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Abstract We give a criterion to detect whether the derivatives of the
HOMFLY polynomial at a point is a Vassiliev invariant or not. In partic-

ular, for a complex number b we show that the derivative P
(m,n)
K (b, 0) =

∂m

∂am

∂n

∂xn
PK(a, x)|(a,x)=(b,0) of the HOMFLY polynomial of a knot K at

(b, 0) is a Vassiliev invariant if and only if b = ±1. Also we analyze the
space Vn of Vassiliev invariants of degree ≤ n for n = 1, 2, 3, 4, 5 by using
the ¯ –operation and the ∗–operation in [5]. These two operations are uni-
fied to the ˆ –operation. For each Vassiliev invariant v of degree ≤ n , v̂ is
a Vassiliev invariant of degree ≤ n and the value v̂(K) of a knot K is a
polynomial with multi–variables of degree ≤ n and we give some questions
on polynomial invariants and the Vassiliev invariants.

AMS Classification 57M25
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1 Introduction

In 1990, V. A. Vassiliev introduced the concept of a finite type invariant of knots,
called Vassiliev invariants [13]. There are some analogies between Vassiliev
invariants and polynomials. For example, in 1996 D. Bar–Natan showed that
when a Vassiliev invariant of degree m is evaluated on a knot diagram having
n crossings, the result is approximately bounded by a constant times of nm [2]
and S. Willerton [15] showed that for any Vassiliev invariant v of degree n, the
function pv(i, j) : = v(Ti,j) is a polynomial of degree ≤ n for each variable i
and j . Recently, we [4] defined a sequence of knots or links induced from a
double dating tangle and showed that any Vassiliev invariant has a polynomial
growth on this sequence.

J. S. Birman and X.–S. Lin [3] showed that each coefficient in the Maclau-
rin series of the Jones, Kauffman, and HOMFLY polynomial, after a suitable
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change of variables, is a Vassiliev invariant, and T. Kanenobu [7, 8] showed that
some derivatives of the HOMFLY and the Kauffman polynomial are Vassiliev
invariants. For the question whether the n–th derivatives of knot polynomials
are Vassiliev invariants or not, we [5] gave complete solutions for the Jones,
Alexander, Conway polynomial and a partial solution for the Q–polynomial.
Also we introduced the ¯–operation and the ∗–operation to obtain polynomial
invariants from a Vassiliev invariant of degree n. From each of these new poly-
nomial invariants, we may get at most (n + 1) linearly independent numerical
Vassiliev invariants.

In this paper, we find a line and two points in the complex plane where the
derivatives of the HOMFLY polynomial can possibly be Vassiliev invariants and
analyze the space Vn of Vassiliev invariants for n ≤ 5 by using the ¯–operation
and the ∗–operation.

Throughout this paper all knots or links are assumed to be oriented unless
otherwise stated. For a knot K and i ∈ N, Ki denotes the i–times self–
connected sum of K and N, Z, Q, R, C denote the sets of nonnegative integers,
integers, rational numbers, real numbers and complex numbers, respectively.

A knot or link invariant v taking values in an abelian group can be extended to
a singular knot or link invariant by taking the difference between the positive
and negative resolutions of the singularity. A knot or link invariant v is called a
Vassiliev invariant of degree n if n is the smallest nonnegative integer such that
v vanishes on singular knots or links with more than n double points. A knot
or link invariant v is called a Vassiliev invariant if v is a Vassiliev invariant of
degree n for some nonnegative integer n.

