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Problems on invariants of knots and 3-manifolds
Edited by T. Ohtsuki

Preface

The workshop and seminars on “Invariants of knots and 3-manifolds” was held at
Research Institute for Mathematical Sciences, Kyoto University in September 2001.
There were 25 talks in the workshop in September 17–21, and there were 27 talks in the
seminars in the other weeks of September. Each speaker was requested to give his/her
open problems in a short problem session after his/her talk, and many interesting open
problems were given and discussed by the speakers and participants in the workshop
and the seminars. Contributors of the open problems were also requested to give kind
expositions of history, background, significance, and/or importance of the problems.
This problem list was made by editing these open problems and such expositions.1

Since the interaction between geometry and mathematical physics in the 1980s, many
invariants of knots and 3-manifolds have been discovered and studied. The discovery
and analysis of the enormous number of these invariants yielded a new area: the
study of invariants of knots and 3-manifolds (from another viewpoint, the study of the
sets of knots and 3-manifolds). Recent works have almost completed the topological
reconstruction of the invariants derived from the Chern-Simons field theory, which was
one of main problems of this area. Further, relations among these invariants have
been studied enough well, and these invariants are now well-organized. For the future
developments of this area, it might be important to consider various streams of new
directions;2 this is a reason why the editor tried to make the problem list expository.
The editor hopes this problem list will clarify the present frontier of this area and assist
readers when considering future directions.

The editor will try to keep up-to-date information on this problem list at his web site.3

If the reader knows a (partial) solution of any problem in this list, please let him4 know
it.

February, 2003
T. Ohtsuki

The logo for the workshop and the seminars was designed by N. Okuda.
1Open problems on the Rozansky-Witten invariant were written in a separate manuscript

[349]. Some fundamental problems are quoted from other problem lists such as [188], [220],
[262], [285], [286], [388, Pages 571–572].

2For example, directions related to other areas such as hyperbolic geometry via the volume
conjecture and the theory of operator algebras via invariants arising from 6j-symbols.

3http://www.kurims.kyoto-u.ac.jp/~tomotada/proj01/
4Email address of the editor is: tomotada@kurims.kyoto-u.ac.jp
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0 Introduction

The study of quantum invariants of links and three-manifolds has a strange
status within topology. When it was born, with Jones’ 1984 discovery of his
famous polynomial [186], it seemed that the novelty and power of the new
invariant would be a wonderful tool with which to resolve some outstanding
questions of three-dimensional topology. Over the last 16 years, such hopes
have been largely unfulfilled, the only obvious exception being the solution of
the Tait conjectures about alternating knots (see for example [281]).

This is a disappointment, and particularly so if one expects the role of the quan-
tum invariants in mathematics to be the same as that of the classical invariants
of three-dimensional topology. Such a comparison misses the point that most of
the classical invariants were created specifically in order to distinguish between
things; their definitions are mainly intrinsic, and it is therefore clear what kind
of topological properties they reflect, and how to attempt to use them to solve
topological problems.

Chapter 0 was written by J. Roberts.

Published 1 June 2004: c© Geometry & Topology Publications



378 T. Ohtsuki (Editor)

Quantum invariants, on the other hand, should be thought of as having been
discovered. Their construction is usually indirect (think of the Jones polyno-
mial, defined with reference to diagrams of a knot) and their existence seems to
depend on very special kinds of algebraic structures (for example, R-matrices),
whose behaviour is closely related to three-dimensional combinatorial topology
(for example, Reidemeister moves). Unfortunately such constructions give lit-
tle insight into what kind of topological information the invariants carry, and
therefore into what kind of applications they might have.

Consequently, most of the development of the subject has taken place in direc-
tions away from classical algebraic and geometric topology. From the earliest
days of the subject, a wealth of connections to different parts of mathematics
has been evident: originally in links to operator algebras, statistical mechanics,
graph theory and combinatorics, and latterly through physics (quantum field
theory and perturbation theory) and algebra (deformation theory, quantum
group representation theory). It is the investigation of these outward connec-
tions which seems to have been most profitable, for the two main frameworks
of the modern theory, that of Topological Quantum Field Theory and Vassiliev
theory (perturbation theory) have arisen from these.

The TQFT viewpoint [16] gives a good interpretation of the cutting and pasting
properties of quantum invariants, and viewed as a kind of “higher dimensional
representation theory” ties in very well with algebraic approaches to deforma-
tions of representation categories. It ties in well with geometric quantization
theory and representations of loop groups [17]. In its physical formulation via
the Chern-Simons path-integral (see Witten [403]), it even offers a conceptual
explanation of the invariants’ existence and properties, but because this is not
rigorous, it can only be taken as a heuristic guide to the properties of the
invariants and the connections between the various approaches to them.

The Vassiliev theory (see [25, 226, 383]) gives geometric definitions of the invari-
ants in terms of integrals over configuration spaces, and also can be viewed as a
classification theory, in the sense that there is a universal invariant, the Kont-
sevich integral (or more generally the Le-Murakami-Ohtsuki invariant [249]),
through which all the other invariants factor. Its drawback is that the integrals
are very hard to work with – eight years passed between the definition and
calculation [383] of the Kontsevich integral of the unknot!

These two frameworks have revealed many amazing properties and algebraic
structures of quantum invariants, which show that they are important and in-
teresting pieces of mathematics in their own right, whether or not they have
applications in three-dimensional topology. The structures revealed are pre-
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cisely those which can, and therefore must, be studied with the aid of three-
dimensional pictures and a topological viewpoint; the whole theory should
therefore be considered as a new kind of algebraic topology specific to three
dimensions.

Perhaps the most important overall goal is simply to really understand the
topology underlying quantum invariants in three dimensions: to relate the “new
algebraic topology” to more classical notions and obtain good intrinsic topologi-
cal definitions of the invariants, with a view to applications in three-dimensional
topology and beyond.

The problem list which follows contains detailed problems in all areas of the
theory, and their division into sections is really only for convenience, as there are
very many interrelationships between them. Some address unresolved matters
or extensions arising from existing work; some introduce specific new conjec-
tures; some describe evidence which hints at the existence of new patterns or
structures; some are surveys on major and long-standing questions in the field;
some are purely speculative.

Compiling a problem list is a very good way to stimulate research inside a
subject, but it also provides a great opportunity to “take stock” of the overall
state and direction of a subject, and to try to demonstrate its vitality and worth
to those outside the area. We hope that this list will do both.

Geometry & Topology Monographs, Volume 4 (2002)
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1 Polynomial invariants of knots

1.1 The Jones polynomial

The Kauffman bracket of unoriented link diagrams is defined by the following
recursive relations,

〈 〉
= A

〈 〉
+ A−1

〈 〉
,

〈
D
〉

= (−A2 −A−2)〈D〉 for any diagram D,

〈the empty diagram ∅〉 = 1,

where three pictures in the first formula imply three links diagrams, which are
identical except for a ball, where they differ as shown in the pictures. The Jones
polynomial VL(t) of an oriented link L is defined by

VL(t) = (−A2 −A−2)−1(−A3)−w(D)〈D〉
∣∣∣
A2=t−1/2

∈ Z[t1/2, t−1/2],

where D is a diagram of L, w(D) is the writhe of D , and 〈D〉 is the Kauffman
bracket of D with its orientation forgotten. The Jones polynomial is an isotopy
invariant of oriented links uniquely characterized by

t−1VL+(t)− tVL−
(t) = (t1/2 − t−1/2)VL0(t), (1)

VO(t) = 1,

where O denotes the trivial knot, and L+ , L− , and L0 are three oriented links,
which are identical except for a ball, where they differ as shown in Figure 1. It
is shown, by (1), that for any knot K , its Jones polynomial VK(t) belongs to
Z[t, t−1].

L+ L− L0

Figure 1: Three links L+, L−, L0
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1.1.1 Does the Jones polynomial distinguish the trivial knot?

Problem 1.1 ([188, Problem 1]) Find a non-trivial knot K with VK(t) = 1.

Remark It is shown by computer experiments that there are no non-trivial
knots with VK(t) = 1 up to 17 crossings of their diagrams [102], and up to 18
crossings [407]. See [52] (and [53]) for an approach to find such knots by using
representations of braid groups.

Remark Two knots with the same Jones polynomial can be obtained by mu-
tation. A mutation is a relation of two knots, which are identical except for a
ball, where they differ by π rotation of a 2-strand tangle in one of the following
ways (see [12] for mutations).

For example, the Conway knot and the Kinoshita-Terasaka knot are related by
a mutation.

They have the same Jones polynomial, because their diagrams have the same
writhe and the Kauffman bracket of the tangle shown in the dotted circle can
be presented by

〈 〉
= x

〈 〉
+ y
〈 〉

=
〈 〉

,

with some scalars x and y .

Remark The Jones polynomial can be obtained from the Kontsevich invariant
through the weight system Wsl2,V for the vector representation V of sl2 (see,
e.g. [321]). Problem 1.1 might be related to the kernel of Wsl2,V .

Geometry & Topology Monographs, Volume 4 (2002)
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Remark Some links with the Jones polynomial equal to that of the corre-
sponding trivial links are given in [115]. For example, the Jones polynomial of
the following link is equal to the Jones polynomial of the trivial 4-component
link.

Remark (X.-S. Lin [262]) Use Kontsevich integral to show the existence of
a non-trivial knot with trivial Alexander-Conway polynomial. This might give
us some hints to Problem 1.1.

1.1.2 Characterization and interpretation of the Jones polynomial

Problem 1.2 ([188, Problem 2]) Characterize those elements of Z[t, t−1] of
the form VK(t).

Remark [188] The corresponding problem for the Alexander polynomial has
been solved; it is known that a polynomial f(t) ∈ Z[t, t−1] is equal to the
Alexander polynomial of some knot K if and only if f(1) = 1 and f(t) =

f(t−1). The formulas VK(1) = 1 and VK(exp 2π
√
−1

3 ) = 1 are obtained by the
skein relation (1). These formulas give weak characterizations of the required
elements.

Remark (X.-S. Lin [262]) The Mahler measure (see [119] for its exposition)
of a polynomial F (x) = a

∏
i(x− αi) ∈ C[x] is defined by

m(F ) = log |a|+
∑

i

log max{1, |αi|} =

∫ 1

0
log |F (e2π

√
−1θ)|dθ.

The Mahler measure can be defined also for a Laurent polynomial similarly. Is
it true that m(VK) > 0 for the Jones polynomial VK of a knot K , if K is a
non-trivial knot?

Problem 1.3 Find a 3-dimensional topological interpretation of the Jones
polynomial of links.

Remark The Alexander polynomial has a topological interpretation such as

the characteristic polynomial of H1(S̃3 −K; Q) of the infinite cyclic cover of

the knot complement S3−K , where H1(S̃3 −K; Q) is regarded as a Q[t, t−1]-

module by regarding t as the action of the deck transformation on S̃3 −K .

Geometry & Topology Monographs, Volume 4 (2002)
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Remark In the viewpoint of mathematical physics, Witten [403] gave a 3-
dimensional interpretation of the Jones polynomial of a link by a path integral
including a holonomy along the link in the Chern-Simons field theory.

Remark Certain special values of the Jones polynomial have some interpre-

tations. The formulas VL(1) = (−2)#L−1 and VL(exp 2π
√
−1

3 ) = 1 are shown
by the skein relation (1), where #L denotes the number of components of L.
It is known that |VL(−1)| is equal to the order of H1(M2,L) if its order is
finite, and 0 otherwise. Here, M2,L denotes the double branched cover of S3

branched along L. It is shown, in [290], that VL(
√
−1) = (−

√
2)#L−1(−1)Arf(L)

if Arf(L) exists, and 0 otherwise. It is shown, in [257], that VL(exp
√
−1π
3 ) =

±
√
−1

#L−1√−3
dimH1(M2,L;Z/3Z)

. If ω is equal to a 2nd, 3rd, 4th, 6th root of
unity, the computation of VL(ω) can be done in polynomial time of the number
of crossings of diagrams of L by the above interpretation of VL(ω). Otherwise,
VL(ω) does not have such a topological interpretation, in the sense that com-
puting VL(ω) of an alternating link L at a given value ω is #P-hard except
for the above mentioned roots of unity (see [183, 399]).

Problem 1.4 (J. Roberts) Why is the Jones polynomial a polynomial?

Remark (J. Roberts) A topological invariant of knots should ideally be de-
fined in an intrinsically 3-dimensional fashion, so that its invariance under
orientation-preserving diffeomorphisms of S3 is built-in. Unfortunately, almost
all of the known constructions of the Jones polynomial (via R-matrices, skein
relations, braid groups or the Kontsevich integral, for example) break the sym-
metry, requiring the introduction of an axis (Morsification of the knot) or plane
of projection (diagram of the knot). I believe that the “perturbative” con-
struction via configuration space integrals [381], whose output is believed to
be essentially equivalent to the Kontsevich integral, is the only known intrinsic
construction.

In the definitions with broken symmetry, it is generally easy to see that the
result is an integral Laurent polynomial in q or q

1
2 . In the perturbative ap-

proach, however, we obtain a formal power series in ~, and although we know
that it ought to be the expansion of an integral Laurent polynomial under the
substitution q = e~ , it seems hard to prove this directly. A related observation
is that the analogues of the Jones polynomial for knots in 3-manifolds other
than S3 are not polynomials, but merely functions from the roots of unity to
algebraic integers. What is the special property of S3 (or perhaps R3) which
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causes this behaviour, and why does the variable q seem natural only when one
breaks the symmetry?

The typical raison d’etre of a Laurent polynomial is that it is a character of the
circle. (In highbrow terms this is an example of “categorification”, but it is also
belongs to a concrete tradition in combinatorics that to prove that something
is a non-negative integer one should show that it is the dimension of a vector
space.) The idea that the Jones polynomial is related to K -theory [402] and
that it ought to be the S1 -equivariant index of some elliptic operator defined
using the special geometry of R3 or S3 is something Simon Willerton and I
have been pondering for some time. As for the meaning of q , Atiyah suggested
the example in equivariant K -theory

KSO(3)(S
2) ∼= KS1(pt) = Z[q±1],

in to make the first identification requires a choice of axis in R3 . (This would
suggest looking for an SO(3)-equivariant S2 -family of operators.)

Problem 1.5 (J. Roberts) Is there a relationship between values of Jones
polynomials at roots of unity and branched cyclic coverings of a knot?

Problem 1.6 (J. Roberts) Is there a relationship between the Jones polyno-
mial of a knot and the counting of points in varieties defined over finite fields?

Remark (J. Roberts) These two problems prolong the “riff in the key of q”:
the amusing fact that traditional, apparently independent uses of that letter,
denoting the number of elements in a finite field, the deformation parameter
q = e~ , the variable in the Poincaré series of a space, the variable in the theory
of modular forms, etc. turn out to be related.

The first problem addresses a relationship which holds for the Alexander poly-
nomial. For example, the order of the torsion in H1 of the n-fold branched
cyclic cover equals the product of the values of the Alexander polynomial at all
the nth roots of unity. It’s hard not to feel that the variable q has some kind
of meaning as a deck translation, and that the values of the Jones polynomial
at roots of unity should have special meanings.

The second has its roots in Jones’ original formulation of his polynomial using
Hecke algebras. The Hecke algebra Hn(q) is just the Hall algebra of double
cosets of the Borel subgroup inside SL(n, Fq); the famous quadratic relation
σ2 = (q−1)σ + q falls naturally out of this. Although the alternative definition
of Hn(q) using generators and relations extends to allow q to be any complex
number (and it is then the roots of unity, at which Hn(q) is not semisimple,
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which are the obvious special values), it might be worth considering whether
Jones polynomials at prime powers q = ps have any special properties.

Ideally one could try to find a topological definition of the Jones polynomial
(perhaps only at such values) which involves finite fields. The coloured Jones
polynomials of the unknot are quantum integers, which count the numbers of
points in projective spaces defined over finite fields; might those for arbitrary
knots in S3 count points in other varieties? Instead of counting counting points,
one could consider Poincaré polynomials, as the two things are closely related
by the Weil conjectures.

One obvious construction involving finite fields is to count representations of a
fundamental group into a finite group of Lie type, such as SL(n, Fq). Very much
in this vein, Jeffrey Sink [369] associated to a knot a zeta-function formed from
the counts of representations into SL(2, Fps), for fixed p and varying s. His
hope, motivated by the Weil conjectures, was the idea that the SU(2) Casson
invariant might be related to such counting. For such an idea to work, it is
probably necessary to find some way of counting representations with signs, or
at least to enhance the counting in some way. Perhaps the kind of twisting used
in the Dijkgraaf-Witten theory [108] could be used.

Problem 1.7 (J. Roberts) Define the Jones polynomial intrinsically using
homology of local systems.

Remark (J. Roberts) The Alexander polynomial of a knot can be defined
using the twisted homology of the complement. In the case of the Jones poly-
nomial, no similar direct construction is known, but the approach of Bigelow
[55] is tantalising. He shows how to construct a representation of the braid
group B2n on the twisted homology of the configuration space of n points in
the 2n-punctured disc, and how to use a certain “matrix element” of this rep-
resentation to obtain the Jones polynomial of a knot presented as a plait. Is
there any way to write the same calculation directly in terms of configuration
spaces of n points in the knot complement, for example?

Problem 1.8 (J. Roberts) Study the relation between the Jones polynomial
and Gromov-Witten theory.

Remark (J. Roberts) The theory of pseudo-holomorphic curves or “Gromov-
Witten invariants” has been growing steadily since around 1985, in parallel
with the theory of quantum invariants in three dimensional topology. During
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that time it has come to absorb large parts of modern geometry and topol-
ogy, including symplectic topology, Donaldson/Seiberg-Witten theory, Floer
homology, enumerative algebraic geometry, etc. It is remarkable that three-
dimensional TQFT has remained isolated from it for so long, but finally there
is a connection, as explained in the paper by Vafa and Gopakumar [149] (though
prefigured by Witten [404]), and now under investigation by many geometers.
The basic idea is that the HOMFLY polynomial can be reformulated as a gen-
erating function counting pseudo-holomorphic curves in a certain Calabi-Yau
manifold, with boundary condition a Lagrangian submanifold associated to the
knot. (This is the one place where the HOMFLY and not the Jones polynomial
is essential!) The importance of this connection can hardly be overestimated, as
it should allow the exchange of powerful techniques between the two subjects.
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Figure 2: The upper pictures show the distribution of zeros of the Jones polynomial for
alternating knots of 11 and 12 crossings [262]. The lower picture shows the distribution
of zeros of the Jones polynomial for 12 crossing non-alternating knots [262]. See [262]
for further pictures for alternating knots with 10 and 13 crossings.

1.1.3 Numerical experiments

The following problem might characterize the form of the Jones polynomial of
knots in some sense.

Problem 1.9 (X.-S. Lin) Describe the set of zeros of the Jones polynomial
of all (alternating) knots.
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Figure 3: The upper pictures show the distribution of zeros of the Jones polynomial
for n-twist knots, with n from 1 to 50 and from 51 to 100, respectively [262]. The
lower pictures show the distribution of zeros of the Jones polynomial for (2, 2n − 1)
torus knots, with n from 1 to 50 and from 51 to 100, respectively [262]. See [262] for
further pictures for (3, 3n + 1) and (3, 3n + 2) torus knots.

Remark (X.-S. Lin) The plottings in Figure 2 numerically describe the set
of zeros of the Jones polynomial of many knots. Similar plottings are already
published in [405] for some other infinite families of knots for which the Jones
polynomial is known explicitly. See also [84] for some other plottings.

Remark (X.-S. Lin) It would be a basic problem to look into the zero distri-
bution of the family of polynomials with bounded degree such that coefficients
are all integers and coefficients sum up to 1, and compare it with the zero
distribution of the Jones polynomial on the collection of (alternating) knots
with bounded crossing number. The paper [317] discusses the zero distribution
of the family of polynomials with 0,1 coefficients and bounded degree. It is
particularly interesting to compare the plotting shown in this paper with the
plottings in Figures 2 and 3 for the zeros of the Jones polynomials.

Problem 1.10 (N. Dunfield) Find the relationship between the hyperbolic
volume of knot complements and log VK(−1) (resp. log VK(−1)/ log degVK(t)).
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Figure 4: The distribution of pairs of the hyperbolic volume of knot complements and
π log VK(−1) for alternating knots with 13 crossings [112].

Remark (N. Dunfield [112]) VK(−1) is just ∆K(−1), which is the order
of the torsion in the homology of the double cover of S3 branched over K .
log VK(−1) is one of the first terms of the volume conjecture (Conjecture 1.19).
Figure 4 suggests that for alternating knots with a fixed number of crossings,
log VK(−1) is almost a linear function of the volume.

Figure 5 suggests that there should be an inequality

log VK(−1)

log degVK(t)
< a · vol(S3 −K) + b

for some constants a and b. For 2-bridge knots, Agol’s work on the volumes of
2-bridge knots [1] can be used to prove such an inequality with a = b = 2/v3

(here, v3 is the volume of a regular ideal tetrahedron).

1.1.4 Categorification of the Jones polynomial

Khovanov [217, 218] defined certain homology groups of a knot whose Euler
characteristic is equal to the Jones polynomial, which is called the categorifica-
tion of the Jones polynomial. See also [32] for an exposition of it.
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Figure 5: The distributions of pairs of the hyperbolic volume of knot complements and
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13 crossings and samples of alternating knots with 14, 15, and 16 crossings, and the
lower picture is for all knots with 13 or fewer crossings [112].
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Problem 1.11 Understand Khovanov’s categorification of the Jones polyno-
mial.

Problem 1.12 Categorify other knot polynomials.

Remark (M. Hutchings) There does exist a categorification of the Alexander
polynomial, or more precisely of ∆K(t)/(1 − t)2 , where ∆K(t) denotes the
(symmetrized) Alexander polynomial of the knot K . It is a kind of Seiberg-
Witten Floer homology of the three-manifold obtained by zero surgery on K .
One can regard it as Z×Z/2Z graded, although in fact the column whose Euler
characteristic gives the coefficient of tk is relatively Z/2kZ graded.

1.2 The HOMFLY, Q, and Kauffman polynomials

The skein polynomial (or the HOMFLY polynomial) PL(l,m) ∈ Z[l±1,m±1] of
an oriented link L is uniquely characterized by

l−1PL+(l,m)− lPL−
(l,m) = mPL0(l,m),

PO(l,m) = 1,

where O denotes the trivial knot, and L+ , L− , and L0 are three oriented links,
which are identical except for a ball, where they differ as shown in Figure 1.
For a knot K , PK(l,m) ∈ Z[l±2,m]. The Kauffman polynomial FL(a, z) ∈
Z[a±1, z±1] of an oriented link L is defined by FL(a, z) = a−w(D)[D] for an
unoriented diagram D presenting L (forgetting its orientation), where [D] is
uniquely characterized by

[ ]
+

[ ]
= z

([ ]
+

[ ])

[ ]
= a

[ ]
,

[O] = 1.

For a knot K , FK(a, z) ∈ Z[a±1, z]. The Q polynomial QL(x) ∈ Z[x±1] of an
unoriented link L is uniquely characterized by

Q
( )

+ Q
( )

= x

(
Q
( )

+ Q
( ))

Q(O) = 1.
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It is known that

VL(t) = PL(t, t1/2 − t−1/2) = FL(−t−3/4, t1/4 + t−1/4),

∆L(t) = PL(1, t1/2 − t−1/2),

QL(z) = FL(1, z),

where ∆L(t) denotes the Alexander polynomial of L. The variable m of
PL(l,m) is called the Alexander variable. See, e.g. [206, 255], for details of
this paragraph.

Let the span of a polynomial denote the maximal degree minus the minimal
degree of the polynomial.

Problem 1.13 (A. Stoimenow) Does the Jones polynomial V admit only
finitely many values of given span? What about the Q polynomial or the skein,
Kauffman polynomials (when fixing the span in both variables)?

Remark (A. Stoimenow) It is true for the skein polynomial when bounding
the canonical genus (for which the Alexander degree of the skein polynomial is
a lower bound by Morton), in particular it is true for the skein polynomial of
homogeneous links [97]. It is true for the Jones, Q and Kauffman F polyno-
mial of alternating links (for F more generally for adequate links). One cannot
bound the number of different links, at least for the skein and Jones polyno-
mial, because Kanenobu [192] gave infinitely many knots with the same skein
polynomial.

Problem 1.14 (A. Stoimenow) Why are the unit norm complex numbers α
for which the value QK(α) has maximal norm statistically concentrated around

e11π
√
−1/25 ?

Remark (A. Stoimenow) The maximal point of |QK(e2π
√
−1t)| for t ∈ [0, 1)

is statistically concentrated around t = 11/50. This was revealed by an exper-
iment in an attempt to estimate the asymptotical growth of the coefficients of
the Q polynomial. There seems no difference in the behaviour of alternating
and non-alternating knots.

Problem 1.15 (M. Kidwell, A. Stoimenow) Let K be a non-trivial knot, and
let WK be a Whitehead double of K. Is then

degm PWK
(l,m) = 2degz FK(a, z) + 2 ?
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Remark (A. Stoimenow) It is true for K up to 11 crossings. degm PWK
(l,m)

is independent on the twist of WK if it is > 2 by a simple skein argument.

Update Gruber [157] showed that, if K is a prime alternating knot and WK

is its untwisted Whitehead double, then degm PWK
(l,m) ≤ 2 degz FK(a, z)+2.

Problem 1.16 (E. Ferrand, A. Stoimenow) Is for any alternating link L,

σ(L) ≥ min degl

(
PL(l,m)

)
≥ min dega

(
FL(a−1, z)

)
?

Remark (A. Stoimenow) The second inequality is conjectured by Ferrand
[125] (see also comment on Problem 1.18), and related to estimates of the Ben-
nequin numbers of Legendrian knots. As for the first inequality, by Cromwell
[97] we have mindegl

(
PL(l,m)

)
≤ 1− χ(L) and classically σ(L) ≤ 1− χ(L).

Problem 1.17 (A. Stoimenow) If ∇k is the coefficient of zk in the Conway
polynomial and c(L) is the crossing number of a link L, is then

∣∣∇k(L)
∣∣ ≤ c(L)k

2k k!
?

Remark (A. Stoimenow) The inequality is non-trivial only for L of k+1, k−
1, . . . components. It is also trivial for k = 0, easy for k = 1 (∇1 is just the
linking number of 2 component links) and proved by Polyak-Viro [331] for knots
and k = 2. There are constants Ck with

∣∣∇k(L)
∣∣ ≤ Ck c(L)k ,

following from the proof (due to [27, 370] for knots, due to [375] for links) of
the Lin-Wang conjecture [263] for links, but determining Ck from the proof is
difficult. Can the inequality be proved by Kontsevich-Drinfel’d, say at least
for knots, using the description of the weight systems of ∇ of Bar-Natan and
Garoufalidis [34]? More specifically, one can ask whether the (2, n)-torus links
(with parallel orientation) attain the maximal values of ∇k . One can also ask

about the shape of Ck for other families of Vassiliev invariants, like dk

dtk
VL(t)

∣∣
t=1

.

Problem 1.18 (A. Stoimenow) Does min dega

(
FL(a−1, z)

)
≤ 1− χ(L) hold

for any link L? If u(K) is the unknotting number of a knot K , does
min dega

(
FK(a−1, z)

)
≤ 2u(K) hold for any knot K?
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Remark (A. Stoimenow) For the common lower bound of 2u and 1− χ for
knots, 2gs , there is a 15 crossing knot K with 2gs(K) < min dega

(
FK(a−1, z)

)
.

Morton [285] conjectured long ago that 1− χ(L) ≥ mindegl

(
PL(l,m)

)
. There

are recent counterexamples, but only of 19 to 21 crossings. Ferrand [125] ob-
served that very often mindegl

(
PK(l,m)

)
≥ min dega

(
FK(a−1, z)

)
(he conjec-

tures it in particular always to hold for alternating K ), so replacing
‘min dega

(
F (a−1, z)

)
’ for ‘min degl

(
PK(l,m)

)
’ enhances the difficulty of Mor-

ton’s problem (the counterexamples are no longer such).

1.3 The volume conjecture

In [196] R. Kashaev defined a series of invariants 〈L〉N ∈ C of a link L for
N = 2, 3, · · · by using the quantum dilogarithm. In [198] he observed, by
formal calculations, that

2π · lim
N→∞

log〈L〉N
N

= vol(S3 − L)

for L = K41 ,K52 ,K61 , where vol(S3 − L) denotes the hyperbolic volume of
S3−L. Further, he conjectured that this formula holds for any hyperbolic link
L. In 1999, H. Murakami and J. Murakami [296] proved that 〈L〉N = JN (L)
for any link L, where JN (L) denotes the N -colored Jones polynomial5 of L

evaluated at e2π
√
−1/N .

Conjecture 1.19 (The volume conjecture, [198, 296]) For any knot K ,

2π · lim
N→∞

log |JN (K)|
N

= v3||S3 −K||, (2)

where || · || denotes the simplicial volume and v3 denotes the hyperbolic volume
of the regular ideal tetrahedron.

Remark For a hyperbolic knot K , (2) implies that

2π · lim
N→∞

log |JN (K)|
N

= vol(S3 −K).

Remark [296] Both sides of (2) behave well under the connected sum and
the mutation of knots. Namely,

||S3 − (K1#K2)|| = ||S3 −K1||+ ||S3 −K2||,
JN (K1#K2) = JN (K1)JN (K2),

5This is the invariant obtained as the quantum invariant of links associated with the N -
dimensional irreducible representation of the quantum group Uq(sl2).
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and JN (K) and ||S3 −K|| do not change under a mutation of K . For details
see [296] and references therein.

Remark The statement of the volume conjecture for a link L should probably
be the same statement as (2) replacing K with L. It is necessary to assume
that L is not a split link, since JN (L) = 0 for a split link L (then, the left
hand side of (2) does not make sense).

Example It is shown [200] that for a torus link L

lim
N→∞

log〈L〉N
N

= 0,

which implies that (2) is true for torus links.

Remark Conjecture 1.19 has been proved for the figure eight knot K41 (see
[295] for an exposition). However, we do not have a rigorous proof of this
conjecture for other hyperbolic knots so far. We explain its difficulty below,
after a review of a proof for K41 .

We sketch a proof of Conjecture 1.19 for the figure eight knot K41 ; for a detailed
proof see [295]. It is known that

JN (K41) =

N−1∑

n=0

(q)n(q−1)n, (3)

where we put q = e2π
√
−1/N and

(q)n = (1− q)(1− q2) · · · (1− qn), (q)0 = 1.

As N tends to infinity fixing n/N in finite, the asymptotic behaviour of the
absolute value of (q)n is described by

log |(q)n| =
n∑

k=1

log
(
2 sin

πk

N

)
=

N

π

∫ nπ/N

0
log(2 sin t)dt + O(log N)

= −N

2π
Im
(
Li2(e

2πn
√
−1/N )

)
+ O(log N),

where Li2 denotes the dilogarithm function defined on C− {x ∈ R | x > 1} by

Li2(z) =

∞∑

n=1

zn

n2
= −

∫ z

0

log(1− s)

s
ds.
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Noting that each summand of (3) is real-valued, we have that

JN (K41) =
∑

0≤n<N

exp
(N

2π
Im
(
Li2(e

−2πn
√
−1/N )−Li2(e

2πn
√
−1/N )

)
+O(log N)

)
.

The asymptotic behaviour of this sum can be described by the maximal point
z0 of Im

(
Li2(1/z)−Li2(z)

)
on the unit circle

{
z ∈ C

∣∣ |z| = 1
}
. In fact this z0

is a critical point of Li2(1/z)−Li2(z) in C, and hence Im
(
Li2(1/z0)−Li2(z0)

)

gives the hyperbolic volume of S3 − K41 . Therefore, the conjecture holds in
this case.

Next, we sketch a formal argument toward Conjecture 1.19 for the knot K52 .
Following [198], we have that

JN (K52) =
∑

0≤m≤n<N

(q)2n
(q)∗m

q−m(n+1),

where the asterisk implies the complex conjugate. By applying the formal
approximation6

(q)n ∼
?

exp
( N

2π
√
−1

(
Li2(1)− Li2(e

2πn
√
−1/N )

))
, (4)

(q)∗n ∼
?

exp
( N

2π
√
−1

(
Li2(e

−2πn
√
−1/N )− Li2(1)

))
,

we have that

JN (K52) ∼
?

∑

0≤m≤n<N

exp
( N

2π
√
−1

(π2

2
− 2Li2(e

2πn
√
−1/N )

− Li2(e
−2πm

√
−1/N ) +

2πn

N

2πm

N

))
.

Further, by formally replacing7 the sum with an integral putting t = n/N and
s = m/N , we have that

JN (K52) ∼
??

N2

∫

0≤s≤t≤1
exp

N

2π
√
−1

(π2

2
− 2Li2(e

2π
√
−1t)

− Li2(e
−2π

√
−1s) + 2πt · 2πs

)
dsdt (5)

= −N2

4π2

∫
exp

N

2π
√
−1

(π2

2
− 2Li2(z) − Li2(

1

w
)− log z log w

)dw

w

dz

z
,

6It might be difficult to justify this approximation in a usual sense, since the argument of
(q)n , given by (q)n = |(q)n| · q−n(n+1)/2(−

√
−1)n , changes discretely and quickly near the

limit.
7It might be seriously difficult to justify this replacement, since there is a large parameter

N in the power of the summand, which exponentially contributes the summand.
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where the second integral is over the domain
{
(z,w) ∈ C2

∣∣ |z| = |w| = 1, 0 ≤
arg(w) ≤ arg(z) ≤ 2π

}
, and the equality is obtained by putting z = e2π

√
−1t

and w = e2π
√
−1s . By applying the saddle point method8 the asymptotic be-

haviour might be described by a critical value of

π2

2
− 2Li2(z)− Li2(

1

w
)− log z log w. (6)

Since a critical value of this function gives a hyperbolic volume of S3 − K52 ,
this formal argument suggests Conjecture 1.19 for K52 .

It was shown by Yokota [409], following ideas due to Kashaev [196] and Thurston
[382], that the hyperbolic volume of the complement of any hyperbolic knot K
is given by a critical value of such a function as (6), which is obtained from a
similar computation of JN (K) as above.

Problem 1.20 Justify the above arguments rigorously.

Remark The asymptotic behaviour of JN (K) might be described by using
quantum invariants of S3−K . We have some ways to compute the asymptotic
behaviour of such a quantum invariant, say, when K is a fibered knot (in this
case, S3 −K is homeomorphic to a mapping torus of a homeomorphism of a
punctured surface), and when we choose a simplicial decomposition of (a closure
of) S3 −K . For details, see remarks of Conjecture 7.12.

The following conjecture is a complexification of the volume conjecture (Con-
jecture 1.19).

Conjecture 1.21 (H. Murakami, J. Murakami, M. Okamoto, T. Takata,
Y. Yokota [297]) For a hyperbolic link L,

2π
√
−1 · lim

N→∞
log JN (L)

N
= CS(S3 − L) +

√
−1vol(S3 − L)

for an appropriate choice of a branch of the logarithm, where CS and vol denote
the Chern-Simons invariant and the hyperbolic volume respectively. Moreover,

lim
N→∞

JN+1(L)

JN (L)
= exp

( 1

2π
√
−1

(
CS(S3 − L) +

√
−1vol(S3 − L)

))
. (7)

Remark It is shown [297], by formal calculations (such as (4) and (5)), that
Conjecture 1.21 is “true” for K52 ,K61 ,K63 ,K72 ,K89 and the Whitehead link.

8The saddle point method in multi-variables is not established yet. This might be a tech-
nical difficulty.
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Remark The statement for non-hyperbolic links should probably be the same
statement, replacing vol(S3 − L) with v3||S3 − L||. Note that, if L is not
hyperbolic, then it is also a problem (see Problem 7.16) to find an appropriate
definition of CS(S3−L), which might be given by (7). It is necessary to assume
that L is not a split link, since JN (L) = 0 for a split link L.

Remark (H. Murakami) Zagier [410] gave a conjectural presentation of the
asymptotic behaviour of the following sum,

JN (K31) =

N−1∑

k=0

(q)k ∼
N→∞

exp
(
−π
√
−1

12
(N−3+

1

N
)
)
N3/2+

∑

k≥0

bk

k!

(
−2π

√
−1

N

)k

for some series bk . This suggests that lim
log JN (K31 )

N should be −π
√
−1/12.

Problem 1.22 (H. Murakami) For a torus knot K , calculate CS(S3 − K)

(giving an appropriate definition of it) and calculate lim log JN (K)
N (fixing an

appropriate choice of a branch of the logarithm).

Geometry & Topology Monographs, Volume 4 (2002)



398 T. Ohtsuki (Editor)

2 Finite type invariants of knots

Let R be a commutative ring with 1 such as Z or Q. We denote by K the set
of isotopy classes of oriented knots. A singular knot is an immersion of S1 into
S3 whose singularities are transversal double points. We regard singular knots
as in RK by removing each singularity linearly by

= − .

Let Fd(RK) denote the submodule of RK spanned by singular knots with d
double points, regarding them as in RK. Then, we have a descending series of
submodules,

RK = F0(RK) ⊃ F1(RK) ⊃ F2(RK) ⊃ · · · .
An R-homomorphism v : RK → R (or, a homomorphism ZK → A for an
abelian group A) is called a Vassiliev invariant (or a finite type invariant) of
degree d if v|Fd+1(RK) = 0. See [33] for many references of Vassiliev invariants.

A trivalent vertex of a graph is called vertex-oriented if a cyclic order of the three
edges around the trivalent vertex is fixed. A Jacobi diagram9 on an oriented
1-manifold X is the manifold X together with a uni-trivalent graph such that
univalent vertices of the graph are distinct points on X and each trivalent
vertex is vertex-oriented. The degree of a Jacobi diagram is half the number of
univalent and trivalent vertices of the uni-trivalent graph of the Jacobi diagram.
We denote by A(X;R) the module over R spanned by Jacobi diagrams on X
subject to the AS, IHX, and STU relations shown in Figure 6, and denote by
A(X;R)(d) the submodule of A(X;R) spanned by Jacobi diagrams of degree
d. There is a canonical surjective homomorphism

A(S1;R)(d)/FI→ Fd(RK)/Fd+1(RK), (8)

where FI is the relation shown in Figure 6. This map is known to be an
isomorphism when R = Q (due to Kontsevich). For a Vassiliev invariant v :
RK→ R of degree d, its weight system A(S1;R)(d)/FI → R is defined by the
map (8).

9A Jacobi diagram is also called a web diagram or a trivalent diagram in some literatures.
In physics this is often called a Feynman diagram.
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The AS relation : = −

The IHX relation : = −

The STU relation : = −

The FI relation : = 0

Figure 6: The AS, IHX, STU, and FI relations

2.1 Torsion and Vassiliev invariants

Let R be a commutative ring with 1, say Z/nZ. Then, Q-, Z-, R-valued
Vassiliev invariants and their weight systems and the Kontsevich invariant form
the following commutative diagram.

� Kontsevich invariantA(S1; Q)/FI K
yproj

y

A(S1; Q)(d)/FI
isom−−−−→ Fd(QK)/Fd+1(QK)

⊂−−−−→ QK/Fd+1(QK) −−−−→ Q
x·⊗Q

x·⊗Q ·⊗Q
x ·⊗Q

x

A(S1; Z)(d)/FI
surj−−−−→ Fd(ZK)/Fd+1(ZK)

⊂−−−−→ ZK/Fd+1(ZK) −−−−→ Z
yproj

yproj proj

y proj

y

A(S1;R)(d)/FI
surj−−−−→ Fd(RK)/Fd+1(RK)

⊂−−−−→ RK/Fd+1(RK) −−−−→ R

Here, the right horizontal maps are derived from Vassiliev invariants, and the
compositions of horizontal maps are their weight systems.
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Conjecture 2.1 ([220, Problem 1.92 (N)]) Fd(ZK)/Fd+1(ZK) is torsion free
for each d.

Remark (see [220, Remark on Problem 1.92 (N)]) Goussarov has checked
the conjecture for d ≤ 6. It has been checked that Fd(ZK)/Fd+1(ZK) has no
2-torsion for d ≤ 9 by Bar-Natan, and for d ≤ 12 in [224].

Remark If this conjecture was true, then Z-valued and Q-valued Vassiliev
invariants carry exactly the same information about knots. Moreover, any
(Z/nZ)-valued Vassiliev invariants would be derived from Z-valued Vassiliev
invariants.

Conjecture 2.2 A(S1; Z) is torsion free.

Remark (T. Stanford) This conjecture would imply Conjecture 2.1 because
of the Kontsevich integral. However, it is possible that there is torsion in
A(S1, Z)(d) which is in the kernel of the map (8).

