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Preface iX

Preface

Every closed surface admits a geometry of constant curvature, and may be clas-
si ed topologically either by its fundamental group or by its Euler characteristic
and orientation character. It is generally expected that all closed 3-manifolds
have decompositions into geometric pieces, and are determined up to homeo-
morphism by invariants associated with the fundamental group (whereas the
Euler characteristic is always 0). In dimension 4 the Euler characteristic and
fundamental group are largely independent, and the class of closed 4-manifolds
which admit a geometric decomposition is rather restricted. For instance, there
are only 11 such manifolds with nite fundamental group. On the other hand,
many complex surfaces admit geometric structures, as do all the manifolds
arising from surgery on twist spun simple knots.

The goal of this book is to characterize algebraically the closed 4-manifolds that
bre nontrivially or admit geometries, or which are obtained by surgery on 2-
knots, and to provide a reference for the topology of such manifolds and knots.
In many cases the Euler characteristic, fundamental group and Stiefel-Whitney
classes together form a complete system of invariants for the homotopy type of
such manifolds, and the possible values of the invariants can be described explic-
itly. If the fundamental group is elementary amenable we may use topological
surgery to obtain classi cations up to homeomorphism. Surgery techniques also
work well \stably" in dimension 4 (i.e., modulo connected sums with copies of
S2 S2). However, in our situation the fundamental group may have nonabelian
free subgroups and the Euler characteristic is usually the minimal possible for
the group, and it is not known whether s-cobordisms between such 4-manifolds
are always topologically products. Our strongest results are characterizations
of manifolds which bre homotopically over S or an aspherical surface (up
to homotopy equivalence) and infrasolvmanifolds (up to homeomorphism). As
a consequence 2-knots whose groups are poly-Z are determined up to Gluck
reconstruction and change of orientations by their groups alone.

We shall now outline the chapters in somewhat greater detail. The rst chapter
is purely algebraic; here we summarize the relevant group theory and present
the notions of amenable group, Hirsch length of an elementary amenable group,

niteness conditions, criteria for the vanishing of conomology of a group with
coe cients in a free module, Poincare duality groups, and Hilbert modules over
the von Neumann algebra of a group. The rest of the book may be divided into
three parts: general results on homotopy and surgery (Chapters 2-6), geometries
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and geometric decompositions (Chapters 7-13), and 2-knots (Chapters 14-18).

Some of the later arguments are applied in microcosm to 2-complexes and P D3-
complexes in Chapter 2, which presents equivariant conomology, L?-Betti num-
bers and Poincare duality. Chapter 3 gives general criteria for two closed 4-
manifolds to be homotopy equivalent, and we show that a closed 4-manifold M
is aspherical ifand only if (M) isa PDg4-groupof type FF and (M) = ().
We show that if the universal cover of a closed 4-manifold is nitely dominated
then it is contractible or homotopy equivalent to S? or S® or the fundamental
group is nite. We also consider at length the relationship between fundamental
group and Euler characteristic for closed 4-manifolds. In Chapter 4 we show
that a closed 4-manifold M bres homotopically over S with bre a PD3-
complex if and only if (M) =0 and (M) is an extension of Z by a nitely
presentable normal subgroup. (There remains the problem of recognizing which
P D3-complexes are homotopy equivalent to 3-manifolds). The dual problem of
characterizing the total spaces of S*-bundles over 3-dimensional bases seems
more di cult. We give a criterion that applies under some restrictions on the
fundamental group. In Chapter 5 we characterize the homotopy types of total
spaces of surface bundles. (Our results are incomplete if the base is RP?). In
particular, a closed 4-manifold M is simple homotopy equivalent to the total
space of an F-bundle over B (where B and F are closed surfaces and B is
aspherical) if and only if (M) = (B) (F) and 1(M) is an extension of

1(B) by a normal subgroup isomorphic to 1(F). (The extension should split
if F = RP?). Any such extension is the fundamental group of such a bundle
space; the bundle is determined by the extension of groups in the aspherical
cases and by the group and Stiefel-Whitney classes if the bre is S2 or RP2.
This characterization is improved in Chapter 6, which considers Whitehead
groups and obstructions to constructing s-cobordisms via surgery.