Definition 1.1 [4] Let J be a closed interval [a, b] and k a positive integer.
Fix k points in the upper plane J2×{b} of the cube J3 and their corresponding
k points in the lower plane J2×{a} of the cube J3 . A (k, k)–tangle is obtained
by attaching, within J3 , to these 2k points k curves, none of which should
intersect each other. A (k, k)–tangle is said to be oriented if each of its k curves
is oriented. Given two (k, k)–tangles S and T , roughly the tangle product ST
is defined to be the tangle obtained by gluing the lower plane of the cube
containing S to the upper plane of the cube containing T . The closure T of a
tangle T is the unoriented knot or link obtained by attaching k parallel strands
connecting the k points and their corresponding k points in the exterior of the
cube containing T. When the tangles S and T are oriented, the oriented tangle
ST is defined only when it respects the orientations of S and T and the closure
S has the orientation inherited from that of S and ST is the oriented knot or
link obtained by closing the (k, k)–tangle ST .
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Definition 1.2 [4] An oriented (k, k)–tangle T is called a double dating tan-

gle (DD–tangle for short) if there exist some ordered pairs of crossings of the
form (∗) in Figure 1, so that T becomes the trivial (k, k)–tangle when we
change all the crossings in the ordered pairs, where i and j in Figure 1, denote
components of the tangle. Note that a DD–tangle is always an oriented tangle.

i j i j

,

Figure 1: (∗)

Since every (1, 1)–tangle is a double dating tangle, every knot is a closure of
a double dating (1, 1)–tangle. But there is a link which is not the closure of
any DD–tangle since the linking number of two components of the closure of a
DD–tangle must be 0.

Definition 1.3 [4] Given an oriented (k, k)–tangle S and a double dating
(k, k)–tangle T such that the product ST is well–defined, we have a sequence
of links {Li(S, T )}∞i=0 obtained by setting Li(S, T ) = ST i where T i = TT · · ·T
is the i–times self–product of T and T 0 is the trivial (k, k)–tangle. We call
{Li(S, T )}∞i=0 ({Li}∞i=0 for short) the sequence induced from the (k, k)–tangle

S and the double dating (k, k)–tangle T or simply a sequence induced from the

double dating tangle T.

In particular, if S is a knot for a (k, k)–tangle S , then Li(S, T ) = ST i is a
knot for each i ∈ N since T i can be trivialized by changing some crossings.

Theorem 1.4 [5] Let {Li}∞i=0 be a sequence of knots induced from a DD–

tangle. Then any Vassiliev knot invariant v of degree n has a polynomial

growth on {Li}∞i=0 of degree ≤ n.

Corollary 1.5 [5] Let L and K be two knots. For each i ∈ N, let Ki =
K♯L♯ · · · ♯L be the connected sum of K to the i–times self–connected sum of

L. If v is a Vassiliev invariant of degree n, then v|{Ki}∞i=0
is a polynomial

function in i of degree ≤ n.

The converse of Corollary 1.5 is not true. In fact, the maximal degree u(K) of
the Conway polynomial ∇K(z) for a knot K is a counterexample.
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2 The derivatives of the HOMFLY polynomial and

Vassiliev invariants.

From now on, the notations 31 , 41 , 51 and 61 will mean the knots in the Rolf-
sen’s knot table [11]. For the definitions of the HOMFLY polynomial PL(a, z)
and the Kauffman polynomial FL(a, x) of a knot or link L, see [10].

Note that the Jones polynomial JL(t), the Conway polynomial ∇L(z), and
the Alexander polynomial ∆L(t) of a knot or link L can be defined from the
HOMFLY polynomial PL(a, z) ∈ Z[a, a−1, z, z−1] via the equations JL(t) =
PL(t, t1/2 − t−1/2), ∇L(z) = PL(1, z) and ∆L(t) = PL(1, t1/2 − t−1/2) respec-
tively and that the Q–polynomial QL(x) can be defined from the Kauffman
polynomial FL(a, x) via the equation QL(x) = FL(1, x).

By using the skein relations, we can see that PL(a, z) and FL(a, x) are mul-

tiplicative under the connected sum. i.e. PL1♯L2
(a, z) = PL1

(a, z)PL2
(a, z) and

FL1♯L2
(a, x) = FL1

(a, x)FL2
(a, x) for all knots or links L1 and L2 . So the

Jones, Conway, Alexander and Q–polynomials are also multiplicative under
the connected sum.