Conjecture 2.3 (X.-S. Lin [262]) Let R be a commutative ring with 1, say
Z/2Z. Every weight system A(S1;R)(d)/FI → R is induced by some Vassiliev
invariant RK→ R.

Remark If the map (8) is an isomorphism and Fd(RK)/Fd+1(RK) is a direct
summand of RK/Fd+1(RK), then this conjecture is true (see the diagram at
the beginning of this section).

Remark When R = Q, this conjecture is true, since the composition of the
Kontsevich invariant and a weight system gives a Vassiliev invariant, which
induces the weight system. If the Kontsevich invariant with coefficients in R
would be constructed (see Problem 3.7), this conjecture would be true.

Remark (T. Stanford) The chord diagram module A(↓↓, Z) corresponds to
finite-type invariants of two-strand string links. Jan Kneissler and Ilya Dogo-
lazky (see [109]) showed that there is a 2-torsion element in A(↓↓, Z)(5)/FI (see
Figure 7). I have done recent calculations (to be written up soon) which show
that there is no Z/2Z-valued invariant of string links corresponding to this tor-
sion element. Thus there is a Z/2Z weight system A(↓↓, Z/2Z)/FI → Z/2Z
which is not induced by a Z/2Z-valued finite-type invariant. So for string links,
Conjecture 2.1 is false.
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−

Figure 7: A 2-torsion element in A(↓↓; Z) due to Dogolazky–Kneissler

(T. Stanford) Note that the Kontsevich integral works (for rational invariants)
for string links just as well as for knots. Since this calculation shows that there
is no Z/2Z Kontsevich integral for string links, it suggests that there is no Z/2Z
Kontsevich integral for knots.

Question 2.4 (T. Stanford) The Dogolazky-Kneissler 2-torsion element in
A(↓↓, Z) (see Figure 7) can be embedded into a chord diagram in A(S1, Z) in
many ways. Such an embedding will always produce an element x ∈ A(S1, Z)
with 2x = 0. Is it possible to produce such an x which is nontrivial? If so, this
would give a counterexample to Conjecture 2.3.

2.2 Do Vassiliev invariants distinguish knots?

Conjecture 2.5 Vassiliev invariants distinguish oriented knots. (See Conjec-
ture 3.2 for an equivalent statement of this conjecture.)

Remark Two knots with the same Vassiliev invariant up to an arbitrarily
given degree can be obtained; see [324] and Goussarov-Habiro theory [152,
153, 165]. Hence, we need infinitely many Vassiliev invariants to show this
conjecture.

Problem 2.6 Does there exists a non-trivial oriented knot which can not be
distinguished from the trivial knot by Vassiliev invariants? (See Problem 3.3
for an equivalent problem.)

Remark The volume conjecture (Conjecture 1.19) suggests that the answer
is no; see [296].

Conjecture 2.7 (see [220, Problem 1.89 (B)]) For any oriented knot K ,
no Vassiliev invariants distinguish K from −K . (See Conjecture 3.4 for an
equivalent statement of this conjecture.)
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Remark ([220, Remark on Problem 1.89]) The first oriented knot which is
different from its reverse is 817 . It is known that no Vassiliev invariants of
degree ≤ 9 can distinguish a knot from its reverse.

Remark This conjecture is reduced to the problem to find D ∈ A(S1) with
D 6= −D , where −D is D with the opposite orientation of S1 . If such a D
existed, the conjecture would fail. Such a D has not been known so far.

Remark Kuperberg [235] showed that all Vassiliev invariants either distin-
guish all oriented knots, or there exist prime, unoriented knots which they do
not distinguish.

2.3 Can Vassiliev invariants detect other invariants?

(T. Stanford) Let hG(K) be the number of homomorphisms from the funda-
mental group of the complement of a knot K to a finite group G. This is not a
Vassiliev invariant [114]. hS3(K) of the 3rd symmetric group S3 is presented
by the number of 3-colorings of K , and hD5(K) of the dihedral group D5 of
order 10 is presented by the number of 5-colorings of K . These are determined
by the Jones and Kauffman polynomials, respectively (see the remark of Prob-
lem 4.16), and therefore are determined by invariants of finite type. In fact,
by the usual power-series expansions of the Jones and Kauffman polynomials,
we see that hS3 and hD5 are the (pointwise) limits of respective sequences of
finite-type invariants.

Question 2.8 (T. Stanford) Can we approximate hG by Vassiliev invariants
for other G than dihedral groups?

Remark (T. Stanford) It is known (due to W. Thurston) that knot groups
are residually finite. So if hG can be approximated by finite-type invariants for
all finite groups G, then Vassiliev invariants would distinguish the unknot.

Remark (T. Stanford) If p is a prime, then there exists a nontrivial p-
coloring of a knot K , and hence a nontrivial representation of the fundamental
group of K into the dihedral group Dp of order 2p, if and only if ∆K(−1)
is divisible by p. Thus the Alexander polynomial contains information about
hDp , though it may not determine hDp completely. Suppose that G is a fi-
nite, non-abelian group, not isomorphic to Dp . Even if we cannot approximate
hG by finite-type invariants, it would at least be interesting to know whether
finite-type invariants provide any information at all about hG .
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Remark Let hX(K) denote the number of homomorphisms from the knot
quandle of a knot K to a finite quandle X . The number hG(K) can be pre-
sented by the sum of hX(K) for subquandles X of the conjugation quandle of
G. In this sense, it is a refinement of Question 2.8 to approximate hX of finite
quandles X by Vassiliev invariants. It is known [181] that hX(K) for certain
Alexander quandles X can be presented by the ith Alexander polynomial of
K .

Problem 2.9 (X.-S. Lin [262]) Is the knot signature the limit of a sequence
of Vassiliev invariants?

Remark It is known [104] that the signature of knots is not a Vassiliev invari-
ant.

2.4 Vassiliev invariants and crossing numbers

Let v2 and v3 be R-valued Vassiliev invariants of degree 2 and 3 respectively
normalized by the conditions that v2(K) = v2(K) and v3(K) = −v3(K) for
any knot K and its mirror image K and that v2(K31

) = v3(K31
) = 1 for the

right trefoil knot K31
. They are primitive Vassiliev invariants, and the image

of v2 × v3 is equal to Z× Z ⊂ R×R.

Problem 2.10 (N. Okuda [325]) Describe the set

{(v2(K)

n2
,
v3(K)

n3

)
∈ R×R

∣∣∣ K has a knot diagram with n crossings
}

. (9)

Remark Willerton [401] observed that the set of (v2(K), v3(K)) for knots K
with a (certain) fixed crossing number gives a fish-like graph. This fish-like
graph is discussed in [103] from the point of view of the Jones polynomial.

Remark (N. Okuda) It is shown by Okuda [325] (the right inequality of (10)
is due to [331]) that, if a knot K has a diagram with n crossings, then

−
⌊n2

16

⌋
≤ v2(K) ≤

⌊n2

8

⌋
, (10)

|v3(K)| ≤
⌊n(n− 1)(n − 2)

15

⌋
, (11)

where ⌊x⌋ denotes the greatest integer less than or equal to x. It follows that
the set (9) is included in the rectangle [−1/16, 1/8] × [−1/15, 1/15]. It is a
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− 1
16

1
8

1
24

− 1
24

Figure 8: The plottings of the set (9) for some family of knots [325]

problem to describe the smallest domain including this set. The plottings in
Figure 8 numerically describe the set (9) for a large finite subset of a certain
infinite family of knots. Okuda [325] identified the boundary of the domain
including this set for this infinite family of knots. This boundary is given by
curves parameterized by some polynomials of degree 2 (for the v2 -coordinate)
and of degree 3 (for the v3 -coordinate). Further, the points (1/8,±1/24) are
the limits of the points given by the (2, n) torus knot and its mirror image.
The point (−1/16, 0) is the limit of the points given by the knots

n/2

n/2

for n divisible by 4, where each twisting part has n/2 crossings. These knots
gives the bounds of (10), while the inequality in (11) might not be best possible
(see Conjecture 2.11 below).

Remark (O. Viro) The experimental data (in Figure 8) suggest that there
might exists an additional invariant(s) which together with v2 , v3 , and n satisfy
an algebraic equation(s) such that the set (9) is the projection of the algebraic
set defined by the equation(s).
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Conjecture 2.11 (S. Willerton [401]) Let v3 be as above. If a knot K has
a diagram with n crossings, then

|v3(K)| ≤
⌊n(n2 − 1)

24

⌋
.

Remark It is shown in [401] that the (2, n) torus knot gives the equality of
this formula.

2.5 Dimensions of spaces of Vassiliev invariants

We denote by A(S1;R)conn the submodule of A(S1;R) spanned by Jacobi dia-
grams with connected uni-trivalent graphs. As a graded vector space A(S1; Q)
is isomorphic to the symmetric tensor algebra of A(S1; Q)conn . A Vassiliev in-
variant v is called primitive if v(K1#K2) = v(K1) + v(K2) for any oriented
knots K1 and K2 . The degree d subspace of A(S1; Q)conn is dual to the dth
graded vector space for Q-valued primitive Vassiliev invariants.

Problem 2.12 Determine the dimension of the space of primitive Vassiliev
invariants of each degree d. Equivalently, determine the dimension of the space
A(S1; Q)(d)

conn
for each d.

d 0 1 2 3 4 5 6 7 8 9 10

dim A(S1)(d)
conn 0 1 1 1 2 3 5 8 12 18 27

dim A(S1)(d) 1 1 2 3 6 10 19 33 60 104 184

dim A(S1)(d)/FI 1 0 1 1 3 4 9 14 27 44 80

d 11 12 13 14

dim A(S1)(d)
conn 39 55 ≥ 78 ≥ 108

dim A(S1)(d) 316 548 ≥ 932 ≥ 1591

dim A(S1)(d)/FI 132 232 ≥ 384 ≥ 659

Table 1: Some dimensions given in [67, 224]

Remark The dimension of A(S1; Q)(d)
conn can partially be computed as follows.

Let B denote the vector space over Q spanned by vertex-oriented uni-trivalent
graphs subject to the AS and IHX relations, and let B(d)

conn denote the subspace
of B spanned by connected uni-trivalent graphs with 2d vertices.
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It is known that A(S1; Q)(d)
conn is isomorphic to B(d)

conn by (21). Let B(d,u)
conn be

the subspace of B(d)
conn spanned by uni-trivalent graphs with u univalent vertices

(hence, with 2d − u trivalent vertices), and βd,u its dimension. Then, the
dimension of A(S1; Q)(d)

conn is presented by
∑

u≥2 βd,u .

Bar-Natan [28] gave a table of βd,u for d ≤ 9 and for some other (d, u) by
computer.

The series of βk,k is given as follows. The direct sum ⊕kB(k,k)
conn is isomorphic to

the polynomial ring Q[x2] as a graded vector space by (23); in other words, it
is spanned by “wheels”. Hence, the series of βk,k is presented by the following
generating function, ∑

k≥0

βk,kt
k =

1

1− t2
.

That is, βk,k = 1 if k is even, and 0 otherwise.

The series of βk+1,k is given as follows. The direct sum ⊕kB(k+1,k)
conn is isomor-

phic to Q[σ2, σ
2
3 ] as a graded vector space by (25), where σi denotes the i-th

elementary symmetric polynomial in some variables. Hence, the series of βk+1,k

is presented by the following generating function,

∑

k≥0

βk+1,kt
k =

1

(1− t2)(1− t6)
.

The series of βk+2,k is presented by

∑

k≥0

βk+2,kt
k =

1

(1− t2)(1− t4)(1 − t6)
,

since ⊕kB(k+2,k)
conn is isomorphic, as a graded vector space, to Q[σ2, σ

2
3 , σ4] with

elementary symmetric polynomials in some variables by (27).

It is conjectured [101] that the series of βk+3,k would be presented by

∑

k≥0

βk+3,kt
k ?

=
1 + t2 + t8 − t10

(1− t2)(1 − t4)(1− t6)(1− t10)
.

It has been shown that βd,u = 0 for d ≤ 9 and for d ≤ u + 2. However, it is
conjectured yet for other (d, u).

A conjecture of a two-variable generating function for the series of βd,u with
two parameters d and u is given in [67].
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βd,u u = 2 u = 4 u = 6 u = 8 u = 10 u = 12 u = 14 total

d = 1 1 1

d = 2 1 1

d = 3 1 1

d = 4 1 1 2

d = 5 2 1 3

d = 6 2 2 1 5

d = 7 3 3 2 8

d = 8 4 4 3 1 12

d = 9 5 6 5 2 18

d = 10 6 8 8 4 1 27

d = 11 8 10 11 8 2 39

d = 12 9 13 15 12 5 1 55

d = 13 ≥ 11 ≥ 16 ≥ 20 ≥ 18 ≥ 10 3 ≥ 78

d = 14 ≥ 13 ≥ 19 ≥ 25 ≥ 26 ≥ 17 7 1 ≥ 108

Table 2: A table of βd,u [67, 224]

Remark An asymptotic evaluation of a lower bound of dimA(S1)(d)
conn was

given in [87]; dimA(S1)(d)
conn grows at least as dlog d when d → ∞. Further, it

was improved in [101]; dimA(S1)(d)
conn grows at least as ec

√
d for any c < π

√
2/3

when d→∞.

Remark Upper bounds of dimA(S1)(d)
conn were given dimA(S1)(d)

conn ≤ (d − 1)!
in [86] and dimA(S1)(d)

conn ≤ (d − 2)!/2 (for d > 5) in [313]. Stoimenow [373]
introduced the number ξd of “regular linearized chord diagrams”, and showed
that dimA(S1)(d)/FI ≤ ξd . Further, he showed that ξd is asymptotically at
most d!/1.1d , which was improved by d!/(2 ln 2 + o(1)) in [63]. Furthermore,
Zagier [410] showed that

∞∑

n=0

(1− q)(1− q2) · · · (1− qn) =

∞∑

d=0

ξd(1− q)d ∈ Z[[1− q]], (12)

and that

ξd ∼
d!
√

d

(π2/6)d
(
C0 +

C1

d
+

C2

d2
+ · · ·

)

with C0 = 12
√

3π−5/2eπ2/12 ≈ 2.704, C1 ≈ −1.527, C2 ≈ −0.269. It follows
that the asymptotic growth of dimA(S1)(d)/FI is at most O(d!

√
d(π2/6)−d).
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d 0 1 2 3 4 5 6 7 8 9 10

dim A(S1)(d)/FI 1 0 1 1 3 4 9 14 27 44 80

ξd 1 1 2 5 15 53 217 1014 5335 31240 201608

Table 3: Upper bounds ξd of dimA(S1)(d)/FI (see [373])

2.6 Milnor invariants

(T. Stanford) Fix k , and consider k -strand string links. Let Vn be the sub-
space of rational-valued finite-type invariants of order ≤ n (of k -strand string
links). Let Mn ⊂ Vn be the subspace of Milnor invariants and products of
Milnor invariants. It is known that in general Mn is a proper subspace of Vn .

Question 2.13 (T. Stanford) Does Mn have an interesting complementary
space in Vn? Consider, for example, the space Nn ⊂ Vn of invariants v with
the property that v(L) = 0 for any string link L such that π1(B

3 − L) is free.
Is Nn nontrivial? Do Nn and Mn together span Vn?

Here is some background and motivation.

When considering finite-type invariants of string links, the first ones that come
to mind are the Milnor invariants. These were defined by Milnor [283] in 1954
as numbers associated to links. They are not quite invariants of links, in the
usual sense, because of some indeterminacy. They are, however, well-defined
as invariants of string links, and this point of view was taken by Habegger
and Lin [163]. After Vassiliev’s work appeared, Bar-Natan [26] and Lin [261]
showed (independently) that the Milnor invariants are finite-type invariants.
Habegger and Masbaum [164] showed that on the chord diagram level, the
Milnor invariants (including products of Milnor invariants) are exactly the ones
that vanish on Jacobi diagrams that contain internal loops, and also that the
Milnor invariants are the only rational-valued finite-type invariants of string
links which are also concordance invariants.

String links may have local knots in the strands, and such knots are not detected
by Milnor invariants. If a string link L has local knots, then π1(B

3−L) is not
free. Hence the question as to whether finite-type invariants can show that the
complement of a string link is not free.

(M. Polyak) Let us review the constructions of Milnor µ-invariant in [89]. For
a n-component link L = L1 ∪ · · · ∪ Ln , regard the homotopy class of Ln as in
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π1

(
S3 − (L1 ∪ · · · ∪ Ln−1)

)
, and write it in terms of meridians m1, · · · ,mn−1

of L1, · · · , Ln−1 . Consider its Magnus expansion putting mi = 1 + Xi for non-
commutative variables Xi . Then, Milnor’s µ-invariant µi1···ik,n(L) is defined to
be the coefficient of Xi1 · · ·Xik in the expansion, which is an invariant under
the assumption that the lower µ-invariants vanish. For example, µ1,2 is equal
to the linking number lk(L1, L2) of L1 and L2 . Further, if µi,j(L) = 0 for
any i, j , then µ12,3(L) = lk(L12, L3), where L12 denotes the link which is the
intersection of Seifert surfaces of L1 and L2 . In general, under the vanishing
assumption of the lower µ-invariants, µ12···n−1,n(L) = lk(L12···n−1, Ln) where
L12···k (for k = 2, 3, · · · , n − 1) denotes the link which is the intersection of
Seifert surfaces of L12···k−1 and Lk .

Problem 2.14 (M. Polyak) Milnor’s µ-invariants of string links can be de-
fined similarly as above (see [329]). Find a topological presentation of a µ-
invariant of string links (not assuming the vanishing of the lower µ-invariants).

(1) Show that lk(L12···n−1, Ln) is well-defined in an appropriate sense.

(2) Identify it with µ12···n−1,n(L).

2.7 Finite type invariants of virtual knots

A virtual knot [203] is defined by a knot diagram with virtual crossings modulo
Reidemeister moves. Finite type invariants of virtual knots were studied in

[154], where their weight systems are defined on the space
−→A(X;R)/

−→
FI of

arrow diagrams. Here an arrow diagram [330] is a chord diagram with oriented

chords, and
−→A(X;R) denotes the module over a commutative ring R spanned

by arrow diagrams on X subject to the 6T relation, and
−→
FI denotes the oriented

FI relation (see Figure 9 for these relations). It is known [330] that
−→A(X;R)

is isomorphic to the module spanned by acyclic oriented Jacobi diagrams on X
subject to the relations

= 0 =

and the
−→
AS,

−−→
IHX, and

−−→
STU relations (see Figure 9).

Problem 2.15 Let I denote an oriented interval.

(1) Determine the dimensions of
−→A(S1; Q)(d) and

−→A(I; Q)(d) for each d.
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The 6T relation : + +

= + +

The
−→
FI relation : = 0 =

The weak
−→
FI relation : = ,

=

The
−→
AS relation : = −

The
−−→
IHX relation : = −

The
−−→
STU relation : = −

Figure 9: The 6T and the oriented FI, AS, IHX, and STU relations. Here, a thick
dashed line implies the sum of the two orientations, and corresponding thin dashed
lines of pictures in the same formula have the same (arbitrarily given) orientation.
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(2) Determine the dimensions of
−→A(S1; Q)(d)/

−→
FI and

−→A(I; Q)(d)/
−→
FI for each

d.

(3) Determine the dimensions of
−→A(S1; Q)(d)/(weak

−→
FI) and−→A(I; Q)(d)/(weak

−→
FI) for each d.

Remark It is shown by elementary computation that
−→A(S1, Q)(2)/FI = 0 and

that
−→A(I, Q)(2)/FI is a 2-dimensional vector space spanned by

, .

Note that the dimensions of
−→A(S1; Q)(d) and

−→A(I; Q)(d) differ unlike the un-
oriented case.

Remark Constructive weight systems on
−→A(X;R) can be defined by using

Lie bialgebras (see, e.g. [111, 117], for Lie bialgebras), where the weight systems
of the following diagrams

g
x

g⊗ g

g⊗ g
x

g

are defined to be the bracket and the co-bracket of a Lie bialgebra g. Such
weight systems are helpful when we estimate lower bounds of the dimensions
of the spaces A(X;R).

Conjecture 2.16 (M. Polyak) The following two maps are injective,

A(I)(d) −→ −→A(I)(d)

A(I)(d)/FI −→ −→A(I)(d)/
−→
FI,

where they are defined by

7−→ + .

Remark If these maps are injective, then weight systems on A(I)(d) and

A(I)(d)/FI would be detected by weight systems on
−→A(I)(d) and

−→A(I)(d)/
−→
FI ;
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in other words, the upper rightward map in the following diagram would be
surjective.
{

degree d weight systems
for long virtual knots

}
−−−−→

{
degree d weight systems
for classical knots

}

x
x

{
degree d finite type invariants
for long virtual knots

}
−−−−→

{
degree d Vassiliev invariants
for classical knots

}

Hence, this conjecture follows from Conjecture 2.17 below, which implies that
the lower rightward map in the above diagram is surjective.

Conjecture 2.17 [154] Every Vassiliev invariant of classical knots can be
extended to a finite type invariant of long virtual knots. (See also Problem
3.9.)

2.8 Finite type invariants derived from local moves

One aspect of the study of knot invariants is the study of the set of knots. A
local move and finite type invariants derived from it might give an approach of
this study.

A local move is a move between two knots, which are identical except for a ball,
where they differ as shown in both sides of a move in Figure 10. Let R be a
commutative ring with 1, and K the set of isotopy classes of oriented knots,
as before. For a local move m, we define Fd(RK,m) as follows. Let K be an
oriented knot with d disjoint balls B1, B2, · · · , Bd such that K is as shown in
one side of m in each Bi . For any subset S ⊂ {1, 2, · · · , d}, we denote by KS

the knot obtained from K by applying m in each Bi for i ∈ S . We define
Fd(RK,m) to be the submodule of RK spanned by

∑

S

(−1)#SKS (13)

for any K with d balls, where #S denotes the number of elements of S , and
the sum runs over all subsets S of {1, 2, · · · , d}. Then, we have a descending
series of submodules,

RK = F0(RK,m) ⊃ F1(RK,m) ⊃ F2(RK,m) ⊃ · · · .
Note that Fd(RK) = Fd(RK,×) for a crossing change “×”. An R-homomor-
phism v : RK→ R is called a finite type invariant of m-degree d, or an m finite
type invariant of degree d, if v|Fd+1(RK,m) = 0.
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A crossing change “×” : ←→

A double crossing change “××” : ←→

A # move : ←→

A pass move : ←→

A ∆ move : ←→

A doubled delta move ∆∆ : ←→

An n-gon move : ←→

Figure 10: Some local moves among oriented knots. The strands of both sides of a ∆
move and an n-gon move have any orientations such that corresponding strands from
opposite sides of the moves are oriented in the same way. Each side of an n-gon move
has n strands.

It is a fundamental problem of finite type invariants to calculate the correspond-
ing graded spaces, which would enable us to identify finite type invariants in
some sense.

Problem 2.18 Calculate Fd(ZK,m)/Fd+1(ZK,m), letting m be a local move
such as

(1) a # move,

(2) a pass move,

(3) a ∆ move,

(4) an n-gon move.
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Remark It is known that crossing change, double crossing change, # move
(see [289]), ∆ move (see [298]), n-gon move (see [2]) are unknotting operations,
i.e. any oriented knot can be related to the trivial knot by a sequence of isotopies
and each of these moves. Hence, F0(ZK,m)/F1(ZK,m) ∼= Z for these moves
m.

It is known [202] that Arf invariant gives the bijection

{knots}/(pass move) −→ Z/2Z.

Hence, F0(ZK,pass move)/F1(ZK,pass move) ∼= Z⊕ Z.

Remark ∆ finite type invariants were introduced in [280]; see also [372].

Remark (K. Habiro) The following relations hold,

F2d(ZK,×) ⊃ Fd(ZK,∆) ⊃ F3d(ZK,×),

Fd(ZK,×) ⊃ Fd(ZK,#) ⊃ Fd(ZK,∆).

These relations imply that m finite type invariants are Vassiliev invariants, and
Vassiliev invariants are m finite type invariants, for m = #,∆. Further, the
rank of Fd(ZK,m)/Fd+1(ZK,m) is finite for these m.

Remark For the Kontsevich invariant Z (introduced in Chapter 3), we have
that

Z
( )

−Z
( )

= +

(
terms of

higher degrees

)
,

where two tangles in the left hand side are related by a ∆ move. Hence, the
image of

Fd(QK,∆) −→ F2d(QK) −→ F2d(QK)/F2d+1(QK) ∼= A(S1; Q)(2d)

is equal to the subspace of A(S1; Q)(2d) spanned by Jacobi diagrams on S1

whose uni-trivalent graphs are disjoint unions of d dashed Y graphs.

Remark Finite type invariants derived from a double crossing change were
introduced in [13], to study finite type invariants of links with a fixed linking
matrix. For knots, they are equal to Vassiliev invariants, that is, Fd(ZK;××) =
Fd(ZK,×).
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The surgery on is defined to be the surgery along .

Figure 11: Definition of the surgery on a Y graph. Dotted lines imply strands possibly
knotting and linking. Three circles (partially dotted) in the left picture are called
leaves.

(Y. Ohyama) In the case all arcs in a ∆ move are contained in the same
component, it is called a self ∆ move. If two links can be transformed into
each other by a finite sequence of self ∆ moves, they are said to be ∆ link
homotopic.

Problem 2.19 (Y. Ohyama) Find necessary and sufficient conditions for two
µ-component links (µ > 2) to be ∆ link homotopic.

Remark (Y. Ohyama) For a µ-component link K = K1 ∪K2 ∪ . . .∪Kµ , let
δ1 = aµ−1(K) and δ2 = aµ+1(K)− aµ−1(K)× (

∑µ
i=1 a2(Ki) for the coefficient

ai(K) of the term zi in the Conway polynomial of K .

It is known [278, 298] that two knots (or links) can be transformed into each
other by a finite sequence of ∆ moves if and only if they have the same number
of components, and, for properly chosen orders and orientations, they have the
same linking numbers between the corresponding components. In particular, if
two links are ∆ link homotopic, then their δ1 coincide. Further, it is known
[306] that if two µ component links are ∆ link homotopic, then their δ2 coincide.
These are necessary conditions of this problem.

Moreover, for 2-component links, a pair of δ1 and δ2 is a faithful invariant of ∆
link homotopy. Namely, for two 2-component links, they are ∆ link homotopic
if and only if their δ1 and δ2 coincide [307]. This gives a required condition of
this problem for 2-components links.

2.9 Loop finite type invariants

The loop-degree of a Jacobi diagram on S1 is defined to be half of the number
given by the number of trivalent vertices minus the number of univalent vertices
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of the uni-trivalent graph of the Jacobi diagram. The filtration of A(S1) given
by loop-degrees is related to a filtration of QK through the Kontsevich invariant.
The theory of the corresponding filtration in Z(MK) (given below) is developed
in [142] (noting that this definition also appears in the September 1999 version
of [232]).

We denote by MK the set of pairs (M,K) such that M is an integral homology
3-sphere and K is an oriented knot in M . Consider a move between two pairs
(M,K) and (M ′,K ′) in MK such that (M ′,K ′) is obtained from (M,K) by
surgery on a Y graph (see Figure 11) embedded in M −K whose leaves have
linking number zero with K . We call this move a loop move. Finite type
invariants of degree d derived from a loop move by (13) are called loop finite
type invariants of degree d, or finite type invariants of loop-degree d. We denote
the corresponding submodule of R(MK) by Fl(Z(MK); loop).

A doubled delta move ∆∆ (see Figure 10) was introduced by Naik-Stanford
[304] as a move characterizing S-equivalence classes; two knots are S-equivalent
if they are indistinguishable by Seifert matrices. A doubled delta move ∆∆ can
be presented by a surgery on such a Y graph as above. Thus, we have the map
Fl(RK;∆∆)→ Fl(R(MK); loop), taking a knot K to (S3,K) ∈ MK. Hence, a
loop finite type invariant gives a ∆∆ finite type invariant.

Problem 2.20 Let R be a commutative ring with 1, say, Z or Q.

(1) Describe the spaces Fl(R(MK); loop)/Fl+1(R(MK); loop).

(2) Describe the spaces Fl(RK;∆∆)/Fl+1(RK;∆∆).

(3) Describe the image of the above map Fl(RK;∆∆)→ Fl(R(MK); loop).

Remark (A. Kricker) It follows by a short argument from [304] and [278]
that the following map taking a pair (M,K) to a Seifert matrix of K in M is
bijective,

MK/(loop move)
=−→ {S-equivalence classes of Seifert matrices}. (14)

(This implies that K and K ′ are related by a sequence of doubled delta moves
if and only if (S3,K) and (S3,K ′) are related by a sequence of loop moves.)
Hence, F0(Z(MK); loop)/F1(Z(MK); loop) is isomorphic to the module over
Z freely spanned by S-equivalence classes. Moreover, by (14), we have that
Z(MK) = ⊕sZ(MKs), where the sum runs over all S-equivalence classes s. Fur-
ther,

Fl(Z(MK); loop)/Fl+1(Z(MK); loop) =
⊕

s

Fl(Z(MKs); loop)/Fl+1(Z(MKs); loop).
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Hence, the problem (1) splits into problems of describing the direct summands
on the right hand sides: describe the spaces

Fl(Z(MKs); loop)/Fl+1(Z(MKs); loop)

for each S-equivalence class s. For the S-equivalence class u including the un-
knot, Fl(Q(MKu); loop)/Fl+1(Q(MKu); loop) is isomorphic to AZ[t±1](∅;Q)(loop l)

by the map (30) of the loop expansion of the Kontsevich invariant (see also
[142]); for the definition of the space AZ[t±1](∅; Q)(loop l) see Section 3.9.

Remark A surgery on a Y graph in the definition of loop finite type invariants
lifts to a surgery of the infinite cyclic cover of the knot complement, which does
not change its homology. Hence, it is shown, topologically, that all coefficients
of the Alexander polynomial are finite type invariants of loop-degree 0.

It follows that all coefficients of the Alexander polynomial are finite type invari-
ants of ∆∆-degree 0. It can also be shown from the fact that the Alexander
polynomial can be defined by the Seifert matrix of a knot, which is unchanged
by finite type invariants of ∆∆-degree 0 as shown in [304].

The Alexander polynomial is universal among Vassiliev invariants which are of
finite type of ∆∆-degree 0; more precisely, log ∆K(e~) as a power series of ~
is universal among Q-valued primitive Vassiliev invariants which are of finite
type of ∆∆-degree 0. An equivalent statement has been shown in [299], using
Vassiliev invariants of S-equivalence classes of Seifert matrices.

Remark As shown in [304] we have a bijection,

{knots}/∆∆
=−→ {S-equivalence classes},

by taking a knot to its S-equivalence class. Hence, F0(ZK;∆∆)/F1(ZK;∆∆) is
isomorphic to the module over Z freely spanned by S-equivalence classes.

Remark (A. Kricker) The dual space of

Fl(K⊗Q;∆∆) ∩ Fd(K⊗Q;×)(
(Fl+1(K⊗Q;∆∆) ∩ Fd(K⊗Q;×)

)
+
(
Fl(K⊗Q;∆∆) ∩ Fd+1(K⊗Q;×)

)

is isomorphic to the subspace of B spanned by connected uni-trivalent graphs
of degree d and of loop-degree l , i.e. the space B(d,d−l)

conn in the notation given in
a remark in Problem 2.12.

(A. Kricker) Let MK denote the set of pairs (M,K) such that M is an integral
homology 3-sphere and K is an oriented knot in M , as before. A mod p loop

Geometry & Topology Monographs, Volume 4 (2002)



418 T. Ohtsuki (Editor)

move in MK is defined to be a surgery on a Y graph (see Figure 11) such
that each leaf has linking number 0 modulo p with the knot. We consider the
question: what are the mod p loop move equivalence classes of knots?

To state the conjecture below, we give some notation. Consider a pair (M,K) of
an integral homology 3-sphere M and a knot K in M . Let Σp

(M,K) be the p-fold

branched cyclic cover of (M,K), and assume that Σp
(M,K) is a rational homology

3-sphere. Observe that there is an action of Z/pZ on the homology group
H1(Σ

p
(M,K); Z) (induced from the covering transformations). Observe also that

the linking pairing on the torsion of H1(Σ
p
(M,K); Z) (which is the whole group)

is invariant under the action of Z/pZ. Here, the linking pairing on the torsion of
H1(N ; Z) of a 3-manifold N is the map Tor

(
H1(N ; Z)

)
⊗Tor

(
H1(N ; Z)

)
→ Q/Z

taking α ⊗ β to 1/n times the algebraic intersection of F and β , where F is
a compact surface bounding nα for some non-zero integer n.

Conjecture 2.21 (A. Kricker) Take (M1,K1) and (M2,K2) of the above
sort. Then, there exists a (Z/pZ)-equivariant isomorphism φ : H1(Σ

p
(M1,K1)

; Z)

→ H1(Σ
p
(M2,K2)

; Z) preserving the linking pairing if and only if (M1,K1) is

equivalent to (M2,K2) by a finite sequence of mod p loop moves.

Remark (A. Kricker) The case of p = 1 would recover Matveev’s theorem
[278]: two closed 3-manifolds M and N are equivalent by a finite sequence
of surgeries on Y graphs if and only if there is an isomorphism H1(M ; Z) →
H1(N ; Z) preserving the linking pairing on the torsion.

Also, the limit as p→∞ should recover a theorem due to Naik-Stanford [304]:
two knots are equivalent by a finite sequence of loop moves if and only if they
have isometric Blanchfield pairings. (Recall that the Blanchfield pairing is the
equivariant linking pairing on the universal cyclic cover.)

2.10 Goussarov-Habiro theory for knots

Related to Vassiliev invariants of knots, equivalence relations among knots have
been studied by Goussarov [152, 153] and Habiro [165], which is called the
Goussarov-Habiro theory for knots. These equivalence relations are helpful for
us to study structures of the set of knots.

The Cd -equivalence10 (d = 1, 2, 3, · · · ) among oriented knots is the equivalence
relation generated by either of the following relations,

10The Cd -equivalence is also called the (d − 1)-equivalence (due to Goussarov) in some
literatures.

Geometry & Topology Monographs, Volume 4 (2002)



Problems on invariants of knots and 3-manifolds 419

(1) Cd -move, i.e. surgery along a tree clasper with d trivalent vertices whose
leaves are disc-leaves [165],

(2) relation on a certain collection of d crossing changes (Goussarov’s (d−1)-
equivalence) [150, 151, 153],

(3) surgery by an element in the dth group in the lower central series of pure
braid group [371],

(4) capped grope cobordism of class d [94].

It is known that these relations generate the same equivalence relation among
knots. The Cd -equivalence is defined among links, string links, · · · , in the same
way.

It is known [165] that there exists a natural surjective homomorphism

A(S1; Z)(d)
conn −→ {K ∼

Cd

O}/ ∼
Cd+1

(15)

such that the tensor product of this map and Q is an isomorphism, where O
denotes the trivial knot. In particular, {K ∼

Cd

O}/ ∼
Cd+1

forms an abelian group

with respect to the connected sum of knots, and hence, so does {knots}/ ∼
Cd+1

.

Conjecture 2.22 The map (15) is an isomorphism.

This conjecture might be reduced to Conjecture 2.2 and the following conjec-
ture.

Conjecture 2.23 {K ∼
Cd

O}/ ∼
Cd+1

is torsion free for each d.

Remark Conjecture 2.2 implies this conjecture, since the surjective homomor-
phism (15) gives a Q-isomorphism.

It is known [152, 371, 165] that two knots K and K ′ are Cd -equivalent if and
only if v(K) = v(K ′) for any A-valued Vassiliev invariant v of degree < d for
any abelian group A. In fact, a natural quotient map {knots} → {knots}/∼

Cd

is a Vassiliev invariant of degree < d, which classifies Cd -equivalence classes of
knots.

Conjecture 2.24 (K. Habiro [165], see also [153, “Theorem 5”]) Two m-
strand string links L and L′ are Cd -equivalent if and only if v(L) = v(L′) for
any A-valued finite type invariant v of degree < d for any abelian group A.
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Remark (M. Polyak) The corresponding assertion for links does not hold;
note that {links}/∼

Cd

does not (naturally) form a group. Recall that {knots}/∼
Cd

forms an abelian group, which guarantees the corresponding assertion for knots,
as mentioned above. The set {m-strand string links}/∼

Cd

forms a group with

respect to the composition of string links, though it is not abelian.

Problem 2.25 (M. Polyak) Establish the Goussarov-Habiro theory for vir-
tual knots.

Remark Polyak suggested that the following moves,

←→ ←→ ,

(which appear in [154]) might play a similar role as the C2 -move plays among
knots. They are related to the following diagrams respectively,

, .

Further, Habiro suggested that the move,

←→ ,

should be added to the above moves. It is a problem to define a sequence of
equivalence relations among virtual knots (an extension of the Cd -move) which
induces finite type invariants of virtual knots. Are there surjective homomor-
phisms from certain modules of arrow graphs (oriented Jacobi diagrams) to the
graded sets derived from such equivalence relations?

(K. Habiro) We denote by MK the set of pairs (M,K) such that M is an inte-
gral homology 3-sphere and K is an oriented knot in M . The HLd -equivalence
(homology d-loop equivalence) in MK is the equivalence relation generated by
either of the following relations,

(1) surgery on a tree clasper with d trivalent vertices with null-homologous
leaves,
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(2) surgery on a graph clasper with d trivalent vertices with null-homologous
leaves,

(3) surgery by an element of the dth lower central series subgroup of the
Torelli group of compact connected surfaces embedded in a null-homologous
way.

Here, “null-homologous” means null-homologous in knots complements. These
relations generate the same equivalence relation in MK.

Problem 2.26 (K. Habiro) Describe the abelian group
{(M,K) ∼

HLd

(S3,unknot)}/ ∼
HLd+1

for each d.

Remark (K. Habiro) Two pairs (M,K) and (M ′,K ′) in MK are HLd -
equivalent if and only if v(M,K) = v(M ′,K ′) for any A-valued loop finite
type invariant v of loop degree < d for any abelian group A. Thus, the HL-
equivalence gives the Goussarov-Habiro theory for loop finite type invariants.

The homotopy d-loop equivalence is defined by using “null-homotopic leaves”
instead of “null-homologous leaves” in the definition of the HLd -equivalence.
These equivalences might be related to the rational Z invariant Zrat . The
homotopy loop equivalence relates (ZHS , boundary link) to (ZHS , boundary
link). A high loop-degree part of Zrat might be invariant under the homotopy
loop equivalence.

The quotient set MK/ ∼
HL1

can be identified with the commutative monoid of

S-equivalence classes of Seifert matrices. (See a remark of Problem 2.20.)

Define the equivalence relation HL′
d among knots in S3 to be the equivalence

relation generated by surgery on a tree clasper with d trivalent vertices with
null-homologous leaves in the complement of a knot such that at least one leaf
bounds a disc with zero intersection number with the knot. Then, there exists
a split exact sequence,

{knots in S3}/ ∼
HL′

d

−→MK/ ∼
HLd

−→ {ZHS ’s}/∼
Yd

,

where the first map takes a knot K to (S3,K) and the second map is the map
forgetting knots.

A refinement of Problem 2.26 is to consider the graded sets of the double se-
quence given by the Cd -equivalence and the HLn -equivalence.
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2.11 Other problems

(D. Bar-Natan)11 Is there a Hilbert’s Nullstellensatz for finite type invariants
of links?

Let k be an algebraically closed field and let I be an ideal in the polynomial
ring k[x1, · · · , xn]. The Hilbert Nullstellensatz (see e.g. [113]) says that the
ideal of polynomials in k[x1, · · · , xn] that vanish on the variety defined by the
common zeros of all polynomials in I is the radical of I .

Problem 2.27 (D. Bar-Natan) Is there a similar statement for finite type
invariants of links? Let I be an ideal in the algebra V of finite type invariants
of links. Let Z be the set of links that are annihilated by all members of I , and
let J be the ideal in V of all invariants that vanish on Z . Clearly, J always
contains the radical of I . Are they always equal?

Example (D. Bar-Natan) Let I be the ideal generated by linking numbers.
In this case, Z is the set of algebraically split links. Is it true that every finite
type invariant that vanishes on algebraically split links is a sum of multiples of
linking numbers? I believe it is true, and I believe it follows from the results
of Appleboim [13], but I’m afraid Appleboim’s paper is incomplete and while I
believe it I cannot vouch for its validity.

