)), ε = o,n. Then

τ(M) = (∆D−1)σεDaεg−2−
∑n
j=1mj

×
∑
j∈I

(εj)
aεg b

(ε)
j v−bj dim(j)2−n−aεg

(
n∏
i=1

(SGCi)j,0

)
,

where

σε = (aε − 1) sign(E) +
n∑
j=1

sign(αjβj) +
1
3

n∑
j=1

(mj∑
k=1

a
(j)
k − Φ(BCj)

)
.

Here E = −
(
b+

∑n
j=1

βj
αj

)
is the Seifert Euler number.

The RT–invariant τ(M) of the Seifert manifold M with non-normalized Seifert
invariants {ε; g; (α1, β1), . . . , (αn, βn)} is given by the same expression with the

exceptions that the factor v−bj has to be removed and E = −
∑n

j=1
βj
αj

.

The theorem is also valid in case n = 0. In this case one just has to put all
sums

∑n
j=1 equal to zero and all products

∏n
i=1 equal to 1. Note that εkj = 1

if k is even and εkj = εj if k is odd since ε2j = 1. In particular, (εj)
aεg = 1 if

ε = o. The sum
∑n

j=1 sign(αjβj) is of course equal to n for normalized Seifert
invariants.

Let us next consider the lens spaces. For p, q a pair of coprime integers, recall
that L(p, q) is given by surgery on S3 along the unknot with surgery coefficient
−p/q . In the following corollary we include the possibilities L(0, 1) = S1 × S2

and L(1, q) = S3 , q ∈ Z.

Corollary 3.2 [11] Let p, q be a pair of coprime integers. If q 6= 0 we let
(a1, . . . , am−1) be a continued fraction expansion of −p/q . If q = 0, put m = 3
and a1 = a2 = 0. Then

τ(L(p, q)) = (∆D−1)σD−mGC0,0,

where C = (a1, . . . , am−1, 0) and σ = 1
3

(∑m−1
l=1 al − Φ(BC)

)
.

The RT–invariants of the Seifert manifolds for the classical Lie alge-
bras It is a well-known fact that quantum deformations of the classical Lie
algebras at roots of unity induce modular categories, see [20], [8], [21]. Let us
provide the details needed. For simplicity we will only consider simply laced
Lie algebras in this paper, except in Remark 3.6 where we give a few remarks
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with respect to what have to be adjusted to include the general case. (See also
[13] for the general case.) Therefore, let in the following g be a fixed complex
finite dimensional simple and simply laced Lie algebra.

First let us fix some notation for g. Let h be a Cartan subalgebra of g, and let
α1, . . . , αl be a set of simple (basis) roots in the dual space of h. We denote by
h∗R the R–vector space spanned by α1, . . . , αl and let 〈 , 〉 be the inner product
on h∗R defined by 〈αi, αj〉 = aij , (aij)1≤i,j≤l being the Cartan matrix for g. In
particular, all roots have length

√
2. The root lattice ΛR is the Z–lattice

generated by α1, . . . , αl , and the weight lattice ΛW is the Z–lattice generated
by the fundamental weights λ1, . . . , λl , i.e. λi ∈ h∗R such that 〈λi, αj〉 = δij for
all i, j ∈ {1, 2, . . . , l}. The (open) fundamental Weyl chamber is the set

C = {x ∈ h∗R | 〈x, αi〉 > 0, i = 1, . . . , l}.

For a positive integer k , the k–alcove is the (closed) set

Ck = {x ∈ C̄ | 〈x, α0〉 ≤ k},

where C̄ is the topological closure of C and α0 is the highest root of g, i.e. α0

is the unique root in C . The Weyl group is denoted W .

Let q = eπ
√
−1/r , where r is an integer ≥ h∨ . Here h∨ is the dual Coxeter

number of g (equal to the Coxeter number h of g, since g is simply laced).
By Uq(g) we denote the quantum group associated to these data as defined by
Lusztig, see [22, Part V]. We follow [8, Sect. 1.3 and 3.3] here but will mostly
use notation from [31] for modular categories as above. (Note that what we
denote Uq(g) here is denoted Uq(g)|q=eπ√−1/r in [8].) Let