It is well known that PK(a, z) ∈ Z[a2, a−2, z2] and FK(a, x) ∈ Z[a, a−1, x] for
a knot K . For each i ∈ N and each knot K , we denote by Fi(K; a) and
P2i(K; a) the coefficient of xi in FK(a, x) and the coefficient of z2i in PK(a, z),
respectively, which are polynomials in a.

Throughout this section, knot polynomials are always assumed to be multi-
plicative under the connected sum.

We consider 1–variable knot polynomials first and then 2–variable knot poly-
nomials.

Lemma 2.1 [5] Let fK(x) be a knot polynomial of a knot K such that

fK(x) is infinitely differentiable in a neighborhood of a point a and assume

that f
(1)
K (a) 6= 0. Then there exists a unique polynomial p(x) of degree m such

that f
(m)
Ki (a) = (fK(a))ip(i) for i > m.
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Theorem 2.2 [5] For each n ∈ N, we have

(1) J
(n)
K (a) is a Vassiliev invariant if and only if a = 1.

(2) ∇(n)
K (a) is a Vassiliev invariant if and only if a = 0.

(3) ∆
(n)
K (a) is a Vassiliev invariant if and only if a = 1.

(4) Q
(n)
K (a) is not a Vassiliev invariant if a 6= −2, 1.

Theorem 2.3 Let g : R → R be infinitely differentiable function at x = a
with g(1)(a) 6= 0. Assume that fK(x) is a knot polynomial which is infinitely

differentiable in a neighborhood of g(a) for all knots K and that there exists

a knot L such that fL(g(a)) 6= 0, 1 and f
(1)
L (g(a)) 6= 0. Then each coefficient

of (x − a)n in the Taylor expansion of fK ◦ g(x) at x = a, is not a Vassiliev

invariant.

Proof Consider a sequence {Li}∞i=0 of knots. By Lemma 2.1, we see that
(fLi(g(x)))(n)|x=a = (fL(g(a)))ip(i), where p(i) is a polynomial in i of degree
n, and hence the coefficient 1

n!(fK(g(x)))(n)|x=a of (x − a)n does not have a
polynomial growth on {Li}∞i=0 .

It follows from Corollary 1.5 that the coefficient of (x − a)n in the Taylor
expansion of fK ◦ g(x) is not a Vassiliev invariant.

J. S. Birman and X.–S. Lin [3] showed that each coefficient in the Maclaurin
series of JK(ex) is a Vassiliev invariant. As a generalization of Birman and
Lin’s type of changing variables, we have

Theorem 2.4 Let g : R → R be an infinitely differentiable function at x = a.
Assume that g(1)(a) 6= 0. Then

(1) each coefficient of (x− a)n in the Taylor expansion of JK ◦ g(x) at x = a,
is a Vassiliev invariant if and only if g(a) = 1,

(2) each coefficient of (x−a)n in the Taylor expansion of ∇K ◦ g(x) at x = a,
is a Vassiliev invariant if and only if g(a) = 0,

(3) each coefficient of (x−a)n in the Taylor expansion of ∆K ◦ g(x) at x = a,
is not a Vassiliev invariant if and only if g(a) = 1 and

(4) if g(a) 6= −2, 1 then each coefficient of (x − a)n in the Taylor expansion

of QK ◦ g(x) at x = a, is not a Vassiliev invariant.
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Proof (1) Let AK = {t| JK(t) = 0, 1}⋃{t| J
(1)
K (t) = 0} for a knot K . Then

A31

⋂

A41
= {1}. Thus if g(a) 6= 1, then g(a) ∈ R\(A31

⋂

A41
). Take L = 31 in

Theorem 2.3 if g(a) ∈ R\A31
and L = 41 in Theorem 2.3 if g(a) ∈ R\A41

. Then

JL(g(a)) 6= 0, 1 and J
(1)
L (g(a)) 6= 0. So by Theorem 2.3, each coefficient of (x−

a)n in the Taylor expansion of JK ◦g(x) is not a Vassiliev invariant. Conversely,
assume that g(a) = 1 and that n ∈ N. Since the coefficient of (x − a)n in the

Taylor expansion of JK(g(x)) is a linear combination of 1, J
(1)
K (1), · · · , J

(n)
K (1),

by Theorem 2.2, it is a Vassiliev invariant. The proofs of (2), (3) and (4) are
similar.