Remark (D. Bar-Natan) One may also ask, “what is the Zariski closure of
a given set of links?”. I believe that in the light of the paragraphs above the
meaning of this question should be clear. I know of at least one interesting
example: In [312] Ng shows that the Zariski closure of the set of ribbon knots
is the set of knots whose Arf invariant vanishes.

Is the similarity index of two different knots finite?

(M.-J. Jeong, C.-Y. Park)

K. Habiro and T. Stanford independently showed that for each positive integer
n, two knots K and L have the same values for any Vassiliev invariants of
type < n if and only if they are LCSn -equivalent. Y. Ohyama introduced
triviality index of knots and K. Taniyama extended this to the similarity index
of links; see [324]. Ohyama showed that if two knots are n-similar then they
have the same value for any Vassiliev invariants of type < n. It is not difficult
to see that two knots are n-similar if they are LCSn -equivalent. D. Bar-Natan

11This part is a quotation from
http://www.math.toronto.edu/~drorbn/Misc/Nullstellensatz/
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gave a problem whether Vassiliev invariants can distinguish all of knots or not.
This problem is equivalent to the problem, whether the similarity index of any
two different knots have finite similarity index. We will give a new criterion
to calculate the similarity index of knots and, based on this, raise problems
to calculate similarity index. For example, for two given knots, which knot
invariants will give the best upper bound to calculate the similarity index of
knots, along our above new result? As a partial problem, can we show that the
triviality index of a non-trivial knot is finite by using our results?

Polynomial invariants and Vassiliev invariants

(M.-J. Jeong, C.-Y. Park)

In 1993, J.S. Birman and X.-S. Lin [57] showed that, after a suitable change
of variables, each coefficient of the Jones, HOMFLY and Kauffman polynomial
is a Vassiliev invariant. So we can obtain various Vassiliev invariants from the
derivatives of knot polynomials.

In 2001, by using some specific kinds of tangles, we gave two operations ¯ and
∗ operations to get new polynomial invariants from a given Vassiliev invariant.
These new polynomial invariants are also Vassiliev invariants. So we can obtain
various Vassiliev invariants from the coefficients of these polynomial invariants.

Let Vn be the space of Vassiliev invariants of degrees ≤ n. For An ⊂ Vn , let
(An) be the set of Vassiliev invariants obtained from An by using finite numbers
of ¯ and ∗ operations repeatedly.

Problem 2.28 (M.-J. Jeong, C.-Y. Park) Find a minimal finite subset An of
Vn such that span(An) = Vn .
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3 The Kontsevich invariant

The framed Kontsevich invariant Z(L) ∈ A(⊔lS1; Q) of an oriented framed
link L with l components is defined by using monodromy along solutions of
the formal version of the KZ equation. Forgetting its framing, the Kontsevich
invariant Z(L) of an oriented link L is defined in A(⊔lS1; Q)/FI. The Kont-
sevich invariant is universal among quantum invariants in the sense that the
quantum (g, R) invariant recovers from the Kontsevich invariant through the
weight system substituting a Lie algebra g and its representation R into Ja-
cobi diagrams. Moreover, the Kontsevich invariant is universal among Vassiliev
invariants in the sense that each coefficient of the Kontsevich invariant is a
Vassiliev invariant and any Vassiliev invariant can be presented by a linear sum
of coefficients of the Kontsevich invariant.

3.1 Calculation of the Kontsevich invariant

Problem 3.1 For each oriented knot K , calculate the Kontsevich invariant
Z(K) for all degrees.

Remark For each d the degree d part of Z(K) is a Vassiliev invariant. Hence,
it is algorithmically possible to calculate it in a finite procedure. It is a problem
to calculate Z(K) for all degrees.

Remark D. Bar-Natan, T. Le, and D. Thurston [38] gave the following pre-
sentation of the Kontsevich invariant of the trivial knot O ,

log⊔ Z(O) =
1

2
log

sinh(x/2)

x/2
, (16)

where x is an element in B (see (22)), and B is a space isomorphic to A(S1) (see
(21)). The Kontsevich invariant of a cable knot of a knot K can be calculated
by applying a cabling formula [38] to the Kontsevich invariant of K . The Kont-
sevich invariant of the connected sum of knots is given by the connected sum of
the Kontsevich invariant of the knots. Hence, we can calculate the Kontsevich
invariant of knots obtained from the trivial knot by finite sequences of cabling
and connected sum. To calculate the Kontsevich invariant of other knots in a
combinatorial way, we probably need an associator, whose combinatorial direct
presentation for all degrees is not known yet (see Problem 3.13).
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3.2 Does the Kontsevich invariant distinguish knots?

Conjecture 3.2 The Kontsevich invariant distinguishes oriented knots. (See
Conjecture 2.5 for an equivalent statement of this conjecture.)

Remark Kuperberg [235] showed that all finite type invariants either distin-
guish all oriented knots, or there exist prime, unoriented knots which they do
not distinguish.

Problem 3.3 Does there exists a non-trivial oriented knot K such that Z(K)
= Z(O) for the trivial knot O? (See Problem 2.6 for an equivalent problem.)

Conjecture 3.4 Z(K) = Z(−K) for any oriented knot K , where −K de-
notes K with the opposite orientation. (See Conjecture 2.7 for an equivalent
statement of this conjecture.)

3.3 Characterization and interpretation of the Kontsevich in-
variant

The space A(S1) is an algebra with the product given by connected sum of
Jacobi diagrams on S1 . Since the Kontsevich invariant Z(K) of a knot K
is group-like in A(S1), its logarithm log Z(K) belongs to A(S1)conn , where
A(S1)conn denotes the vector subspace of A(S1) spanned by Jacobi diagrams
on S1 with connected uni-trivalent graphs.

Problem 3.5 Characterize those elements of Â(S1)conn of the form log Z(K),
or those elements of Bconn of the form log⊔ Z(K).

Remark If the Kontsevich invariant was injective, this problem would be a
step of the classification problem of knots. It is known (see, for example, [321])
that those elements of A(S1)(≤d)

conn of the form of the degree ≤ d part of log Z(K)
forms a lattice, which is isomorphic to the lattice in A(S1)conn spanned by Jacobi
diagrams over Z, and that the coefficients of log Z(K) are invariants which are
independent to each other. Hence, it would be meaningful to characterize the
form of infinite sums of coefficients of log Z(K), resp. log⊔ Z(K).

Wg,R
(
Z(K)

)
is a polynomial in q±1/2N for any simple Lie algebra g and its

representation R, where N is the determinant of the Cartan matrix of g (see
[246]), since it is equal to the quantum (g, R) invariant of K . This somehow
characterizes the form of Z(K).
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The loop expansion characterizes the infinite sum of subsequences of log⊔ Z(K)
in each loop-degrees; see (24), (26), and (28) in the cases of low loop-degrees.
Since the image of the Kontsevich invariant is a countable set, there should be
more restrictive properties.

Problem 3.6 (J. Roberts) Give a good topological construction of the Kont-
sevich integral.

Remark (J. Roberts) The Kontsevich integral is, in my opinion, the deepest
part of the existing theory of quantum invariants, and it has two (conjecturally)
equivalent formulations, each with its mysteries.

(a). In Kontsevich’s original formulation of his integral, the part relating to
braids is reasonably well-understood: it can be described using configuration
spaces of points in the plane, the Knizhnik-Zamolodchikov equation, 1-minimal
models in rational homotopy theory, Chen’s iterated integrals and Magnus ex-
pansions. The fact that this actually extends to a knot invariant does not seem
to appear naturally in these pictures, however. Passing from braids to (Mor-
sified) knots suggests thinking about configuration spaces of varying numbers
of points in the plane, and allowing some kind of annihilation and creation of
pairs. Is there some way to utilise such spaces? (A related question is Problem
3.14.)

(b). In the perturbative integral formulation, the diagrammatic power series is
introduced as a formal device for keeping track of which linear combinations of
the individual (non-invariant) coefficient integrals give give knot invariants. It
isn’t really clear from this point of view why this series should turn out to have
good properties such as multiplicativity, Kricker/Rozansky rationality, etc. Is
there an “all-in-one” definition?

3.4 The Kontsevich invariant in a finite field

Problem 3.7 Construct the Kontsevich invariant (i.e. a universal Vassiliev
invariant) with coefficients in a finite field.

Remark If we could find a solution (R,Φ) of the pentagon and hexagon rela-
tions with coefficients in a finite field, such a solution would give a combinatorial
construction of the Kontsevich invariant with coefficients in that field. In this
case we can not put R = exp

(
/2
)

unlike the case of Q coefficients, be-

cause p−1 of the order p of the field appears in the expansion of the exponential.
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3.5 The Kontsevich invariant in arrow diagrams

Conjecture 3.8 (D. Bar-Natan, A. Haviv)

ι
(
Z(O)

)
= closure

(
exp

(1

2

(
−

))
)

,

where Z(O) denotes the Kontsevich invariant of the trivial knot (see [35]) and
ι is the map of Conjecture 2.16.

Remark (D. Bar-Natan, A. Haviv) This conjecture is true in any semi-simple
Lie algebra.

Problem 3.9 (M. Polyak) Construct the “Kontsevich invariant” (i.e. a uni-

versal finite type invariant) of virtual knots in
−→A(I). (See also Conjecture

2.17.)

Remark (M. Polyak) It is shown by Goussarov (see [154]) that there exists a
Gauss diagram formula for any Vassiliev invariant of classical knots. His proof
is an algorithmical proof, assuming the existence of such a Vassiliev invariant,
and does not give a new proof of Kontsevich theorem “any weight system can
be integrated to an invariant of knots”. It would be nice to have a new direct
combinatorial proof, which would imply Kontsevich theorem. Then, it would
work for virtual knots.

Remark (M. Polyak) It is known (see, for example, [321]) that quantum
invariants of knots can be defined by using quasi-triangular quasi-Hopf algebras
with associators Φ. When Φ = 1, such definition can naturally extend for
virtual knots. However, when Φ 6= 1 (as in the combinatorial definition of the
Kontsevich invariant of classical knots), this extension does not work.

Problem 3.10 (D. Thurston) Construct a series of configuration space inte-

grals whose value is in
−→A(I) so that it gives all finite type invariants of virtual

knots.

Remark (D. Thurston) A technical difficulty is to kill the hidden strata of
the configuration spaces (see also Problem 3.11). A way to kill a hidden strata

Geometry & Topology Monographs, Volume 4 (2002)



428 T. Ohtsuki (Editor)

is to use an involution on the strata, but, in this case, such an involution takes
the following left diagram to the right diagram,

, ,

where the right diagram is equal to 0 by definition, while the left one is not
necessarily equal to 0.

(M. Polyak) Each of the following three approaches gives all Vassiliev invari-
ants.

• Construction of the Kontsevich invariant using monodromy along solu-
tions of the KZ equation.

• Configuration space integrals motivated by perturbative Chern-Simons
theory.

• Gauss diagram formulas, which count configurations of crossings of knot
diagrams.

The invariants derived from these three approaches are expected to be naturally
equivalent in the following sense.12 13 The integral of the second approach
gives an integral presentation of the mapping degree of a certain map on a
configuration space, and it is shown in the degree 2 case [331] that the invariants
of the first and third approaches can be obtained by localizing the integral
presentation with respect to appropriate volume forms on the target space. A
technical difficulty to show this in a general degree is to compute the localization
on the “hidden strata”; it is a part of the boundary of a configuration space,
whose contribution to the derivative of the integral is killed by an involution
on the strata.

Problem 3.11 (M. Polyak) Find another way to kill the hidden strata, so
that the above three approaches can naturally present the mapping degree of
the same map.

12S. Poirier [328] showed the equivalence between the invariants derived from the first and
second approaches, under the assumption of the vanishing of anomaly, by comparing these
invariants for quasi-tangles (see Question 3.12).

13D. Thurston suggests that Etingof–Kazhdan R matrices [117] might be helpful to relate
the invariants derived from the first and third approaches.
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3.6 The Chern-Simons series of configuration space integrals

Question 3.12 (C. Lescop) Is the Kontsevich integral of a (zero-framed)
knot equal to the Chern-Simons series of configuration space integrals of the
same knot (with Gauss integral 0)?

The (normalized) Chern-Simons series of configuration space integrals is a uni-
versal Vassiliev knot invariant that admits a natural and beautiful symmetric
definition that will be given below before describing the present situation of
this question that was first raised by Kontsevich in [225].

In 1833, Carl Friedrich Gauss defined the first example of a configuration space
integral for an oriented two-component link. Let us formulate his definition in
a modern language. Consider an embedding

L : S1
1 ⊔ S1

2 →֒ R3

of the disjoint union of two circles S1 = {z ∈ C s.t. |z| = 1} into R3 . With an
element (z1, z2) of S1

1×S1
2 that will be called a configuration, we may associate

the oriented direction Ψ((z1, z2)) of the vector
−−−−−−−→
L(z1)L(z2). Ψ((z1, z2)) ∈ S2 .

Thus, we have associated a map

Ψ : S1
1 × S1

2 −→ S2

from a compact oriented 2-manifold to another one with our embedding. This
map has an integral degree deg(Ψ) that can be defined in several equivalent
ways. For example, it is the number of preimages of a regular value of Ψ
counted with signs that can easily be computed from a regular diagram of our
two-component link as

deg(Ψ) = ♯
1 2
− ♯

2 1
= ♯

2 1
− ♯

1 2
.

It can also be defined as the following configuration space integral

deg(Ψ) =

∫

S1×S1

Ψ∗(ω)

where ω is the homogeneous volume form on S2 such that
∫
S2 ω = 1. It is

obvious that this integral degree, that depends continuously on our embedding,
is an isotopy invariant; and the reader has recognized that deg(Ψ) is nothing
but the linking number of the two components of L.

Section 3.6 was written by C. Lescop.
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We can again follow Gauss and associate the following similar Gauss integral
I(K) to a C∞ embedding K : S1 →֒ R3 . Here, we consider the configuration
space C = S1×]0, 2π[, and the map

Ψ : C −→ S2

that maps (z1, η) to the oriented direction of
−−−−−−−−−−→
K(z1)K(z1e

iη), and we set

I(K) =

∫

C
Ψ∗(ω).

This Gauss integral is NOT an isotopy invariant, and it can be seen as an
exercise that it takes any real value on any given isotopy class of knots.

However, we can follow Guadagnini, Martellini and Mintchev and associate
configuration space integrals to our embedding K and to any Jacobi diagram
on the circle Γ without small loop like . A configuration of such a diagram
is an embedding c of the set U ∪ T of its vertices into R3 whose restriction
to the set U of univalent vertices factors through the knot embedding K so
that the factorization induces the cyclic order of U . Denote the set of these
configurations by C(K; Γ). C(K; Γ) is an open submanifold of (S1)U × (R3)T .
Denote the set of dashed edges of Γ by E , and fix an orientation for these edges.

Then we can define the map Ψ : C(K; Γ)−→
(
S2
)E

whose projection to the S2

factor indexed by an edge from a vertex v1 to a vertex v2 is the direction of−−−−−−→
c(v1)c(v2). This map Ψ is again a map between two orientable manifolds that
have the same dimension, namely the number of dashed half-edges of Γ, and
we can write the configuration space integral:

I(K; Γ) =

∫

C(K;Γ)
Ψ∗(ΛEω).

For example, if θ denotes the Jacobi diagram , then I(K; θ) = I(K). Bott
and Taubes have proved that this integral is convergent [65]. Thus, this integral
is well-defined up to sign. In fact, an orientation of the trivalent vertices of Γ
provides I(K; Γ) with a well-defined sign14 such that the product I(K; Γ)[Γ] ∈
A(S1; R) does not depend on the vertex orientation of Γ.

14Since S2 is equipped with its standard orientation, it is enough to orient C(K; Γ) ⊂
(S1)U × (R3)T in order to define this sign. This will be done by providing the set of the
natural coordinates of (S1)U × (R3)T with some order up to an even permutation. This set is
in one-to-one correspondence with the set of dashed half-edges of Γ, and the vertex-orientation
of the trivalent vertices provides a natural preferred such one-to-one correspondence up to some
(even!) cyclic permutations of three half-edges meeting at a trivalent vertex. Fix an order on
E , then the set of half-edges becomes ordered by (origin of the first edge, endpoint of the first
edge, origin of the second edge, . . . , endpoint of the last edge), and this order orients C(L; Γ).
As an exercise, check that the sign of I(K; Γ)[Γ] does depend neither on our choices nor on
the vertex orientation of Γ.
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Now, the perturbative expansion of the Chern-Simons theory for knots in R3

is the following sum running over all the Jacobi diagrams without small loops
and without vertex orientation:

ZCS(K) =
∑ I(K; Γ)

♯AutΓ
[Γ] ∈ A(S1; R)

where ♯AutΓ is the number of automorphisms of Γ as a uni-trivalent graph
whose univalent vertices are cyclically ordered, but without vertex-orientation
for the trivalent vertices. The degree one part of ZCS is I(K;θ)

2 and therefore
ZCS is not invariant under isotopy. However, the evaluation15 of ZCS at rep-
resentatives of knots with null Gauss integral is an isotopy invariant that is
a universal Vassiliev invariant of knots [65, 5, 381, 328]. Now, the still open
question raised by Kontsevich in [225] is: Is the Kontsevich integral of a zero
framed representative of a knot K equal to the above series of configuration
space integrals of a representative of K with Gauss integral 0?

This question has been reduced by Sylvain Poirier [328] to the computation of
the following constant in A(S1; R) = A([0, 1]; R) that is called the Bott and
Taubes anomaly. In order to define the anomaly, replace the above knot K
by a straight line D , and consider a Jacobi diagram Γ on the oriented line.
Define C(D; Γ) and Ψ as before. Let Ĉ(D; Γ) be the quotient of C(D; Γ)
by the translations parallel to D and by the positive homotheties, then Ψ
factors through Ĉ(D; Γ) that has two dimensions less. Now, allow D to run
among all the oriented lines through the origin of R3 and define Ĉ(Γ) as the
total space of the fibration over S2 where the fiber over the direction of D is
Ĉ(D; Γ). Ψ becomes a map between two smooth oriented16 manifolds of the
same dimension. Then we can again define

I(Γ) =

∫

Ĉ(Γ)
Ψ∗(ΛEω).

Now, the anomaly is the following sum running over all Jacobi diagrams on the
oriented lines (again without vertex-orientation and without small loop):

α =
∑ I(Γ)

♯AutΓ
[Γ] ∈ A([0, 1]; R).

15Actually, this evaluation is equal to ZCS(K) exp(− I(K;θ)
2

α) for any representative K ,
where α ∈ A([0, 1];R) is the Bott and Taubes anomaly.

16 Ĉ(Γ) carries a natural smooth structure and can be oriented as follows: orient C(D; Γ)
as before, orient Ĉ(D; Γ) so that C(D; Γ) is locally homeomorphic to the oriented product
(translation vector of the oriented line, ratio of homothety) ×Ĉ(D; Γ) and orient Ĉ(Γ) as the
local product base × fiber.
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Its degree one part is

α1 = .

It is not hard to see that for any integer n, α2n = 0. In [328], Sylvain Poirier
proved that if all αi vanish for i ≥ 2, then the answer to the above Kontsevich
question is YES, and he computed α3 = 0. He also computed α5 = 0 with the
help of Maple. In [252], it is proved that α is a combination of diagrams with
two univalent vertices. Poirier also gave an equivalent definition of the anomaly
that allows one to see that, for any i > 1, αi is a combination of diagrams with
at least 6 univalent vertices.

As a corollary, all coefficients of the HOMFLY polynomial properly normalized
that are Vassiliev invariants of degree less than seven can be explicitly written
as combinations of the above configuration space integrals. A positive answer
to the Kontsevich question would allow one to express any canonical Vassiliev
invariant as an explicit combination of the above configuration space integrals.

G. Kuperberg and D. Thurston have constructed a universal finite type invari-
ant for homology spheres as a series of configuration space integrals similar to
the above Chern-Simons series in [237]. Their construction yields two natural
questions that are stated in Question 11.9.

3.7 Associators

An associator Φ is defined to be an invertible group-like element in A(↓↓↓; C)
satisfying that ε2Φ = 1 ∈ A(↓↓; C) and the following relations,

= ,

= where we put H = .
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Here, ∆i and εi are the comultiplication and the counit acting on the i-th solid
line; see [29] for these notations. An associator is derived from a Drinfel’d series
ϕ(A,B) by

Φ = ϕ
(

,
)
∈ A(↓↓↓; C), (17)

where a Drinfel’d series is an invertible group-like power series ϕ(A,B) of non-
commutative indeterminates A and B satisfying certain relations.

The Drinfel’d associator is given as follows. We consider the differential equa-
tion

G′(z) =
1

2π
√
−1

(A

z
+

B

z − 1

)
G(z), (18)

for an analytic function G of the variable z , where G(z) belongs to the formal
power series ring C〈〈A,B〉〉 of non-commutative indeterminates A and B . There
exists unique solutions G(••)• and G•(••) of the above differential equation of
the forms

G(••)•(z) = f(z)zA/2π
√
−1

G•(••)(z) = g(1 − z)(1− z)B/2π
√
−1

where f(z) and g(z) are analytic functions with f(0) = g(0) = 1 ∈ C〈〈A,B〉〉
defined in a neighborhood of 0 ∈ C. The power series ϕ

KZ
(A,B) ∈ C〈〈A,B〉〉

is defined by G(••)• = G•(••)ϕKZ
(A,B). The associator derived from ϕ

KZ
(A,B)

by (17) is called the Drinfel’d associator.

Problem 3.13 Find a combinatorial direct presentation of an associator for
all degrees, in particular, an associator with rational coefficients.

Remark We still do not have a combinatorial direct presentation of any as-
sociator for all degrees. This implies that we still do not know a combinatorial
direct presentation of the Kontsevich invariant of each knot for all degrees (ex-
cept for the trivial knot); see Problem 3.1 and its remarks. Bar-Natan [29]
showed a combinatorial degree-by-degree proof of the existence of solutions of
the defining relations of a pair (R,Φ). Our definition of Φ follows from the

defining relations when R is given by exp
(

1
2

)
.

Remark The only associator whose coefficients can be directly presented for
all degrees so far is the Drinfel’d associator. We can present all degrees of the
Drinfel’d associator by a limit of iterated integrals (see (19)) of by multiple zeta
functions (see (20)). It is known [248] that all associators are related to each
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other by “twists”, which are some actions of symmetric elements in A(↓↓; C)
on associators.

Remark ϕ
KZ

(A,B) is presented by the following limit ,

ϕ
KZ

(A,B) = lim
ε→0

ε−B/2π
√
−1Gε(1− ε)εA/2π

√
−1, (19)

where we regard εx as

εx = exp(x log ε) = 1 + x log ε + x2 (log ε)2

2
+ · · · .

Further, Gε is a solution of (18) given by

Gε(1− ε) = 1 +
∞∑

m=1

∫

ε≤t1≤···≤tm≤1−ε
w(tm) · · ·w(t1)dt1 · · · dtm,

putting

w(t) =
1

2π
√
−1

(A

t
+

B

t− 1

)
.

Remark In [248], ϕKZ(A,B) is presented by

ϕ
KZ

(A,B) = 1 +
∞∑

l=1

∑

a,b,p,q

(−1)|b|+|p|η(a + p,b + q)

(
a + p

p

)(
b + q

q

)

×B|q|(A,B)(a,b)A|p|, (20)

where the second sum runs over a,b,p,q such that the sum of their length is
equal to l and entries of them are non-negative integers. Here, the notations
are given by

η(a,b) = ζ(1, 1, · · · , 1︸ ︷︷ ︸
a1−1

, b1 + 1, 1, 1, · · · , 1︸ ︷︷ ︸
a1−1

, b2 + 1, · · · , 1, 1, · · · , 1︸ ︷︷ ︸
al−1

, bl + 1),

|a| = a1 + a2 + · · · + al,(
a

b

)
=

(
a1

b1

)(
a2

b2

)
· · ·
(

al

bl

)
,

(A,B)(a,b) = Aa1Bb1 · · ·AalBbl .

for a = (a1, · · · , al) and b = (b1, · · · , bl), where the multiple zeta function is
defined by

ζ(a1, a2, · · · , ak) =
∑

n1<n2<···<nk∈N
n−a1

1 n−a2
2 · · ·n−ak

k .

Geometry & Topology Monographs, Volume 4 (2002)



Problems on invariants of knots and 3-manifolds 435

In particular,

ϕ
KZ

(A,B) = 1+
1

24
[A,B]− ζ(3)

(2π
√
−1)3

([A, [A,B]]+[B, [A,B]])+

(
terms of

degree ≥ 4

)
.

Remark In [29], an associator with rational coefficients is given in low degrees
by

log ϕ(A,B) =
[A,B]

48
− 8[A, [A, [A,B]]] + [A, [B, [A,B]]]

11520

+
[A, [A, [A, [A, [A,B]]]]]

60480
+

[A, [A, [A, [B, [A,B]]]]]

1451520
+

13[A, [A, [B, [B, [A,B]]]]]

1161216

+
17[A, [B, [A, [A, [A,B]]]]]

1451520
+

[A, [B, [A, [B, [A,B]]]]]

1451520
− (interchange of A and B)

+ (terms of degree ≥ 8).

Problem 3.14 (J. Roberts) Construct a rational Drinfel’d associator in the
context of rational homotopy theory.

Remark (J. Roberts) The theory of 1-minimal models provides a represen-
tation of the pure braid group, which is the fundamental group of the configu-
ration space of distinct ordered points in C, the “pure braid space” for short.
This is the representation coming from the Kontsevich integral. A better way
to describe it is as a representation of the fundamental groupoid of the pure
braid space, using “basepoints at infinity” described by associations (bracket-
ings) of the points. In this picture, the Drinfel’d associator is the image of a
certain path which changes the basepoint. Is there a theory of 1-minimal mod-
els for fundamental groupoids which gives a straightforward construction of a
(rational-valued) associator, as an alternative to the tricky iterative procedures
of [29]?

3.8 Graph cohomology

Problem 3.15 (J. Roberts) What is graph cohomology the cohomology of?

Remark (J. Roberts) In the theory of quantum knot invariants such as the
Jones polynomial, the topology and algebra (in this case, the group SU(2)) are
entangled somewhat confusingly. Passing to the theory of finite type invariants,

Section 3.8 was written by J. Roberts.
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they become separated: there is a purely topological part (the Kontsevich in-
tegral of a knot) and a purely algebraic part (the weight system associated to
SU(2)) whose intermediary is the space of Jacobi diagrams.

Viewing this space as (part of) Kontsevich’s graph (co)homology [226], we see
that quantum invariants arise from a pairing between elements of graph coho-
mology and homology. But what actually is this cohomology? A good geometric
interpretation of it might lead to better understanding of the topological and
algebraic constructions involving it, and their composite.

Most of the intuition about graph cohomology has been built up from the alge-
braic side: it has been portrayed primarily as a kind of universal invariant theory
for Lie algebras. Vogel has pursued this idea the furthest, but he also showed
[395] that not all weight systems come from classical Lie algebras. In fact,
the work of Rozansky and Witten [360] and Kapranov [194] demonstrates that
compact holomorphic symplectic manifolds can be used instead of Lie algebras
to define Vassiliev weight systems, and this gives quite a different perspective
on graph cohomology, which Simon Willerton and I have been studying [348].

In a similar vein, Bar-Natan, Le and Thurston [383] have proved the so-called
“wheeling conjectures”, diagrammatic generalisations of the Duflo isomorphism
of Lie theory. Their theorem is far too striking for a purely combinatorial
interpretation to be satisfactory. Does it have a geometric interpretation?

Kontsevich [226] has given three topological interpretations of graph cohomol-
ogy. The first is that it is the twisted cohomology of “outer space”, the clas-
sifying space of the group of outer automorphisms of a free group. This is
analogous to the fact that a certain complex of fatgraphs gives the cohomology
of the moduli space of Riemann surfaces. The answer is unsatisfying because
the natural geometric model for the classifying space is, unlike the Riemann
moduli space, not a smooth orbifold, and if we are seeking geometric construc-
tions underlying the various kinds of diagrammatic operations we encounter,
smoothness would seem to be an essential property. Is there is a better model?

A second approach comes from configuration spaces of points in R3 . The com-
plex of graphs (with distinguished legs) maps to the de Rham complex of con-
figuration spaces, and gives a model for its cohomology. This kind of viewpoint
was exploited by Kontsevich (and Taubes, and Axelrod and Singer) in defining
the perturbative invariants of 3-manifolds, and by Bott and Taubes [65] for
knots.

In this context, Lie algebra weight systems are functionals on the cohomology
of the configuration spaces, and might be thought of as homology classes, or
even cycles. Hence the following problem, posed by Raoul Bott:
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Problem 3.16 (R. Bott) Give a geometric construction of these homology
classes coming from Lie algebras.

The third and currently best interpretation of graph cohomology is that it is the
cohomology of an infinite-dimensional Lie algebra of formal Hamiltonian vector
fields. Kontsevich uses this to explain (and vastly generalise) Rozansky-Witten
weight systems in terms of Gelfand-Fuchs cohomology. Can this interpretation
be employed on the topological rather than algebraic side? In other words, is
there a construction involving knots and algebras of formal vector fields which
yields the Kontsevich integral?

3.9 The loop expansion of the Kontsevich invariant

The loop expansion is the series of the rational presentations of the Kontsevich
invariant in loop-degrees. It was conjectured by Rozansky [357]. The existence
of such rational presentations has been proved by Kricker [231] (though such a
rational presentation itself is not necessarily a knot invariant in a general loop
degree). Further, Garoufalidis and Kricker [139] defined a knot invariant in any
loop degree, from which such a rational presentation can be deduced.

We have three isomorphic algebras

A(S1) ∼= B ∼= B⊔, (21)

where the first isomorphism is the formal Poincare-Birkhoff-Witt isomorphism,
and B has the product structure related, by the isomorphism, to the product
structure of A(S1) given by connected sum. Further, the second isomorphism
is the wheeling isomorphism [35] between B and B⊔ , where B⊔ is B as a space
and has the product given by the disjoint union of uni-trivalent graphs.

We denote by Bconn the vector subspace of B⊔ spanned by connected uni-
trivalent graphs, and denote by B(loop l)

conn the vector subspace of Bconn spanned
by connected uni-trivalent graphs of loop-degree l , where the loop-degree of a
uni-trivalent graph is defined to be half of the number given by the number of
trivalent vertices minus the number of univalent vertices. Then,

Bconn =
∞⊕

l=0

B(loop l)
conn .

Each B(loop l)
conn can be presented by using the polynomial rings in H1(G) for

trivalent graphs G of loop-degree l subject to Aut(G) and the AS and IHX

Geometry & Topology Monographs, Volume 4 (2002)



438 T. Ohtsuki (Editor)

relations. We will present B(loop l)
conn for l = 0, 1, 2 in this way, to state the loop

expansion in these loop-degrees.

When l = 0, we have the map

Q[x] −→ B(loop 0)
conn , xn 7−→ , (22)

regarding x as a basis of H1(circle). Since the orientation-reversing automor-
phism of S1 takes xn to −xn by the AS relation, the above map deduces the
following isomorphism,

B(loop 0)
conn

∼= Q[x2]. (23)

For a knot K ,

(
log⊔ Z(K)

)(loop 0)
=

1

2
log

sinh(x/2)

x/2
− 1

2
log ∆K(ex), (24)

where log⊔ is the logarithm in B⊔ regarding Z(K) as in B⊔ , and the left
hand side is the summand of log⊔ Z(K) ∈ Bconn in B(loop 0)

conn . This development
follows from the theory of [34]. See also [231, 139] (and references therein) for
a recent direct calculation.

When l = 1, we have the map

Q[x1, x2, x3] −→ B(loop 1)
conn , xn1

1 xn2
2 xn3

3 7−→ ,

regarding H1(θ -graph) as the vector space spanned by x1 , x2 , x3 subject to
the relation x1 + x2 + x3 = 0. Since Aut(θ -graph) ∼= S2 ×S3 , the above map
deduces

B(loop 1)
conn

∼= Q[x1, x2, x3]/(S2 ×S3, x1 + x2 + x3 = 0)

∼=
(
Q[x1, x2, x3]/(x1 + x2 + x3 = 0)

)S2×S3

∼=
(
Q[σ1, σ2, σ3]/(σ1 = 0)

)(even) ∼= Q[σ2, σ
2
3 ], (25)

where σi denotes the i-th elementary symmetric polynomial in x1 , x2 , and x3 .
(To compute B(loop 1)

conn in a precise argument, we must also consider the space
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of “dumbbell diagram” with legs. Since this space is injectively mapped to the
right hand side of the above formula, we omit its computation here.) For a
knot K there exists a polynomial P θ

K(t1, t2, t3), called the 2-loop polynomial,
satisfying that

(
log⊔ Z(K)

)(loop 1)
=

P θ
K(ex1 , ex2 , ex3)

∆K(ex1)∆K(ex2)∆K(ex3)
. (26)

The 2-loop polynomial P θ
K(t1, t2, t3) in t1, t2, t3 satisfying t1t2t3 = 1 is uniquely

determined by each knot K . It is an invariant of K satisfying that
P θ

K(t±1
i , t±1

j , t±1
k ) = P θ

K(t1, t2, t3) for any signs and any {i, j, k} = {1, 2, 3}.

Problem 3.17 Find a topological construction of the 2-loop polynomial P θ
K .

Remark As in (24) the loop-degree 0 part of the Kontsevich invariant is pre-
sented by the Alexander polynomial, which can be constructed from the ho-
mology of the infinite cyclic cover of the knot complement. It is shown, in
[142], that the “first derivative” of the 2-loop polynomial is given in terms of
linking functions associated to the infinite cyclic cover of the knot complement.
It is expected [142] that the 2-loop polynomial would be described in terms of
invariants of the infinite cyclic cover of the knot complement.

Remark A table of the 2-loop polynomial for knots with up to 7 crossings is
given by Rozansky [358]. See also a computer program [359], which calculates
the 2-loop polynomial of each knot. For example,

12P θ
31

(t1, t2,
1

t1t2
) = −t21t2 + t21,

12P θ
41

(t1, t2,
1

t1t2
) = 0,

12P θ
51

(t1, t2,
1

t1t2
) = 2t41t

2
2 − 2t41t2 + 2t41 − t21t2 + t21.

The 2-loop polynomial for the torus knots is calculated independently by Marché
[270] and Ohtsuki [322].

The following problem is a step to Problem 3.17.

Problem 3.18 (A. Kricker) Let KT be the knot obtained from a tangle T
as shown in Figure 12. Find a presentation of the 2-loop polynomial P θ

KT
of

KT by using the Kontsevich invariant Z(T ) of T .

Geometry & Topology Monographs, Volume 4 (2002)



440 T. Ohtsuki (Editor)

T KT

Figure 12: The knot KT is obtained from the 2-parallel of a 2-strand tangle T by
adding the tangle depicted in solid lines in the right picture. The dotted lines imply
strands possibly knotted and linked in some fashion.

Remark (A. Kricker) P θ
KT

might be presented by the degree ≤ 3 part of

Z(T ). Generalize the presentation ∆K(t) = det(t1/2S−t−1/2ST ) of the Alexan-
der polynomial ∆K(t) by a Seifert matrix S of K .

When l = 2, we have the map

xn1
1 xn2

2 · · · xn6
6 7−→ ,

which deduces the following isomorphism,

B(loop 2)
conn

∼= Q[x1, x2, · · · , x6]/(S4, x1 + x2 + x3 = x1 + x6 − x5 = 0
x2 + x4 − x6 = x3 + x5 − x4 = 0).

Corresponding to faces of a tetrahedra, we put y1 = x1 − x2 − x6 ,
y2 = x2 − x3 − x4 , y3 = x3 − x1 − x4 , and y4 = x4 + x5 + x6 . Then,

B(loop 2)
conn

∼= Q[y1, y2, y3, y4]/(S4, y1 + y2 + y3 + y4 = 0)

∼=
(
Q[y1, y2, y3, y4]/(y1 + y2 + y3 + y4 = 0)

)S4

,
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where the action of τ ∈ S4 takes a polynomial p(y1, y2, y3, y4) to
(sgnτ)p(yτ(1), yτ(2), yτ(3), yτ(4)). Hence,

B(loop 2)
conn

∼=
(
Q[σ2, σ3, σ4]

)(even) ∼= Q[σ2, σ
2
3 , σ4], (27)

where σi is the i-th elementary symmetric polynomial in y1 , y2 , y3 , and
y4 . (To compute B(loop 2)

conn in a precise argument, we need some more com-
putations, which are omitted here.) For a knot K there exists a polynomial
P ′

K(t1, t2, · · · , t6) satisfying that

(
log⊔ Z(K)

)(loop 2)
=

P ′
K(ex1 , ex2 , · · · , ex6)

∆K(ex1)∆K(ex2) · · ·∆K(ex6)
. (28)

P ′
K(ex1 , ex2 , · · · , ex6) is uniquely determined by a knot K (hence, is an invariant

of K ) in the completion of Q[σ2, σ
2
3 , σ4].

Problem 3.19 Find a topological construction of the polynomial P ′
K given

above.

=

=

=

= a + b

Figure 13: The multi-linear relations. Here, f(t), g(t) ∈ S , and a , b are scalars.

=

Figure 14: The push relation

The loop expansion in a general loop-degree is described as follows. Let R be
a field, say Q, and let S be a subring of R(t) which is invariant under the
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involution t 7→ t−1 , where t is an indeterminate. A labeled Jacobi diagram on
∅ is a vertex-oriented trivalent graph, whose edges are labeled by pairs of local
orientations and elements of S . We define AS(∅;R) to be the vector space over
R spanned by labeled Jacobi diagrams on ∅ subject to the AS, IHX, multilinear,
and push relations (see Figures 13 and 14). The loop-degree of a labeled Jacobi
diagram is half the number of trivalent vertices of the Jacobi diagram. For a
polynomial A(t) with A(1) = 1 and A(t) = A(t−1), we have a map

AQ[t±1,1/A(t)](∅; Q) −→ B, (29)

defined by

7−→ c0 + c1 + c2 + · · ·+ cn + · · · ,

where f(t) ∈ Q[t±1, 1/A(t)] is written f(eh) =
∑∞

k=0 ckh
k . In particular, the

map
AQ[t±1](∅; Q) −→ B (30)

is defined by

7−→ + +
1

2
+ · · · + 1

n!
+ · · · .

The loop expansion of the Kontsevich invariant is described by the rational Z
invariant Zrat(K) ∈ AQ[t±1,1/∆K(t)](∅; Q) which is taken to log⊔ Z(K) by the
map (29). In particular, when ∆K(t) = 1, Zrat(K) ∈ AQ[t±1](∅; Q). (The
existence of Zrat(K) has been shown in [231], and the canonicality of Zrat(K)
has been shown in [139].)

Problem 3.20 Find a topological construction of the loop-degree l part of
the rational Z invariant Zrat(K) ∈ AQ[t±1,1/∆K(t)](∅; Q) of a knot K , for each
l .

Problem 3.21 Find a basis of the space AQ[t±1,1/A(t)](∅; Q)(loop l) , for each l ,
where A(t) is a polynomial with A(1) = 1 and A(t) = A(t−1). In particular,
find a basis of the space AQ[t±1](∅; Q)(loop l) .

Conjecture 3.22 [357, 139] The map (29) is injective. In particular, the
map (30) is injective.
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Remark If this conjecture is true, Zrat(K) is determined by the Kontsevich
invariant.

3.10 The Kontsevich invariant of links in Σ× [0, 1]

Let Σ be a closed oriented surface. We denote by AΣ the algebra of chord
diagrams on Σ. It is defined to be the vector space over C spanned by the
homotopy classes of continuous maps from chord diagrams to Σ modulo 4T
relations.

Problem 3.23 (T. Kohno) Construct explicitly a universal invariant of finite
type for links in Σ× [0, 1] with values in AΣ .

In the case of genus 0 the above problem is solved by Kontsevich integral. In
higher genus case a suggestion for a construction of a universal invariant was
given by Deligne at Oberwolfach meeting 1995. In the case of a punctured
surface the problem was solved by Andersen, Mattes and Reshetikhin.

Let G be a simple Lie group andMG(Σ) the moduli space of G flat connections
on Σ. The space of smooth functions on MG(Σ) denoted by C(MG(Σ)) has a
structure of a Poisson algebra coming from a symplectic structure on MG(Σ).
The algebra AΣ has also a Poisson algebra structure (see [8]). If each component
of AΣ is colored by a representation of G, then there is a natural Poisson algebra
homomorphism

τ : AΣ → C(MG(Σ)).

Problem 3.23 is related to the following problem.

Problem 3.24 (T. Kohno) Give a deformation quantization of the Poisson
algebra AΣ which descends to a deformation quantization of C(MG(Σ)).