(
Vgr , {Vi}i∈I

)
be the

modular category induced by the representation theory of Uq(g), cf. [8, Theorem
3.3.20]. In particular, the index set for the simple objects is I = int(Cr)∩ΛW .
We use here the shifted indexes (shifted by ρ) (contrary to [8]). (Normally
the irreducible modules of Uq(g) (of type 1), q a formal variable, are indexed
by the cone of dominant integer weights ΛW+ . Here we denote the irreducible
module associated to µ ∈ ΛW+ by Vµ+ρ .) For q a root of unity as above, Vλ is
an irreducible module of Uq(g) of non-zero dimension if λ ∈ I . The involution
I → I , λ 7→ λ∗ , is given by λ∗ = −w0(λ − ρ) + ρ, where w0 is the longest
element in W and ρ is half the sum of positive roots. The distinguished element
0 ∈ I is equal to ρ. According to [8, Theorem 3.3.20] we can use

D = rl/2
∣∣∣∣ vol(ΛR)
vol(ΛW )

∣∣∣∣1/2
 ∏
α∈∆+

2 sin
(
π〈α, ρ〉
r

)−1

(3)
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as a rank of Vgr . Here ∆+ is the set of positive roots. According to the same
theorem we have

∆D−1 = ω−3, (4)

where

ω = e
2π
√
−1c

24 = exp
(
π
√
−1
h
|ρ|2
)

exp
(
−π
√
−1
r
|ρ|2
)
, (5)

where c = r−h
r dim(g) is the central charge. The last equality in (5) follows

from Freudenthal’s strange formula |ρ|2/h = dim g/12.

The matrices S and T for Vgr are tightly related to a certain unitary represen-
tation R = Rgr of SL(2,Z). On the standard generators

Ξ =
(

0 −1
1 0

)
, Θ =

(
1 1
0 1

)
(6)

of SL(2,Z) we have

R(Ξ)λµ =
√
−1|4+|

rl/2

∣∣∣∣vol(ΛW )
vol(ΛR)

∣∣∣∣1/2 ∑
w∈W

det(w) exp
(
−2π
√
−1
r
〈w(λ), µ〉

)
,

R(Θ)λµ = δλµ exp
(
π
√
−1
r
〈λ, λ〉 − π

√
−1
h
〈ρ, ρ〉

)
(7)

for λ, µ ∈ I . In the following we also write Ũ for R(U). By using the results
in [8, Sect. 3.3], in particular [8, Theorem 3.3.20], we find

Sλµ = DΞ̃λµ, Tλµ = ωΘ̃λµ (8)

for λ, µ ∈ I . Let C = (a1, . . . , an) ∈ Zn and let m ∈ {0, 1}. By (8) we
immediately get

(SmGC)λρ = Dm+nω
∑n
j=1 aj

(
Ξ̃mΘ̃anΞ̃Θ̃an−1 · · · Θ̃a1Ξ̃

)
λρ

(9)

for λ ∈ I . Finally we have for any λ ∈ I that

dim(λ) = Sλρ = DΞ̃λρ = Dr−l/2
∣∣∣∣vol(ΛW )

vol(ΛR)

∣∣∣∣1/2 ∏
α∈∆+

2 sin
(
π〈α, λ〉
r

)
,

see also [8, Formulas (3.3.2) and (3.3.5)]. All the above data can now be put
into the expression in Theorem 3.1 to give a formula for τgr (X), X an arbitrary
Seifert manifold, where τgr is the RT–invariant associated to Vgr . However, the
formula to emerge is not detailed enough to be of any use, at least not when it
comes to a determination of asymptotics of the invariants. The reason is, that
the formula will contain matrix products as in the right-hand side of (9).
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A way out of this problem is to determine nice formulas for the entries of R(U)
in terms of the entries of U . This has in fact been done for g = sl2(C) by Jeffrey
[15], [16]. Here method is to write the matrix U ∈ SL(2,Z) as a product in the
generators Ξ and Θ and make a certain induction argument. A main ingredient
is a reciprocity formula for Gaussian sums. We use a similar argument to extend
Jeffrey’s results to an arbitrary complex finite dimensional simple Lie algebra.
The following theorem generalizes [16, Propositions 2.7 and 2.8].

Theorem 3.3 Let U =
(
a b
c d

)
∈ SL(2,Z) with c 6= 0. Then there exists

an ε ∈ {±1} such that

R(εU)λµ =
√
−1|4+| sign(εc)|4+|

(r|c|)l/2 vol(ΛR)
exp

(
−π
√
−1
h
|ρ|2Φ(U)

)
× exp

(
π
√
−1
r

d

c
|µ|2

) ∑
ν∈ΛR/cΛR

exp
(
π
√
−1
r

a

c
|λ+ rν|2

)

×
∑
w∈W

det(w) exp
(
−2π
√
−1

rεc
〈λ+ rν,w(µ)〉

)
.