Example 2.5 Take f(x) = sin(x) for x ∈ R. Then f(0) 6= 1 and f (1)(0) 6= 0.
Thus each coefficient in the Maclaurin series of JK(sin(x)) = JK(f(x)) is not a
Vassiliev invariant. But each coefficient in the Maclaurin series of ∇K(sin(x)) =
∇K(f(x)) is a Vassiliev invariant, since it is a finite linear combination of the
coefficients of the Conway polynomial ∇K(z) of a knot K .

Now we will deal with 2–variable knot polynomials such as the HOMFLY
polynomial PK(a, z) ∈ Z[a, a−1, z] and the Kauffman polynomial FK(a, x) ∈
Z[a, a−1, x]. For a 2–variable Laurent polynomial g(x, y) which is infinitely dif-
ferentiable on a neighborhood of (a, b), we denote ∂m

∂xm

∂n

∂yn g(x, y)|(x,y)=(a,b) by

g(m,n)(a, b) for each pair (m,n) ∈ N2 .

Theorem 2.6 [5] Let gK(x, y) be a 2–variable knot polynomial which is in-

finitely differentiable on a neighborhood of (a, b) for all knots K . If there

exists a knot L such that gL(a, b) 6= 0, 1, g
(1,0)
L (a, b) 6= 0 and g

(0,1)
L (a, b) 6= 0

then g
(m,n)
K (a, b) is not a Vassiliev invariant for all m,n ∈ N.

Lemma 2.7 Let gK(x, y) be a 2–variable knot polynomial which is infinitely

differentiable on a neighborhood of (a, b) ∈ C2 for all knots K and let m,n ∈ N.

If there exists a knot L such that gL(a, b) 6= 0, 1, g
(1,0)
L (a, b) 6= 0, g

(0,1)
L (a, b) = 0

and g
(0,2)
L (a, b) 6= 0 then there exists a polynomial p(i) of degree m + n such

that g
(m,2n)
Li (a, b) = (gL(a, b))ip(i) for i > m + 2n.

Proof It is similar to that of Theorem 2.12 in [5].

Lemma 2.8 Let gK(x, y) be a 2–variable knot polynomial which is infinitely

differentiable on a neighborhood of (a, b) ∈ C2 for all knots K . If there ex-

ists a knot L such that gL(a, b) 6= 0, 1, g
(1,0)
L (a, b) 6= 0, g

(0,1)
L (a, b) = 0 and

g
(0,2)
L (a, b) 6= 0 then g

(m,2n)
K (a, b) is not a Vassiliev invariant for all m,n ∈ N.
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Proof It follows from Lemma 2.7 and Corollary 1.5.

Theorem 2.9 Let n ∈ N and a ∈ C. P
(n)
2i (K; a) is a Vassiliev invariant if

and only if a = ±1.