The above problem will give a new insight on quantization of MG(Σ). It
would also be interesting to investigate a relation to the geometric quantization
of MG(Σ).

Problem 3.25 (T. Kohno) Clarify the relation between a deformation quan-
tization of C(MG(Σ)) at a special parameter and the space of conformal blocks
in WZW models.

Section 3.10 was written by T. Kohno.
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Problem 3.26 (T. Kohno) Determine the image and the kernel of the above
map τ .

The space of conformal blocks in WZW model is defined as the space of coin-
variant tensors in the following way. Let p1, · · · , pn be marked points on Σ
and H1, · · · ,Hn be representations of the affine Lie algebra ĝ. The space of
conformal blocks is defined to be the set of linear forms

φ : H1 ⊗ · · · ⊗Hn −→ C

invariant under the action of meromorphic functions with values in g with poles
at most at p1, · · · , pn , where the action is defined by the Laurent expansion at
these points. There is a twisted version of the above construction, where the
above meromorphic functions are replaced by meromorphic sections of a g local
system.

Problem 3.27 (T. Kohno) Compute the holonomy of the space of conformal
blocks of the twisted WZW model. In particular, determine the action of the
braid group of Σ on the space of conformal blocks for each G flat connection
on Σ.

There is also a notion of the algebra of chord diagrams on n strings with
horizontal chord on Σ, which we shall denote by An(Σ).

Problem 3.28 (T. Kohno) Let Pn(Σ) denote the pure braid group of Σ with
n strings. Does there exist an injective multiplicative homomorphism

θ : Pn(Σ)→ An(Σ)

defined over Q?
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4 Skein modules

Skein module is an algebraic object associated to a manifold, usually con-
structed as a formal linear combination of embedded (or immersed) subman-
ifolds, modulo locally defined relations. In a more restricted setting a skein
module17 is a module associated to a 3-dimensional manifold, by considering
linear combinations of links in the manifold, modulo properly chosen (skein)
relations. It is a main object of the algebraic topology based on knots. In the
choice of relations one takes into account several factors:

(i) Is the module we obtain accessible (computable)?

(ii) How precise are our modules in distinguishing 3-manifolds and links in
them?

(iii) Does the module reflect topology/geometry of a 3-manifold (e.g. surfaces
in a manifold, geometric decomposition of a manifold)?

(iv) Does the module admit some additional structure (e.g. filtration, grada-
tion, multiplication, Hopf algebra structure)? Is it leading to a Topo-
logical Quantum Field Theory (TQFT) by taking a finite dimensional
quotient?

One of the simplest skein modules is a q -deformation of the first homology
group of an oriented 3-manifold M , denoted by S2(M ; q). It is based on the

skein relation (between oriented framed links in M ): = q ; it also

satisfies the framing relation = q , where the diagrams in each formula

imply framed links, which are identical except in a ball, where they differ as
shown in the diagrams. Already this simply defined skein module “sees” non-
separating surfaces in M . These surfaces are responsible for torsion part of the
skein module [338].

There is more general pattern: most of analyzed skein modules reflect various
surfaces in a manifold.

The best studied skein modules use skein relations which worked successfully in
the classical knot theory (when defining polynomial invariants of links in R3 ).

The original version of Chapter 4 was written by J. H. Przytycki. It was revised by T.
Ohtsuki following suggestions given by the referee. Based on it, Przytycki wrote this chapter.

17Alexander first wrote down the skein relation for his polynomial. Conway rediscovered the
relation and placed in the abstract setting of ”linear skein”. He predicted the corresponding
skein module for a tangle. General skein modules of 3-manifolds were first considered in 1987
by Przytycki and Turaev independently [333], [386].
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4.1 The Kauffman bracket skein module

Let M be an oriented 3-manifold, and put R = Z[A±1]. The Kauffman bracket
skein module S2,∞(M) of M is defined to be the R module spanned by unori-
ented framed links in M (including the empty link) subject to the relations

= A + A−1 ,

= −A2 −A−2,

where three diagrams in the first formula imply three framed links, which are
identical except in a ball, where they differ as shown in the diagrams. The Kauff-
man bracket gives an isomorphism between S2,∞(S3) and R. Thus, S2,∞(M)
is a generalization of the Jones polynomial (in its Kauffman bracket interpreta-
tion). The Kauffman bracket skein module is best understood among the Jones
type skein modules. It can be interpreted as a quantization of the co-ordinate
ring of the character variety of SL(2, C) representations of the fundamental
group of the manifold M , [71, 343, 74, 344].

Problem 4.1 Calculate S2,∞(M) for each oriented 3-manifold M . Find a
convenient methodology to calculate it.

Remark It is known that S2,∞(L(p, q)) of the lens space L(p, q) is a free
R module with [p/2] + 1 generators [177], and that S2,∞(S1 × S2) ∼= R ⊕⊕∞

i=1 R/(1−A2i+4) [178]. The Kauffman bracket skein modules are also calcu-
lated for I -bundles over surfaces [174, 333], the exteriors of (2, n) torus knots
[69], and Whitehead manifolds [179]. A connected sum formula is given in [340].
Skein modules at the 4th roots of unity are calculated in [366]. It is shown in
[267] that S2,∞(M1∪F M2 ) for orientable 3-manifolds M1 and M2 with a com-
mon boundary F is expressed as a quotient module of a direct sum of tensor
products of relative skein modules of M1 and M2 .

Problem 4.2 (J. Przytycki) Incompressible tori and 2-spheres in M yield
torsion in S2,∞(M) [339]. It is a question of fundamental importance whether
other surfaces can yield torsion as well.

Conjecture 4.3 If every closed incompressible surface in M is parallel to
∂M , then S2,∞(M) is torsion free.
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Remark The Kauffman bracket skein module of the 3-manifold obtained by
an integral surgery along the trefoil knot is finitely generated if and only if the
3-manifold contains no essential surface [70].

The test case for the conjecture is the manifold M = F0,3 × S1 , where F0,3 is
a 2-sphere with 3 holes, because it contains immersed π1 -injective torus.

Problem 4.4 (J. Przytycki) Compute S2,∞(F0,3 × S1).

Problem 4.5 Let F be a surface and I an interval. Describe the algebra
S2,∞(F × I).

Remark S2,∞(F × I) is an algebra (usually noncommutative). It is finitely
generated algebra for a compact F [72], and has no zero divisors [344]. The
center of the algebra is generated by boundary components of F [75, 344].

Problem 4.6 Calculate the skein homology based on the Kauffman bracket
skein relation.

Remark The skein homology were introduced in [73] (see also [193]).

Problem 4.7 We define the sl3 skein module Ssl3(M) of an oriented 3-
manifold M by the defining relations of the sl3 linear skein [233, 323]. Calculate
Ssl3(M) of each 3-manifold M .

Remark The quantum sl3 invariant of links gives an isomorphism between
Ssl3(S3) and the coefficient ring; see, e.g. [321]. Thus, Ssl3(M) gives a gener-
alization of the quantum sl3 invariant of links.

4.2 The Homflypt skein module

Let M be an oriented 3-manifold, and put R = Z[v±1, z±1]. The Homflypt
skein module S3(M) of M is defined to be the R module spanned by oriented
links in M subject to the relation

v−1 − v = z ,

where three diagrams in the formula imply three oriented links, which are iden-
tical except in a ball, where they differ as shown in the diagrams. The Homflypt
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polynomial gives an isomorphism between S3(S
3) and R. The Homflypt skein

modules generalize skein modules based on Conway relation which were hinted
by Conway. S3(M) is related to the algebraic set of SL(n, C) representations
of the fundamental group of the manifold M [367].

Problem 4.8 Calculate S3(M) for each oriented 3-manifold M . Find a con-
venient methodology to calculate it.

Remark It is known that S3(F × I) is an infinitely generated free module
[335], and that S3(S

1 × S2) is isomorphic to the direct sum of R and an R-
torsion module [146]. A connected sum formula is given in [147].

Problem 4.9 Let F be a surface and I an interval. Describe the algebra
S3(F × I).

Remark S3(F × I) is a Hopf algebra (usually neither commutative nor co-
commutative) [387, 335]. S3(F × I) is a free module (as mentioned above) and
can be interpreted as a quantization [386, 173, 387, 334].

4.3 The Kauffman skein module

Let M be an oriented 3-manifold, and put R = Z[a±1, x±1]. The Kauffman
skein module S3,∞(M) of M is defined to be the R module spanned by unori-
ented framed links in M subject to the relations

+ = x

(
+

)
, (31)

= a , (32)

where the diagrams in each formula imply framed links, which are identical
except in a ball, where they differ as shown in the diagrams.

Problem 4.10 Calculate S3,∞(M) for each oriented 3-manifold M . Find a
convenient methodology to calculate it.

Remark S3,∞(F × I) is known to be a free module. The case of F being a
torus was solved by Hoste, Kidwell and Turaev. It is calculated in [260] for a
surface F with boundary. S3,∞(S1 × S2) is calculated in [412]. A connected
sum formula is given in [411].
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Problem 4.11 Calculate the higher skein modules based on the Kauffman
skein relation W 3,∞

i (M) and Ŵ 3,∞(M) (see below for their definitions).

Remark The higher skein modules were introduced in [336]. They are dis-
cussed (in the case of the Conway skein triple) in [351, 258] and [9, 10]. In
the case of the Kauffman skein relation, definitions are as follows: Let RL
denote the free R module spanned by the ambient isotopy classes of unori-
ented framed links in an oriented 3-manifold M modulo the framing relation
(32), where R = Z[a±1, x±1]. We regard singular links with a finite num-
ber of double points as elements in RL by replacing a double point with the
difference of the two sides of (31). We introduce a (singular links) filtration
RL = C0 ⊃ C1 ⊃ C2 ⊃ C3 ⊃ · · · , where the module Ci is generated by singu-
lar links with i double points. We define the ith higher Kauffman skein module
as: W 3,∞

i (M) = RL/Ci+1 and the completed higher Kauffman skein module,

Ŵ 3,∞(M), as the completion of RL with respect to the filtration {Ci}.

Problem 4.12 Construct invariants of 3-manifolds via a linear skein theory
based on the Kauffman skein module.

Remark It is known that quantum invariants of 3-manifolds can be con-
structed via linear skein theories based on the Kauffman bracket skein modules
(see [255]) and the Homflypt skein modules [408].

Update Beliakova and Blanchet have done this [47].

4.4 The q-homotopy skein module

Let M be an oriented 3-manifold, and put R = Z[q±1, z]. The q -homotopy
skein module HSq(M) of M is defined to be the R module spanned by oriented

links in M subject to the link homotopy relation = for self-

crossings and the skein relation q−1 − q = z for “mixed

crossings”, i.e. we assume that the two strings of (or ) of the

skein relation belong to different components of the link.

We have an isomorphism between HSq(S3) and Z[q±1, t, z], regarding tk as the
trivial link with k components, and this isomorphism is given by the linking
numbers [341].
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Problem 4.13 Calculate HSq(M) for each 3-manifold M .

Remark HSq(F ×I) is a quantization [175, 387, 341], and as noted by Kaiser
it can be almost completely understood using singular tori technique of X.-S.
Lin. HSq(M) is free if and only if π1(M) is abelian and 2b1(M) = b1(∂M)
[191].

4.5 The (4,∞) skein module

We generalize the Kauffman bracket and Kauffman skein modules by consider-
ing the general, unoriented skein relation b0L0 + b1L1 + · · ·+ bn−1Ln−1 + b∞L∞
(see Figure 15). The first new case to analyze, n = 4, is described in this
section. We call it the (4,∞) skein module and denote by S4,∞(M ;R). This
problem is very interesting even for M = S3 .

The definitions are as follows. Let M be an oriented 3-manifold, Lfr the
set of unoriented framed links in M (including the empty knot, ∅) and R any
commutative ring with unity. We fix a, b0, b3 to be invertible elements in R and
fix b1, b2, b∞ to be elements of R. Then we define the (4,∞) skein module as:
S4,∞(M ;R) = RLfr/I(4,∞) , where I(4,∞) is the submodule of RLfr generated
by the following two relations:

the (4,∞) skein relation: b0L0 + b1L1 + b2L2 + b3L3 + b∞L∞ = 0,

the framing relation: L(1) = aL,

where L0, · · · , L∞ are framed links which are identical except in a ball, where
they differ as shown in Figure 15, and L(1) denotes a link obtained from L by
adding +1 framing to some component of L.

Figure 15: L3, · · · , L0, L∞ are framed links which are identical except in a ball, where
they differ as shown in the pictures. Links Lk for k = 4, 5, · · · are similarly defined.

Problem 4.14 (J. Przytycki)
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(i) Find generators of S4,∞(S3, R).

(ii) For which parameters of the (4,∞) skein and framing relations, trivial
links are linearly independent in S4,∞(S3;R)?

(iii) For which parameters of the (4,∞) skein and framing relations, the trivial
knot is not representing a torsion element of S4,∞(S3, R)?

A generalization of the Montesinos-Nakanishi conjecture [345] said that
S4,∞(S3, R) is generated by trivial links and that the (4,∞) skein module (suit-
ably defined) for n-tangles is generated by

∏n−1
i=1 (3i+1) certain basic n-tangles.

This would give a generating set for the (4,∞) skein module of S3 or D3

with 2n boundary points (for n-tangles). However, the Montesinos-Nakanishi
3-move conjecture has been disproved by M.Dabkowski and J.H.Przytycki in
February 2002 [99] and [342]. Therefore

∏n−1
i=1 (3i + 1) is only the lower bound

for the number of generators.

In [345] we extensively analyze the possibilities that trivial links are linearly
independent; if b∞ = 0, then this may happen only if b0b1 = b2b3 . These leads
to the following conjecture (cases (1)–(2)):

Conjecture 4.15 (J. Przytycki, see [286])

(1) There is a polynomial invariant of unoriented links, P1(L) ∈ Z[x, t] which
satisfies:

(i) Initial conditions: P1(Tn) = tn , where Tn is a trivial link of n
components.

(ii) Skein relation P1(L0) + xP1(L1) − xP1(L2) − P1(L3) = 0 where
L0, L1, L2, L3 is a standard, unoriented skein quadruple (Li+1 is
obtained from Li by a right-handed half twist on two arcs involved
in Li ; compare Figure 15.)

(2) There is a polynomial invariant of unoriented framed links, P2(L) ∈
Z[A±1, t] which satisfies:

(i) Initial conditions: P2(Tn) = tn ,

(ii) Framing relation: P2(L
(1)) = −A3P2(L) where L(1) is obtained from

a framed link L by a positive half twist on its framing.

(iii) Skein relation: P2(L0) + A(A2 + A−2)P2(L1) + (A2 + A−2)P2(L2) +
AP2(L3) = 0.

(3) There is a rational function invariant of unoriented framed links, P3(L) ∈
Z[a±1, x, y, (x + y + xy + y2)−1] which satisfies:
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(i) Initial conditions: P3(Tn) = (−a3(x+y+xy+x2)+a7(x+y+1)2−a−1

x+y+xy+y2 )n−1 ,

(ii) Framing relation: P3(L
(1)) = aP3(L),

(iii) Skein relation: P3(L0)+axP3(L1)+a2yP3(L2)−a3(x+y+1)P3(L3) =
0.

(4) The invariant predicted in (1) (respectively (2) and (3)) is not uniquely
defined (if it exists).

Note that a solution to (3) becomes a solution to (1) under the substitution
a = 1, x = −y and that a solution to (3) becomes a solution to (2) under the
substitution a = −A3 , x = −1−A−4 , y = A−4 +A−8 . As for the uniqueness of
(4), note that all such invariants agree on trivial links and therefore they agree
on the space spanned by trivial links in the related cubic skein module.

The above conjectures assume that b∞ = 0 in our skein relation. Let consider
the possibility that b∞ is invertible in R. Using the “denominator” of our skein
relation (the first line of Figure 16) we get the relation which allows to compute
the effect of adding a trivial component to a link L (we write tn for the trivial
link Tn ):

(a−3b3 + a−2b2 + a−1b1 + b0 + b∞t)L = 0. (33)

When considering the “numerator” of the relation and its mirror image (Figure
16) we obtain formulas for Hopf link summands, and because unoriented Hopf
link is amphicheiral we can eliminate it from our equations to get the formula
(34):

b3(L#H) + (ab2 + b1t + a−1b0 + ab∞)L = 0.

b0(L#H) + (a−1b1 + b2t + ab3 + a2b∞)L = 0.

((b0b1 − b2b3)t + (a−1b2
0 − ab2

3) + (ab0b2 − a−1b1b3) + b∞(ab0 − a2b3))L = 0.
(34)

It is possible that (33) and (34) are the only relations in the module. Precisely,
we ask whether S4,∞(S3;R) is the quotient ring R[t]/(I) where ti represents
the trivial link of i components and I is the ideal generated by (33) and (34) for
L = t. The substitution which realizes the relations is: b0 = b3 = a = 1, b1 =
b2 = x, b∞ = y . This may lead to the polynomial invariant of unoriented links
in S3 with values in Z[x, y] and the skein relation L3+xL2+xL1+L0+yL∞ = 0.

Problem 4.16 (J. Przytycki) For which coefficients of the (4,∞) skein rela-
tion is the number of Fox 7-colorings measured by the (4,∞) skein module?
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Figure 16

Remark We denote by Colp(L) the (Z/pZ)-linear space (for p prime) of Fox
p-colorings of a link L (for its definition, see [337]) and colp(L) denotes the
cardinality of the space. It is known that Colp(L) can be identified with
H1

(
M2(L); Z/pZ

)
, where M2(L) denotes the double cover of S3 branched

along L. Since the double covers of tangles defining L0, L1, · · · , Lp−1, L∞ give
all subspaces of H1(T

2; Z/pZ) respectively (where T 2 is the double cover of
(S2, 4 points)), colp of those links are equal except for colp of one link which is
equal to p times the others [337]. This leads to the relation of type (p,∞). A re-
lation between the Jones polynomial (or the Kauffman bracket) and col3(L) has

the form: col3(L) = 3|VL(eπ
√
−1/3)|2 and a formula relating the Kauffman poly-

nomial and col5(L) has the form: col5(L) = 5|FL(1, e2π
√
−1/5 + e−2π

√
−1/5)|2 .

This seems to suggest the existence of a similar formula18 for col7(L).

4.6 Other problems

We extend the family K of oriented knots in a 3-manifold M by singular knots,

and resolve a singular crossing by = − . These allows us

to define the Vassiliev-Goussarov filtration: RK = C0 ⊃ C1 ⊃ C2 ⊃ C3 · · · ,
where R is a commutative ring with unity and Ck is generated by knots with k

18François Jaeger told Przytycki that he knew how to get the space of Fox p-colorings from
a short skein relation (of type ( p+1

2
,∞)). François died prematurely in 1997 and his proof

has never been recorded.
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singular points. Regarding the quotient Wk(M) = RK/Ck+1 as an invariant of
M , we call it the k th Vassiliev-Goussarov skein module of M . The completion
of the space of knots with respect to the Vassiliev-Goussarov filtration, R̂K,
is a Hopf algebra (for M = S3 ). Functions dual to Vassiliev-Goussarov skein
modules are called finite type or Vassiliev invariants of knots; see [336].

Problem 4.17 Calculate Wk(M) for each 3-manifold M .

Remark When M = S3 , and coefficients are from Q then the graded space
Ck/Ck+1 can be described by chord diagrams of degree k ; see Chapter 2.

Problem 4.18 Define a skein module of 3-manifolds, and calculate it.

Remark The quantum Hilbert space (or the space of conformal blocks) of
(S2, 4 points) is known to be finite dimensional. This is a reason why a quan-
tum invariant of links satisfies a skein relation; it is a linear relation of tan-
gles bounded by (S2, 4 points) whose invariants are linearly dependent in the
quantum Hilbert space. The quantum Hilbert space of a closed surface, say, a
torus, is also known to be finite dimensional. Hence, a quantum invariant of 3-
manifolds satisfies a “skein relation”; it should be a linear relation of 3-manifolds
bounded by a surface. A skein module of 3-manifolds might be defined to be
a module spanned by closed oriented 3-manifolds subject to a suitably cho-
sen “skein relation” among 3-manifolds. It is a problem to define such a skein
module which can be calculated.
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5 Quandles

A quandle is a set X equipped with a binary operation ∗ satisfying the following
3 axioms.

(1) x ∗ x = x for any x ∈ X .

(2) For any y, z ∈ X there exists a unique x ∈ X such that z = x ∗ y .

(3) (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z) for any x, y, z ∈ X .

The notions of subquandle, homomorphism, isomorphism, automorphism are
appropriately defined. Each x in a quandle X defines a map Sx : X → X
by Sx(y) = y ∗ x. This map is an automorphism of X by the axioms (2) and
(3). The inner automorphism group is a group of automorphisms generated by
Sx (x ∈ X ). An orbit under the action of the inner automorphism group on
a quandle X is simply called an orbit of X . This forms a subquandle of X .
A quandle is called connected19 if the action of its inner automorphism group
is transitive on it (i.e. if X has only one orbit). A quandle is called simple if
every surjective homomorphism from the quandle is either an isomorphism or
the constant map to the one-element quandle. The dual quandle of X is the
set X with the dual binary operation given by x∗y = S−1

y (x).

The conjugation quandle of a group is the group with the binary operation
x ∗ y = y−1xy . This kind of quandle is a prototype of quandles; the defining
relations of a quandle are relations satisfied by the conjugation of a group. Any
conjugacy class of a group is a subquandle of the conjugation quandle of the
group. The dihedral quandle Rn of order n is the subquandle of the conjuga-
tion quandle of the dihedral group of order 2n, consisting of reflections. An
Alexander quandle is a quotient module Z[t±1]/J , where t is an indeterminate
and J is an ideal of the Laurent polynomial ring Z[t±1], equipped with the
binary operation x ∗ y = tx + (1− t)y . The dihedral quandle Rn is isomorphic
to Z[t±1]/(n, t + 1).

5.1 Classification of quandles

It was a classical problem in group theory to classify the isomorphism classes
of groups of order n for each n. The following problem is a corresponding
problem for connected quandles.

Chapter 5 was written by T. Ohtsuki, following suggestions and comments given by S.
Kamada and M. Saito. Section 5.6 was added by C. Rourke and B.Sanderson.

19We call this property connected here following [190]. This is also called weakly homogeneous

in some of the literature.
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Problem 5.1 Classify the isomorphism classes of connected quandles of order
n for each positive integer n.

See Table 4 for a list of connected quandles of order n for some n.

n #
Connected quandles of order n

Self-dual Not self-dual

1 1 A trivial quandle

2 0

3 1 R3

4 1 Λ2/(t2 + t + 1)

5 3 R5 Λ5/(t− 2), its dual

6 2 2 subquandles of Conj(S4)

7 5 R7 Λ7/(t− 2), Λ7/(t− 3), their duals

8 ≥ 3
An abelian extension

Λ2/(t3 + t + 1), its dual
of Λ2/(t

2 + t + 1)

9 8
R9, Λ3/(t2 − t + 1), Λ9/(t− 2), Λ3/(t2 + t− 1),

R3 ×R3, Λ3/(t2 + 1) their duals

10 ≥ 1 A subquandle of Conj(S5)

11 9 R11 Λ11/(t− a) (a = 2, 3, · · · , 9)

12 ≥ 2
R3 ×

(
Λ2/(t2 + t + 1)

)
,

An icosahedral quandle

13 11 R13 Λ13/(t− a) (a = 2, 3, · · · , 11)

14 ≥ 0

15 ≥ 4
R3 ×R5, R3 ×

(
Λ5/(t− 2)

)
, its dual

A subquandle of Conj(S5)
...

Prime p p− 2 Rp Λp/(t− a) (a = 2, 3, · · · , p− 2)

Table 4: A table of some connected quandles. The second column shows the numbers
of isomorphism classes of connected quandles of order n . We denote Z[t±1]/(n) by
Λn . Conj(Sm) denotes the conjugation quandle of the mth symmetric group Sm . An
icosahedral quandle is a quandle whose elements are the vertices of an icosahedron such
that Sx of each element x is given by a rotation of the icosahedron centered at x.

Remark (M. Graña) It is shown, in [116] in terms of set theoretical solutions
of the quantum Yang-Baxter equation, that a connected quandle of prime order
p is isomorphic to the Alexander quandle Z[t±]/(p, t − a) for some a. It is
shown in [11, 308] that two connected Alexander quandles are isomorphic if
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and only if they are isomorphic as Z[t±1]-modules. These give the classification
of connected quandles of prime order shown in Table 4.

Remark (M. Graña) It is shown in [11] that a simple quandle of prime power
order is an Alexander quandle; it is a finite field F such that t acts by mul-
tiplication by some primitive element w (i.e. w generates F as an algebra).
Further, it is shown in [156] that a connected quandle of prime square order
is an Alexander quandle. This gives the classification of connected quandles of
order 9 shown in Table 4.

Remark S. Yamada made the list of isomorphism classes of quandles (and
racks) of order ≤ 7 by computer search. The list of connected quandles of
order ≤ 7 in Table 4 follows from it. S. Nelson [308] classifies the Alexander
quandles of order ≤ 15; connected ones among them are listed in Table 4.

Remark The following modification of Problem 5.1 gives an algorithm to list
connected quandles: classify the isomorphism classes of connected quandles
fixing the conjugacy class of the union of Sx and an identity map. For a
quandle X we denote by SX the set of Sx (x ∈ X ), which is regarded as a
subset of Sn when X is of order n. The map X → Sn , taking x 7→ Sx , is
often injective, though in general the map X → SX is a quotient map, and the
order of SX divides n when X is connected. Let us investigate this problem
in some simple cases.

Let X be a connected quandle of order n whose SX includes (12) ∈ Sn . Then,
for any i there is a sequence 1 = a0, a1, · · · , ak = i such that (a0a1), (a1a2), · · · ∈
SX since X is connected. Further, since SX is closed with respect to conjuga-
tion, SX includes (1i) ∈ Sn , and hence any (ij) ∈ Sn . Therefore, n = 3, and
X is isomorphic to the dihedral quandle R3 .

Let X be a connected quandle of order n whose SX includes (123) ∈ Sn .
Suppose that SX further included (145) ∈ Sn . Then, since SX is closed
with respect to conjugation, SX would include (ijk) ∈ Sn for any {i, j, k} ⊂
{1, 2, 3, 4, 5}. This would contradict, since the order of SX is at most n. Hence,
n = 4, and X is isomorphic to the conjugation subquandle of A4 consisting of
(123), (134), (142), and (243), which is isomorphic to Z[t±1]/(2, t2 + t + 1).

Let X be a connected quandle of order n whose SX includes (1234) ∈ Sn .
If SX further included (1567) ∈ Sn , a contradiction would follow from a sim-
ilar argument as above. Hence, it is sufficient to consider the cases that SX

include (1234) and either of (1256), (2156), (1526), (1536), or (ijk5) for any
{i, j, k} = {1, 2, 3}. It follows from some concrete computations that such a
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X is isomorphic to either of the Alexander quandle Z[t±1]/(5, t − 2), its dual
quandle, or the conjugation subquandle of S4 including (1234).

5.2 Representations of knot quandles

Consider the conjugation quandle of the fundamental group π1(S
3 −K) of the

complement of a knot K . The reduced knot quandle Q̂(K) is its subquandle
generated by meridians of K . A knot quandle20 Q(K) is a quandle generated
by meridians of K (for its precise definition, see [190]) which is almost equal
to Q̂(K); to be precise, there is a surjective (almost, bijective) homomorphism
Q(K)→ Q̂(K).

Homomorphisms to a fixed group/quandle are often called representations. It
was said, before quantum invariants were discovered, that to count the numbers
of representations of knot groups to a fixed finite group was a most powerful
method to distinguish two given knots. The following problem is a refinement
of it. A motivation is to construct a methodology to count the number of
representations of a knot quandle to a fixed quandle of finite order.

Problem 5.2 Describe (the number of) representations of a knot quandle to
a fixed connected quandle of finite order, say, by using knot invariants known
so far, or by reducing the problem to the case of smaller target quandles.

Remark Since a knot quandle is connected, the image of a representation to
a quandle X is included in an orbit of X , which forms a subquandle of X .
Hence, the number of representations to X is equal to the sum of the numbers
of representations to the quandles which are obtained as orbits of X . Repeating
this procedure, the number of representations to X can be presented by the
sum of the numbers of representations to certain connected quandles. Hence,
it is sufficient to consider this problem when a target quandle is connected.21

Remark The problem to count the number of representations of a knot group
to a fixed finite group can be reduced to Problem 5.2. Because it is equal to
the number of representations of a knot quandle to the conjugation quandle of
the group, and the problem to count it can be reduced to Problem 5.2 by the
above remark.

20Knot quandle was introduced by Joyce [190] and independently by Matveev [277]; see
[121] for an exposition.

21This argument is not available for the link case, since a link quandle is not connected.
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Remark The number of representations of a knot quandle to an Alexander
quandle can be presented by using the ith Alexander polynomials of the knot
[181]. In particular, the number of representations to a dihedral quandle can
be obtained as its corollary.

Remark Let X be a connected finite quandle, and let hX(K) denote the
number of representations of the knot quandle of a knot K to X . Then, hX

is multiplicative with respect to connected sum of knots. It is known (see, for
example, [321]) that any Q-valued Vassiliev invariant is equal to a polynomial
in some primitive Vassiliev invariants, where primitive Vassiliev invariants are
additive with respect to connected sum of knots. Hence, hX is not a Vassiliev
invariant, unless it is constant. (See also [4] for another proof.)

Conjecture 5.3 Let hX be as above. Then, log hX is not a Vassiliev invariant,
unless it is constant.

5.3 (Co)homology of quandles

Second cohomology classes of a quandle are used in order to define quandle
cocycle invariants of knots. They are introduced as follows. Let A be an abelian
group, written additively, and let Cn(X;A) be the abelian group consisting of
maps Xn → A, where Xn denotes the direct product of n copies of X . We
put

C1
Q(X;A) = C1(X;A),

C2
Q(X;A) = {f ∈ C2(X;A) | f(x, x) = 0 for any x ∈ X},

C3
Q(X;A) = {g ∈ C3(X;A) | g(x, x, y) = 0 and g(x, y, y) = 0 for any x, y ∈ X}.

The coboundary operators di : Ci
Q(X;A)→ Ci+1

Q (X;A) are given by

d1f(x, y) = f(x)− f(x ∗ y),

d2g(x, y, z) = g(x, z) − g(x, y) − g(x ∗ y, z) + g(x ∗ z, y ∗ z),

for f ∈ C1
Q(X;A) and g ∈ C2

Q(X;A). We define the second quandle cohomol-

ogy group by H2
Q(X;A) = (kernel d2)/(image d1). It is known that H2

Q(X;A)

is isomorphic to Hom
(
HQ

2 (X);A
)

by the universal coefficient theorem, noting

that HQ
1 (X) is free abelian (see [82]). Here, HQ

2 (X) denotes the second homol-
ogy group of the dual complex of {C⋆

Q(X; Z), d⋆}. See [82] for the definition of

the nth quandle (co)homology group. Therefore, to obtain H2
Q(X;A) for any

A, it is sufficient to compute HQ
2 (X).
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Connected quandle X Order HQ
2 (X) HQ

3 (X)

R3 3 0 Z/3Z

Z[t±1]/(2, t2 + t + 1) 4 Z/2Z Z/2Z⊕ Z/4Z

R5 5
0 Z/5Z

Z[t±1]/(5, t− 2) 0 0

R7 0 Z/7Z

Z[t±1]/(7, t− 2) 7 0 0

Z[t±1]/(7, t− 3) 0 0

Z[t±1]/(2, t3 + t + 1) 8 0 Z/2Z

R9 0 Z/9Z

Z[t±1]/(9, t− 2) 0 Z/3Z

Z[t±1]/(3, t2 + 1) 9 Z/3Z (Z/3Z)3

Z[t±1]/(3, t2 − t + 1) Z/3Z Z/3Z⊕ Z/9Z

Z[t±1]/(3, t2 + t− 1) 0 0

Z[t±1]/(p, t− a)
p 0

for any prime p and any a 6= 0, 1 ∈ Z/pZ

Table 5: The cohomologies of the quandles, except for the last one, in the table are due
to [264]. From a table in [264] we omit one of two dual quandles and quandles that are
not connected (see remarks on Problem 5.6). The 2nd homology of Z[t±1]/(p, t − a)
is due to [284]. See [264, 284] for computations of cohomology groups of some more
quandles.

Problem 5.4 Compute HQ
2 (X) for each connected quandle X . More gener-

ally, find a convenient methodology to compute quandle (co)homology groups.

See Table 5 for some quandle homology groups given in [264]; see also [284]
for computations of quandle cohomology groups of many Alexander quandles.
There are maple programs [185] for computing quandle cohomology groups.

Remark We consider only connected quandles in this problem, since compu-
tations of quandle cocycle invariants of knots can be reduced to the cases of
connected quandles (see a remark on Problem 5.6).

Problem 5.5 (J.S. Carter) Compute HQ
i (Sm

n ) of Sm
n which denotes the

quandle of the nth symmetric group with the binary operation given by x∗y =
y−mxym .
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5.4 Quandle cocycle invariant

The quandle cocycle invariant, introduced in [79, 80], is defined as follows. For
α ∈ H2(X;A) we choose a 2-cocycle φ representing α. Any representation of
a knot quandle Q(K) to X is presented by a coloring of a knot diagram of K ,
where a coloring of an oriented knot diagram is a map of the set of over-arcs of
it to X satisfying the condition depicted in the pictures of (35) at each crossing
of the knot diagram. We define the weight of a crossing of a colored diagram
by

W
( x

x∗y

y )
= φ(x, y) ∈ A, W

( y

x

x∗y )
= φ(x, y)−1 ∈ A,

(35)

where we write A multiplicatively here. The quandle cocycle invariant of a
knot K is defined by

Φα(K) =
∑

C

∏

τ

W (τ, C) ∈ Z[A],

where the sum runs over all coloring C of a diagram of K , and the product
runs over all crossing τ of the diagram, and Z[A] denotes the group ring of A.
Φα(K) only depends on K and α.

Problem 5.6 Compute the quandle cocycle invariant Φα(K) of each knot K
for a second cohomology class α of a connected quandle.

Remark When X = R4 (which is not connected), it is shown as follows (see
also [81] for numerical computation) that Φα(K) = 4 for any K and α, though
R4 has non-trivial cohomology groups since HQ

2 (R4) = Z2 ⊕ (Z/2Z)2 . The
quandle R4 has two orbits, which form subquandles isomorphic to T2 , where
Tn denotes the trivial quandle (i.e. x ∗ y = x for any x, y) of order n. Further,
T2 has two orbits, which form subquandles isomorphic to T1 . Since Q(K) is
connected, any representation of Q(K) to R4 is trivial (i.e. a constant map).
Hence, any coloring is trivial (i.e. colored by a single element of X ). Since
φ(x, x) = 0 for any 2-cocycle φ, Φα(K) = 4 by definition.

When X = Z[t±1]/(9, t− 4) (which is not connected), it follows from a similar
argument (see also [81] for numerical computation) that Φα(K) = 9 for any K
and α, noting that this X has three orbits, which form subquandles isomorphic
to T3 .
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In general, let X1,X2, · · · be the orbits of X . These form subquandles of X .
We denote by ik : Xk → X the inclusions. Then, it follows from a similar
argument as above that Φα(K) =

∑
k Φi⋆kα(K). Repeating this procedure, the

computations of Φα(K) of a knot K can be reduced to those for connected
quandles.22

Remark The cohomology group H2
Q(X ;A) of the dual quandle X of a quan-

dle X is isomorphic to H2
Q(X;A) by an isomorphism taking a 2-cocycle φ to

φ where φ(x, y) = φ(x ∗ y, y). It follows that Φα(K) = Φα(K), where K de-
notes the mirror image of K . Therefore, the computations of quandle cocycle
invariants for X can be reduced to those for X .

Remark When α = 0, by definition Φα(K) is equal to the number of rep-
resentations Q(K) → X . In particular, when X is an Alexander quandle, it
can be presented by using the ith Alexander polynomials, as mentioned in a
remark of Problem 5.2.

Remark [81] When X = Z[t±1]/(2, t2 + t + 1), H2
Q(X; Z/2Z) = Z/2Z. For

its non-trivial cohomology class α,

Φα(K) =





4(1 + 3u) for K = 31, 41, 72, 73, 81, 84, 811, 813, and

9 certain knots with 9 crossings,

16(1 + 3u) for K = 818, 940,

16 for K = 85, 810, 815, 819–821, and

16 certain knots with 9 crossings,

4 for the other knots K with at most 9 crossings,

where u denotes the generator of Z/2Z. See [81] for details.

When X = Z[t±1]/(3, t2 + 1), H2
Q(X; Z/3Z) = Z/3Z. For a non-trivial coho-

mology class α of it,

Φα(K) =





9(1 + 4u + 4u2) if K = 41, 52, 83, 817, 818, 821, and

9 certain knots with 9 crossings,

27(11 + 8u + 8u2) if K = 940,

81 if K = 63, 82, 819, 824, 912, 913, 946,

9 for the other knots K with at most 9 crossings,

where u denotes a generator of Z/3Z. See [81] for details.

22This argument is not available for the link case, since a link quandle is not connected.
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Remark It is known, see [78], that each α ∈ H2
Q(X;A) gives an abelian

extension A → Y
p→ X , where Y = A × X , which forms a quandle with the

binary operation given by (a1, x1) ∗ (a2, x2) =
(
a1 + φ(x1, x2), x1 ∗ x2

)
using a

2-cocycle φ representing α, and p denotes the natural projection.

Let a1, a2, · · · , aN be a sequence of generators of Q(K) associated with over
paths of a diagram of K which are chosen as going around K . Adjacent
generators a1 and a2 are related by a1 ∗ b = a2 (or a1 = a2 ∗ b) for some

generator b. Let ρ̃(b) be a pre-image of ρ(b) under the projection p. Then,
S

ρ̃(b)
(resp. S−1

ρ̃(b)
) induces a map p−1(a1)→ p−1(a2), which does not depend on

the choice of a pre-image of ρ(b). Composing such maps, we have a sequence of
maps p−1(a1) → p−1(a2) → · · · → p−1(aN ) → p−1(a1). The composite map of
these maps can be expressed a 7→ a+ m(ρ) (a ∈ A) for some m(ρ) ∈ A. Then,
the quandle cocycle invariant can be presented by Φα(K) =

∑
ρ m(ρ) ∈ Z[A],

where the sum runs over all representations ρ of Q(K) to X .

In particular, as shown in [78], the number of representations Q(K) → X
that can lift to representations Q(K) → Y is equal to the coefficient of the
unit of A in Φα(K). For example, when A = Z/2Z, it follows that, writing
Φα(K) = a + bt (where t is the generator of Z/2Z), a is equal to the number
of representations Q(K)→ X that can lift to representations Q(K)→ Y , and
b is equal to the number of those that do not.

In this way we can compute Φα(K) in terms of the abelian extension associated
to α.

Problem 5.7 Find relations between quandle cocycle invariants and knot in-
variants known so far, such as quantum invariants.

Remark When α = 0 and X is an Alexander quandle, Φα(K) can be pre-
sented by using the ith Alexander polynomial, as mentioned in a remark of
Problem 5.6.

Remark (M. Graña) The quandle cocycle invariants can be presented by
knot invariants derived from certain ribbon categories [155].

A central extension of a group G gives an abelian extension of the conjugation
quandle of G. It is known that an abelian extension of a group G can be
characterized by the cohomology group H2(G;A) for a G-module A. Motivated
by this cohomology group we introduce H2

Q(X;A) of a quandle X for an “X -
module” A as follows. We call an abelian group A an X -module of a quandle
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X if there is a map ρ : X → Aut(A) satisfying that ρ(x ∗ y) = ρ(y)−1ρ(x)ρ(y)
for any x, y ∈ X . For simplicity, we often write ρ(x)±1a as x±1a omitting ρ.
Let Ci

Q(X;A) be as before. We give the coboundary operators by

d1f(x, y) = y−1
(
f(x) + xf(y)− f(y)

)
− f(x ∗ y),

d2g(x, y, z) = (y ∗ z)−1g(x, z) − z−1g(x, y) + (y ∗ z)−1
(
(x ∗ z)− 1

)
g(y, z)

− g(x ∗ y, z) + g(x ∗ z, y ∗ z),

for f ∈ C1
Q(X;A) and g ∈ C2

Q(X;A). We define the second quandle cohomol-

ogy group by H2
Q(X;A) = (kernel d2)/(image d1).