The function Φ is given in (1). If c = 0, then U = εΘb for some b ∈ Z and
ε ∈ {±1} and the expression for R(εU)λµ follows immediately from (7). At first
sight the above theorem looks a little strange because of the undetermined sign
ε. This sign has to do with the fact that R is a representation of SL(2,Z) and
not of PSL(2,Z) (except for g = sl2(C), where R is in fact a representation of
PSL(2,Z)). However, as we shall see now, we will get rid of this sign in the cases
we need. In fact, according to Theorem 3.1 and (9), we only need the expression
for R(U)λµ in case λ or µ is equal to ρ in the calculation of the invariants of
the Seifert manifolds. Since ρ∗ = ρ, Ξ2 = −1, and R(Ξ2)λµ = δλµ∗ , we have

R(−U)λρ = R(U)λρ, R(−U)ρλ = R(U)ρλ

for all λ ∈ I . By using this fact and the Weyl denominator formula one can
show the following corollary to Theorem 3.3. (To show the first formula in
Corollary 3.4 one also has to use unitarity of R.)
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Corollary 3.4 Let U =
(
a b
c d

)
∈ SL(2,Z) with c 6= 0. Then

R(U)λρ =
√
−1|4+| sign(c)|4+|

(r|c|)l/2 vol(ΛR)
exp

(
−π
√
−1
h
|ρ|2Φ(U)

)
× exp

(
π
√
−1
r

a

c
|λ|2
) ∑
ν∈ΛR/cΛR

exp
(
π
√
−1
r

d

c
|ρ+ rν|2

)

×
∑
w∈W

det(w) exp
(
−2π
√
−1

rc
〈ρ+ rν,w(λ)〉

)
.

If a 6= 0 we also have

R(U)λρ =
√
−1|4+| sign(c)|4+|

(r|c|)l/2 vol(ΛR)
exp

(
π
√
−1
r

b

a
|ρ|2
)

× exp
(
−π
√
−1
h
|ρ|2Φ(U)

)
×
∑
w∈W

det(w)
∑

ν∈ΛR/cΛR

exp
(
π
√
−1
r

a

c
|λ+ rν − w(ρ)

a
|2
)
.

Because of the length and technical nature of the proof of Theorem 3.3, we
defer the argument to the Appendix, and will only give the main ideas there.
Detailed arguments will appear in [13].

Given a pair of coprime integers (α, β), α > 0, we let β∗ be the inverse of
β in the multiplicative group of units in Z/αZ. The following theorem is a
generalization of [11, Theorem 8.4] (which concerns the case g = sl2(C)). The
proof follows closely the proof of [11, Teorem 8.4] and is therefore left out here.
(One has to use the first formula in Corollary 3.4.)

Theorem 3.5 Let M = (ε; g | b; (α1, β1), . . . , (αn, βn)), ε ∈ {o,n}. Then

τgr (M) = exp

π√−1
r
|ρ|2

3(aε − 1) sign(E)− E − 12
n∑
j=1

s(βj , αj)


×

√
−1n|4+|rl(aεg/2−1)

2|4+|(n+aεg−2) vol(ΛR)2−aεg
1
Al/2

e
3π
√
−1
h
|ρ|2(1−aε) sign(E)Zgε (M ; r),
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where s(βj , αj) is given by (2), A =
∏n
j=1 αj , and

Zgε (M ; r) =
∑
λ∈I

b
(ε)
λ εaεgλ

 ∏
α∈∆+

sin2−n−aεg
(
π〈λ, α〉
r

) exp
(
π
√
−1
r

E|λ|2
)

×
∑

w1,... ,wn∈W

∑
ν1∈ΛR/α1ΛR

. . .
∑

νn∈ΛR/αnΛR

 n∏
j=1

det(wj)


× exp

−π√−1
n∑
j=1

β∗j
αj

(
r|νj|2 + 2〈wj(ρ), νj〉

)
× exp

−2π
√
−1
r
〈λ,

n∑
j=1

rνj + wj(ρ)
αj

〉

 .

The RT–invariant τgr (M) of the Seifert manifold M with non-normalized Seifert
invariants {ε; g; (α1, β1), . . . , (αn, βn)} is given by the same expression.

The theorem is also valid in case n = 0. In this case one just has to put the sum∑
w1,... ,wn∈W

∑
ν1∈ΛR/α1ΛR . . .