Proof Note that P
(n)
2i (K; a) = (2i)!P

(n,2i)
K (a, 0). Since PK(a, z) ∈ Z[a2, a−2, z2]

for all knots K , P
(n,1)
K (a, 0) = 0 for all a ∈ C and all knots K . For each knot

K , let A1
K = {a ∈ C | PK(a, 0) = 0 or 1}, A2

K = {a ∈ C | P
(1,0)
K (a, 0) =

0}, A3
K = {a ∈ C | P

(0,2)
K (a, 0) = 0} and AK = A1

K

⋃

A2
K

⋃

A3
K . Since

P31
(a, z) = (−a−4 +2a−2)+a−2z2 and P41

(a, z) = (a−2 −1+a2)− z2 , we have

A31
= {±

√
2

2 ,±1}, A41
= {±(

√
3+

√
−1

2 ),±(
√

3−
√
−1

2 ),±1,±
√
−1} and hence

A31

⋂

A41
= {±1}. Thus if a 6= ±1, then, by Lemma 2.8, P

(n)
2i (K; a) is not

a Vassiliev invariant. Conversely, T. Kanenobu [8] showed that P
(n)
2i (K; 1) is a

Vassiliev invariant. Since P
(n)
2i (K;−1) = (−1)nP

(n)
2i (K; 1), P

(n)
2i (K;−1) is also

a Vassiliev invariant.

By Theorem 2.9, for b ∈ C, P
(m,n)
K (b, 0) is a Vassiliev invariant if and only if n

is odd or b = ±1. For (b, y) ∈ C2 with y 6= 0, we have the following

Theorem 2.10 Let m,n be nonnegative integers. If (b, y) ∈ C2 with y 6= 0

such that P
(m,n)
K (b, y) is a Vassiliev invariant, then (b, y) = (b,±(b − b−1)),

(±
√
−1,

√
−3) or (±

√
−1,−

√
−3).

Proof By direct calculations, P31
(a, z) = (−a−4 + 2a−2) + a−2z2 , P41

(a, z) =
(a−2 − 1 + a2) − z2 and P61

(a, z) = (a−4 − a−2 + a2) + z2(−a−2 − 1). Let

A1
K = {(b, y) | PK(b, y) = 0 or 1}, A2

K = {(b, y) | P
(1,0)
K (b, y) = 0}, A3

K =

{(b, y) | P
(0,1)
K (b, y) = 0} and Ak = A1

K

⋃

A2
K

⋃

A3
K for each knot K . Then

A31
∩ A41

= (A1
31

∩ A1
41

) ∪ (A1
31

∩ A2
41

) ∪ · · · ∪ (A3
31

∩ A3
41

)

= { (±
√
−1, 2

√
−1), (±

√
−1,−2

√
−1)}

∪{(±
√
−1,

√
−3), (±

√
−1,−

√
−3), (±1,

√
−1), (±1,−

√
−1)}

∪{(−1 ±
√

5

2
,

√

1 ±
√

5), (
−1 ±

√
5

2
,−

√

1 ±
√

5)}

∪{(b, y) | y = ±(b − b−1)}.
So we get

A31
∩ A41

∩ A61

= ((A31
∩ A41

) ∩ A1
61

) ∪ ((A31
∩ A41

) ∩ A2
61

) ∪ ((A31
∩ A41

) ∩ A3
61

)

= {(b, y) | y = ±(b − b−1)} ∪ {(±
√
−1,

√
−3), (±

√
−1,−

√
−3)}.
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If (b, y) ∈ C2 \ (A31
∩ A41

∩ A61
), then, by Theorem 2.6, P

(m,n)
K (b, y) is not a

Vassiliev invariant.

Whether a finite product of the derivatives of knot polynomials at some points
is a Vassiliev invariant or not can be detected by using Lemma 2.1, Theorem
2.6, Lemma 2.7 and Corollary 1.5. For example if there is a knot L such that

J
(1)
L (a) 6= 0, Q

(1)
L (b) 6= 0, P

(1,0)
L (c, y) 6= 0, P

(0,1)
L (c, y) 6= 0 and JL(a)QL(b)PL(c, y)

6= 0, 1, then the product J
(k)
K (a)Q

(l)
K (b)P

(m,n)
K (c, y) is not a Vassiliev invariant

for any k, l,m, n ∈ N.