Problem 5.8 Compute H2
Q(X;A) for each X -module A.

Remark This cohomology group might be isomorphic to the cohomology
group of a quandle space of X (see a remark on Problem 5.4) with coefficients
in the local system corresponding to the X -module A.

For an X -module A, each α ∈ H2
Q(X;A) gives an extension A → Y → X ,

where Y = A×X , which forms a quandle with the binary operation given by
(a1, x1) ∗ (a2, x2) =

(
x−1

2 (a1 + x1a2 − a2) + φ(x1, x2), x1 ∗ x2

)
using a 2-cocycle

φ representing α.

Problem 5.9 Let the notation be as above. Then, extending the definition of
the quandle cocycle invariant, define a knot invariant associated with α, which
is, roughly speaking, an invariant obtained by counting representations of a
knot quandle Q(K) to X with information whether each representation can
lift to a representation Q(K)→ Y .

5.5 Quantum quandles

Problem 5.10 (M. Polyak) Define a quantum quandle.

Remark A quantum group is a quantization of a group, in the sense that
it can be regarded as a non-commutative perturbation of a (certain) function
algebra on a group. It is a problem to formulate an appropriate quantization
of a quandle.

5.6 Rack (co)homology

(C. Rourke, B. Sanderson) A rack has the same definition as a quandle, except
that axiom (1) is omitted. Quandles are thus a special class of racks. There is
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a naturally defined classifying space for a rack (in fact a semi-cubical complex),
the rack space, and hence both homology and cohomology groups are defined.
These can be used to define invariants of (framed) links [122, 123, 124]. Re-
garding a quandle as a rack we have two definitions of cohomology which are
closely related. Indeed the cochain group for quandle cohomology is a subgroup
of that for rack cohomology with the definition of coboundary unchanged.

Problem 5.11 (C. Rourke, B. Sanderson) Is there a natural quandle space
whose cohomology groups are the quandle cohomology groups?

Remark The quandle cochain groups do not correspond to setting the rack
cochains to be zero on a subcomplex of the rack space. Thus the first guess
that the quandle space is obtained by quotienting a certain subcomplex is false.

There is an anologous problem of classification and computation of (co)homology
groups for racks as for quandles. One particular interesting question is the fol-
lowing:

Conjecture 5.12 (R. Fenn, C. Rourke, B. Sanderson) H3(Rp) ∼= Z ⊕ Z/pZ
for p prime.

Remark The conjecture is equivalent to HQ
3 (Rp) ∼= Z/pZ for p prime. This

has been verified for p ≤ 7 (see table 5) and the rack version has been verified
(again for p ≤ 7) by Maple calculation (Rourke and Sanderson). A direct
proof (without using a computer calculation) has been found for p = 3. The
conjecture is consistent (indeed suggested by) the calculation of T. Mochizuki
[284] that HQ

3 (Rp; Z/pZ) ∼= Z/pZ.
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6 Braid group representations

For n = 1, 2, . . . , the braid group Bn is the group generated by σ1, . . . , σn−1

modulo the relations:

• σiσj = σjσi if |i− j| > 1,

• σiσjσi = σjσiσj if |i− j| = 1.

6.1 The Temperley-Lieb algebra

For τ ∈ C, the Temperley-Lieb algebra TLn(τ) is the associative C-algebra
generated by 1, e1, . . . , en−1 modulo the relations:

• eiej = ejei if |i− j| > 1,

• eiejei = ei if |i− j| = 1,

• eiei = τei .

We will simply write TLn , where τ is understood. There is a map from Bn to
TLn given by

σi 7−→ A + A−1ei,

σ−1
i 7−→ A−1 + Aei,

where A ∈ C is such that τ = −A2 −A−2 .

These definitions can be motivated in terms of tangle diagrams in R× I . These
are similar to knot diagrams, except that they can include arcs with endpoints
on R × {0, 1}. Two tangles are considered the same if they are related by a
sequence of isotopies and Reidemeister moves of the second and third type. The
generators of Bn and TLn can be defined to be the tangle diagrams suggested
by Figure 17. The arcs of these diagrams have endpoints

{1, 2, . . . , n} × {0, 1}.

The product ab of two such diagrams a and b is obtained by placing a on top
of b and then shrinking the result vertically to the required height. The third
relation in the Temperley-Lieb algebra allows one to delete a closed loop at the
expense of multiplying by τ . Using these definitions, the map from Bn to TLn

is given by resolving all crossings using the Kauffman skein relation.

Chapter 6 was written by S.J. Bigelow.
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Figure 17: The generator σ3 of B5 (the left picture) and the generator e3 of TL5 (the
right picture).

Problem 6.1 ([188, Problem 3]) Is the representation of the braid group
inside the Temperley-Lieb algebra faithful?

Remark We are mostly interested in the case τ is a transcendental. The
answer is yes for n ≤ 3, and unknown for all other values of n.

The Jones polynomial of the closure of a braid β is a certain trace function of
the image of β inside the Temperley-Lieb algebra. If β ∈ Bn \ {1} maps to the
identity in TLn , and γ ∈ Bn is any braid whose closure is the unknot, then the
closure of βγ would have Jones polynomial one. It should be easy to arrange
for this to be a non-trivial knot. Thus a negative answer to Problem 6.1 would
almost certainly lead to a solution to Problem 1.1.

6.2 The Burau representation

For k = 0, 1, . . . , ⌊n2 ⌋, let V n
n−2k be the vector space spanned by tangle diagrams

in R× I with no crossings and endpoints

{(1, 0), (2, 0), . . . , (n− 2k, 0)} ∪ {(1, 1), (2, 1), . . . , (n, 1)}
modulo the relations:

• a tangle is zero if it contains an edge with both endpoints on R× {0},
• a closed loop may be removed at the expense of multiplying by τ .

Let TLn act on V n
n−2k by stacking tangle diagrams in the usual way. For generic

values of τ , TLn is semisimple and these are its irreducible representations.

We obtain irreducible representations of Bn by taking its induced action on
V n

n−2k . By a result of Long [268], the representation of Bn inside TLn is
faithful if and only if each of these irreducible representations is faithful. Note
that the action of Bn on the one-dimensional space V n

n is never faithful for
n > 2. Also if n > 2 is even then the action of Bn on V n

0 is easily shown to be
unfaithful. The action of Bn on V n

n−2 is the famous Burau representation.
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Problem 6.2 Is the Burau representation of B4 faithful?

Remark The Burau representation of Bn is known to be faithful for n ≤ 3
and not faithful for n ≥ 5 [51].

The representation of B4 in TL4 is faithful if and only if the Burau represen-
tation of B4 is faithful.

Remark The Burau representation of B4 is faithful if and only if a certain
pair of three-by-three matrices generate a free group. The matrices given in [56]
contain a misprint, but their description as words in the generators is correct.

The Burau representation of B4 is faithful if and only if a certain intersection
pairing detects intersection of arcs in the four-times punctured disk [51].

Cooper and Long have explicitly calculated the kernel of the Burau represen-
tation modulo the primes 2, 3 and 5 [95].

Problem 6.3 (S.J. Bigelow) Is the action of B6 on V 6
2 faithful?

Remark The Burau representation of B6 is unfaithful [269]. Thus the rep-
resentation of B6 in TL6 is faithful if and only if the action of B6 on V 6

2 is
faithful.

No approach to this problem is known except for a brute force computer search.
However such a search might find an example more easily than any of the more
subtle approaches to the Burau representation of B4 .

Remark We could also ask whether the action of B5 on V 5
1 is faithful. A

computer search of this representation would be easier because the matrices
involved are smaller (five-by-five instead of nine-by-nine). On the other hand,
this representation is more likely to be faithful, since if the representation of
B6 in TL6 is faithful then so is the representation of B5 in TL5 .

6.3 The Hecke and BMW algebras

We now introduce two algebras which can be defined in a similar way to the
Temperley-Lieb algebra. The Hecke algebra is the set of formal linear combina-
tions of braids modulo the relation:

A −A−1 = (A2 −A−2) ,
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where A ∈ C. The BMW algebra is the set of formal linear combinations of
tangles whose edges have endpoints {1, 2, . . . , n}×{0, 1}, modulo the relations:

+ = m


 +




= l ,

where m, l ∈ C. See [300] and [58] for an analysis of the BMW algebra. The
Temperley-Lieb algebra can be embedded into the Hecke algebra, which in turn
can be embedded into the BMW algebra.

These algebras are semisimple for generic values of their parameters. The irre-
ducible representations of the BMW algebra correspond to partitions of n− 2k
for k = 0, 1, . . . , ⌊n2 ⌋. The irreducible representations of the Hecke algebra corre-
spond to partitions of n. The irreducible representations of the Temperley-Lieb
algebra correspond to partitions of n into two parts.

Lawrence [240] has used a topological construction to obtain the irreducible
representations of the Hecke algebra. The construction uses the definition of
the braid group as the mapping class group of a punctured disk to obtain an
action on the homology of a related space.

Problem 6.4 (S.J. Bigelow) Generalise Lawrence’s construction to obtain
the irreducible representations of the BMW algebra.

Remark Zinno [413] has shown how to obtain the representation of the BMW
algebra corresponding to the partition of n− 2 into one part.

Problem 6.5 (S.J. Bigelow) Find a larger family of irreducible representa-
tions of Bn which includes those coming from the BMW algebra.

Remark This might be defined using tangles and some more complicated
relations, or by generalising Lawrence’s approach.

6.4 Other problems

Problem 6.6 Classify all irreducible representations of Bn .
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Remark This is probably impossibly hard. However it seems that interesting
partial results are possible. Formanek [126] has classified all irreducible complex
representations of Bn having degree at most n− 1.

Problem 6.7 (S.J. Bigelow) Is there a faithful representation of Bn into a
group of matrices over Q̄?

Remark There is a faithful representation of B3 into GL(2, Z). The problem
is open for all n ≥ 4.

There is a faithful representation of Bn into a group of matrices over Z[q±1, t±1].
Krammer’s proof of this fact [229] works when t is assigned any value between
0 and 1. However it is not known whether there is an algebraic value of q for
which the representation remains faithful.
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7 Quantum and perturbative invariants of 3-mani-
folds

7.1 Witten-Reshetikhin-Turaev invariants and quantum invari-
ants

Witten [403] proposed that, for a semi-simple compact Lie group G and a
positive integer k , a topological invariant of a closed oriented 3-manifold M is
given by the path integral

ZG
k (M) =

∫
e2π

√
−1kCS(A)DA, (36)

which is a formal integral over gauge equivalence classes of connections A on
the trivial G bundle on M . Here, the Chern-Simons functional CS : A → R is
defined by

CS(A) =
1

8π2

∫

M
trace(A ∧ dA +

2

3
A ∧A ∧A), (37)

for a connection A, regarding it as a g-valued 1-form on M , where g denotes
the Lie algebra of G.

Motivated by Witten’s proposal, the quantum G invariant τG
r (M) has been

defined and studied, first by Reshetikhin and Turaev [346] and later by other
researchers, where we put r = k + h

∨

with the dual Coxeter number h
∨

of g.
The quantum invariant is also called the Witten-Reshetikhin-Turaev invariant.
For example, when M is obtained from S3 by integral surgery along a framed

knot K with a positive framing, τ
SU(2)
r (M) for r ≥ 3 and τ

SO(3)
r (M) for odd

r ≥ 3 are given by

τSU(2)
r (M) =

( r−1∑

n=1

[n]Qsl2;Vn(U+)
)−1

r−1∑

n=1

[n]Qsl2;Vn(K)
∣∣∣
q=exp(2π

√
−1/r)

,

τSO(3)
r (M) =

( ∑

0<n<r
r is odd

[n]Qsl2;Vn(U+)
)−1 ∑

0<n<r
r is odd

[n]Qsl2;Vn(K)
∣∣∣
q=exp(2π

√
−1/r)

,

where [n] = (qn/2 − q−n/2)/(q1/2 − q−1/2), and U+ denotes the trivial knot
with +1 framing, and Qsl2;Vn(K) denotes the quantum invariant of K associ-
ated with the irreducible n-dimensional representation of the quantum group
Uq(sl2); for details see [221] (see also [321] for the notation). It is known [221]
that

τSU(2)
r (M) =

{
τ

SU(2)
3 (M)τ

SO(3)
r (M) if r ≡ 3 mod 4,

τ
SU(2)
3 (M)τ

SO(3)
r (M) if r ≡ 1 mod 4,
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where τ
SU(2)
3 (M) is an invariant determined by the cohomology ring and the

linking pairing of M , which is equal to zero for some M (see (38)). For details
on quantum G invariants, see e.g. [321] and references therein.

Problem 7.1 (see [220, Problem 3.108]) Does there exist a closed 3-manifold

M , other than S3 , such that τ
SO(3)
r (M) = τ

SO(3)
r (S3) for all odd r ≥ 3?

Remark (see [220, Remark on Problem 3.108]) Suppose that τ
SO(3)
r (M) =

τ
SO(3)
r (S3) for a closed 3-manifold M and all odd r ≥ 3. If the Betti number

of M was positive, τ
SO(3)
r (M) is divisible by q − 1. Hence, M is a rational

homology 3-sphere. We have that τSO(3)(M) = τSO(3)(S3). Since the leading
two coefficients of τSO(3)(M) are given by the order of the first homology group
and Casson invariant of M , M is an integral homology 3-sphere with Casson
invariant zero.

Note that τ
SO(3)
r

(
L(65, 8)

)
= τ

SO(3)
r

(
L(65, 18)

)
for all odd r ≥ 3; see [406].

Remark There is a center in the mapping class group of the closed surface of
genus 2, shown below.

A mutation of a 3-manifold M is defined to be a 3-manifold obtained from M
by cutting along a separating closed surface of genus 2 in M and by gluing

again after twisting by the above map. It is shown in [205] that τ
SO(3)
r (M)

does not depend on a change by any mutation of M .

Problem 7.2 (S.K. Hansen, T. Takata) Find pairs of non-homeomorphic
rational homology 3-spheres that can be distinguished by their quantum G
invariants τG

r or their quantum PG invariants τPG
r for some level r and some

simply connected compact simple Lie group G but not by their LMO invariants.

Remark (S.K. Hansen, T. Takata) For example, the LMO invariants of the
lens spaces L(25, 4) and L(25, 9) are equal [37], but their quantum SU(2)
invariants for r = 5 are not equal.
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Problem 7.3 (S.K. Hansen, T. Takata) Do the family of quantum G invari-
ants τG

r or the family of quantum PG invariants τPG
r , G running through all

simply connected compact simple Lie groups and r running through all allowed
levels, separate rational homology 3-spheres? How well do these families of
invariants separate closed oriented 3-manifolds?

Remark (S.K. Hansen, T. Takata) It is well known that the LMO invariant
is a weak invariant outside the class of rational homology 3-spheres; see the
last remark on Problem 11.1. On the contrary there are 3-manifolds with
arbitrary high first Betti number and non-trivial quantum SU(2) invariants as
the example of Seifert manifolds shows. We note that the non-triviality of the
invariants of Seifert manifolds e.g. follows from the fact that these invariants
have non-trivial asymptotic expansion in the limit of large quantum level; see
[354], [168], and Section 7.2. It is likely to believe, e.g. from the asymptotic
expansion conjecture of Andersen, see Conjecture 7.7, that the quantum G
invariants are quite strong invariants also outside the class of rational homology
3-spheres. It is known, however, that the family of quantum SU(n) invariants,
n running through all integers > 1, is not a complete invariant, that is to say
that this family of invariants can not separate all closed oriented 3-manifolds, cf.
[256]. It is still an open question if this is also the case if we include the quantum
invariants for all the other simply connected compact simple Lie groups.

Problem 7.4 Find a 3-dimensional topological interpretation of quantum in-
variants of 3-manifolds.

Remark Certain special values have some interpretations. For a closed ori-
ented 3-manifold M ,

τ
SU(2)
3 (M) =

{
0 if there exists α ∈ H1(M ; Z/2Z) with α3 6= 0,
√

2
rank H1(M ;Z/2Z)

e−β(M)π
√
−1/4 otherwise,

(38)

where β(M) denotes the Brown invariant. Further, for a closed oriented 3-
manifold M ,

τ
SU(2)
4 (M) =

∑

σ

e−µ(M,σ)·3π
√
−1/8,

where the sum runs over all spin structures σ of M and µ(M,σ) denotes the
Rokhlin invariant of a spin structure σ of M . For details, see [221].

It is known [291] that, for any rational homology 3-sphere M and any prime
p > |H1(M ; Z)|,

|H1(M ; Z)| · τSO(3)
p (M) ≡

( |H1(M ; Z)|
p

)(
1 + 6λ(M)(ζ − 1)

)
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mod (ζ − 1)2 in Z[ζ], putting ζ = e2π
√
−1/p , where λ(M) denotes the Casson-

Walker invariant of M and
(

·
p

)
denotes the Legendre symbol.

Remark The Chern-Simons path integral (36) by Witten [403] gives a 3-
dimensional physical interpretation of a quantum invariant of 3-manifolds. His-
torically speaking, the quantum invariants of 3-manifolds were introduced, mo-
tivated by Witten’s Chern-Simons path integral.

Conjecture 7.5 [158] For non-vanishing τG
r (M), the absolute value |τG

r (M)|
only depends on the fundamental group π1(M).

7.2 The asymptotic expansion conjecture

The perturbative expansion of the Chern-Simons path integral (36) is given by
the semi-classical approximation and its higher loop perturbations. Roughly
speaking, the semi-classical approximation is obtained from the path integral
by ignoring the contribution from the third order term of the Chern-Simons
functional, and the higher loop perturbation contributions are the corrections
to this semi-classical contribution.

To the best of our knowledge, there is today, no complete perturbative treatment
of the Chern-Simons quantum field theory available, even from a mathematical
physics point of view. In the following few paragraphs we shall try to outline
the main activities seen so far in this direction.

The the first formula for the semi-classical approximation of the Chern-Simons
path integral was given by Witten in [403], describing it as a sum of contribu-
tions, one for each gauge equivalence classes of flat connection, involving the
Chern-Simons value, the Reidemeister torsion and a certain spectral flow for
each such gauge equivalence class. To test this prediction, Freed and Gompf
[127] made for certain Seifert fibered manifolds some computer studies of the

large k behavior of Z
SU(2)
k (M) and based on these calculations and further dis-

cussion of the semi-classical approximation of the path integral, they proposed
the following formula for the semi-classical approximation (r = k + 2)

Z
SU(2)
k (M) ∼

r→∞
e−3π

√
−1(1+b1(M))/4

×
∑

[A]

e2π
√
−1rCS(A)r(h1

A−h0
A)/2e−2π

√
−1(IA/4+h0

A/8)τM (A)1/2,

The first version of Section 7.2 was written by T. Ohtsuki, following seminar talks given
by J.E. Andersen. Based on it, J.E. Andersen wrote this section.
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where the sum is over the gauge equivalence classes of flat connections A. Let
us explain the quantities involved in this expression and in which cases one can
make sense of this expression as it stands.

For any flat connection A, we have the cohomology groups H i(M,dA) of the
covariant derivative complex dA : Ω⋆(M ; g) → Ω⋆+1(M ; g) given by dAf =
df + [A, f ], and hi

A is the dimension of H i(M,dA). Further associated to this

complex we have the Reidemeister torsion τM(A) ∈ ⊗i

(
detH i(M,dA)

)(−1)i ∼=(
det H0(M,dA) ⊗

(
detH1(M,dA)

)∗)2
(by Poincaré duality). If one now as-

sumes that all the gauge equivalence classes of flat connections A are isolated,
in fact Freed and Gompf assumed H1(M,dA) = 0, so that the above sum is
finite and such that the square root of the Reidemeister torsion τM (A)1/2 is
a well-defined number (once a volume on H0(M,dA) has been fixed, but for
irreducible connections H0(M,dA) = 0).

The quantity IA ∈ Z/8Z denotes the spectral flow of the operator
(

⋆dAt
−dAt

⋆

dAt
⋆ 0

)

on Ω1(M ; g) ⊗ Ω3(M ; g), where At is a path of connections running from the
trivial connection to A. They also looked at some examples where H1(M,dA) 6=
0 and checked the overall growth predicted by the above formula.

Following this Jeffrey [184] proposed the following more general interpretation
of the square root of Reidemeister torsion in the cases where the connections
are not isolated: Assume that the moduli space of flat connections M on M is
smooth and that the tangent space at each equivalence class of flat connection
A equals H1(M,dA). Since H0(M,dA) ⊂ g the invariant inner product we have
chosen on g induces a volume element on H0(M,dA). In total this means that
the square root of the Reidemeister torsion induces a measure on the moduli
space when we pair it with the induced volume element on H0(M,dA) divided
by the order of the center of G and one arrives at (r = k + h

∨

)

ZG
k (M) ∼

r→∞
e−π

√
−1(dim G)(1+b1(M))/4

×
∫

[A]∈M
e2π

√
−1rCS(A)r(h1

A−h0
A)/2e−2π

√
−1(IA/4+(h0

A+h1
A)/8)τM (A)1/2.

For some mapping tori of genus 1 surfaces and lens spaces, Jeffrey verified
this form of the semi-classical approximation. Garoufalidis [134] independently
proved the semi-classical approximation for lens spaces and studied in various
examples the growth rate predicted by these approximations. Rozansky [352]
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proposed a further refined version of the above semi-classical approximation,
and offered calculations for a very large class of Seifert fibered manifolds as
evidence. He proposed to divide the volume element on H0(M,dA) by the
volume of the stabilizer of A, and to use the resulting quantity paired with the
square root of the Reidemeister torsion as the measure on M (generalizing the
division by the order of the center above). This gave a natural explanation of
factors not accounted for in both the work of Freed and Gompf and the work of
Jeffrey. He also proposed corrections to the formula for the growth rate of the
invariant (i.e. the power of r in the above), in cases where not all directions in
H1(M,dA) are tangent to paths of flat connections (see [352] and [353]).

Axelrod and Singer [21, 22] (see also [226]) considered the higher loop contri-
butions in the perturbation expansion and proposed the following:

ZG
k (M) ∼

k→∞

∫

[A]∈M

(
semi-classical
approximation

)
×exp




∞∑

l=1

clk−l

(2l)!(3l)!

∑

e(Γ)=−l

ZΓ(M,A)

|Aut(Γ)|




(39)
for some scalar c, where the right sum runs over connected trivalent graphs Γ
whose Euler number is equal to −l , and |Aut(Γ)| denotes the order of the group
of automorphisms of Γ. Further, in the case where A is acyclic or when A ∈M
is contained in a smooth component, Axelrod and Singer was able to construct
ZΓ(M,A) as a topological invariant of (M,A); roughly speaking, it is given as
follows in the acyclic case. We identify the set of connection around A with
Ω1(M, g). The second order part of the Chern-Simons functional gives a bilinear
form on Ω1(M, g)⊗2 , and it determines a 2-form L ∈ Ω2(M ×M, g⊗ g) and its
“inverse”. Further, the third order part of the Chern-Simons functional gives a
trilinear form T on Ω1(M, g)⊗3 . We obtain ZΓ(M,A) by contracting L⊗(3l) by
T⊗(2l) “along the trivalent graph Γ” (roughly regarding L as in Ω1(M, g)⊗2 );
we determine the action of T⊗(2l) on L⊗(3l) ∈ Ω1(M, g)⊗(6l) by putting copies
of L on 3l edges of Γ and putting copies of T on 2l vertices of Γ. For a precise
(mathematical) construction (and its topological invariance) of ZΓ(M,A), see
[21, 22].

From the mathematical viewpoint we regard ZG
k (M) as

ZG
k (M) =

τG
k+h∨ (M)

τG
k+h

∨ (S1 × S2)

for the quantum G invariant τG
r (M). Then, the asymptotic expansion of

ZG
k (M) is predicted by the semi-classical approximation and its higher loop

corrections stemming from a perturbative expansion of the Chern-Simons path
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integral, explained above in some cases. This leads us to the following somewhat
vague conjecture.

Conjecture 7.6 (The perturbative expansion conjecture) The asymptotic
expansion of ZG

k (M) of a closed oriented 3-manifold M is given by

ZG
k (M) ∼

k→∞
e−π

√
−1(dim G)(1+b1(M))/4

×
∫

[A]∈M
e2π

√
−1rCS(A)r(h1

A−h0
A)/2e−2π

√
−1(IA/4+(h0

A+h1
A)/8)τM (A)1/2

× exp




∞∑

l=1

clk−l

(2l)!(3l)!

∑

e(Γ)=−l

ZΓ(M,A)

|Aut(Γ)|


 ,

putting r = k + h
∨

, where the right hand side can be given in the mathemat-
ical viewpoint in certain cases, as mentioned above, but which needs further
interpretation in general.

Remark The semi-classical approximation stated above (the upper two lines
in the above formula), has been confirmed for lens spaces (first partially [127])
and then by [184, 134], for certain mapping tori of diffeomorphisms of a torus
[184], and for all finite order mapping tori of automorphisms of any closed
orientable surface of genus at least 2 [6]. For a large class of Seifert fibered
manifolds [353] and [354] offered calculations which provided evidence that the
phases in the semi-classical approximation is given by the Chern-Simons invari-
ants and the measure is given by the square root of the Reidemeister torsion
as explained above. Also, expressions for the higher loop corrections was of-
fered. Later the necessary analytic estimates was provided in [168] so as to
confirm this. See also the discussion below. For now, there are no examples of
hyperbolic manifolds, where parts of the above conjecture has been confirmed.

For other versions of Conjecture 7.6, see [220, Problem 3.108], [136].

The formula in Conjecture 7.6 might not give an exact description of the asymp-
totic behavior of ZG

k (M) even in the semi-classical part, neither is it in all cases
well-defined. Moreover, it might be difficult at present to calculate the concrete
value of the higher loop corrections in the asymptotic expansion of Conjecture
7.6 for given M , A, and Γ. Nor do we have definitions for these terms, which
has been proven to be well defined topological invariants in all cases.

The following conjecture offers a kind of reverse viewpoint on Conjecture 7.6,
avoiding such ambiguities and difficulties.
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Conjecture 7.7 (The asymptotic expansion conjecture, J.E. Andersen [6])
Let {c0 = 0, c1, · · · , cm} be the set of values of the Chern-Simons functional
of flat G connections on a closed oriented 3-manifold M . There exist dj ∈ Q,
Ĩj ∈ Q/Z, vj ∈ R+ , and ae

j ∈ C for j = 0, 1, · · · ,m and e = 1, 2, 3, · · · such

that (r = k + h
∨

)

ZG
k (M) ∼

r→∞

m∑

j=0

e2π
√
−1rcjrdjeπ

√
−1Ĩj/4vj

(
1 +

∞∑

e=1

ae
jr

−e
)
,

that is, for all E = 0, 1, 2, . . . , there exists a constant cE such that

∣∣∣ZG
k (M)−

m∑

j=0

e2π
√
−1rcjrdjeπ

√
−1Ĩj/4vj

(
1 +

E∑

e=1

ae
jr

−e
)∣∣∣ ≤ cErd−E−1

for all r = 2, 3, 4, · · · . Here, d = max{d0, · · · , dm}.

Remark (J.E. Andersen) If such an expansion in the above conjecture exists,
then cj , dj , Ĩj , vj , and ae

j are uniquely determined by ZG
k+2(M) for k =

0, 1, 2, 3, 4, · · · .

Problem 7.8 (J.E. Andersen) If such an expansion exists, understand how
it is related to the expansion of Ohtsuki and the expansion of Habiro.

It will of course be important to establish, that an expansion of this type ex-
ists, however, of far greater importance will be to give independent topological
meaning to the many resulting new invariants, e.g. to prove that the phases are
the Chern-Simons values cj . From the discussion above on the semi-classical
approximation we derive the following conjecture:

Conjecture 7.9 (Topological interpretations of the dj ’s) Let Mj be the
union of components of the moduli space of flat connections M which has
Chern-Simons value cj . Then

dj =
1

2
max

A∈Mj

(h1
A − h0

A),

where max here means the maximum value that (h1
A−h0

A) assumes on a Zariski
open subset of Mj .

Note that this conjecture might be rather optimistic, and may only hold in the
non-degenerate cases. However, we do not know of any cases where it fails (see
[136]).
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Remark (J.E. Andersen) The special max proposed in Conjecture 7.9 is
certainly needed, as shown by the example of the mapping torus of the diffeo-
morphism −Id of a torus. The quantum SU(2) invariant of this manifold is
easily seen to be r−1, since −Id is represented trivially for all levels, however,
there are flat SU(2) connections for which (h1

A − h0
A) > 2.

The Conjecture 7.9 implies the following growth rate.

Conjecture 7.10 (The growth rate conjecture) Let d = max{d0, . . . , dn}.
Then |ZG

r (M)| = O(rd).

It is well known that the quantum invariants only grows like r to some power.
The power is bounded from above by some simple function (depending on G)
of the Heegaard genus of the manifold.

Remark (J.E. Andersen)

(1) Suppose that M is a closed 3-manifold satisfying that τG
r (M) = τG

r (S3)
for all r . If the growth rate conjecture 7.10 is true for the group G, then there
is no non-central representation of π1(M) to G.

(2) Kronheimer and Mrowka have proposed a program using Seiberg-Witten
theory and Floer homology to establish that any 3-manifold M obtained from
S3 by +1 surgery along a non-trivial knot K has a non-trivial (and therefore
non-abelian) representation of π1(M) to SU(2). Suppose that this is the case
and the growth rate conjecture 7.10 is true. Then, JK,c = JU,c for all c =
1, 2, · · · if and only if K is the trivial knot U , where JK,c denotes the colored
Jones polynomial of a knot K with a color c.

At this time we do not know of a topological interpretation of the values of Ĩj

and vj which makes sense in all cases. Let us simply just propose the following

Conjecture 7.11 There is a construct of the right measure, say τM (A)1/2

for A ∈ Mi , from the square root of the Reidemeister torsion generalizing the
non-degenerate case explained above and such that

eπ
√
−1Ĩj/4vj =

∫

A∈Mi

eπ
√
−1(−2IA+h0

A+h1
A)/4τM (A)1/2.

Conjectures 7.7 and 7.9 together with Conjecture 7.11 were first proved for
mapping tori of all finite order diffeomorphisms of all surfaces of genus at least
two in [6]. Recently, Conjecture 7.7 was proved for all Seifert fibered spaces in
[168] by supplementing the calculations in [353] and [354] with the need analytic
estimates.
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Example Let us illustrate the asymptotic behavior of the quantum SU(2)
invariant of the lens space L(5, 1) of type (5, 1). For simplicity, we let r be

an odd prime. Since τ
SU(2)
3

(
L(5, 1)

)
= 1, putting ζ = exp(2π

√
−1/r), we have

that

τSU(2)
r

(
L(5, 1)

)
= τSO(3)

r

(
L(5, 1)

)
=

(
5

r

)
ζ−3·5⋆ ζ10⋆ − ζ−10⋆

ζ2⋆ − ζ−2⋆ ,

where k⋆ denotes the inverse of k in Z/rZ. Since τ
SU(2)
r (S1×S2) =

√
r
2/ sin(π

r ),
we have that

Z
SU(2)
r−2

(
L(5, 1)

)
=

τ
SU(2)
r

(
L(5, 1)

)

τ
SU(2)
r

(
S1 × S2

) =

√
2

r
sin

π

r

(
5

r

)
ζ−3·5⋆ ζ10⋆ − ζ−10⋆

ζ2⋆ − ζ−2⋆ .

(40)
On the other hand, as in [184], the semi-classical approximation is given as
follows. The lens space L(5, 1) has three flat connections An (n=0,1,2); each
An is determined by the representation of π1

(
L(5, 1)

) ∼= Z/5Z to SU(2) which

takes a generator of Z/5Z to

(
e2π

√
−1n/5 0

0 e−2π
√
−1n/5

)
. As in [184], we have

that CS(An) = n2/5, h0
An

= 1, h1
An

= 0, τM (An)1/2 = 4
√

2√
5

sin2 2πn
5 , and

In(mod 4) = 1 if n < 5/2, and −1 if n > 5/2. Hence,

Z
SU(2)
r−2

(
L(5, 1)

)
∼

r→∞
2

√
−2

5r

∑

n=0,1,2

e2π
√
−1rn2/5 sin2 2πn

5
, (41)

noting that the notatin of lens spaces in [184] is equal to the notation of their
mirror images in [221, 134].

The sequence of τ
SU(2)
r

(
L(5, 1)

)
for odd primes r splits into four subsequences

according to r ≡ ±1,±3 mod 10, and each subsequence can be approximated
by a function of a polynomial order. Let us describe the subsequence, say, with
r ≡ −1 mod 10, as follows. Since 10⋆ = (r + 1)/10, we calculate (40) as

Z
SU(2)
r−2

(
L(5, 1)

)
=

√
2

r
sin

π

r
e−6π

√
−1/5r eπ

√
−1/5r − ω−1e−π

√
−1/5r

eπ
√
−1/r − e−π

√
−1/r

∼
r→∞

1− ω−1

√
−2

r−1/2,

putting ω = exp(2π
√
−1/5). On the other hand, the right hand side of (41) is

calculated as

2

√
−2

5r

(
e−2π

√
−1/5 sin2 2π

5
+ e2π

√
−1/5 sin2 4π

5

)
=

ω − 1√
−2

r−1/2,
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noting that
√

5 = 1 + 2ω + 2ω−1 (Gaussian sum). Therefore, it was verified
that the semi-classical approximation is correct for this subsequence.

This is related to the perturbative invariant

τSO(3)
(
L(5, 1)

)
= q−3/5 q1/10 − q−1/10

q1/2 − q−1/2
∈ Q[[q − 1]]

as follows. We regard it as a holomorphic function of q in a suitable domain.

The asymptotic behavior of τ
SO(3)
r

(
L(5, 1)

)
, say, for the above mentioned sub-

sequence, can be presented by using this holomorphic function around q1/5 = ω .

Example It is known, see [243, 247], that

τSO(3)
r

(
Σ(2, 3, 5)

)
=

1

1− ζ

r−1∑

n=0

ζn(1− ζn+1)(1 − ζn+2) · · · (1− ζ2n+1)

for Poincare homology 3-sphere Σ(2, 3, 5), where we put ζ = exp(2π
√
−1/r).

It is an exercise to compute the asymptotic behaviour of Z
SU(2)
r−2

(
Σ(2, 3, 5)

)

as r → ∞ related to Conjecture 7.7, and to formulate a relation with the
perturbative invariant given by

τSO(3)
(
Σ(2, 3, 5)

)
=

1

1− q

∞∑

n=0

qn(1 − qn+1)(1 − qn+2) · · · (1− q2n+1).

7.3 The volume conjecture

It is known (see Conjecture 7.10 and its remark) that the asymptotic behaviour

of the quantum SU(2) invariant τ
SU(2)
N (M) as N →∞ is a polynomial growth

in N . Nevertheless, this asymptotic behaviour might be regarded as an expo-
nential growth in the sense of the following conjecture, which is a 3-manifold
version of the volume conjecture (Conjecture 1.19).

Conjecture 7.12 (H. Murakami [294]) For any closed 3-manifold M ,

2π
√
−1 · o-lim

N→∞

log τ
SU(2)
N (M)

N
= CS(M) +

√
−1vol(M),

where vol(M) and CS(M) denote the hyperbolic volume23 and the Chern-
Simons invariant24 of M respectively, and o-lim denotes the “optimistic limit”
introduced in [294].

23When M is not hyperbolic, we define vol(M) to be v3||M || , where ||M || is the simplicial
volume and v3 is the hyperbolic volume of the regular ideal tetrahedron.

24It is also conjectured (see Problem 7.16) that there exists an appropriate definition of
CS(M) of any closed 3-manifold M , though CS(M) is defined only for hyperbolic 3-manifolds
M at present.
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Remark As mentioned in [294] the “definition” of the optimistic limit is not
rigorous yet, because there is some ambiguity in the present definition, where
formal approximation, such as (4) and (5), are used. It is a problem to find a
rigorous formulation of the optimistic limit.

Remark It is shown [294], by using formal approximations, that Conjecture
7.12 is “true” for closed 3-manifolds obtained from S3 by surgery along the
figure-eight knot.

Remark R. Benedetti gave another formulation of the volume conjecture by
using quantum hyperbolic invariants; see Conjecture 7.25.

Remark The statement of Conjecture 7.12 should extend for knot (link) com-
plements M , which should be related to the volume conjecture for knots (Con-
jecture 1.21).

Remark By formally applying the (infinite dimensional) saddle point method
to the Chern-Simons path integral, the value (42) appears at a critical point
of the Chern-Simons functional. This might give a physical explanation of
Conjecture 7.12. Can we justify it in mathematics? There is an approach,
by using knotted trivalent graphs (see Conjecture 12.7), to justify the Chern-
Simons path integral mathematically, which might be helpful to apply the saddle
point method to it rigorously.

Problem 7.13 (H. Murakami) Calculate o-lim
log τ

SU(2)
N (M)

N for Seifert fibered
3-manifolds M .

Remark When M is a mapping torus of a homeomorphism of a surface, a
quantum invariant of M can be presented by the trace of the linear map on the
quantum Hilbert space associated to the homeomorphism. Such a presentation

might be useful to compute the asymptotic behaviour of τ
SU(2)
N (M).

Remark When we choose a simplicial decomposition of M , (the absolute
value of) its quantum invariant can be expressed by using quantum 6j -symbols.

The computation of the asymptotic behaviour of τ
SU(2)
N (M) might be reduced

to the computation of limits of quantum 6j -symbols. J. Roberts [347] showed
that a limit of classical 6j -symbols is given by the Euclidean volume of a tetra-
hedron. Further, J. Murakami and M. Yano [302] recently showed that a limit
of quantum 6j -symbols is related to the hyperbolic volume of a tetrahedron via
formal approximation such as (4) and (5).
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Problem 7.14 (D. Thurston) Find a series of invariants of a 3-manifold (de-
pending on roots of unity) that grows as its hyperbolic volume (or its simplicial
volume).

Problem 7.15 (D. Thurston) Find a correct generalization of the volume
conjecture to other non-compact Lie groups.

Remark The volume conjecture is related to the SL(2, C) Chern-Simons the-
ory, which (formally) deduces the hyperbolic volume and the Chern-Simons
invariant. It is a problem to find (or formulate) such invariants of 3-manifolds
for other non-compact Lie groups.

The Chern-Simons functional CS(A) ∈ C of a SL(2; C) connection A on a
closed 3-manifold M is defined by the formula (37), where we regard A in the
formula as a sl(2; C)-valued 1-form on M in this case. Since a gauge transfor-
mation of A changes CS(A) by an integer, CS([A]) of the gauge equivalence
class of A is defined to be in C/Z. The Chern-Simons invariant CS(M) ∈ R/Z
and the volume vol(M) ∈ R>0 of a closed hyperbolic 3-manifold M is given
by25

CS([A0]) = CS(M) +
√
−1vol(M), (42)

where [A0] is the gauge equivalence class of a SL(2; C) flat connection A0 asso-
ciated to the conjugacy class of a holonomy representation π1(M)→ SL(2; C)
of the hyperbolic structure on M . Further, when M is the complement of a
hyperbolic knot (link) in a closed 3-manifold, CS(M) can be defined similarly.

Problem 7.16 (S. Morita [228]) Define the Chern-Simons invariant CS(M)
as a topological invariant of any closed oriented 3-manifold M , and of any knot
(link) complement M in a closed 3-manifold.

This problem includes two problems: to define CS(M) (topologically or com-
binatorially) as a topological invariant, and to define it for non-hyperbolic 3-
manifolds.

Remark The hyperbolic volume (which is a counterpart of the Chern-Simons
invariant) has a definition as a constant multiple of the simplicial volume, which
is combinatorial, and can be applied, not only for hyperbolic 3-manifolds, but
also for any other 3-manifolds.

25The Chern-Simons invariant was introduced by Chern and Simons [85] as an invariant of
compact (4n− 1)-dimensional Riemannian manifolds. For hyperbolic 3-manifolds, Meyerhoff
[282] extended CS(M) for M with cusps. See also [310, 96] for CS(M) of hyperbolic 3-
manifolds M as a counterpart of vol(M).
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Remark (S. Kojima) The Chern-Simons invariant CS(M) of non-hyperbolic
3-manifolds M should be defined satisfying the following two requirements.
One is that CS(−M) = −CS(M), where −M denotes M with the opposite
orientation. The other is the requirement explained as follows. Let K be a
hyperbolic knot in a 3-manifold N . Then, it is known that NK;(p,q) has a
hyperbolic structure except for finitely many (p, q), where NK;(p,q) denotes the
3-manifold obtained from N by Dehn surgery along the slope of type (p, q), and
that such hyperbolic structures can be obtained in a deformation space of the
hyperbolic structures of N−K parameterized by a natural complex parameter,
which can be presented by two real parameters p and q . Moreover, the function

CS(M) +
√
−1vol(M) (43)

is a holomorphic function of the complex parameter. Note that vol(M) can
extend for non-hyperbolic 3-manifolds M by redefining it to be a constant
multiple of the simplicial volume ||M ||. CS(M) should be defined such that,
for appropriate26 knots K in any closed 3-manifold N , the function (43) on
the family {NK;(p,q)}p,q can extend to a holomorphic function of a complex
parameter presented by p and q appropriately.