∑
νn∈ΛR/αnΛR in Zε(M ; r) equal to 1,ε = o,n,

and put A = 1 and
∑n

j=1 s(βj , αj) = 0.

Let us finally consider the lens space L(p, q). Let b, d be any integers such that

U =
(
q b
p d

)
∈ SL(2,Z). Assume q 6= 0, let V = −ΞU =

(
p d
−q −b

)
,

and let C ′ = (a1, a2, . . . , am−1) ∈ Zm−1 such that BC
′

= V . Then C′ is
a continued fraction expansion of −p/q and U = ΞV = BC , where C =
(a1, a2, . . . , am−1, 0). By Corollary 3.2, (4) and (9) we therefore get

τgr (L(p, q)) = ωΦ(U)Ũρρ, (10)

where ω is given by (5). If q = 0 we have p = 1 and L(p, q) = S3 . In this case
we have τgr (L(p, q)) = D−1 . We also have U = ΞΘd , so by using (7), (3) and
(5) we find that the right-hand side of (10) is also equal to D−1 . The identity
(10) coincides with [16, Formula (3.7)] for g = sl2(C), see also [11, Formula
(49)].

Remark 3.6 Let us briefly mention the adjustments to be done for including
the non-simply laced Lie algebras. In the general case the root of unity q =
eπ
√
−1/(dr) , where d = 1 for g simply laced, d = 2 if g belongs to the series

BCF and d = 3 if g is of type G2 . Moreover, ΛR is in general the coroot
lattice, which is dual to the weight lattice. The inner product 〈 , 〉 in h∗R is
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induced by an invariant bilinear form on g, and is normalized such that a long
root has length

√
2. We stress that α0 is the long highest root of g.

4 The asymptotic expansion conjecture and Seifert
manifolds

For X a fixed closed oriented 3–manifold we consider r 7→ τgr (X) as a complex
valued function on {h∨, h∨+1, h∨+2, . . . }. We are interested in the behaviour
of this function in the limit of large r , i.e. r →∞.

It is believed that Witten’s TQFT’s associated to G coincides with the TQFT’s
of Reshetikhin–Turaev associated to g, where G is a simply connected compact
simple Lie group with complexified Lie algebra g. In particular it is conjectured
that Witten’s leading large k asymptotics for ZGk (X) should be valid for the
function r 7→ τgr (X) in the limit r → ∞, and furthermore, that this function
should have a full asymptotic expansion. The precise formulation of this is
stated in the following conjecture, called the asymptotic expansion conjecture
(AEC).

Conjecture 4.1 (J. E. Andersen [1], [2]) Let {α1, . . . , αM} be the set of val-
ues of the Chern–Simons functional of flat G connections on a closed oriented
3–manifold X . Then there exist dj ∈ Q, Ĩj ∈ Q/Z, bj ∈ R+ and cjm ∈ C for
j = 1, . . . ,M and m = 1, 2, 3, . . . such that

τgr (X) ∼r→∞
M∑
j=1

bje
2π
√
−1rαjrdjeπ

√
−1Ĩj/4

(
1 +

∞∑
m=1

cjmr
−m
)
, (11)

that is, for all N = 0, 1, 2, . . .

τgr (X) =
M∑
j=1

bje
2π
√
−1rαjrdjeπ

√
−1Ĩj/4

(
1 +

N∑
m=1

cjmr
−m
)

+ o(rd−N )

in the limit r →∞, where d = max{d1, . . . , dM}.

As noticed by Andersen [1], [2], a complex function defined on the positive
integers has at most one asymptotic expansion on the form (11) if the αj ’s are
rational (and mutually different), see also [12]. This means that if the AEC is
true and if we futhermore have that the Chern–Simons invariants are rational
(as conjectured by e.g. Auckly [4]), then all the quantities cjm , αj , dj ,... are
topological invariants. The AEC was first proved for the mapping tori of finite
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order diffeomorphisms of orientable surfaces of genus at least 2 and for any g

by Andersen [1] using the gauge theory definition of the invariants. Note that
these mapping tori are Seifert manifolds with orientable base and Seifert Euler
number equal to zero. Later on, the AEC was proved for all Seifert manifolds
with orientable base or non-orientable base with even genus in case g = sl2(C),
cf. [12]. The proof of this result is partly based on calculations of Rozansky
[28]. For more details about the AEC and conjectures about the topological
interpretation of the different parts of the asymptotic formula (11) we refer to
[1], [2], [12]. One can also find a review about the status of the AEC in these
references.