Since Q
(1)
K (−2) = J

(2)
K (1) (T. Kanenobu [6]), Q

(1)
K (−2) is a Vassiliev invariant

of degree ≤ 2. Note that Q
(0)
K (1) = 1 for any knot K and hence Q

(0)
K (1) is

a Vassiliev invariant of degree 0, but Q
(1)
K (1) and Q

(2)
K (1) are not Vassiliev

invariants [5].

Open Problem (A. Stoimenow [12]) Is Q
(n)
K (−2) a Vassiliev invariant for

n ≥ 2 ?

Question 2.11 Is Q
(n)
K (1) a Vassiliev invariant for n ≥ 3 ?

The above two problems are the only remaining unsolved problems in one vari-
able knot polynomials [5].

Question 2.12 Find all the points at which the derivatives of the Kauffman
polynomial are Vassiliev invariants.

Question 2.13 Find all linear combinations of any finite products of deriva-
tives of knot polynomials, which are Vassiliev invariants.

3 New polynomial invariants from Vassiliev invari-

ants

In this section, a Vassiliev invariant v always means a Vassiliev invariant taking
values in a numerical number field F = Q, R, or C. We begin with introducing
the constructions of new polynomial invariants from a given Vassiliev invariant
(see [4]) and then we will define a new polynomial invariant unifying the poly-
nomial invariants obtained from the constructions in [4]. The new polynomial
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invariant is also a Vassiliev invariant and so we get various numerical Vassiliev
invariants from the coefficients of the new polynomial invariant.

Let K and L be two knots and let {Li}∞i=0 be a sequence of knots induced from
a DD–tangle. Since any (1, 1)–tangle is a DD–tangle, we get two sequences
{L♯Ki}∞i=0 and {K♯Li}∞i=0 of knots induced from DD–tangles.

Let v be a Vassiliev invariant of degree n and fix a knot L. Then by Corollary
1.5, for each knot K there exist unique polynomials pK(x) and qK(x) in F[x]
with degrees ≤ n such that v(L♯Ki) = pK(i) and v(K♯Li) = qK(i). We
define two polynomial invariants v̄ and v∗ as follows: v̄ : {knots} → F[x] by
v̄(K) = pK(x) and v∗ : {knots} → F[x] by v∗(K) = qK(x). Then v̄(K)|x=j =
pK(j) = v(L♯Kj) and v∗(K)|x=j = qK(j) = v(K♯Lj) for all j ∈ N.

Then we have the following

Theorem 3.1 [5] Let v be a Vassiliev invariant of degree n taking values in

a numerical field F.

(1) For a fixed knot L, v̄ is a Vassiliev invariant of degree ≤ n and the degree

of x in v̄(K) is ≤ n. In particular if L is the unknot, v̄ is a Vassiliev invariant

of degree n and v̄(K)|x=1 = v(K).

(2) For a fixed sequence {Li}∞i=0 of knots induced from a DD–tangle, v∗ is

a Vassiliev invariant of degree ≤ n and the degree of x in v∗(K) is ≤ n. In

particular if Lj is the unknot for some j ∈ N, then v∗ is a Vassiliev invariant

of degree n and v∗(K)|x=j = v(K).

Given a Vassiliev invariant v of degree n, we may get at most (n + 1) lin-
early independent numerical Vassiliev invariants which are the coefficients of
the polynomial invariants v̄ and v∗ respectively and then apply ¯ –operation
and ∗–operation repeatedly on these new Vassiliev invariants to get another new
Vassiliev invariants. Inductively we may obtain various Vassiliev invariants.

We note that for a Vassiliev invariant v of degree n, since v̄(K) and v∗(K) are
polynomials of degrees ≤ n for any knot K , the polynomial invariants v̄ and
v∗ are completely determined by {v̄(K)|x=i | 0 ≤ i ≤ n} and {v∗(K)|x=i | 0 ≤
i ≤ n} respectively.