Problem 7.17 (T. Ohtsuki) Give a “complex structure” to the set of 3-
manifolds. More precisely, find an embedding (or, an immersion) of the set
of 3-manifolds to some complex variety such that its restriction to the set
{NK;(p,q) | p2 + q2 >> 0} can be extended to a holomorphic map of the above
mentioned complex parameter for any (hyperbolic) knot K in any 3-manifold
N .

We would expect some structures of the set of 3-manifolds such as mentioned in
Problems 7.17 and Problem 10.16. Such structures would yield new viewpoints
in the study of (the set of, and invariants of) 3-manifolds.

Remark As mentioned above, the set {NK;(p,q) | p2 + q2 >> 0} can be em-
bedded in C, on which the function (43) is holomorphic. In this sense, the
infinite family of NK,(p,q) has a “complex structure” around the infinity point
of (p, q). The volume conjecture says that the function (43) would be obtained
as a certain limit of some series of quantum invariants. This suggests that the
above “complex structure” would extend to the whole set of 3-manifolds.

26These knots should include, not only all hyperbolic knots, but also other knots. They
might not include the trivial knot.
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7.4 Quantum hyperbolic invariants of 3-manifolds

The main references for this section are [42, 43, 44], a review being [46]. In [44]
the ideas of sections 7-9 in [43] are developed with some important differences
in the way they are concretized.

Let W be a compact closed oriented 3-manifold, L ⊂W be a non-empty link,
ρ be a flat principal B -bundle on W ; B is the upper triangular Borel subgroup
of SL(2, C). In [43] one constructs a family of “quantum hyperbolic invariants”
(QHI) KN (W,L, ρ) ∈ C, where N > 1 is any odd integer. This consists of two
main steps:

(1) For every triple (W,L, ρ), the construction of so-called D-triangulations
T = (T,H,D), where: (T,H) is a (singular) triangulation of (W,L) such
that each edge has distinct vertices and H contains all the vertices of T ;
the “decoration” D is made of a full simplicial B -1-cocycle representing
ρ on W , a branching (for instance one induced by a total ordering of the
vertices of T ), and an integral charge. For these notions, see [46].

(2) The proof that a suitable state sum HN (T ) does not depend on the choice
of the D-triangulation T up to multiplication by N -th roots of unity, so
that KN (W,L, ρ) = KN (T ) = HN (T )N actually defines an invariant.

The proof of the existence of D-triangulations is difficult essentially due to
strong global constraints in D . The main building-blocks of the state sums
HN (T ) are the “quantum-dilogarithm” 6j -symbols of the N -dimensional cyclic
representations of a quantum Borel subalgebra of Uω(sl(2, C)), where ω =
exp(2πi/N). Kashaev proposed in [195] a conjectural purely topological in-
variant KN (W,L) which should have been expressed by a state sum of this
kind (although in his proposal there were no flat bundles and no notion of
D-triangulation); in fact, KN (W,L) appears as a special case of KN (W,L, ρ)
when ρ is the trivial flat B -bundle on W . The algebraic properties of the
6j -symbols ensure the invariance of KN (T ) up to certain elementary moves on
D-triangulations. Then, the proof of the full invariance of KN (T ) consists in
connecting by such elementary moves any two D-triangulations of (W,L, ρ),
which is not so easy to achieve.

Problem 7.18 (S. Baseilhac, R. Benedetti) Generalize the construction of
the QHI for flat principal G-bundles, for Lie groups G different from B .

Section 7.4 was written by S. Baseilhac and R. Benedetti.
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Remark A basic ingredient of the B -QHI is the relationship between the
cyclic representation theory of a quantum Borel subalgebra of Uω(sl(2, C)),
and flat B -bundles encoded by simplicial full 1-cocycles. This relationship
relies on the theory of quantum coadjoint action of [105], which holds for other
Lie groups such as G = SL(2, C).

Problem 7.19 (S. Baseilhac, R. Benedetti) Fix (W,L) and vary ρ. Study
KN as a function of the bundle, that is as a function defined on the character
variety of W with respect to B : regularity, fibers, and so on.

Remark Denote by z the B -1-cocycle in T that represents ρ. The state sum
KN (T ) is a rational function of the upper diagonal entries of the whole set of
values of z . Moreover, the 6j -symbols are rational functions of the moduli of
the idealized triangulation F̂ (T ) defined below.

Every α ∈ H1(W ; C) leads to two flat B -bundles ρα and ρ′α defined as fol-
lows. The first one is obtained via the natural identification of (C,+) with the
parabolic subgroup Par(B) of B . The second one is obtained by means of the
exponential map of (C,+) onto the multiplicative C∗ , and the identification of
C∗ with the diagonal Cartan subgroup C(B) of B . Similarly, every class in
H1(W ; Z/pZ) leads to a B -bundle by the natural embedding of Z/pZ into the
group S1 ⊂ C∗ .

Problem 7.20 (S. Baseilhac, R. Benedetti) Specialize Problem 7.19 to bun-
dles coming from the ordinary cohomology as above. For real additive ones,
analyze the behaviour of the QHI with respect to Thurston’s norm. Are they
constant on the faces of the corresponding unit sphere ?

Remark The “projective invariance” property of the QHI (see [43, 46]) implies
in particular that they are constant on the rays of H1(W ; R).

Problem 7.21 (S. Baseilhac, R. Benedetti) Understand the ‘phase factor’
(i.e. the ambiguity due to N -th roots of unity) of the state sum HN(T ). Possi-
bly derive from it an invariant for (W,L, ρ) endowed with some extra-structure,
thus refining KN (W,L, ρ).

Remark The phase factor uniquely depends on the branching and the integral
charge in the decoration D . On one hand, it is known that branchings can be
used to encode, for instance, combings, framings, spin structures and so on.
On another hand, combings induce the extra-structure that allows Turaev’s
refinement of Reidemeister torsions.

Geometry & Topology Monographs, Volume 4 (2002)



Problems on invariants of knots and 3-manifolds 487

Problem 7.22 (S. Baseilhac, R. Benedetti) Determine a suitable (2 + 1)
‘decorated’ cobordism theory supporting a (non purely topological) QFT con-
taining the already defined QHI. Study in particular the behaviour of the QHI
with respect to connected sums.

Problem 7.23 (S. Baseilhac, R. Benedetti) Develop a 4-dimensional theory
of QHI based on Turaev’s shadow theory.

Remark A first step should be to determine the right notion of D-shadow
together with a geometric interpretation. In this direction, F. Costantino is
completing his PhD thesis at Pisa, where he shows in particular that ‘branched
shadows’ do encode Spinc structures.

Problem 7.24 (S. Baseilhac, R. Benedetti) Determine the actual relation-
ship between KN (S3, ·) and the coloured Jones polynomial JN (·) (evaluated at
ω = exp(2iπ/N) and normalized by JN (unknot) = 1), as functions of links.

Remark (1) In [296] it is shown that JN may be defined by means of usual
(1, 1)-tangle presentations (as for the Alexander polynomial), using an enhanced
Yang-Baxter operator whose R-matrix is derived from the quantum-dilogarithm
6j -symbols. This suggests that there could be a relationship between KN (S3, ·)
(necessarily associated to the trivial flat B -bundle on S3 ) and JN (·)N . The
most immediate guess would be that KN (S3, L) = JN (L)N for each L. In
fact, one can give an R-matrix formulation of KN (S3, ·) involving R-matrices
depending on parameters. These parameters are specified in terms of the dec-
orations of special D-triangulations adapted to planar link diagrams [45]. So
KN (S3, ·) can be computed by using suitably decorated link diagrams, and the
decoration must satisfy non trivial global constraints. In this setup, (1, 1)-
tangle presentations do not play any role. On another side, the constant R-
matrix used for JN corresponds to one fixed particular choice in the parameters.
This is not enough to confirm the above guess.

(2) A motivation of Problem 7.24 is also to make working for JN a theory of
scissors congruence classes, as described below for the QHI.

The so-called Volume Conjectures concern the asymptotic behaviour of the
invariants constructed on the base of the quantum dilogarithm 6j -symbols,
that is of KN (W,L, ρ) or JN (L) (for L ⊂ S3 ), when N → ∞. They are
originally motivated by the asymptotic behaviour of the quantum dilogarithm
6j -symbols, whose dominant term involves dilogarithm functions that may be
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used to compute the volume of oriented ideal hyperbolic tetrahedra. In the
case of JN (L) there are also some numerical computations (sometimes using
formal manipulations) - see for instance the first section of the present volume
for details. In the case of QHI, we develop in [43, 44] (see also [46]) a theory of
scissors congruence classes for triples (W,L, ρ) which gives a natural framework
for a formulation of a volume conjecture.

This goes roughly as follows. One constructs a ‘Bloch-like’ group P(D) based
on D-decorated tetrahedra, which maps via an explicit idealization map F̂ onto
an enriched version P(I) of the classical Bloch group, built on hyperbolic ideal
tetrahedra. Any D-triangulation T of (W,L, ρ) leads to elements cD(W,L, ρ) ∈
P(D) and cI(W,L, ρ) = F̂ (cD(W,L, ρ)) ∈ P(I). They are respectively called
the D- and I -scissors congruence classes of (W,L, ρ). The QHI essentially
depend on the D-class, and for any given D-triangulation T the 6j -symbols
occurring in HN (T ) depend on the moduli of the hyperbolic tetrahedra of the
idealization F̂ (T ) of T . By using the classical Rogers dilogarithm one can also
define a dilogarithmic invariant R(W,L, ρ) which only depends on the I -class.

Conjecture 7.25 (S. Baseilhac, R. Benedetti) (Real Volume Conjecture for
QHI) For any triple (W,L, ρ) one has:

lim
N→∞

(2π/N2) log(|KN (W,L, ρ)|) = Im R
(
cI(W,L, ρ)

)
.

Remark From the explicit formula of HN (T ) one easily shows that the left-
hand side of Conjecture 7.25, if it exists, only depends on the moduli of the
hyperbolic tetrahedra of F̂ (T ). A natural problem is to find a geometric
interpretation of the dilogarithmic invariant. Indeed, for scissors congruence
classes built with ideal triangulations of genuine (non-compact finite volume)
hyperbolic 3-manifolds M , a similar dilogarithmic invariant gives i(Vol(M) +
iCS(M)), where Vol is the Volume and CS is the Chern-Simons invariant (see
[309]).

In [46] one proposes a complex version of Conjecture 7.25, for the whole KN

(not only its modulus).

7.5 Perturbative invariants

The perturbative SO(3) invariant (or the Ohtsuki series) τSO(3)(M) =
∑∞

d=0 λd

(q− 1)d ∈ Q[[q− 1]] of a rational homology 3-sphere M is the invariant charac-

terized by the property that
∑k

d=0 λd(e
2π

√
−1/r − 1)d for any k is congruent to
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(
|H1(M ;Z)|

r

)
τ

SO(3)
r (M) modulo r for infinitely many primes r ; for a detailed def-

inition see [319, 321]. (It is known, see [356, 166], that τSO(3)(M) ∈ Z[[q−1]] for
any integral homology 3-sphere M .) The perturbative PG invariant τPG(M)
of a rational homology 3-sphere M , say, for G = SU(N), is defined in Q[[q−1]]
similarly, related to the quantum invariant τPG

r (M); see [245, 247].

Problem 7.26 For each rational homology 3-sphere M , calculate τSO(3)(M)
and τPSU(N)(M) for all degrees.

Remark The value of τ
SO(3)
r

(
L(a, b)

)
of the lens space L(a, b) is concretely

calculated in [184, 134]. It follows from those values that

τSO(3)
(
L(a, b)

)
= q−3s(b,a) q

1/2a − q−1/2a

q1/2 − q−1/2
,

where we regard it as in Q[[q − 1]] and s(b, a) denotes the Dedekind sum.

Concrete presentations of τSO(3)(M) for Seifert fibered 3-manifolds M are given
in [242].

Lawrence [241] has given holomorphic expression for the perturbative SO(3)
invariants of rational homology 3-spheres obtained by integral surgery along
(2, n) torus knot.

Habiro’s expansion (45) gives a presentation of τSO(3)(M). See examples of
Problem 7.31, for presentations of τSO(3)

(
Σ(2, 3, 5)

)
and τSO(3)

(
Σ(2, 3, 7)

)
,

which are due to [247]. See also [243] for a computation of τSO(3)
(
Σ(2, 3, 5)

)
.

Remark From the value of τ
PSU(N)
r

(
L(a, b)

)
of the lens space L(a, b) calcu-

lated in [377], we obtain

τPSU(N)
(
L(a, b)

)
= q−N(N2−1)s(b,a)/2 [1/a]N−1[2/a]N−2 · · · [(N − 1)/a]

[1]N−1[2]N−2 · · · [N − 1]
,

where we regard it as in Q[[q− 1]] putting [α] = (qα/2 − q−α/2)/(q1/2 − q−1/2).

Takata [378] computed the quantum PSU(N) invariant of Seifert fibered man-
ifolds M . Concrete presentations of τPSU(N)(M) might follow from the com-
putation.

Remark τPSU(N)(M) is recovered from the LMO invariant by

τPSU(N)(M) = |H1(M ; Z)|−n(n−1)/2Ŵsln

(
ẐLMO(M)

)
.
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In particular, noting PSU(2) = SO(3),

τSO(3)(M) = |H1(M ; Z)|−1Ŵsl2

(
ẐLMO(M)

)
.

For details see [321]. In this sense Problem 7.26 is related to Problem 11.1.

Problem 7.27 (J. Roberts) Explain the appearance of modular forms in the
Witten invariants.

Remark (J. Roberts) Lawrence and Zagier discovered in [243] that the per-
turbative series for the Poincaré homology sphere was close to a modular form.
Is this a random coincidence, or is there a more systematic explanation? Does
such a relation ever hold for a hyperbolic 3-manifold?

Problem 7.28 Characterize those elements of Z[[q−1]] of the form τSO(3)(M)
of integral homology 3-spheres M .

Remark The degree ≤ d part of τSO(3)(M) can have any value in the degree
≤ d part of Z[[q − 1]]. Hence, it is meaningful to consider this problem for the
form τSO(3)(M) for all degrees.

Remark Problem 7.28 is related to Problem 7.31, which is on the characteriza-
tion of Habiro’s expansion (45). See examples of Problem 7.31, for calculations
of Habiro’s expansions of τSO(3)

(
Σ(2, 3, 5)

)
and τSO(3)

(
Σ(2, 3, 7)

)
.

Let q be an indeterminate, and let ζ be an r-th root of unity. Set

R1 = lim←− nZ[q, q−1]/
(
(q − 1)(q2 − 1) · · · (qn − 1)

)
.

For an integral homology 3-sphere M , relations between τ
SU(2)
r (M) (which

equals τ
SO(3)
r (M) for odd r , in this case) and τSO(3)(M) can be described in

the following commutative diagram.

Isl2(M) ∈ R1
injection−−−−−→ Z[[q − 1]] ⊂ Q[[q − 1]] ∋ τSO(3)(M)

put q = ζ

y
yput q = ζ

τ
SU(2)
r (M) = τ

SO(3)
r (M) ∈ Z[ζ]

injection−−−−−→ Zr[ζ]
(44)

Here, the two horizontal maps are defined to be natural injections, and the two
vertical maps are defined by substituting q = ζ .

It was conjectured by Lawrence [239], and proved by Rozansky [356], that
τSO(3)(M) ∈ Z[[q − 1]] for any integral homology 3-sphere M , and that the
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images of τSO(3)(M) and τ
SO(3)
r (M) coincide in Zr[ζ] in the above diagram for

any odd prime power r . See [355] for their numerical examples.

Habiro [166] showed27 that there exists an R1 -valued invariant Isl2(M) of an
integral homology 3-sphere M whose images in Q[[q−1]] and Z[ζ] in the above

diagram are equal to τSO(3)(M) and τ
SU(2)
r (M) respectively for any positive

integer r . (Here we set τ
SU(2)
r (M) = 1 for r = 1, 2.) This gives another proof

of the above mentioned conjecture of Lawrence for integral homology 3-spheres.
This also implies that τSO(3)(M) can be presented by

τSO(3)(M) =

∞∑

n=0

λ′
n(q − 1)(q2 − 1) · · · (qn − 1) (45)

with some λ′
n ∈ Z[q, q−1] (in the above sense) such that

τSU(2)
r (M) =

∑

0≤n<r

λ′
n(ζ − 1)(ζ2 − 1) · · · (ζn − 1).

Note that the presentation (45) is not unique.

(K. Habiro) Let g be a finite dimensional simple complex Lie algebra. Let
d ∈ {1, 2, 3} be such that d = 1 in the ADE cases, d = 2 in the BCF cases
and d = 3 in the G2 case. If M is a closed 3-manifold and if ζ is a root of
unity of order r divisible by d, then the quantum g invariant τgζ (M) ∈ Q[ζ] of
M at ζ is defined.

Conjecture 7.29 (K. Habiro, T. Le) For each g as above, there is a (unique)
invariant Ig(M) ∈ R1 of an integral homology 3-sphere M such that for each
root of unity ζ of order r divisible by d we have

Ig(M)
∣∣
q=ζ

= τgζ (M).

Remark When (r,det(aij)) = 1, where (aij) is the Cartan matrix of the

Lie algebra g, the projective g-invariant τPg
ζ (M) can be defined [247]. Then

Habiro and Le also conjecture that Ig(M)|q=ζ = τPg
ζ (M), if (r,det(aij)) = 1.

Note that for an integral homology 3-sphere, τPg
ζ (M) = τgζ (M) when both are

defined (i.e. when r is divisible by d and (r,det(aij)) = 1). If this is the case,
then we have

i
(
Ig(M)

)
= τg(M)

27Hence, τSO(3)(M) is as powerful as the set of τ
SU(2)
r (M) for any integer r ≥ 3, and as

powerful as the set of τ
SO(3)
r (M) for any odd r ≥ 3, for any integral homology 3-sphere M .

Further, the LMO invariant dominates τ
SU(2)
r (M) for any integer r ≥ 3.
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where τg(M) ∈ Q[[q − 1]] is the perturbative g invariant of M [247], and
i : R1 → Z[[q − 1]] is the upper injection in (44).

Remark The above conjecture implies that the quantum g invariant τgζ (M)
of an integral homology sphere M takes values in the ring of cyclotomic integers
Z[ζ], and also that the perturbative invariant τg(M) takes values in Z[[q− 1]].

Update Habiro and Le [167] proved Conjecture 7.29.

Conjecture 7.30 (K. Habiro) Suppose that Conjecture 7.29 would hold. For
a new indeterminate t, set

R′
1 = lim←− nR1[t]/((t − q)(t− q2) · · · (t− qn))

Then there exists an invariant Isl(M) ∈ R′
1 of an integral homology 3-sphere

M such that Isl(M)|t=qn = Isln(M) for any n ≥ 1, where we set Isl1(M) = 1.

Problem 7.31 Characterize those elements of Habiro’s expansion (45) of
τSO(3)(M) of integral homology 3-spheres M .

Example For the Poincare homology 3-sphere Σ(2, 3, 5) (obtained by surgery
on a left-hand trefoil with framing −1) and the Brieskorn sphere Σ(2, 3, 7)
(obtained by surgery on a right-hand trefoil with framing −1), it is computed
in [247] that

τSO(3)
(
Σ(2, 3, 5)

)
=

1

1− q

∞∑

n=0

qn(1− qn+1)(1− qn+2) · · · (1− q2n+1),

τSO(3)
(
Σ(2, 3, 7)

)
=

1

1− q

∞∑

n=0

q−n(n+2)(1− qn+1)(1− qn+2) · · · (1− q2n+1).

See also [243] for a computation of τSO(3)
(
Σ(2, 3, 5)

)
.

Remark Such an infinite sum as (45) would be interesting from the number
theoretical viewpoint. For example,

1 +

∞∑

n=1

qn(q − 1)(q2 − 1) · · · (qn − 1) =
∑

k∈Z
k 6=0

(−1)k+1q
3
2
k2− 1

2
k−1.

A similar infinite sum appears in (12); see also [368].
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8 Topological quantum field theory

The notion of topological quantum field theory (TQFT) was introduced in
[16, 20], motivated by the operator formalism of a partition function in a quan-
tum field theory which does not depend on the metric of the space. In the math-
ematical viewpoint, any quantum invariant of 3-manifolds can be formulated
by a TQFT, which enables us to compute the invariant by the cut-and-paste
method.

A TQFT is a functor which takes an oriented closed surface Σ to a finite dimen-
sional complex vector space V (Σ), and takes an oriented compact 3-manifold
M with boundary Σ to a vector Z(M) ∈ V (Σ), satisfying the following 5
axioms.

(1) V (−Σ) = V (Σ)⋆ , where −Σ denotes Σ with the opposite orientation and
V (Σ)⋆ denotes the dual vector space of V (Σ).

(2) V (Σ1 ⊔Σ2) = V (Σ1)⊗ V (Σ2), where Σ1 ⊔Σ2 denotes the disjoint union
of two surfaces Σ1 and Σ2 .

(3) V (∅) = C, where ∅ denotes the empty surface.

(4) For 3-cobordisms M1 and M2 with ∂M1 = (−Σ1) ⊔ Σ2 and ∂M2 =
(−Σ2)⊔Σ3 we have that Z(M1 ∪

Σ2

M2) = Z(M2)◦Z(M1) as linear maps28

V (Σ1)→ V (Σ3).

(5) Z(Σ× I) is equal to the identity map of V (Σ).

To be precise, in many (but not in all) examples we need “extended 3-manifolds”
instead of 3-manifolds to formulate a TQFT, where an extended 3-manifold is
a 3-manifold M equipped with some kind of framing, e.g. a p1 -structure α on
M (see [60])29. Namely, we extend the above definition of TQFT to a functor
from the category of extended 3-cobordisms in an appropriate way (see [60]).
Then, each quantum invariant can be formulated as a TQFT of the category
of extended 3-cobordisms. In the remaining part of this section we call such a
TQFT simply a TQFT.

The first version of the introductory part of Chapter 8 and Sections 8.1–8.4 was written
by T. Ohtsuki, following seminar talks given by G. Masbaum. Based on it, G. Masbaum wrote
this introductory part and these sections. Section 8.5 was written by T. Kerler.

28For a 3-cobordism M with ∂M = (−Σ1)⊔Σ2 the vector Z(M) belongs to V (−Σ1⊔Σ2) =
V (−Σ1)⊗V (Σ2) = V (Σ1)

⋆⊗V (Σ2) by the axioms (1) and (2). Hence, Z(M) can be regarded
as a linear map V (Σ1) → V (Σ2).

29There is another formulation of a “framing” of a 3-manifold using signature cocycle; see
[388].
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8.1 Classification and characterization of TQFT’s

To understand TQFT’s is an important problem in order to investigate the 3-
cobordism category, similarly as the representation theory is important in order
to investigate groups and algebras.

Problem 8.1 Find (and classify) all TQFT’s.

Remark The operator formalism of the Chern-Simons path integral suggests
the existence of many TQFT’s. It is known, see [388, 23], that a modular
category is derived from a quantum group at a root of unity and a TQFT is
derived from a modular category. The underlying 3-manifold invariant is called
the Reshetikhin-Turaev invariant. Some other TQFT’s might be obtained from
quantum groupoids [314]. A TQFT for the LMO invariant is discussed in [301].

Another major construction of TQFT’s is derived from sets of 6j -symbols; for
the construction see [392, 41]. When a set of 6j -symbols arises from a subfactor,
the underlying 3-manifold invariant is called the Turaev-Viro-Ocneanu invariant
(see Section 9.4). Further, when a set of 6j -symbols comes from a quantum
group, such a TQFT is isomorphic to a tensor product of two TQFT’s derived
from the quantum group [388]. See Problems in Chapter 9 for concrete problems
for TQFT’s derived from 6j -symbols.

There are TQFT’s derived from finite groups, whose invariants are called the
Dijkgraaf-Witten invariants [108]. Such TQFT’s can alternatively be formu-
lated by using certain sets of 6j -symbols.

It is known [17] that the vector space V (Σ) of a TQFT (V,Z) derived from a
quantum group is isomorphic to the space of conformal blocks of a conformal
field theory (CFT) of the Wess-Zumino-Witten model. Some other (possibly,
“new”) TQFT’s might be obtained from the orbifold construction of CFT. It is
a problem to understand TQFT’s derived from the Rozansky-Witten invariant
(see [350]); their isomorphism types might be described by known TQFT’s, or
they might be “new” TQFT’s.

The following problem is a part of Problem 8.1 in the sense that some TQFT’s
are derived from modular categories, as mentioned in a remark after Problem
8.1.

Problem 8.2 Find (and classify) all modular categories.
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For a TQFT (V,Z), put P(V,Z)(t) =
∑∞

g=0

(
dimV (Σg)

)
tg , where Σg denotes a

closed surface of genus g . The following problem is a refinement of Problem
8.1.

Problem 8.3

(1) Characterize the power series of the form P(V,Z)(t).
(2) For each power series P (t) (satisfying the characterization of (1)), classify
all TQFT’s (V,Z) such that P(V,Z)(t) = P (t).

Remark A concrete form of such a power series for a TQFT derived from a
quantum group is given by Verlinde formula [394]. For example, such a power
series of the TQFT derived from Uq(sl2) at level k is presented by

∞∑

g=0

tg
(k + 2

2

)g−1
k+1∑

j=1

(
sin

πj

k + 2

)2−2g
.

8.2 Spin TQFT’s

There are some refinements of TQFT’s.

A spin TQFT is a TQFT on the category of spin 3-cobordisms, whose invariants
depend on spin structures; such a TQFT can be formulated by extending the
definition of a usual TQFT (see [61]). It is shown [61] that a spin TQFT can
be obtained from the modular category of Uq(sl2) at level k ≡ 2 (mod 4).

Problem 8.4 Find other spin TQFT’s.

Remark Some examples of spin TQFT’s can be constructed from the refined
quantum invariants of [47, Theorem 6.2].

Remark A spin TQFT is expected to be a refinement of a usual TQFT in the
sense that a spin TQFT (V s, Zs) should be related to a usual TQFT (V,Z) such
that V (Σ) for connected Σ can be described by the direct sum of V s(Σ, σΣ)
over the spin structures σΣ on Σ (see [61]) and Z(M) of a closed manifold M
can be described by the sum of Zs(M,σM ) over the spin structures σM on M .

A spinc TQFT should be a TQFT on the category of spinc 3-cobordisms, whose
invariants depend on spinc structures.
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Problem 8.5 Formulate and find spinc TQFT’s.

Remark The Seiberg-Witten invariant (for its exposition see, e.g. [271]) and
the torsion invariant τ (see [391]) are defined for closed 3-manifolds with spinc

structures. Are there TQFT’s which are related to these invariants?

8.3 Homotopy QFT’s

V. Turaev [389, 390] introduced and developed HQFT (homotopy QFT) with
a target space X in dimension d + 1.

Problem 8.6 (V. Turaev) (1) Extend HQFT’s to spin and spinc settings.

(2) Find algebra structures behind spin and spinc HQFT’s in dimension 1+1.

Problem 8.7 (V. Turaev) Study (spin and spinc) HQFT’s with the target
space K(H, 2) in dimensions 1 + 1, 2 + 1, and 3 + 1 for H = ZN .

Remark It is shown by V. Turaev that HQFT’s with the target space K(π, 1)
in dimension 1+1 can be described by crossed π -algebras, and that any modular
G-category gives rise to a HQFT with the target space K(G, 1) in dimension
2 + 1 [390]. HQFT’s with the target space K(H, 2) in dimension 1 + 1 were
studied and classified by M. Brightwell and P. Turner [66].

8.4 Geometric construction of TQFT’s

Assume that the surface Σ is equipped with the structure of a smooth algebraic
curve over C. We denote by H0(MΣ,L⊗k) the space of sections of L⊗k on
MΣ , where MΣ is the moduli space of semi-stable rank N bundles with trivial
determinant over Σ, and L is the determinant line bundle on MΣ . It is known
that H0(MΣ,L⊗k) is isomorphic to V (Σ) of a TQFT (V,Z) derived from
the quantum group Uq(slN ) at a (k + N)-th root of unity. In this sense,
H0(MΣ,L⊗k) gives a geometric construction of such a V (Σ).

Problem 8.8 Find a geometric construction of a TQFT using H0(MΣ,L⊗k).
Namely, find a geometric way to associate a vector in H0(MΣ,L⊗k) to a 3-
manifold M with ∂M = Σ.
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Remark In physics such a vector is obtained by applying an infinite dimen-
sional formal analogue of the geometric invariant theory and the symplectic
quotient to the Chern-Simons path integral; see [17]. It is a problem to justify
this argument in some mathematical sense.

Here is a concrete problem which may be of interest in studying the relationship
between V (Σ) and H0(MΣ,L⊗k). The group J (N)(Σ) of N -torsion points on
the Jacobian J(Σ) acts on MΣ by tensoring. This gives an action of a central
extension E(Σ) of J (N)(Σ) on H0(MΣ,L⊗k).

Problem 8.9 (G. Masbaum) Study this action of the finite group E(Σ) on
H0(MΣ,L⊗k), and describe the induced decompositions of this vector space
according to the characters of E(Σ). Also relate these decompositions to de-
compositions of V (Σ) for the TQFT (V,Z) derived from the quantum group
Uq(sl2) at a (k + N)-th root of unity.

Remark This was done for N = 2 in [7].

Remark The group J (N)(Σ) is isomorphic to H1(Σ; Z/N) and the extension
E(Σ) is described using the Weil pairing, which corresponds to the intersection
form on H1(Σ; Z/N). For N = 2, an action of E(Σ) on the vector space
V (Σ) is described in [60, Section 7], and it was shown in [7] that V (Σ) and
H0(MΣ,L⊗k) are isomorphic as representations of E(Σ); here the torsion points
on the Jacobian J(Σ) correspond to simple closed curves on the surface Σ.
For example, if k ≡ 2 mod 4, one obtains decompositions indexed by spin
structures (theta-characteristics) on Σ. For N ≥ 3, the action of E(Σ) and the
spin decompositions of V (Σ) were constructed in [59].

Let Mg denote the mapping class group of a closed surface Σg of genus g , and
let M̃g denote its central extension (see [18, 275]) arising in the category of
extended 3-cobordisms.

Problem 8.10 For a given TQFT (V,Z), determine whether the image of M̃g

in End
(
V (Σg)

)
is finite.

Remark Using physical arguments, Bantay [24] (see also references therein)
showed that for every CFT the image of M̃1 in End

(
V (S1×S1)

)
is finite. This

had been rigorously proved by Gilmer [144] for the SU(2) case.

In higher genus, it is known [132, 274] that the image of Mg (g ≥ 2) is infinite
in general.
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Problem 8.11 (G. Masbaum) Is there a relation between the Nielsen-Thurs-
ton classification of mapping classes of Σg and their images on V (Σg) for
TQFT’s (V,Z)?

Remark The Nielsen-Thurston classification says that any mapping class of
a surface is either finite order, reducible, or pseudo-Anosov (see, e.g. [83]). It
is known that a Dehn twist is taken to a matrix of finite order by any TQFT
derived from a modular category of a quantum group. On the other hand, it
is shown in [274] that a certain product of two non-commuting Dehn twists
is taken to a matrix of infinite order in the SU(2) TQFT at level k unless
k = 1, 2, 4, 8.

8.5 Half-projective and homological TQFT’s

In [145] it is shown that, for a restricted set of cobordisms, the Reshetikhin-
Turaev TQFT at a prime p-th root of unity ζp can be defined, at least ab-
stractly, as a functor Vp : Cob → Z[ζp]-mod, meaning the category of free Z[ζp]-
modules. Note that there is a well defined ring epimorphism Z[ζp]−։ Fp[y]/y

p−1 ,
which sends ζp 7→ 1 + y and maps integer coefficients canonically onto the fi-
nite field Fp = Z/pZ. Thus an endomorphism, which for a choice of basis
of the free Z[ζp]-modules is given by a matrix with entries in Z[ζp], will be
represented by the same matrix with reduced coefficients now in Fp[y]/y

p−1 .
Collecting the coefficients for each degree we can thus reexpress such a matrix
as a sum of matrices over Fp multiplied with powers of y, or, more succinctly,
use Mat(Fp[y]/y

p−1) = Mat(Fp)[y]/y
p−1 . This means that in the ring-reduction

the TQFT assigns to cobordisms a polynomial Vp(M) =
∑p−2

j=0 yj · V [j]
p (M),

where each V [j]
p (M) is a matrix over Fp and is well defined for given bases.

Recall also the notion of a half-projective TQFT with respect to an element x ∈
R in the base ring, introduced in [210]. It is defined, by perturbing functoriality

into V(N ◦M) = xµ(M,N)V(N)V(M), where µ(M,N) = rank
(
H1(N ◦M)

δ→
H0(N ∩M)

)
.

Problem 8.12 (T. Kerler) [Cyclotomic integer TQFT’s]

(1) Find explicit/computable bases for the Vp(Σg) as free modules over Z[ζp].

(2) Show that Vp can be extended to all cobordisms as a half-projective

TQFT with x = (ζp − 1)
p−3
2 ∈ R = Z[ζp].
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(3) Determine the structure of the V [j]
p (M) and in how far they have lifts

from Fp to Z, analogous to the Ohtsuki invariants for closed 3-manifolds.

(4) Find a universal TQFT that combines all Vp , at least perturbatively, into
one.

In the case of p = 5 the program for items (1)–(3) has been mostly carried
out in [213], for primes p ≥ 7 not much is known though. Some explicit bases
have been found for genus g = 1 by Gilmer, but the situation for higher genera
g ≥ 3 is unknown. An immediate application of item (2) is that the quantum
order, as introduced in [92], is also an upper bound for the cut-number of a
3-manifold. A closely related statement for (2) would also yield a very different
proof for the fact that the Ohtsuki invariants are of finite type. In item (3) the
“lift” must depend on p since the dimensions of the vector spaces do, and must
also involve further quotients that arise since the irreducible TQFT’s over Z
do not match the required dimensions either, but they become reducible when
reduced to Fp . Item (4) is rather vague at this point, indicating for some sort
of infinite filtered space with finite graded components.

Any TQFT V : Cob → R-mod implies a sequence of representation V[g] : Γg →
GLR(V(Σg)) of the mapping class groups. We say that a TQFT is homological
if each of these representations factors through the quotient Γg−։ Sp(2g, Z)
(given by the action on H1(Σg)), and we say it is strictly homological if each
of the Sp(2g, Z)-representations is algebraic, i.e. either faithful or zero. A par-
ticular example of strictly homological TQFT’s over R = Z are the Lefschetz
components V(j) of the Frohman-Nicas TQFT, see [128, 214]. From these we
can generate a larger family Q0 of such TQFT’s by taking all direct sums of
V(j) ’s. For example all the TQFT’s constructed in [110] lie in Q0 . An even
larger family Q∗ is found by taking also tensor products and their irreducible
summands.

Problem 8.13 (T. Kerler) [Homological TQFT’s]

(1) Find the irreducible components and ring structure (w.r.t ⊕ and ⊗) of
Q∗ .

(2) Determine whether all strictly homological TQFT’s lie in Q∗ .

(3) Identify the homological TQFT’s that arise from the gauge theory of
higher rank groups (such as PSU(n) in [129]) with elements in Q∗ .

(4) Identify the irreducible factors of the constant orders V [0]
p of the cyclo-

tomic integer expansion of the Reshetikhin-Turaev theory with elements
in Q∗ .
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The first item is in some sense about finding the representation ring of Sp(2, Z)×
Sp(4, Z)× . . .× Sp(2g, Z)× . . . equipped with further generators and relations
given by the standard handle attachments. The constraints given by the latter
may be just good enough to ensure that the answer to item (2) is positive.
The application of (3) is a better understanding and possibly a closed form for
the polynomials from [129] that express the PSU(n)-invariants in terms of the
coefficients of the Alexander polynomial. Evidence seems to suggest that the
TQFT’s from (4) stem from p−3

2 -fold symmetric products of elements in Q0 .
A plausible corollary would be that for a closed manifold with b1(M) ≥ 1 we
have

Vp(M) = (ζp − 1)
p−3
2 P p−3

2
(λCWL(M)) + O((ζp − 1)

p−1
2 ) , (46)

where λCWL is the Casson-Walker-Lescop invariant, and Pj is a polynomial of
degree j with integer coefficients. (Note our normalization Vp(S

3) = 1). As
remarked in [212] the identity in (46) is true for p = 5 and general M with
b1(M) ≥ 1. Moreover, work in progress shows that (46) holds also for general
p if M is a torus-bundle over a circle.

The homological TQFT’s are the starting point for a more general, pertur-
bative view point on TQFT’s that should parallel and extend that of the fi-
nite type theory of homology-3-spheres. At least for fixed p one can under-
stand, for example, the Reshetikhin-Turaev theory as deformation of the Q∗ -
theories. The notion that is somewhat parallel to that of finite type for closed
3-manifolds is what we shall call finite length. More precisely, the representa-
tions V[g] : Γg → GLR(V(Σg)) of the mapping class groups extend linearly to
homomorphisms V[g] : Z[Γg]→ EndR(V(Σg)). Denote by IIg ⊂ Z[Γg] the aug-
mentation ideal of the Torelli group. The length of V is the maximal L ∈ N such
that V[g]((IIg)L+1) = 0. Clearly, the L = 0-theories are just the homological
ones. The L = 1-theories can be thought of as elements of some Ext(V,W) with
V, W ∈ Q∗ . Restricted to representations of the Γg ’s they factor (in char 6= 2)

through the Johnson-Morita-homomorphism Γg →
∧3

H1(Σg) ⋊ Sp(2g, Z), for
which such extension are explicitly constructible [211].

Problem 8.14 (T. Kerler) [Length = 1 TQFT’s]

(1) Describe and construct algebraic L = 1-extensions of Γg -representations
to TQFT’s, preferably as “simple” generalizations of the Frohman-Nicas-
U(1)-theory.

(2) Produce a classification of L = 1-TQFT’s in the sense of an extension
theory of Q∗ .
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(3) Identify the Γg -representations on relative SU(2)-moduli space from [77]
with these TQFT’s, and find similar, higher rank theories.

(4) Identify the V [0]
p as L = 1-theories, if possible.

The conceivable generalizations of the TQFT construction of Frohman and
Nicas described in (1) include using different, possibly non-compact gauge
groups instead of U(1) and using more refined versions of intersection homolo-
gies for stratified moduli spaces. Given the theory for Q∗ the solution to item
(2) will lead to well defined problems in sp-invariant theory. Constructions of
L = 1-theories follow the schemes from (1) and (3). The identification in (4) is
carried out for p = 5 in [211].

The notion of finite length can be refined into the notion of q/l-solvable intro-
duced in [212], indicating a TQFT over R = M[y]/yl+1 such that the constant
order TQFT over the ground ring M is of length q . This, clearly, defines a
special case of a TQFT of length ≤ (q · l + q + l) . Murakami’s result [291]
can be restated as saying that the Reshetikhin-Turaev theory gives rise to a

1/1-solvable TQFT V [≤1]
p with ground ring Fp (i.e. a TQFT of length 3 over

Fp[y]/y
2 ) such that

V [≤1]
p (M) = 1 + y

1

6
λCWL(M) (47)

for any closed homology sphere M . Following Ohtsuki’s work Murakami’s iden-
tity (with some extra renormalizations by the order of H1(M)) extends also to
rational homology spheres. Let us call a theory with this property a TQFT of
Casson type.

Recall, that the similar relation (46) for λCWL for manifolds with b1(M) ≥ 1
is already contained in the information of a homological (L = 0) TQFT, and is
indeed a special evaluation of the Turaev-Milnor Torsion, see [212]. Given the
richer structure of a 1/1-solvable TQFT we will expect new invariants Ξ that
are refinements of λCWL and the torsion invariants.

To be more precise, note that for a pair (M,ϕ), where ϕ : π1(M)→→ Z defines
a cyclic cover, any TQFT V yields an invariant V(M,ϕ) = trace(V(CΣ)) where
CΣ = M − Σ : Σ → Σ and Σ ⊂ M is any surface dual to ϕ. In this way the
Frohman Nicas theories V(j) yields the coefficients of the Alexander Polynomial,
and, as shown in [212], thus also λCWL .