By elaborating on the expression (10) along the same lines as in [16, Sect. 3]
(using the last formula in Corollary 3.4) we find the following generalization of
[16, Theorem 3.4] (valid in case p 6= 0).

Theorem 4.2 The RT–invariant associated to g of the lens space L(p, q) is
given by

τgr (L(p, q)) =
sign(p)|4+|√−1|4+|

(r|p|)l/2 vol(ΛR)
exp

(
π
√
−1
r

12 sign(p)s(q, |p|)|ρ|2
)

×
∑
w∈W

det(w) exp
(
−2π
√
−1

pr
〈ρ,w(ρ)〉

)
×

∑
ν∈ΛR/pΛR

exp
(
π
√
−1

q

p
r|ν|2

)
exp

(
2π
√
−1

1
p
〈ν, qρ− w(ρ)〉

)
.

From this theorem it is obvious, that the large r asymptotics of τgr (L(p, q)) is
on the same form as in (11) (expand the factor exp

(
π
√
−1
r 12 sign(p)s(q, |p|)|ρ|2

)
exp

(
−2π

√
−1

pr 〈ρ,w(ρ)〉
)

as a power series in r−1). Proving the following conjec-

ture will therefore finalize the proof of the AEC for the invariants τgr (L(p, q)).

Conjecture 4.3 The set of values of the Chern–Simons functional of flat G
connections on L(p, q) is given by{

q

2p
|ν|2 (mod Z)

∣∣∣∣ ν ∈ ΛR/pΛR
}
.

For g = sln(C) (G = SU(n)) this conjecture should follow from results in [24].
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5 Appendix. The proof of Theorem 3.3

In this section we will explain the ideas behind the proof of Theorem 3.3. The
underlying Lie algebra g is still assumed to be simply laced for simplicity.
However, with some minor adjustments the arguments given are also true for
the non-simply laced Lie algebras, see Remark 3.6.

The proof of Theorem 3.3 builds mainly on the key-lemma, Lemma 5.1. Let us
introduce some notation. For a tuple of integers C = (m1, . . . ,mt), let

BCk =
(
aCk bCk
cCk dCk

)
= ΘmkΞΘmk−1Ξ . . .Θm1Ξ (12)

for k = 1, 2, . . . , t, and let BC = BCt , where Ξ and Θ are given by (6). More-
over, we put

aC0 = dC0 = 1, bC0 = cC0 = 0.

We say that C has length |C| = t. If it is clear from the context what C is we
write ak for aCk etc. From [16, Proposition 2.5], the elements ai, bi, ci, di satisfy
the recurrence relations

ak = mkak−1 − ck−1, ck = ak−1, (13)
bk = mkbk−1 − dk−1, dk = bk−1

for k = 1, 2, . . . , t. One should note that the expressions (7) for the entries
of R(Ξ) and R(Θ) are well-defined for all λ, µ ∈ ΛW . Note also that if λ
or µ are elements of ΛW belonging to the boundary of Cr then R(Ξ)λµ = 0.
This observation allows us to shift between I = int(Cr) ∩ΛW and Cr ∩ ΛW as
summation index set in formulas below. This shift is important in the proof of
Lemma 5.1. Following Jeffrey [15, Sect. 2], [16, Sect. 2] we consider

T Cλ0,λt+1
=

∑
λ1,... ,λt∈Cr∩ΛW

Ξ̃λt+1λtΘ̃
mt
λt

Ξ̃λtλt−1Θ̃mt−1

λt−1
Ξ̃λt−1λt−2 · · · Θ̃m1

λ1
Ξ̃λ1λ0

for λ0, λt+1 ∈ Cr∩ΛW , where we write Θ̃λ for Θ̃λλ . Then we have the following
generalization of [16, Lemma 2.6]:

Lemma 5.1 Assume that C = (m1, . . . ,mt) is a sequence of integers such
that ak is nonzero for k = 1, . . . , t. Then

T Cλ0,λt+1
= KCλ0

∑
w∈W

det(w)
∑

µ∈ΛR/atΛR

exp

(
−π
√
−1ct
atr

∣∣∣∣λt+1 + rµ+
w(λ0)
ct

∣∣∣∣2
)
,
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where

KCλ0
=

√
−1(t+1)|4+|

(r|at|)l/2 vol(ΛR)
ζ l Dt exp

(
−π
√
−1
h

(
t∑
i=1

mi)|ρ|2
)

× exp

(
−π
√
−1
r

(
t−1∑
i=1

1
ai−1ai

)|λ0|2
)
.