Let Vn be the space of Vassiliev invariants of degrees ≤ n and let An ⊂ Vn .
For each nonnegative integer j , define Aj

n as follows. Set A0
n = An and define

inductively Aj
n to be the set of all Vassiliev invariants obtained from the coef-

ficients of the new polynomial invariants v̄ and v∗ ranging over all v ∈ Aj−1
n ,
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all knots L and all sequences {Li}∞i=0 induced from all DD–tangles in Theorem
3.1.

Define A∗
n = ∪∞

j=0A
j
n . We ask ourselves the following:

Question [5] Find a minimal finite subset An of Vn such that span(A∗
n)

= Vn .

Let Vn be the space of Vassiliev invariants of degree ≤ n. Then the dimension
of Vn/Vn−1 is 0, 1, 1, 3, 4, 9, 14 for n = 1, 2, 3, 4, 5, 6, 7 [1].

Proposition 3.2 [7, 8] For each nonnegative integer k and l ,

(1) P
(l)
2k (K; 1) is a Vassiliev invariant of degree ≤ 2k + l .

(2) (
√
−1)k+lF

(l)
k (K;

√
−1) is a Vassiliev invariant of degree ≤ k + l .

If vn and vm are Vassiliev invariants of degrees n and m respectively, then the
product vnvm is a Vassiliev invariant of degree ≤ n + m [1, 14].

We get a base for each Vn (n ≤ 5) from the results of J. S. Birman and X.–S.
Lin (citeBL, D. Bar–Natan [1] and T. Kanenobu [9].

Theorem 3.3 [9, 3, 1] Let Vn be the space of Vassiliev invariants of degree

≤ n. Then

(1) {1} is a basis for V0 = V1 , where 1 is the constant map with image {1}.

(2) {a2(K)} is a basis for V2/V1.

(3) {J (3)
K (1)} is a basis for V3/V2.

(4) {(a2(K))2, a4(K), J
(4)
K (1)} is a basis for V4/V3.

(5) {a2(K)P
(3)
0 (K; 1), P

(5)
0 (K; 1), P

(1)
4 (K; 1),

√
−1F

(1)
4 (K;

√
−1)} is a basis for

V5/V4.

We can easily see that the Vassiliev invariants a2(K),
√
−1F

(1)
4 (K;

√
−1) and

J
(3)
K (1) are additive. If v is an additive Vassiliev invariant, then, from the coeffi-

cients of the polynomial invariants v and v∗ , we cannot get Vassiliev invariants
other than linear combinations of v and the constant Vassiliev invariants.

Let v be a Vassiliev invariant of degree n and L a knot. Define vi
L to be

the Vassiliev invariant defined by vi
L(K) = v(L♯Ki) and define vL to be the

Vassiliev invariant defined by vL(K) = v(L♯K) [5]. Then we can see that the
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Vassiliev invariants obtained from the coefficients of v and v∗ are contained in
the spans of the sets {vi

L | L is a knot, i = 0, 1, 2, · · · , n} and {vL | L is a knot}
respectively.

Take the trivial knot, 31 , 41 and 51 for L and (31)
i , (41)

i and (51)
i for Li

in Theorem 3.1. Then all linearly independent Vassiliev invariants obtained by
applying the ¯–operations and the ∗–operations for the non–additive Vassiliev
invariants of degree ≤ 5 in Theorem 3.3 can be found as follows.