A more refined invariant, which, roughly speaking, generalizes the Alexander
module, is the Turaev-Viro module MTV (M,ϕ). It is described by Gilmer in
[143]. MTV (M,ϕ) is given, up to conjugacy, by V(Σ)

/
ker(V(CΣ)N ) (with

N large enough) together with the action of V(CΣ) on it. The traces of
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V(CΣ) or its powers are the most obvious well defined numerical invariants
of MTV (M,ϕ). The dimension of the module is yet another such invariant.

For a 1/1-solvable theory V the invariant V(M,ϕ) takes values in M[y]/y2 and
can hence be written as V(M,ϕ) = λV

ϕ(M) + y · ΞV
ϕ(M), where λV and ΞV

are now M-valued invariants. If y coincides with the half projective parameter
λV does not depend on ϕ, and we expect it to be some function of λCWL .
Moreover, if V descends from a 1/2-solvable TQFT with the same property
also ΞV would be independent of ϕ.

For the modular TQFT over F5[y]/y
2 obtained from the Reshetikhin Turaev

theory this invariant has already been defined in [212], and we may expect it to
lift, similarly, to an invariant ΞZ over Z. For p > 5 we expect, as in the case of
λCWL , the next order terms in the expansions (46) of the Reshetikhin Turaev
theories to be polynomial expressions in λCWL and ΞZ .

Problem 8.15 (T. Kerler) [q/l-solvable and Casson TQFT’s]

(1) Lift the 1/1-solvable TQFT’s of Casson type over Fp to a universal 1/1-
solvable TQFT’s of Casson type over Z.

(2) Describe the resulting invariant ΞZ for 3-manifolds with b1(M) ≥ 1.

(3) Develop a perturbation theory for general q/l-solvable TQFT’s.

(4) Relate those with the various, standard resolutions of Γg .

(5) Relate them also to the traditional finite type theory for closed 3-manifolds.

(6) Describe the Reshetikhin-Turaev theories in this pattern.

Preparations for item (1) can be found in [212] in which formulae for the Casson
invariant over Z are derived that have the same form as general TQFT formulae.
Item (2) is immediate from the preceding discussion. The remaining items are
logical continuations.

The category of 3-dim cobordisms Cob
• between compact, oriented surfaces

with one boundary component has a natural structure of a braided tensor cat-
egory. Another, category Alg can be defined entirely algebraically in terms of
generators and relations with respect to a tensor product and a composition
product. On the level of objects it has exactly one generator, say A, so that
all other objects are of the form A⊗g with 1 = A⊗0 . The morphisms are given
by all words that can be generated by taking composition and tensor products
of elementary morphisms m : A ⊗ A → A, ∆ : A → A ⊗ A, e : 1 → A,
ε : A→ 1, . . . , that appear in the definition of a braided, ribbon Hopf algebra
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with integrals and a non-degenerate pairing. For example, in [215] a surjective
functor Alg−։ Cob

• is constructed, which, in the genus one restriction in fact
an isomorphism.

Problem 8.16 (T. Kerler) [3-dim cobordisms from Hopf algebras]

(1) Find further relations on Alg , besides the ones arising from the axiomat-
ics of Hopf algebras, that would make Alg → Cob

• an isomorphism.

(2) Find relations on Alg such that the maps

AutAlg(A
⊗g)→ Γg

∼= AutCob
•(Σg,1)

are isomorphisms.

(3) Relate this to obstructions, such as Steinberg and Whitehead groups, via
stratified function spaces.

(4) What are the analogous algebraic structures in higher dimensions.

The first problem is easily stated, but presumably very difficult as it implies a
faithful translation of 3-dimensional topology into an algebraic gadget. In this
respect it is vaguely parallel to the geometrization and Poincaré conjectures.
The easier problem stated in item (2) can, in theory, be attacked head-on,
given the known presentations of the mapping class groups. The third point
hints to the fact that the generators in Alg correspond to Morse-theoretically
elementary cobordisms, and the relations can be interpreted, similarly, in terms
of handle slides and cancellation. This is, thus, reminiscent of the definitions of,
e.g. Steinberg groups of 3-manifolds. The problem in item (4) is, again, easily
stated but even in 4 dimensions lingers in almost complete total darkness. It
is not hard to understand that higher category theory has to be invoked and
not just one “object” A suffices as a “generator”. Any partial answers may
open the possibility of constructing functorial 4-manifold invariants by “linear
representation” of such structures.

In [216] ETQFT’s V are defined as double functors from the double category
of relative, 2-framed 1+1+1-dim cobordisms Cob

∗ to the double category of
linear, abelian categories over a perfect field. (The “E” stands for “extended
to surfaces with boundaries”). Applied to a single circle, thought of as a 0-
object in Cob

∗ , it yields an abelian category CV = V (S1), which we call
the associated circle category. The main result of [216] is a construction of a
V C , for each given modular tensor category C (meaning a bounded, ribbon,
braided tensor category with some additional properties) such that CV C

= C .
The construction is made for all semisimple C , and is extended, in the case of
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non-semisimple C , to both to the situation of connected surfaces with boundary
as well as disconnected, closed surfaces using the previously mentioned notion
of half-projective TQFT’s.

Problem 8.17 (T. Kerler) [Extended and half-projective TQFT’s]

(1) Describe in how far an ETQFT V with circle category C can differ from
V C , thus introducing a equivalence notion that would establish a bijective
correspondence between the class of ETQFT’s and the class of modular
tensor categories.

(2) Find an extended notion of half-projectivity that includes also surfaces
that are both disconnected and have boundary.

(3) Find constructions and axioms of ETQFT’s that apply to more relaxed
notions of boundedness or modularity.

The functor Alg → Cob
• already imposes that a circle category CV must fulfill

about all axioms of a modular tensor category, and contain a Hopf algebra
object with properties. Given some rigidity assumption it actually must be the
same chosen in the construction of V C . What may still differ is the choice
of algebra structures of the same object in the same category, which is thus
the main source of possible ambiguities. Already in [216] it is clear that there
are several choices. The correct axiomatics for item (2) should follow from a
careful analysis of the double composition laws for surgery tangles from [216]
and generalization of [210]. Item (3) is relevant to include more general notions
of TQFT’s as they would be of interest in the theory of finite type invariants.

The Reshetikhin-Turaev theory typically starts with non-semisimple modular
category C , typically the representation category of a non-semisimple quantum
groups Uq(g), and then considers a canonical semisimple sub-quotient C , see
[208]. Thus VC yields a semisimple TQFT. It is known that this is different
from the non-semisimple TQFT VC , which in the case of a quantum group is
obtained via the Hennings algorithm.

TQFT’s can also be generated from a rigid, monoidal category B without any
braiding. One way is to take the Drinfel’d double D(B), which is then a modular
category for some choice of ribbon element, and use VD(B) . For semisimple B
one can also extract the 6j-symbol data and follow the Turaev-Viro construction
to obtain a TQFT WB .

Problem 8.18 (T. Kerler) [Non-semisimple vs. semisimple TQFT’s, the dou-
ble conjecture]
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(1) Clarify the difference in the content of VC and VC ! Are there homological
TQFT’s H such that VC is in some essential way equivalent to VC ⊗H?

(2) Find a construction of WB that generalizes the Turaev-Viro TQFT’s to
non-semisimple B ’s, similar to the way [216] generalized the Reshetikhin-
Turaev construction. In the case of quantum groups and closed 3-mani-
folds this should reproduce a version of the Kuperberg invariant.

(3) What is the relation between WB and VD(B)? Are they in some sense
isomorphic TQFT’s?

For the case of Uq(sl2) there is evidence from the genus=1 case that such an H
is indeed given by the Frohman-Nicas-U(1)-theory. Item (2) is rather natural
as a problem. As is apparent in [236] one may expect technical challenges
requiring “minimal” cell decompositions of cobordisms, as opposed to general
triangulations, as well as “combings” instead of framings.

The last conjecture appears also as Question 5 in [209] which was motivated
by works of and discussions with D. Kazhdan and S. Gelfand in 1994. Since
it is a rather nearby conjecture from a formal point of view it may have been
posed already earlier. For categories arising from subfactors and closed mani-
folds results answering this conjecture have been obtained in [204]. As outlined
in [209] further, more general results in this direction should yield a deeper un-
derstanding of both TQFT constructions involved as well as entail a topological
picture for the Drinfel’d double construction.
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9 The state-sum invariants of 3-manifolds derived
from 6j-symbols

Turaev and Viro [392] introduced a formulation of a state-sum invariant of 3-
manifolds as a state-sum on triangulations of 3-manifolds derived from certain
6j -symbols. After that, Ocneanu gave a general formulation of this state-sum
for general 6j -symbols and constructed 3-manifold invariants from subfactors
based on this formulation. This general formulation was also given by Barrett
and Westbury [41].

9.1 Monoidal categories, 6j -symbols, and subfactors

Consider a collection, {Vi}i∈I , of (irreducible) modules over C (of a quantum
group or a subfactor) which is closed under tensor product, i.e. for any i, j ∈ I ,
Vi ⊗ Vj

∼= ⊕k∈IHk
i,j ⊗ Vk for some Nk

i,j dimensional vector space Hk
i,j , which

expresses the multiplicity of Vk in Vi ⊗ Vj . Such a collection (with a certain
property) is called a monoidal category, where each Vi is called a simple object of
the category (for details see [23]). A monoidal category is provided by a certain
set of representations of a quantum group (see, e.g. [201]), and also by a certain
set of N -N bimodules arising from a subfactor N ⊂ M (as explained below).
The algebra spanned by I with the multiplication given by a · b =

∑
c∈I N c

a,bc
for a, b ∈ I is called the fusion rule algebra.

Let {Vi}i∈I be a monoidal category (with a finite set I ) provided by a quantum
group (at a root of unity) or a subfactor (of finite depth). Fix the above
mentioned isomorphism Vi ⊗ Vj

∼= ⊕k∈IHk
i,j ⊗ Vk for each i, j . Then, we have

two bases of the vector space Hom(Vl, Vi⊗Vj ⊗ Vk) for each i, j, k, l as follows.
Consider the maps

Vl −→ Vn ⊗ Vk −→ (Vi ⊗ Vj)⊗ Vk

determined by basis vectors A ∈ Hl
n,k and B ∈ Hn

i,j . The composition of these
maps gives a vector of Hom(Vl, Vi ⊗ Vj ⊗ Vk). Thus, we obtain a basis of this
vector space consisting of vectors labeled by triples (n,A,B). Moreover, we
obtain another basis consisting of vectors labeled by triples (m,C,D), where
C ∈ Hl

i,m , D ∈ Hm
j,k , by considering the following maps,

Vl −→ Vi ⊗ Vm −→ Vi ⊗ (Vj ⊗ Vk).

The introductory part of each section of Chapter 9 was written by T. Ohtsuki, following
suggestions given by Y. Kawahigashi and J. Roberts.
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The collection of the entries of the matrix which relates these two bases is a typ-
ical example of a set of 6j -symbols, where a set of 6j -symbols is defined to be a
solution of certain polynomial equations: the tetrahedral symmetry, the unitar-
ity, and the pentagon relation. Each 6j -symbol is labeled by i, j, k, l,m, n ∈ I ,
and A ∈ Hl

n,k , B ∈ Hn
i,j , C ∈ Hl

i,m , and D ∈ Hm
j,k . This 6j -symbol will be

associated to a tetrahedron labeled by them.

A subfactor is a pair of infinite dimensional algebras N and M with an inclusion
relation N ⊂M satisfying some property. A major class of subfactors is a class
of WZW model subfactors of level k = 1, 2, · · · , which are related to quantum
groups. Another well-known class is a class of subfactors of the Jones index
< 4; they are classified to be of types An,D2n, E6 , or E8 . A left X right Y
module Z is called a X -Y bimodule, and is written XZY . For a subfactor
N ⊂ M , consider irreducible N -N bimodules appearing as direct summands
of N -N bimodules in the following sequence,

NNN , NMM ⊗
M

MMN , NMM ⊗
M

MMN ⊗
N

NMM ⊗
M

MMN , · · · .

The collection of (isomorphism classes of) such irreducible modules provides a
monoidal category {Vi}i∈I . It is known that I is a finite set when the subfactor
is of finite depth (this always holds when its index < 4). For a fusion rule
algebra with a set of 6j -symbols there exists a subfactor (if quantum dimensions
are positive) such that the diagram in Figure 18 commutes. For details of this
paragraph see [148, 118].

Thus, the following classification problems are almost equivalent. Each of them
is fundamental, but probably impossibly hard. (See also Problem 8.2.)

Problem 9.1

(1) Find (and classify) all semi-simple monoidal categories (with finitely many
isomorphism classes of simple objects).

(2) Find (and classify) (finite dimensional) fusion rule algebras and sets of
6j -symbols.

(3) Find (and classify) all subfactors (of finite depth).

Remark Major sets of 6j -symbols, what we call quantum 6j -symbols, are the
sets of 6j -symbols derived from quantum groups, resp. WZW model subfactors.
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Quantum groups, quantum groupoids
(at roots of unity)

?

Choose certain sets of
representations

Semi-simple monoidal categories

(with finitely many isomorphism

classes of simple objects)

-

Take a certain matrix
related to associativity

(Finite dimensional)

fusion rule algebras
and sets of 6j -symbols

@
@

@I
Choose certain
bimodules

�
�

�	

Subfactors (of finite depth)

Figure 18: 6j -symbols and related objects

Another class of 6j -symbols is derived from finite groups; for a 3-cocycle α of
a finite group G, a set of 6j -symbols is given by

W
( )

=

{
α(g1, g2, g3) if g12=g1g2, g23=g2g3, and g123=g1g2g3,

1 otherwise,

where the tetrahedra is given a trivial face coloring. There are still other in-
finitely many sets of 6j -symbols arising from subfactors; see Table 6. These
6j -symbols might have a universal presentation given by a tetrahedron in the
theory of knotted trivalent graphs (see Section 12.4).

9.2 Turaev-Viro invariants and the state-sum invariants de-
rived from monoidal categories

A state-sum invariant of 3-manifolds is defined by using such a set of 6j -symbols
with a monoidal category {Vi}i∈I , as follows. Choose a simplicial decomposition
of a closed 3-manifold M , and fix a total order of its vertices, which induces

30 To be precise, the even part of the subfactor of type D2n is braided, and its S -matrix is
non-degenerate.

31 This is trivially braided.
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subfactor
monoidal

S-matrix
category

WZW model subfactors of level k = 1, 2, · · ·
braided non-degenerate

SU(N)k, SO(N)k, Sp(N)k, · · ·

subfactors of
type An (= SU(2)n) braided non-degenerate

index < 4
type D2n braided30 non-degenerate30

type E6, E8 not braided none

subfactors of (generalized) Haagerup,
not braided none

index > 4: Asaeda-Haagerup, · · ·
exotic subfactors, quantum doubles of

braided non-degenerate· · · Haagerup subfactor, · · ·
subfactors 3-cocycles of finite groups not braided none

from — representations of finite groups braided31 degenerate

Table 6: Subfactors, their monoidal categories, and S -matrices

orientations of edges. Further, choose an edge coloring λ, which is a map of
the set of edges to I , and choose a face coloring ϕ, which is a collection of such

assignments that a basis vector of Hk
i,j is assigned to a triangle

with an edge coloring. To a tetrahedron σ with an edge coloring λ and a face
coloring ϕ, we associate the above mentioned 6j -symbol, which we denote by
W (σ;λ,ϕ). Then, a state-sum invariant of M is defined by

Z(M) = w−v
∑

λ

(∏

E

µλ(E)

)∑

ϕ

∏

σ

W (σ;λ,ϕ), (48)

where the sums of λ and ϕ run over all edge colorings and all face colorings,
and the products of E and σ run over all edges and all tetrahedra of the
simplicial decomposition of M , and µi is a constant, which corresponds to a
“quantum dimension”, and w =

∑
i∈I µ2

i , and v is the number of vertices of
the simplicial decomposition. It is known (see [41], [118, Chapter 12]) that the
invariant (48) is a topological invariant of M . The definition of the invariant
(48) can naturally be extended to an invariant of 3-manifolds with boundaries,
and a TQFT can be formulated based on it.

In particular, for the set of 6j -symbols arising from representations of the quan-
tum group Uq(Sl2) at a root of unity, the invariant (48) is called the Turaev-Viro
invariant [392]. In its definition it is not necessary to introduce face colorings
(because Nk

i,j is always equal to 0 or 1 for any i, j, k in this case) and orienta-
tions of edges (because each representation of Uq(sl2) is self-dual).
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The monoidal category of a set of quantum 6j -symbols is a modular category,
and we can construct the Reshetikhin-Turaev invariant from it (see Section 9.3).
The square of the absolute value of the invariant is equal to the value of the
state-sum invariant derived from these 6j -symbols.

The state-sum invariant derived from the set of 6j -symbols given by a 3-cocycle
α of a finite group G is called the Dijkgraaf-Witten invariant [108]. In particu-
lar, when α = 1, it is equal to the number of conjugacy classes of representations
π1(M)→ G. It is further equal to the state-sum invariant derived from the set
of 6j -symbols obtained from the representations of the finite group G.

When a set of 6j -symbols arises from a subfactor, the state-sum invariant
derived from these 6j -symbols is called the Turaev-Viro-Ocneanu invariant.
There are infinitely many subfactors other than the above cases as shown in
Table 6. The Turaev-Viro-Ocneanu invariants derived from such subfactors
might be new invariants of 3-manifolds.

Problem 9.2 (Y. Kawahigashi) Suppose we have a three-dimensional TQFT.
Can we determine whether it arises from a fusion rule algebra and 6j -symbols?
If yes, can we describe all fusion rule algebras with 6j -symbols producing the
TQFT?

Remark (Y. Kawahigashi) By a result of Ocneanu, we have at most only
finitely many such fusion rule algebras with 6j -symbols, up to equivalence of
6j -symbols.

Problem 9.3 (Y. Kawahigashi) Suppose we have two fusion rule algebras
with 6j -symbols and that two TQFT’s arising from them are isomorphic. What
relation do we have for the two sets of 6j -symbols?

Remark (Y. Kawahigashi) Are they equivalent in the sense of [362]?

Problem 9.4 (Y. Kawahigashi) Suppose we have a TQFT arising from a
fusion rule algebra with 6j -symbols. Using a fusion rule subalgebra and 6j -
symbols restricted on it, we can construct another TQFT. What relation do we
have for these TQFT’s?

Remark (Y. Kawahigashi) How about the case where the fusion rule subal-
gebra arises from α-induction? The α-induction produces a fusion rule algebra
with 6j -symbols from a semisimple ribbon category with finitely many isomor-
phism classes of simple objects and a specific choice of an object satisfying
certain axioms. See [62], [222] and their references. If the original ribbon cat-
egory is modular, we have some answer in [62], so it is particularly interesting
when the S -matrix is not invertible.
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9.3 The state-sum invariants derived from ribbon categories

A ribbon category is a monoidal category {Vi}i∈I equipped with a braiding
V ⊗W → W ⊗ V and a twist V → V for any objects V and W which are
maps satisfying certain properties. We obtain an invariant of framed links from
a ribbon category by associating a braiding to a crossing of a link diagram and
a twist to a full-twist of a framing of a link. A monoidal category is called semi-
simple if any object is isomorphic to a direct sum of simple ones. The S-matrix
S = (Sij)i,j∈I of a semi-simple ribbon category {Vi}i∈I is defined by putting
Sij to be the invariant of the Hopf link whose components are associated with
Vi and Vj . A modular category is a semi-simple ribbon category with finitely
many isomorphism classes of simple objects whose S-matrix is invertible. We
obtain the Reshetikhin-Turaev invariant of 3-manifolds and its TQFT from a
modular category by using surgery presentations of the 3-manifolds. See [23]
for details of this paragraph.

Monoidal category =⇒ State-sum invariant of 3-manifolds and its TQFT

?

+ braiding
+ twist

Ribbon category =⇒ Invariant of framed links

?

+ semi-simple
+ finiteness of I
+ invertibility of S

Modular category =⇒ Reshetikhin-Turaev invariant of 3-manifolds and its TQFT

Figure 19: Monoidal, ribbon, modular categories and their consequences

The quantum 6j -symbols are typical 6j -symbols which induce modular cate-
gories. The square of the absolute value of the Reshetikhin-Turaev invariant
derived from a modular category is equal to the value of the state-sum invari-
ant derived from the category. It is suggested by Ocneanu that the monoidal
category of the quantum double of each of such subfactors would be braided,
and that the Reshetikhin-Turaev invariant derived from this quantum double
would be equal to the Turaev-Viro-Ocneanu invariant derived from the original
subfactor.

Problem 9.5 (Y. Kawahigashi) Suppose we have a semisimple ribbon cat-
egory C with finitely many isomorphism classes of simple objects. If the S -
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matrix is invertible, we can construct the Reshetikhin-Turaev invariant and
the state-sum invariant from C and the latter is the square of the absolute
value of the former. If the S -matrix is not invertible, do we still have a similar
description of the state-sum invariant?

Remark See also Problem 9.11 for a similar problem for the Turaev-Viro-
Ocneanu invariants.

Problem 9.6 (Y. Kawahigashi) Suppose we have a semisimple ribbon cat-
egory C1 with finitely many isomorphism classes of simple objects, but the
S -matrix is not invertible. Then we can construct a new modular category
C2 containing C1 as a full subcategory by the “quantum double” construction
[315, 316, 182], but there may be another extension of C1 to a modular cate-
gory. Theorem 2.13 in [315] claims that we have a “minimal” extension in an
“essentially unique” way. Do we indeed have existence and certain uniqueness
of such an extension? If so, what is the relation between the two TQFT’s arising
from C1 and its minimal extension?

Problem 9.7 (Y. Kawahigashi) Suppose we have a semisimple ribbon cat-
egory C1 with a degenerate S -matrix as in Problem 9.6. By the method in
[288], we can also make a modular tensor category C2 from C1 . What is the
relation between the two TQFT’s arising from C1 and C2?

Problem 9.8 (Y. Kawahigashi) There are some fusion rule algebras with
6j -symbols that do not seem to arise from quantum groups in [14] and more
conjectured candidates of such examples in [160]. What are the corresponding
TQFT’s? Especially if the series conjectured in [160] does exist, it would give
a parametrized family of TQFT’s. Does a differentiation by a parameter (af-
ter a certain reparametrization) give a more interesting invariant, possibly of
Vassiliev type?

9.4 Turaev-Viro-Ocneanu invariants

The state-sum invariant of 3-manifolds derived from 6j -symbols is called the
Turaev-Viro-Ocneanu invariant when the set of 6j -symbols arises from a sub-
factor. There are infinitely many subfactors other than those derived from
quantum groups or finite groups. The Turaev-Viro-Ocneanu invariants derived
from such subfactors might be new invariants of 3-manifolds.
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(N. Sato) The Haagerup subfactor of Jones index 5+
√

13
2 has the smallest

index among finite depth subfactors with Jones index bigger than 4 and it is
expected to have some “exotic” properties from the subfactor theoretical view-
point. However, it does not seem so sensitive to classify 3-manifolds. The
Turaev-Viro-Ocneanu invariant constructed from the Haagerup subfactor can-
not distinguish lens spaces L(5, 1) and L(5, 2), as well as L(7, 1) and L(7, 2).
On the other hand, generalized E6 -subfactors with the group symmetries Z/3Z
and Z/5Z can distinguish L(3, 1) and L(3, 2), L(5, 1) and L(5, 2), respectively.

Problem 9.9 (N. Sato) Find a subfactor which can distinguish lens spaces
L(7, 1) and L(7, 2). Moreover, find a subfactor to classify 3-manifolds as well
as possible.

In the lattice field theory, Ponzano and Regge [332] constructed a state sum
model for SU(2) and investigated an asymptotic behavior of the model.

Some infinite depth subfactors are manageable in the sense of growth rate
(amenability). Such subfactors are called strongly amenable. The strong amen-
ability condition might be enough to control the asymptotic behavior of the
state sum model constructed from a strongly amenable subfactor.

Problem 9.10 (N. Sato) Construct a well-defined state sum type invariant
from a strongly amenable subfactor.

Note that, unlike the Ponzano-Regge model, we do not have an asymptotic
description of the quantum 6j -symbols in general. (Recall that 6j -symbols of
SU(2) have an asymptotic description.)

Let us consider the Turaev-Viro-Ocneanu invariant for a closed 3-manifold
constructed from a subfactor. Then, this invariant can be considered as a
Reshetikhin-Turaev type invariant constructed from a subfactor by passing the
initial subfactor through the Longo-Rehren construction. If we start with a
subfactor which has a non-degenerate braiding in particular, then this Turaev-
Viro-Ocneanu invariant splits into a Reshetikhin-Turaev invariant and its com-
plex conjugate. The following question will open a way to establish a theory of
the minimal non-degenerate extension of a degenerate braiding.

Problem 9.11 (N. Sato) Let us consider the Turaev-Viro-Ocneanu invariant
from a subfactor with a degenerate braiding. Then, find a description of this
invariant as a Reshetikhin-Turaev invariant.

Remark See also Problem 9.5 for a similar problem for the state-sum invari-
ants derived from ribbon categories.
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10 Casson invariant and finite type invariants of 3-
manifolds

10.1 Casson and Rokhlin invariants

It is known as Rokhlin theorem that the signature of a spin smooth closed 4-
manifold is divisible by 16, which deduce the following definition of the Rokhlin
invariant. For a closed 3-manifold M and a spin structure σ on M , the Rokhlin
invariant µ(M,σ) ∈ Z/16Z is defined to be the signature of any smooth com-
pact spin 4-manifold with spin boundary (M,σ). In particular, for a Z/2Z
homology 3-sphere M , the Rokhlin invariant µ(M) ∈ Z/16Z is defined to be
the signature of any smooth compact spin 4-manifold with boundary M , noting
that there exists a unique spin structure on such a M . The Casson invariant is
a Z-valued lift of the Rokhlin invariant of integral homology 3-spheres. Further,
it is known [398] that

µ(M) ≡ 4|H1(M ; Z)|2λCW(M) ≡ 8|H1(M ; Z)|λCWL(M) (mod 16)

for any Z/2Z homology 3-sphere, where λCW denotes the Casson-Walker in-
variant32 [398] and λCWL denotes the Casson-Walker-Lescop invariant33 [251].
For an exposition of the Casson and Rokhlin invariants, see [221, 251, 363].

Problem 10.1 Can the Casson invariant of an integral homology 3-sphere M
be characterized by the signature of a certain 4-manifold bounded by M ?

Remark It is shown in [131] that the Casson invariant of the Seifert fibered
homology 3-sphere Σ(α1, · · · , αn) is equal to 1/8 times the signature of its
Milnor fiber.

The Casson-Walker-Lescop invariant of closed 3-manifolds with positive Betti
number can be computed from the torsion invariant τ of V. Turaev. He [391]
gave a surgery formula for τ , which implies a surgery formula for the Casson-
Walker-Lescop invariant.

Problem 10.2 (V. Turaev) Relate this surgery formula for the Casson-Wal-
ker-Lescop invariant with that of Lescop [251].

32The normalization here is that λCW(M) = 2λC(M) for an integral homology 3-sphere
M .

33The normalization here is that λCWL(M) =
(

|H1(M ;Z)|/2
)

λCW(M) for a rational ho-
mology 3-sphere M .
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(C. Lescop) In 1984, Casson defined his invariant of integral homology 3-
spheres as an integer that “counts” the SU(2)-representations of their funda-
mental group in an appropriate way (see [3, 159]). Cappell, Lee and Miller [76]
showed that the Casson way of counting SU(2)-representations of the π1 works
for any compact Lie group and provides other invariants of integral homology
spheres.

Question 10.3 (C. Lescop) Are the Cappell-Lee-Miller Casson-type SU(n)-
invariants of finite type? If so, what are their degrees and their weight systems?

Problem 10.4 (M. Polyak) Define an invariant λ of a pair (M,σ) of a closed
3-manifold M and a spin structure σ on M such that

λCWL(M) =
∑

σ

λ(M,σ)

for any closed 3-manifold M , where the sum runs over all spin structures σ on
M .

Note that the set of spin structures on M is a torsor over H1(M ; Z/2Z) in
the sense that differences of spin structures can be detected by cohomology
classes in H1(M ; Z/2Z), while the set of spinc structures on M is a torsor over
H1(M ; Z) in a similar sense.

Remark It is shown [326] that there exists an invariant θ̂ of a rational ho-
mology 3-sphere M associated with a spinc structure α on M such that

1

2
|H1(M, Z)|λCW(M) =

∑

α

θ̂(M,α)

for any rational homology 3-sphere M , where the sum runs over all spinc struc-
tures α on M . It is conjectured [326] that θ̂ is equal to Seiberg-Witten invariant
for all rational homology 3-spheres.

Remark (M. Polyak) The Casson invariant is a lift of The Rokhlin invariant.
We expect that λ(M,σ) of Problem 10.4 should be a lift of µ(M,σ). How is∑

σ µ(M,σ) ∈ Z/16Z related to λCWL(M)?

It is known that this sum vanishes in Z/16Z when b1(M) > 3, while it is known
[251] that λCWL(M) = 0 when b1(M) > 3.
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Remark (C. Lescop) Let M be the 3-manifold obtained by surgery along a
framed link L, and let W be the 4-manifold associated to the surgery presen-
tation. Then, 24λCWL(M)− 3|H1(M ; Z)|signW can be presented by a formula
of Alexander polynomial coefficients and linking numbers of L [251, Formula
6.3.1], which might be helpful.

Note that the list of µ(M,σ) for a given M is richer than their sum
∑

σ µ(M,σ).
For example, µ(RP 3, σ) = 1, −1 and µ(RP 3#(Poincare sphere), σ) = 7, 9,
while their sums are equal in Z/16Z.

Remark The invariant of Problem 10.4 should be related to the Goussarov-
Habiro theory for spin 3-manifolds [276]. Recall that the Rokhlin and Cas-
son invariants can be characterized as invariants under Y2 -equivalence and Y3 -
equivalence among ZHS ’s respectively. It was shown [276] that Rokhlin invari-
ant of spin closed 3-manifolds is the invariant under spin Y2 -equivalence among
spin closed 3-manifolds. What is the invariant under spin Y3 -equivalence?

Remark The Casson-Walker invariant can be characterized as the first coeffi-
cient of the perturbative expansion of the quantum SO(3) invariant τSO(3)(M)

[291]. We have a spin refinement τ
SU(2)
r (M,σ) of the quantum SU(2) invariant

τ
SU(2)
r (M) for r ≡ 0 mod 4 such that

τSU(2)
r (M) =

∑

σ

τSU(2)
r (M,σ),

where the sum runs over all spin structures σ on M [221]. We expect that
λ(M,σ) of Problem 10.4 should be related to the first coefficient of the pertur-

bative expansion of τ
SU(2)
r (M,σ).

For r ≡ 2 mod 4, we have another refinement τ
SU(2)
r (M, ξ) for ξ ∈ H1(M ; Z/2Z)

such that
τSU(2)
r (M) =

∑

ξ

τSU(2)
r (M, ξ),

where the sum runs over all cohomology classes in H1(M ; Z/2Z). The first

coefficient of the perturbative expansion of τ
SU(2)
r (M, ξ) was discussed in [292,

293]. It might be a problem to find a refinement λ(M, ξ) of λCW(M) for some
cohomology class ξ .

Remark Problem 10.4 is related to Problem 11.7, which is a problem to find
a spin refinement of the LMO invariant, noting that the first coefficient of the
LMO invariant is given by the Casson-Walker-Lescop invariant.
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Question 10.5 (M. Polyak) Is there a “Rokhlin invariant” of a pair (M,α)
of a closed 3-manifold M and a spinc structure α on M ? (See Question 10.21.)

Problem 10.6 (M. Polyak) By presenting 3-manifolds by surgery along
framed links in S3 , we can regard an invariant of 3-manifolds as an invari-
ant of framed links. Establish a Gauss diagram formula for the link invariant
derived from each finite type invariant of 3-manifolds.

Remark (M. Polyak) The first step is to find a Gauss diagram formula for the
Casson invariant. The Casson-Walker invariant as an invariant of 2-component
links is studied in [223].

If we would obtain a Gauss diagram formula for the Casson-Walker-Lescop
invariant, then a spin refinement of it (of Problem 10.4) would be obtained by
decorating the Gauss diagram formula by characteristic sublinks, noting that
the spin structures on the 3-manifold obtained by surgery along a framed link
L can be presented by characteristic sublinks of L (see [221]).

10.2 Finite type invariants

A link in an integral homology 3-sphere is called algebraically-split if the link-
ing number of any pair of its components vanishes, and is called boundary if all
its components bound disjoint surfaces. A framed link is called unit-framed if
the framings of its components are ±1. Let M be the set of (homeomorphism
classes of) oriented integral homology 3-spheres, and let R be a commutative
ring with 1. For an algebraically-split unit-framed link L in an integral homol-
ogy 3-sphere M , we put

[M,L] =
∑

L′⊂L

(−1)#L′

ML′ ∈ RM,

where the sum runs over all sublinks L′ of L, and #L′ denotes the number of
components of L′ , and ML′ denotes the 3-manifold obtained from M by surgery
along L′ . Let Fas

d (RM) [318] (resp. Fb
d (RM) [135]) denote the submodule of

RM spanned by [M,L] such that M is an integral homology 3-sphere and L
is a unit-framed algebraically-split link L with d components in M (resp. a
unit-framed boundary link L in M ). Let FY

d (RM) [137] denote the submodule
of RM spanned by [M,G] such that M is an integral homology 3-sphere and
G is a collection of d disjoint Y-graphs (see Figure 11) in M , where [M,G]
is defined similarly as [M,L] (see [137]).34 A homomorphism v : RM → R is

34FY
d (RM) can alternatively be defined by using blinks [140]; see [137].
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called a finite type invariant of Fas
⋆ -degree d (resp. Fb

⋆ -degree d, or FY
⋆ -degree

d) if v vanishes on Fas
d+1(RM) (resp. Fb

d+1(RM), or FY
d+1(RM)). It is known

[141] that
Fas

3d(QM) = Fas
3d−1(QM) = Fas

3d−2(QM)

and that there is an isomorphism

A(∅; Q)(d) −→ Fas
3d(QM)/Fas

3d+3(QM)

between vector spaces [141, 244]. It is known [137] that

Fb
d (ZM) ⊃ FY

2d(ZM), Fas
3d(ZM) ⊃ FY

2d(ZM),

Fas
3d(RM) = Fb

d (RM) = FY
2d(RM),

FY
2d−1(RM) = FY

2d(RM)

if 1/2 ∈ R.

10.2.1 Torsion and finite type invariants

Conjecture 10.7 Fas
d (ZM)/Fas

d+1(ZM) (resp. Fb
d (ZM)/Fb

d+1(ZM)) is torsion
free for each d.

Remark (K. Habiro) The group FY
d (ZM)/FY

d+1(ZM) has 2-torsion for each
d > 0.

Conjecture 10.8 A(∅; Z) is torsion free.

10.2.2 Do finite type invariants distinguish homology 3-spheres?

Conjecture 10.9 Finite type invariants distinguish integral homology
3-spheres. (See Conjecture 11.2.)

10.2.3 Dimensions of spaces of finite type invariants

A finite type invariant v is called primitive if v(M1#M2) = v(M1) + v(M2) for
any integral homology 3-spheres M1 and M2 . We denote by A(∅;R)conn the
submodule of A(∅;R) spanned by Jacobi diagrams with connected trivalent
graphs. As a graded vector space A(∅; Q) is isomorphic to the symmetric
tensor algebra of A(∅; Q)conn .

Problem 10.10 Determine the dimension of the space of primitive finite type
invariants of integral homology 3-spheres of each degree d. Equivalently, deter-
mine the dimension of the space A(∅; Q)(d)

conn
for each d.
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d 0 1 2 3 4 5 6 7 8 9 10

prime diag. 0 1 0 0 1 0 1 1 1 1 2

dim A(∅)(d)
conn 0 1 1 1 2 2 3 4 5 6 8

dim A(∅)(d) 1 1 2 3 6 9 16 25 42 65 105

d 11 12 13 14

prime diag. 1

dim A(∅)(d)
conn 9 ≥11 ≥13 ≥15

dim A(∅)(d) 161 ≥254 ≥386 ≥595

Table 7: Some dimensions for Problem 10.10

Remark A(∅; Q)(d)
conn is isomorphic to B(d+1,2)

conn mentioned in a remark of Prob-
lem 2.12, by the isomorphism taking a trivalent graph to a uni-trivalent graph
obtained from the trivalent graph by cutting a middle point of an edge. Hence,
the dimension of A(∅; Q)(d)

conn is equal to the dimension βd+1,2 of B(d+1,2)
conn . There-

fore, we obtain the row of A(∅; Q)(d)
conn in Table 7 from a column of Table 2.

Remark A(∅)conn is an algebra with the product given by connected sum of
Jacobi diagrams. Let us look for prime diagrams with respect to the connected
sum; they generate the algebra A(∅)conn . By the AS and IHX relations, we can
remove a triangle, and we can break a polygon with odd edges. Hence, prime
diagrams are given by

p1 = , p4 = , p6 = ,

p7 = , p8 = , · · · .

They have the relation p1p7 = p2
4 , since p1p7 = p1(x3p4) = (x3p1)p4 = p2

4 ,
where x3 is the element of Vogel’s algebra Λ given in (49) below, which acts
on A(∅)conn . It is a problem to find a complete list of generators and relations
of the algebra A(∅)conn .

Remark A(∅; Q)conn is a Λ-algebra, where Λ is Vogel’s algebra given below,
whose generators and relations have been known in degree ≤ 10; see a remark
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on Problem 10.11. It is a problem to find generators and relations of A(∅; Q)conn

as a Λ-algebra.

Update The prime diagrams of degree ≤ 11 are given in [88].

10.2.4 Vogel’s algebra

Vogel’s algebra [395] is defined as follows. For fixed 3 points, we denote by
A(3 points)conn the module over Q spanned by vertex-oriented connected uni-
trivalent graphs whose univalent vertices are the fixed 3 points subject to the
AS and IHX relations. The symmetric group S3 acts on A(3 points)conn by
permutation of 3 points. The module Λ is defined to be the submodule of
A(3 points)conn consisting of all elements u satisfying that σ(u) = sgn(σ) · u
for any σ ∈ S3 . It is well defined to insert u ∈ Λ in a vertex-oriented trivalent
vertex as

7−→ .

Moreover, this insertion is independent, modulo the AS and IHX relations, of
a choice of a trivalent vertex as follows. By the AS and IHX relations,

− = = −

= − ,

where the middle equality is derived from the anti-symmetry of u. By the π/4
and −π/4 rotations of the above formula, we have that

− = −

= − .
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Hence, the left hand side of the above formula is equal to 0. This implies that
the insertion of u is independent of a choice of a trivalent vertex. The module
Λ is an algebra, called Vogel’s algebra, whose product of x, y ∈ Λ is defined to
be the element of Λ obtained by inserting x in a trivalent vertex of y . It is a
commutative algebra. Some generators of Λ in low degrees are given by

1 = , t = , x3 = , (49)

and further,

xn = ,

having n horizontal lines between the vertical line and the circle. It is known
that the even xn ’s can be presented by odd xn ’s.

Problem 10.11 Describe Vogel’s algebra Λ, say, by giving complete sets of
generators and relations of Λ.

Remark Vogel [396] conjectured that the homomorphism ϕ : R0 → Λ given
in [396] was bijective, where R0 is the subalgebra of a polynomial algebra in 3
variables, generated by elements given in [396]. As mentioned in [396], ϕ has
been known to be bijective in degree ≤ 10, and injective in degree ≤ 15.

Recently (in June, 2001), Vogel found a polynomial in R0 whose image in Λ
vanishes; this implies that ϕ is not injective. Surjectivity of ϕ (which implies
that Λ is generated by t, x3, x5, x7, · · · ) is still an open problem.

Vogel [397] further found a divisor of zero in Λ. It is given as follows. Putting

U = ,
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we define W ∈ A(∅) and λ ∈ Λ by

W =
∑

σ

sign(σ) = ,

where the sum of σ runs over all permutations σ ∈ S6 , and λ is obtained
from W by removing a neighborhood of a trivalent vertex. Vogel showed that
tλ = 0 ∈ Λ and λ 6= 0 ∈ Λ.

10.2.5 Other problems

Problem 10.12 Find a constructive combinatorial presentation of each finite
type invariant of integral homology 3-spheres, and, in particular, of the Casson
invariant, by localizing configuration space integrals.