Here ζ = exp π
√
−1

4 and Dt = sign(a0a1) + · · · + sign(at−1at).

We will not give the proof of this lemma here, since it is long and technical. The
lemma is proved by induction on the length of C . The reciprocity formula for
Gaussian sums, Proposition 5.2, plays a prominent role in the proof. A proof
of this reciprocity formula can be found in [15, Sect. 2].

Let V be a real vector space of dimension l with inner product 〈 , 〉, Λ a lattice
in V and Λ∗ the dual lattice. For an integer r , a self-adjoint automorphism
B : V → V , and an element ψ ∈ V , we assume

1
2
〈λ,Brλ〉, 〈λ,Bη〉, r〈λ,ψ〉 ∈ Z, ∀λ, η ∈ Λ,

1
2
〈µ,Brµ〉, 〈µ, rξ〉, r〈µ,ψ〉 ∈ Z, ∀µ, ξ ∈ Λ∗

and BΛ∗ ⊆ Λ∗ . Then we have the following:

Proposition 5.2 (Reciprocity formula for Gauss sums)

vol(Λ∗)
∑

λ∈Λ/rΛ

exp
(
π
√
−1
r
〈λ,Bλ〉

)
exp

(
2π
√
−1〈λ,ψ〉

)
=
(

det
B√
−1

)−1/2

rl/2
∑

µ∈Λ∗/BΛ∗

exp
(
−πr
√
−1〈µ+ ψ,B−1(µ+ ψ)〉

)
.

In the proof of Lemma 5.1 we use Proposition 5.2 with Λ = ΛW , the dual
lattice being the root lattice ΛR . Basically we use the reciprocity formula
(t times, recursively) to change the sums in the expression for T C to a sum
with a range which does not depend on r . Another main ingredient in the
proof of Lemma 5.1 is symmetry considerations along the same lines as the
discussion in [16, pp. 584–586], see in particular [16, Proposition 4.4]. In the
proof of Lemma 5.1 and Theorem 3.3 we use several results in [16, Sect. 2], in
particularly [16, Proposition 2.5].
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Lemma 5.1 nearly proves Theorem 3.3. There is, however, a small hurdle to
overcome because of the assumption on the ak ’s in the lemma. The following
small result does the job.

Lemma 5.3 Let U =
[
a b
c d

]
∈ PSL(2,Z) with c 6= 0. Then we can write

U = VΘn , where n ∈ Z and where V is given in the following way: If a = 0,
then V = Ξ; if a 6= 0, then there exists a sequence of integers C such that
V = BC , see (12), and such that aCk 6= 0, k = 1, 2, . . . , |C|.

From this lemma we see the origin of the undetermined sign ε. Let us use the
above lemmas to sketch the proof of Theorem 3.3.

Proof of Theorem 3.3 According to the previous lemma there exists an in-
teger n, a sign ε ∈ {±1}, and a V ∈ SL(2,Z) as in the Lemma 5.3 such that
U = εVΘn . First assume a 6= 0 and that n = 0, i.e. assume that εU = BC ,
where C = (m1, . . . ,mt) and ak 6= 0, k = 1, 2, . . . , t. Let C′ = (m1, . . . ,mt−1).
Then, by Lemma 5.1, (13), and a small calculation, we get

R(εU)λµ = Θ̃mt
λλT

C′
µ,λ

=
∑
w∈W

det(w)
∑

ν∈ΛR/cΛR

exp

(
π
√
−1
r

a

c

∣∣∣∣λ+ rν − w(µ)
εa

∣∣∣∣2
)
,

where

K = KC
′

µ exp
(
−π
√
−1
h

mt|ρ|2
)

exp
(
− π

√
−1

at−1at−2r
|µ|2

)
exp

(
− π
√
−1

atat−1r
|µ|2

)
.

The formula for the entries of R(εU) now follows by the fact b/a+1/(ac) = d/c
(except for the factor K which we will not rewrite here). Next assume that
εU = BCΘn with n 6= 0, where C is as above. Then

BC = εUΘ−n = ε

(
a b
c d

)(
1 −n
0 1

)
= ε

(
a −na+ b
c −nc+ d

)
,

and since Theorem 3.3 is valid for U = BC (with ε = 1) we get the result
after a small calculation. Finally one has to consider the case where a = 0, in

which case εU = ΞΘn =
(

0 −1
1 n

)
. Here the result follows by inserting the

expressions in (7) into R(εU)λµ = R(Ξ)λµR(Θ)nµµ .
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