(a2(K))2
−→ {a2(K)}

a4(K)
−→ {a2(K), (a2(K))2}

J
(4)
K (1)

−→ {a2(K), (a2(K))2}
a2(K)P

(3)
0 (K; 1)

−→ {a2(K), J
(3)
K (1)}, a2(K)P

(3)
0 (K; 1)

∗→ {a2(K)J
(3)
K (1)}

a2(K)J
(3)
K (1)

−→ {a2(K), J
(3)
K (1)}

P
(5)
0 (K; 1)

−→ {a2(K)P
(3)
0 (K; 1)}, P

(5)
0 (K; 1)

∗→ {a2(K), J
(3)
K (1)}

P
(1)
4 (K; 1)

−→ {a2(K)P
(1)
2 (K; 1)}, P

(1)
4 (K; 1)

∗→ {a2(K), J
(3)
K (1)}

a2(K)P
(1)
2 (K; 1)

−→ {a2(K), J
(3)
K (1)}

For simplicity, for each Vassiliev invariant v, we unlist the Vassiliev invariants
obtained from v∗ if they can be obtained from v and we also exclude the
constant map 1 whose image is {1} and v itself in the list of Vassiliev invariants
obtained from v and v∗ .

Thus we get the following

Theorem 3.4 Let An be a subset of the space Vn of the Vassiliev invariants

of degree ≤ n such that span(A∗
n) = Vn . Then An can be chosen as follows.

(1) A0 = A1 = {1}, where 1 denotes the constant map with image {1}.

(2) A2 = {a2(K)}.

(3) A3 = {a2(K), J
(3)
K (1)}.

(4) A4 = {J (3)
K (1), a4(K), J

(4)
K (1)}.

(5) A5 = {P (5)
0 (K; 1), P

(1)
4 (K; 1),

√
−1F

(1)
4 (K;

√
−1), a4(K), J

(4)
K (1)}.

Let v be a Vassiliev invariant of degree n. In [5], the authors generalized the
one–variable knot polynomial invariants v̄ and v∗ to two–variable knot poly-
nomial invariants v̄ and v∗ , respectively with the same notation.
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Now we want to generalize the two–variable knot polynomial invariants v̄ and
v∗ in Theorem 3.1 simultaneously to a multi–variable knot polynomial invariant
v̂ by unifying both v̄ and v∗ to a multi-variable polynomial invariant v̂ whose
proof is analogous to that of Theorem 3.1. See [5].

Given sequences {L(1)
i }∞i=0, · · · , {L(k)

i }∞i=0 of knots induced from DD–tangles,
for each knot K , there exists a unique polynomial

pK(x0, x1, · · · , xk) ∈ F[x0, x1, · · · , xk]

such that for all (i0, i1, · · ·, ik) ∈ Nk+1, v(Ki0♯L
(1)
i1

♯ · · · ♯L(k)
ik

) = pk(i0, i1, · · ·, ik).

Now we define a new polynomial invariant v̂ : {knots} → F[x0, · · · , xk] by
v̂(K) = pK(x0, · · · , xk).

Then by applying the similar argument to the case of v̄ and v∗ [5], we can see
that v̂ is a Vassiliev invariant of degree ≤ n and the degree of each variable xi

in v̂(K) is ≤ n. Thus we get the following

Theorem 3.5 Let v be a Vassiliev invariant of degree n taking values in a

numerical field F and let {L(1)
i }∞i=0, · · · , {L(k)

i }∞i=0 be sequences of knots induced

from DD–tangles. Then v̂ : {knots} → F[x0, · · · , xk] is a Vassiliev invariant of

degree ≤ n and the degree of each variable xi in v̂(K) is ≤ n.

For a Vassiliev invariant v , let Cv : = {the coefficients of the polynomial
v̂(K)}. Then, in Theorem 3.5, v̂ is completely determined by Cv. Since the
degree of each variable in v̂ is ≤ n, we see that

span(Cv) = span({v̂(K)|(x0,··· ,xk)=(i0,··· ,ik) | 0 ≤ i0, · · · , ik ≤ n}).

Question 3.6 Let v be a Vassiliev invariant of degree n. Find sequences

{L(1)
i }∞i=0, · · · , {L(k)

i }∞i=0 of knots induced from DD–tangles such that span(Cv)
= span({v}∗) where Cv is the set of coefficients of the polynomial invariant v̂

induced from v and {L(1)
i }∞i=0, · · · , {L(k)

i }∞i=0 .
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