Remark The perturbative expansion of the path integral of the Chern-Simons
field theory suggests that each Vassiliev invariant of knots can be obtained as a
mapping degree of a certain map on a configuration space, whose localization
deduces a Gauss diagram formula of this Vassiliev invariant; see comments be-
fore Problem 3.11. In the 3-manifold case G. Kuperberg and D. Thurston [237]
gave a presentation of each finite type invariant by using configuration space
integrals, whose localization might deduce a combinatorial formula, similarly
as a Gauss diagram formula. It would be a difficult point of such localization
to deal with “hidden strata” (anomaly faces).

Problem 10.13 (J. Roberts) What is the space of 3-manifolds?

Remark (J. Roberts) Vassiliev invariants are usually characterised in purely
combinatorial terms, but it is worth remembering that Vassiliev was led to
this definition by considering the natural stratification of the space of smooth
maps S1 → R3 . The combinatorial theory of finite type invariants of homology
spheres is now equally well-developed but there remains no natural justification
for considering the relations introduced by Ohtsuki, other than that these turn
out to interact very well with the perturbative expansion of the Witten invari-
ants. One would like to find a stratified space of integer homology spheres, in
which crossing a codimension 1 stratum corresponds to doing ±1 surgery on
a knot. Now the space of smooth maps f : Sn+3 → Sn is a natural choice for
a “space of framed 3-manifolds”, via the Pontrjagin-Thom construction (take
the preimage of a fixed point in Sn ). But this space gives the wrong filtration,
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and it’s not clear how to alter it to implement (for example) constraints on the
homology of the preimages. See Shirokova [365].

10.3 Goussarov-Habiro theory

10.3.1 Goussarov-Habiro theory for 3-manifolds

Related to finite type invariants of 3-manifolds, equivalence relations among 3-
manifolds have been studied by Goussarov [152, 153] and Habiro [165], which is
called the Goussarov-Habiro theory for 3-manifolds. These equivalence relations
are helpful for us to study structures of the set of 3-manifolds.

The Yd -equivalence35 among oriented 3-manifolds is the equivalence relation
generated by either of the following relations,

(1) surgery on a tree clasper with d trivalent vertices [165],

(2) Goussarov’s d-variation (which generates Goussarov’s notion of (d − 1)-
equivalence) [152, 153],

(3) surgery by an element in the dth lower central series subgroup of the
Torelli group of a compact connected surface.

It is known [165] that these relations generate the same equivalence relation
among ZHS ’s. Two closed 3-manifolds M and M ′ are Y1 -equivalent if and
only if there is an isomorphism H1(M ; Z) → H1(M

′; Z) which induces an iso-
morphism between their linking pairings [278].

It is known [165] that {integral homology 3-spheres (ZHS ’s)}/∼
Y2

∼= Z/2Z and

that {ZHS ’s}/∼
Y3

∼= Z, which deduce the Rokhlin and Casson invariants respec-

tively. Further, it is known [165] that {M ∼
Y2d−1

S3}/∼
Y2d

= 0 for d > 1 and that

there exists a natural surjective homomorphism

A(∅; Z)(d)
conn −→ {M ∼

Y2d

S3}/ ∼
Y2d+1

(50)

such that the tensor product of this map and Q is an isomorphism. In partic-
ular, {M ∼

Y2d

S3}/ ∼
Y2d+1

forms an abelian group with respect to the connected

sum of ZHS ’s, and hence, so does {ZHS ’s}/ ∼
Y2d+1

.

Conjecture 10.14 The map (50) is an isomorphism.

35The Yd -equivalence is also called the (d − 1)-equivalence (due to Goussarov) in some
literatures.
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This conjecture might be reduced to Conjecture 10.8 and the following conjec-
ture.

Conjecture 10.15 {M ∼
Y2d

S3}/ ∼
Y2d+1

is torsion free for each d.

Remark Conjecture 10.8 implies this conjecture, since the surjective homo-
morphism (50) gives a Q-isomorphism.

Remark (K. Habiro) It is also a problem to describe the graded set {M ∼
Yd

M0}/ ∼
Yd+1

for an arbitrarily given 3-manifold M0 . For d = 0, the quotient

set {3-manifolds}/∼
Y1

can be identified with the set of isomorphism classes of

H1(M ; Z) and their linking pairings (as mentioned above). For d > 0, there is
a surjective map to this graded set from a certain module of Jacobi diagrams
(subject to the AS and IHX relations).

Problem 10.16 (T. Ohtsuki) Define a product M1 ◦M2 of integral homol-
ogy 3-spheres M1 and M2 which is related, by (50), to the product of Jacobi
diagrams given by their connected sum.

Remark A(∅)conn is an algebra with the product given by connected sum of
Jacobi diagrams. The connected sum of Jacobi diagrams on ∅ is well defined
by the AS and IHX relations. The sum of A(∅)conn corresponds, by (50), to
the connected sum of integral homology 3-spheres. The problem is to define
a product among integral homology 3-spheres corresponding to the product of
A(∅)conn by (50).

It is known [152, 165] that two integral homology 3-spheres M and M ′ are Yd -
equivalent if and only if v(M) = v(M ′) for any A-valued finite type invariant36

v of FY
⋆ -degree < d for any abelian group A. In fact, a natural quotient map

{ZHS ’s} → {ZHS ’s}/∼
Yd

is a finite type invariant of FY
⋆ -degree < d, which

classifies Yd -equivalence classes of integral homology 3-spheres.

For an oriented compact surface F , a homology cylinder over F is a homology
F × I whose boundary is parameterized by ∂(F × I).

36 For an abelian group A, a homomorphism v : ZM → A is called a finite type
invariant of FY

⋆ -degree d if v vanishes on FY
d+1(ZM).
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Conjecture 10.17 (M. Polyak, see [153, “Theorem 4”]) Let F be an oriented
compact surface. Two homology cylinders C and C ′ over F are Yd -equivalent if
and only if v(C) = v(C ′) for any A-valued finite type invariant v of FY

⋆ -degree
< d for any abelian group A.

Remark (M. Polyak) The corresponding assertion for closed 3-manifolds
does not hold; note that {closed 3-manifolds}/∼

Yd

does not (naturally) form

a group. Recall that {ZHS ’s}/ ∼
Yd

forms an abelian group, which guaran-

tees the corresponding assertion for ZHS ’s, as mentioned above. The set
{homology cylinders on F }/∼

Yd

forms a group with respect to the composition

of homology cylinders, though it is not abelian.

10.3.2 Goussarov-Habiro theory for spin and spinc 3-manifolds

As shown in [276], we have a natural spin (resp. spinc structure) on the 3-
manifold obtained from a spin (resp. spinc) 3-manifold by surgery along a Y
graph (or a tree clasper). We define the Y s

d -equivalence (spin Yd -equivalence)
(resp. Y c

d -equivalence (spinc Yd -equivalence)) to be the equivalence relation
among spin (resp. spinc) 3-manifolds given by the Yd -equivalence. It is known
[276] that the quotient set {spin closed 3-manifolds}/∼

Y s
1

can be identified with

the isomorphism classes of pairs of H1(M ; Z) and certain quadratic forms φM,σ :
TorH1(M ; Z) → Q/Z, or equivalently, the isomorphism classes of triples of

H1(M ; Z) and linking pairings λM :
(
TorH1(M ; Z)

)⊗2 → Q/Z and the mod
8 reduction of the Rokhlin invariant µ(M,σ). Further, it is known [107] the
quotient set {spinc closed 3-manifolds}/∼

Y c
1

can be identified with the set of the

isomorphism classes of pairs of H1(M ; Z) and certain quadratic forms qσ . This
set would be well described by the classification of the following problem.

Problem 10.18 (F. Deloup) Classify the monoid (for orthogonal sum) of
isomorphism classes of quadratic forms qσ .

Remark The quotient set {closed 3-manifolds}/∼
Y1

can be identified with the

set of the isomorphism classes of pairs of H1(M ; Z) and linking pairings. This
set can be well described by the classification of linking pairings given in [207].

The first version of Section 10.3.2 was written by T. Ohtsuki, following a report of F.
Deloup. Based on it, F. Deloup wrote this section.
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Problem 10.19 (G. Massuyeau) Describe the quotient set
{spin closed 3-manifolds}/∼

Y s
d

, in particular, for d = 2, 3.

Problem 10.20 (F. Deloup, G. Massuyeau) Describe the quotient set
{spinc closed 3-manifolds}/∼

Y c
d

, in particular, for d = 2, 3.

Remark There is a unique spin (resp spinc) structure on a ZHS . Hence,
{spin ZHS ’s}/∼

Y s
d

(resp. {spinc ZHS ’s}/∼
Y s

d

) is equal to {ZHS ’s}/∼
Yd

. This

quotient set can be described by Jacobi diagrams (see Conjecture 10.15).

Remark The above two problems are related to spin and spinc refinements
of the Casson-Walker-Lescop invariant; see Problem 10.4.

Deloup and Massuyeau [107] obtained a complete system of invariants for
quadratic functions on finite abelian groups which involves the Gauss-Brown
invariant γ(q) =

∑
x∈G e2π

√
−1q(x) of a quadratic form q . In the case qσ comes

from a usual spin structure, qσ is homogeneous37 and the argument of γ(qσ)
is just the mod 8 reduction of the Rokhlin invariant. (Here we take the clas-
sical Rokhlin invariant of a spin structure on M to be the signature mod 16
of an oriented smooth simply-connected 4-manifold bounded by M .) Thus, in
general, arg γ(qσ) ∈ Q/Z may be viewed as mod 8 generalization of Rokhlin
invariant for spinc structures. In the context of spin Goussarov-Habiro theory,
Massuyeau proved that the Rokhlin invariant is a finite type invariant of degree
1. This suggests the following question.

Question 10.21 (F. Deloup) Is there a lift of arg γ(qσ) to a mod 16 invariant?
This would give a finite type invariant of degree 1 in the spinc Goussarov-Habiro
theory.

37A quadratic function q is a a map such that q(x + y) − q(x) − q(y) is bilinear in x and
y . It is called homogeneous if q(nx) = n2q(x) for any n ∈ Z and x ∈ G . In fact, there is a
canonical map σ 7→ qσ from spinc structures to quadratic functions and qσ is homogeneous
if and only if σ actually comes from a spin structure. Note that not all spinc structures come
from spin structures.
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11 The LMO invariant

The LMO invariant ZLMO(M) ∈ A(∅) of closed oriented 3-manifolds was in-
troduced in [249]. The LMO invariant of rational homology 3-spheres was
reformulated by Aarhus integral [36]. The LMO invariant is a universal per-
turbative invariant of rational homology 3-spheres (see [320, 36, 321]), and a
universal finite type invariant of integral homology 3-spheres [244].

11.1 Calculation of the LMO invariant

Problem 11.1 For each rational homology 3-sphere M , calculate ZLMO(M)
for all degrees.

Remark Bar-Natan and Lawrence [37] showed a rational surgery formula for
the LMO invariant. By using it, they obtained

ẐLMO
(
L(p, q)

)
= 〈Ωx,Ω−1

x Ωx/p〉x exp
−s(q, p)

48
θ (51)

for the lens space L(p, q) of type (p, q), where s(q, p) denotes the Dedekind
sum. For the notation 〈Ωx,Ω

−1
x Ωx/p〉x see [37].

Remark The degree 1 part of ZLMO(M) is given by the Casson-Walker in-
variant of M [249]. Further, the degree ≤ d part of ZLMO(M) of integral
homology 3-spheres are given by finite type invariants of degree ≤ d. Hence, it
is algorithmically possible to calculate the degree ≤ d part of ZLMO(M) of an
integral homology 3-sphere for each d. It is meaningful to calculate ZLMO(M)
for all degrees.

Remark It is meaningful to calculate ZLMO(M) when M is a rational ho-
mology 3-sphere. Otherwise, it is known that ZLMO(M) can be given by some
“classical” invariants. When b1(M) = 1, the value of ZLMO(M) can be pre-
sented by using the Alexander polynomial of M [138, 259]. When b1(M) = 2,
the value of ZLMO(M) can be presented by using the Casson-Walker-Lescop in-
variant of M [162]. When b1(M) = 3, the value of ZLMO(M) can be presented
by using the cohomology ring of M [161]. When b1(M) > 3, we always have
that ZLMO(M) = 1 [161].

11.2 Does the LMO invariant distinguish integral homology 3-
spheres?

Conjecture 11.2 The LMO invariant distinguishes integral homology 3-spheres.
(See Conjecture 10.9.)
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Remark Bar-Natan and Lawrence [37] showed (as a corollary of their cal-
culation (51)) that the LMO invariant does not separate lens spaces. They
also showed in [37] that the LMO invariant separates integral homology Seifert
fibered spaces.

Problem 11.3 Does there exist an integral/rational homology 3-sphere M
such that ZLMO(M) = ZLMO(S3)?

11.3 Characterization of the image of the LMO invariant

Problem 11.4 Characterize those elements of Â(∅)conn which are of the form
log ZLMO(M) for integral/rational homology 3-spheres.

Remark Since τSO(3)(M) can be obtained from ZLMO(M) by applying the
weight system Wsl2 , some characterization of this problem might be obtained
from the characterization of the form τSO(3)(M) (Problem 7.28), say, from the
integrality of the coefficients of τSO(3)(M) for integral/rational homology 3-
spheres M . Some other characterization of this problem might by obtained
from the loop expansion of the Kontsevich invariant.

11.4 Variations of the LMO invariant

Problem 11.5 Construct the LMO invariant with coefficients in a finite field.

Remark If the Kontsevich invariant with coefficients in a finite field would be
constructed (see Problem 3.7), then it would be helpful for this problem.

Problem 11.6 Construct the LMO invariant (or the theory of finite type
invariants) in arrow diagrams.

11.5 Refinements of the LMO invariant

(T. Le) As mentioned in a remark in Problem 11.1, the LMO invariant is a
weak invariant when b1(M) > 0; in particular, ZLMO(M) = 1 when b1(M) > 3.
The following two problems might give refinements of ZLMO(M) which would
be stronger than ZLMO(M), in particular, when b1(M) > 0.

Problem 11.7 (T. Le, V. Turaev) Define the LMO invariant ZLMO(M,σ)
of the pair of a closed 3-manifold M and a spin structure σ of M such that
ZLMO(M) =

∑
σ ZLMO(M,σ), where the sum runs over all spin structures on

M . There is also a similar problem for spinc structures.
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Remark The quantum SU(2) invariant of (M,σ) satisfies that τ
SU(2)
r (M) =∑

σ τ
SU(2)
r (M,σ) for r divisible by 4 (see [221]). The ZLMO(M,σ) should be

defined such that τ
SU(2)
r (M,σ) can be recovered from ZLMO(M,σ) in an ap-

propriate sense, and such that the coefficients of ZLMO(M,σ) are “finite type
invariants” of (M,σ) under an appropriate definition of finite type invariants
of (M,σ).

The set of spin structure is a torsor over H1(M ; Z/2Z) in the sense that the
difference of two spin structures is an element in H1(M ; Z/2Z), and every
element of H1(M ; Z/2Z) is the difference of some spin structure and a fixed
one. Similarly, the set of all spinc structure is a torsor over H1(M, Z). In this
sense the previous problem might be related to the following problem.

Problem 11.8 (T. Le, V. Turaev) For every element ξ ∈ H1(M, Z) construct
an extension of ZLMO(M, ξ) of the LMO invariant such that when ξ = 0 one
recovers the usual LMO invariant.

The idea is that the usual LMO invariant corresponds only to the trivial coho-
mology class, and for manifolds with high Betti number, it is equal to 0. K.
Habiro has an extension of the LMO invariant that might be a solution to this
problem.

Remark For a finite abelian group A and ξ ∈ H1(M,A), let τ(M, ξ) be the
invariant of (M, ξ), defined from a modular A-category, and let τ(M) be the
invariant of M derived from a modular category forgetting A-grading. Then,
τ(M) =

∑
ξ τ(M, ξ). (For details, see [250].) The ZLMO(M, ξ) should be

defined such that a suitable τ(M, ξ) can be recovered from ZLMO(M, ξ) in an
appropriate sense, and such that the coefficients of ZLMO(M, ξ) are “finite type
invariants” of (M, ξ) under an appropriate definition of finite type invariants
of (M, ξ).

11.6 Other problems

Question 11.9 (1) Find a surgery formula for the Kuperberg-Thurston in-
variant [237] in terms of the Chern-Simons series of Question 3.12

(2) Compare the Kuperberg-Thurston invariant to the LMO invariant.

Problem 11.10 (D. Thurston) Do configuration spaces of [237] have torsion
in Z-homology? Does such torsion deduce a torsion invariant of homology
3-spheres?

Geometry & Topology Monographs, Volume 4 (2002)



530 T. Ohtsuki (Editor)

12 Other problems

12.1 (Pseudo) Legendrian knot invariants

Let W be a compact closed oriented 3-manifold. (K, v) is said a pseudo Leg-
endrian pair in W if K ⊂ W is a knot, v is a non singular vector field on W
and K is transverse to v . K is simply said a (pL)-knot. (Kt, vt), t ∈ [0, 1], is
a pseudo Legendrian isotopy if Kt is an ambient isotopy of knots, vt is a homo-
topy of fields and (Kt, vt) is a (pL)-pair for every t ∈ [0, 1]. Every (pL)-knot
is naturally a framed knot, and every (pL)-isotopy is in particular a framed
knots isotopy. If ξ is a transversely oriented contact structure on and K is ξ -
Legendrian in the classical sense, then K is a (pL)-knot w.r.t. any field v which
is positively transverse to ξ . Every Legendrian isotopy between ξ -Legendrian
knots induces a (pL)-isotopy. So we have 3 categories of knots, related by
natural forgetting maps:

{Legendrian knots} f1→ {(pL)-knots} f2→ {framed knots}.
Note that, for each one of these categories, C say, also the C -homotopy immer-
sion class of any C -knot is naturally defined, this contains the C -isotopy class
and is preserved by the forgetting maps.

In [49] one has introduced the Reidemeister-Turaev torsions of (pL)-knots; one
has realized that torsions include a correct lifting to the (pL)-category of the
classical Alexander invariant; moreover, in many cases (for instance when W
is a Z-homology sphere), they can distinguish (pL)-knots which are isotopic as
framed knots.

Question 12.1 (R. Benedetti) Are torsions actually sensitive only to the
(pL)-homotopy immersion classes of (pL)-knots?

If one fix a C - homotopy immersion class of knots, say α , then one can define
the set of finite type invariants F(α) of the C -isotopy classes contained in α. If
α0 is a class of Legendrian knots, one can take α1 = f1(α0) and α2 = f2(α1);
a finite type invariant for αi lifts to a finite type invariant for αi−1 . So one has
natural maps

F(α2)
f∗
2→ F(α1)

f∗
1→ F(α0).

It is known [130] that, under certain hypotheses on W (for instance when W
is a Z-homology sphere), f∗

1 ◦ f∗
2 is a bijection. On the oder hand, one can

Section 12.1 was written by R. Benedetti.
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find in [380] examples where f∗
1 ◦f∗

2 is not surjective and Legendrian finite type
invariants can eventually distinguish some Legendrian knots which are isotopic
as framed knots. In fact one can realize that for these examples f∗

2 is already
not surjective and that (pL)-finite type invariants can eventually distinguish
some (pL)-knots which are isotopic as framed knots. The following conjecture
is not in contradiction with all these known results on the subject.

Conjecture 12.2 (R. Benedetti) For every W , for every (pL)-class α1 as
above, f∗

1 is an isomorphism. This means, in particular, that finite type invari-
ants of Legendrian knots should be definitely not sensitive to geometric (rigid)
properties of the contact structures like “tightness”.

See also [50] for a more detailed discussion and related questions.

12.2 Knots and finite groups

Knot groups are known to be residually finite, that is, any non-trivial element
can be detected by a homomorphism to some finite group.

Now by Dehn’s lemma and the loop theorem a knot is trivial if and only if
its longitude represents the trivial element of the knot group. Consequently
for each non-trivial knot there is a homomorphism to some finite group which
carries the longitude to a non-trivial element.

Problem 12.3 (H.R. Morton) From a knot diagram find an explicit such
homomorphism to some permutation group or establish that the knot is trivial.

Refinements.

(1) Give an upper bound in terms of the diagram for the order of the permu-
tation groups which need to be considered.

(2) See what happens if the meridians (which are all conjugate) are restricted
to map to permutations of some specified cycle type, for example, single trans-
positions.

Remark Every finite group is the subgroup of a permutation group, so no
restrictions are implied here.

The language of quandles could be adopted for 2 when referring to the chosen
meridian conjugacy class.

Section 12.2 was written by H.R. Morton.
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It is possible to represent some knot groups onto a finite non-cyclic group with
the longitude mapping trivially. This always happens when n-colouring a knot,
as the knot group is mapped onto the dihedral group Dn , and the longitude
goes into its commutator subgroup. The problem here focusses on the stronger
question of representing the longitude non-trivially.

12.3 The numbers of 3-, 5-colorings and some local moves

A p-coloring of a link L is a homomorphism of the link quandle of L to the
dihedral quandle Rp of order p (or, alternatively, a homomorphism of π1(S

3−L)
to the dihedral group of order 2p which takes each meridian to a reflection).38

Let Colp(L) denote the number of p-colorings of L (see the remark of Problem
4.16). The following conjecture implies that the 3-move (see Figure 20) would
topologically characterize the partition of the set of links given by Col3(L);
note that Col3(L) is unchanged under the 3-move.

Conjecture 12.4 (3-move conjecture, Y. Nakanishi [305]) Any link can be
related to a trivial link by a sequence of 3-moves.

Remark Col3(L) is equal to 3n+1 , where n is the rank of H1(M2(L); Z/3Z)
and M2(L) denotes the double cover of S3 branched along L. Further, Col3
of the trivial link with n components is equal to 3n . Hence, if a link L is
related to a trivial link by 3-moves, then such a trivial link has log3 Col3(L)
components.

Remark [220, Remark on Conjecture 1.59 (1)] Since Bn/〈σ3
i 〉 is finite for

n ≤ 5, the proof of this conjecture for closures of braids of at most 5 strands is
reduced to verifying finitely many cases. According to Y. Nakanishi, the small-
est known obstruction of this conjecture is the 2-parallel of a set of Borromean
rings.

Remark [376] This conjecture is true for weak genus two knots.

Update Dabkowski and Przytycki [99] showed that some links cannot be re-
duced to trivial links by 3-moves, which are counterexamples to this conjecture.

38The original definition of a 3-coloring by Fox (see [98, Chapter VI, Exercise 6]) is (an
equivalent notion of) a non-trivial homomorphism of the link quandle of L to the dihedral
quandle R3 . Przytycki [337] studied the number of 3-colorings. His definition allows trivial
homomorphisms.
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It is shown in [169] that Col5(L) is invariant under the (2,2)-move (see Figure
20). The following conjecture implies that the (2,2)-move would topologically
characterize the partition of the set of links given by Col5(L).

Conjecture 12.5 (Y. Nakanishi, T. Harikae [220, Conjecture 1.59 (6)]) Any
link can be related to a trivial link by a sequence of (2,2)-moves.

Remark This conjecture holds for algebraic links; see [220, Conjecture 1.59
(6)], [337], and references therein.

The 3-move : ←→

The (2,2)-move : ←→

Figure 20: The 3-move and the (2,2)-move

12.4 Knotted trivalent graphs

D. Bar-Natan and D. Thurston [39, 40, 384] developed the theory of knotted
trivalent graphs and their algebra, related to shadow surfaces of V. Turaev [388]
and Lie groups/algebras.

A knotted trivalent graph (KTG) is a (framed) embedding of a (ribbon) trivalent
graph Γ into S3 , where framing is an integer of a half integer (hence, the ribbon
of a trivalent graph is not necessarily orientable). There are four operations of
KTG’s: connected sum, unzip, bubbling and unknot; see Figure 21. Any KTG
(in particular, any link) can be obtained from copies of tetrahedron and Möbius
strip with ±1/2 framing by applying KTG operations. Further, two sequences
of KTG operations give the same KTG, if and only if they are related by
certain (finitely many) relations including the pentagon and hexagon relations
(see [40]). Thus, the theory of KTG’s is finitely presented in this sense.

The Kontsevich invariant of framed links have an extension for KTG’s (see
[301]) and the extended Kontsevich invariant is well-behaved under the KTG

Section 12.4 was written by T. Ohtsuki, following seminar talks given by D. Thurston.
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Connected sum : −→

Unzip : −→

Bubbling : −→

Unknot : ∅ −→

Figure 21: Four operations of KTG’s [40]. The left hand side of the connected sum
denotes a disjoint union of two separate graphs.

operations such that they give another construction of the Kontsevich invariant
starting from the invariants of tetrahedron and Möbius strip.

Problem 12.6 Find a new proof of the existence of a universal Vassiliev in-
variant of knots, presenting them by KTG’s and their operations.

Conjecture 12.7 (D. Bar-Natan, D. Thurston) For each compact Lie group
G, level k , and every KTG K : Γ → R3 , there exists a collection of measures
µ

K
on the space of gauge equivalence classes of G-connections on Γ satisfying

the following conditions.

• It is well-behaved under KTG operations.

• It is “localized” near connections that extend to S3 −K .

• A half-twist framing change acts by e
√
−1H~/2 , where H is the Schrödinger

operator on G.

• It recovers quantum invariants by

IR(K) =

∫
hR(A)dµ

K
(A),

where hR(A) denotes the holonomy of A in R. Here, R is a set of
representations of G associated to edges of Γ and appropriate intertwiners
associated to vertices of Γ.
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Remark [31, 39] The physical presentation of the quantum invariant of a
knot K associated with a representation R of G is given by the Chern-Simons
path integral,

Zk(S
3,K) =

∫
hR(A)e2π

√
−1k CS(A)DA,

where CS(A) denotes the Chern-Simons functional of A and the integral is a
formal integral over the infinite dimensional space of all G connections on S3 .
It is a motivation of Conjecture 12.7 that a collection of µ

K
should play a role of

e2π
√
−1k CS(A)DA. It is expected [31, 39] that the collection of measures µK of

Conjecture 12.7 would prove the asymptotic expansion conjecture (Conjecture
7.6).

Problem 12.8 Construct an invariant of KTG’s from configuration space in-
tegrals in a natural way.

Turaev [388] introduced a presentation of 3-manifolds as S1 -bundles over “sha-
dow surfaces”, as follows (for details see [388, 40, 384]). A fake surface is a
singular surface such that a neighborhood of each point is homeomorphic to an
open subset of the cone over a tetrahedron. A S1 -bundle over a fake surface
can appropriately be defined and its isomorphism class is determined by the
Chern number, which is an integer or half-integer associated to each face; we
call the Chern number the gleam. A shadow surface is a fake surface with
gleams associated to the faces. Every (closed) 3-manifold can be presented by a
S1 -bundle over a (closed) shadow surface. The pentagon and hexagon relations
(see [388, Figure 1.1 of Chapter VIII]) are moves among shadow surfaces which
present a homeomorphic 3-manifold, though they are not enough to characterize
a homeomorphism class of 3-manifolds.

Exercise 12.9 Find a complete set of moves among shadow surfaces which
present a homeomorphic 3-manifold.

We obtain a shadow surface as a time evolution of a sequence of KTG’s given
by KTG operations. Thus, we have relations among links, 3-manifolds, KTG’s
and shadow surfaces as in the commutative diagram in Figure 22; for detailed
statements see [40, 384].

Motivated by a complexity of 3-manifolds discussed in [279, 272, 273], D.
Thurston introduced the shadow number of 3-manifolds. The shadow num-
ber is defined to be the minimal number of vertices of a shadow surface. All
graph manifolds have shadow number 0 and all surgeries on the Borromean
rings have shadow number 1. The volume conjecture might be related to the
following conjecture.
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Framed links -
exterior

Framed link exteriors -
surgery

Closed 3-manifolds

presentation

6
by making

S1 -bundle

6
by making

S1 -bundle

6

Certain sequences
of KTG’s

-
time
evolution

Collapsible
shadow surfaces

-
cap off ∂

Closed shadow surfaces

Figure 22: Links, 3-manifolds, KTG’s, and shadow surfaces

Conjecture 12.10 (D. Thurston) The shadow number of a 3-manifold is
quasi-linear in its Gromov norm. That is, there exist constants c1 and c2 such
that

c1||M || ≤ (shadow number of M ) ≤ c2||M ||
for any 3-manifold M , where ||M || denotes the Gromov norm of M .

Remark (D. Thurston) It is easy to bound the Gromov norm in terms of the
shadow number (i.e. to prove the left inequality for some c1 ).

Remark (D. Thurston) It is shown by W. Thurston that the hyperbolic vol-
ume of a hyperbolic 3-manifold is quasi-linear in the minimal number of ideal
tetrahedra in a “spun triangulation” (i.e. the minimal number of ideal tetra-
hedra in some link complement in the 3-manifold). It is shown by J. Brock
[68] that the volume of a mapping torus is quasi-linear in the pants translation
distance (for fixed genus).

Lackenby [238] showed that alternating knot diagrams give good information
about the hyperbolic volume. Knot diagrams are a special case of shadow
diagrams, but shadow diagrams can be much more efficient. This suggests the
following problem:

Problem 12.11 (D. Thurston) Find a condition on shadow diagrams which
is satisfied by shadow diagrams from alternating knots; and gives a lower bound
on the hyperbolic volume.

The Reshetikhin-Turaev invariant and the Turaev-Viro-Ocneanu invariant can
be described in terms of the KTG algebra, via I -bundles and S1 -bundles over
shadow surfaces respectively. The relation between the two invariants is derived
from the relation between the two construction of 3-manifolds shown in Figure
23.
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Closed shadow surfaces
with 0 gleams

�
�

�	

by making I -bundles
and cap off boundary

@
@

@R

by making S1 -bundles

Closed 3-manifolds Certain closed 3-manifolds-

M 7−→ M#M#(S2 × S1)’s

Figure 23: Two ways to obtain 3-manifolds from shadow surfaces

Problem 12.12 Construct a universal Reshetikhin-Turaev invariant and a
universal Turaev-Viro-Ocneanu invariant of closed 3-manifolds, in terms of the
KTG algebra.

Remark The LMO invariant and the even degree part of it might be a uni-
versal Reshetikhin-Turaev invariant and a universal Turaev-Viro-Ocneanu in-
variant of rational homology 3-spheres, respectively.

12.5 Quantum groups

Problem 12.13 (J. Roberts) What are quantum groups?

Remark (J. Roberts) A naive answer is to simply define them by means of
generators and relations, but this is appallingly unsatisfying. Better is Drin-
fel’d’s original construction [111], which begins with the geometric construction
of quasi-quantum groups using the monodromy of the KZ equation. He then
uses completely algebraic results about uniqueness of deformations to obtain
from each one a quantum group, whose category of representations is equiva-
lent to that of the quasi-quantum group, though the first has a trivial associator
and a complicated R-matrix, the second vice versa. (In particular, the braid
group representation associated to a quantum group is local in the sense that
the R-matrix implementing the action of a braid generator on a tensor prod-
uct of representations of the quantum group involves only the tensor factors
associated to the two strings concerned. This is certainly not true for the KZ
equation. Is there any way to understand this using geometry?)

These constructions are very subtle and complicated. What really is a quan-
tum group, in fact? I believe that algebraists have some reasonably geometric
descriptions of pieces of them in terms of perverse sheaves, etc., but I do not
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pretend to understand these. Atiyah made the very interesting suggestion that
quantum groups might be in some sense the “quaternionifications” of compact
Lie groups. Literal quaternionification does not make sense, but substitutes
might be available, in the sense that hyperkähler geometry provides a working
substitute for the non-existent quaternionic version of complex manifold theory.
Some evidence for this point of view is presented in Atiyah and Bielawski [19].

12.6 Other problems

Problem 12.14 (N. Askitas) Can a knot of 4-genus gs always be sliced (made
into a slice knot) by gs crossing switches?

Remark (A. Stoimenow) Clearly (at least) gs crossing switches are needed,
but sometimes more are needed to unknot the knot.

Update Livingston [266] showed that the knot 74 provides a counterexample
to this problem; gs(74) = 1 but no crossing change results in a slice knot.

Problem 12.15 (M. Boileau [220, Problem 1.69 (C)]) Are there mutants of
distinct unknotting numbers?

Remark (A. Stoimenow) There are mutants of distinct genera (Gabai [133])
and slice genera (Livingston [265]).

Let G be the graph such that its vertices are isotopy classes of unoriented
knots, and two vertices are adjacent if the corresponding knots differ by a
single crossing change.

Conjecture 12.16 (X.-S. Lin [262]) Any automorphism of G is either the
identity or the mirror map, that is, any automorphism of G is induced by a
diffeomorphism of the ambient space.

Problem 12.17 (X.-S. Lin [262]) What is the homotopy type of the space
L(K) of long ropes (as shown in the picture below) with the fixed knot type
K?
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Remark [262] A conjecture would be that, if K is a prime knot, L(K) is
homotopy equivalent to the circle if and only if K is non-trivial, with the
fundamental group generated by the obvious loop in L(K) shown in the above
picture. This question is motivated by the paper [287]. If the conjecture holds,
the homotopy type of the space of short ropes studied by Mostovoy would be
clear. A paper of Hatcher [171] seems to be related with this problem.

Problem 12.18 (J. Roberts) Extend Kuperberg’s work on webs.

Remark (J. Roberts) Kuperberg posed in [234] the question of giving a pre-
sentation, as a tensor category, of the representation category of a compact
Lie group or quantum group. The generators should be (roughly) the funda-
mental modules and their bilinear and trilinear invariants; more complicated
morphisms in the category can be built out of these according to a graphical cal-
culus (essentially Penrose’s tensor calculus) of “webs”. The first main problem
is to describe a set of elementary linear relations (skein relations) among such
pictures which generates all the relations among morphisms in the category.
The second is to describe a canonical basis of any invariant space in terms of
canonical pictures in the disc. Kuperberg solved both these problems for groups
of ranks one (in which case the pictures are just Temperley-Lieb diagrams) and
two and, with Khovanov in [219], made tantalising but imprecise conjectures
about how in the higher-rank case the pictures might be related to the geometry
of the weight lattice. These ideas are closely related to the work of Vaughan
Jones [187] on planar algebra, which is a similar kind of calculus describing the
category of bimodules over a subfactor. (Aside: Is it possible to find a bimodule
category whose intertwining rules are described by quasiperiodic Penrose tiles?)

Problem 12.19 (J. Roberts) Extend the theory of measured laminations to
higher rank groups.

Remark (J. Roberts) Let Σ be a closed oriented surface of genus g , and
let C(Σ) be its set of multicurves (isotopy classes of collections of disjoint
simple closed curves). Let T (Σ) be its Teichmüller space; that is, the space of
hyperbolic structures, considered up to diffeomorphisms isotopic to the identity.
Topologically, T (Σ) is an open ball of dimension 6g − 6.

Each of C(Σ), T (Σ) has a natural embedding in the space of functions C(Σ)→
R≥0 : one sends a multicurve to its associated minimal geometric intersection
number function, and a metric to its associated geodesic length function. It is a
remarkable fact that the R+ -projective boundaries of these sets coincide. They
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define the space of measured laminations, which compactifies T (Σ) into a closed
ball and is of great importance in Thurston’s theory of surface automorphisms.
For further details see for example Penner and Harer [327].

Now T (Σ) may also be described algebraically as a certain component of the
space of flat SL(2, R) connections on Σ (that is, homomorphisms π1(Σ) →
SL(2, R)), and in this context the geodesic length function is replaced by a
trace-of-holonomy function. Is there a generalisation of the above picture to a
higher rank group such as SL(n, R)?

Hitchin [172] proves that in fact the space of flat SL(n, R) connections has a
special “Teichmüller component”, which is topologically an open ball, so we
have a candidate for T (Σ).(Aside: he asks whether there is an interpretation
of the points of the Teichmüller component in terms of some kind of geometric
structures on Σ. Choi and Goldman showed that for n = 3 they parametrise
convex real projective structures, but no general answer is known.)

A candidate for C(Σ) might be the set of Kuperberg-style (closed) webs drawn
on the surface, for there is then a natural holonomy-type map T (Σ)×C(Σ)→ R
which is a substitute for the geodesic length function. (In the SL(2) case, this
C(Σ) is just the set of multicurves, as it should be.) What might replace the ge-
ometric intersection number, and lead to some notion of “measured lamination”
for higher-rank groups, is unclear.

Problem 12.20 (J. Roberts) What is the generating function for q -spin net
evaluations?

Remark (J. Roberts) A q -spin net is a trivalent planar graph whose edges are
labelled by irreducible representations of SU(2). By placing idempotents from
the Temperley-Lieb algebra on its edges and joining up their external strings
in a planar fashion at the vertices, one forms an evaluation in Z[q±1]. The goal
is to find a power series in variables associated to the edges which serves as a
generating function for the evaluations corresponding to all possible labellings
of a given graph. Such a formula is known for any graph at the classical value
q = 1, and Westbury [400] found a generating function for the tetrahedral
graph (the quantum 6j -symbol). A general formula is, however, unknown, and
Westbury also shows that the naive guess (simply replacing factorials in the
q = 1 formula by quantum factorials) is wrong.

Problem 12.21 (Y. Shinohara [364]) If n = 4k + 1 with k > 0, is there a
knot with determinant n and signature 4?
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Remark (A. Stoimenow) The form 4k + 1 follows from Murasugi [303], and
the condition k 6= 0 from a signature theorem for even unimodular quadratic
forms over Z. If a counterexample for n > 1 exists, then all prime divisors of n
are of the form 24k+1 and not smaller than 2857. If σ4+8l,8l+5 is the elementary
symmetric polynomial of degree 4 + 8l in 8l + 5 variables, then all values of
σ4+8l,8l+5 on positive odd arguments are no counterexamples, so the problem
could “reduce” to showing that some of the σ4+8l,8l+5 realizes almost all n on
positive odd arguments. This appears number theoretically hard, however.

The set of concordance classes of 2-strand string links forms a group C2 . Stan-
ford showed that C2 is not nilpotent, in particular not abelian.

Problem 12.22 (T. Stanford) Is C2 solvable? Does C2 contain a free group?

Problem 12.23 (A. Stoimenow) Do positive links of given signature σ have
bounded (below) maximal Euler characteristic χ?

Remark (A. Stoimenow) So far for general positive links only σ > 0 is known
[361, 90], and for positive knots σ ≥ 4 if 2g = 1−χ ≥ 4 (it follows from [379]).
For positive braid links the answer is positive, and also for special alternating
links by Murasugi [303].

Problem 12.24 (A. Stoimenow) If a prime knot K can be transformed into
its mirror image by one crossing change, is K achiral or (algebraically?) slice?

Remark (A. Stoimenow) Smoothing out this crossing gives a link of zero
Tristram-Levine-signatures [385, 254] and zero Alexander polynomial. Many
such links are slice, and then K would be slice also. But unlikely.

Problem 12.25 (A. Stoimenow) Let n be an odd natural number, different
from 1, 9, and 49, such that n is the sum of two squares. Is there a prime
alternating achiral knot of determinant n?

Remark (A. Stoimenow) If there is an achiral knot of determinant n, then
n is the odd sum of two squares [170]. The converse is also true, and the
achiral knot of determinant n can be chosen to be alternating or prime, but
not always both. For n = 1, 9, and 49, there is no prime alternating achiral
knot of determinant n. If there is another such n, then n > 2000 and n is not
a square. See [374].
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Conjecture 12.26 (V. Turaev) A pair (a finitely generated abelian group H
of rank 1, an element ∆(t) ∈ Z[H/Tors H] = Z[t±1]) (where t is a generator
of H/Tors H ) can be realized as the pair (H1(M), the Alexander polynomial
∆M of M ) for a closed connected oriented 3-manifold M if and only if ∆(t) =
tk∆(t−1) with even k ∈ Z and ∆(1) = ±|Tors H|.

Remark (V. Turaev) Both conditions are known to be necessary. They are
presumably sufficient. This is known for H = Z and for H = Z× (Z/nZ) with
n ≥ 2. When M is obtained from S3 by 0-surgery along a knot K , H1(M) = Z
and ∆M(t) = ∆K(t). It is known that a Laurent polynomial f(t) ∈ Z[t±1] is
realized as the Alexander polynomial of a knot if and only if f(t) = tkf(t−1)
with even k and f(1) = 1. Using surgery on a 2-component link in S3 with
linking number 0 and framing numbers 0, n, respectively, one can prove (cf.
[253]) the conjecture for H = Z× (Z/nZ).
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