The next seven chapters consider geometries and geometric decompositions.
Chapter 7 introduces the 4-dimensional geometries and demonstrates the limi-
tations of geometric methods in this dimension. It also gives a brief outline of
the connections between geometries, Seifert brations and complex surfaces. In
Chapter 8 we show that a closed 4-manifold M is homeomorphic to an infra-
solvmanifold if and only if (M) =0and (M) has a locally nilpotent normal
subgroup of Hirsch length at least 3, and two such manifolds are homeomorphic
if and only if their fundamental groups are isomorphic. Moreover (M) is then
a torsion free virtually poly-Z group of Hirsch length 4 and every such group is
the fundamental group of an infrasolvmanifold. We also consider in detail the
question of when such a manifold is the mapping torus of a self homeomorphism
of a 3-manifold, and give a direct and elementary derivation of the fundamental
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groups of flat 4-manifolds. At the end of this chapter we show that all ori-
entable 4-dimensional infrasolvmanifolds are determined up to di eomorphism
by their fundamental groups. (The corresponding result in other dimensions
was known).

Chapters 9-12 consider the remaining 4-dimensional geometries, grouped ac-
cording to whether the model is homeomorphic to R%, S?> R?, S® R oris
compact. Aspherical geometric 4-manifolds are determined up to s-cobordism
by their homotopy type. However there are only partial characterizations of
the groups arising as fundamental groups of H2 E2-, $L  E!- H3 E!-or
H? H2-manifolds, while very little is known about H*- or H?(C)-manifolds.
We show that the homotopy types of manifolds covered by S?> R? are deter-
mined up to nite ambiguity by their fundamental groups. If the fundamental
group is torsion free such a manifold is s-cobordant to the total space of an S?-
bundle over an aspherical surface. The homotopy types of manifolds covered by
S R are determined by the fundamental group and rst nonzero k-invariant;
much is known about the possible fundamental groups, but less is known about
which k-invariants are realized. Moreover, although the fundamental groups
are all \good", so that in principle surgery may be used to give a classi cation
up to homeomorphism, the problem of computing surgery obstructions seems
very di cult. We conclude the geometric section of the book in Chapter 13
by considering geometric decompositions of 4-manifolds which are also map-
ping tori or total spaces of surface bundles, and we characterize the complex
surfaces which bre over S or over a closed orientable 2-manifold.

The nal ve chapters are on 2-knots. Chapter 14 is an overview of knot theory;
in particular it is shown how the classi cation of higher-dimensional knots may
be largely reduced to the classi cation of knot manifolds. The knot exterior is
determined by the knot manifold and the conjugacy class of a normal generator
for the knot group, and at most two knots share a given exterior. An essen-
tial step is to characterize 2-knot groups. Kervaire gave homological conditions
which characterize high dimensional knot groups and which 2-knot groups must
satisfy, and showed that any high dimensional knot group with a presentation
of de ciency 1 is a 2-knot group. Bridging the gap between the homological and
combinatorial conditions appears to be a delicate task. In Chapter 15 we inves-
tigate 2-knot groups with in nite normal subgroups which have no noncyclic
free subgroups. We show that under mild coherence hypotheses such 2-knot
groups usually have nontrivial abelian normal subgroups, and we determine all
2-knot groups with nite commutator subgroup. In Chapter 16 we show that if
there is an abelian normal subgroup of rank > 1 then the knot manifold is either
s-cobordant to a IL  E!-manifold or is homeomorphic to an infrasolvmanifold.
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In Chapter 17 we characterize the closed 4-manifolds obtained by surgery on
certain 2-knots, and show that just eight of the 4-dimensional geometries are
realised by knot manifolds. We also consider when the knot manifold admits
a complex structure. The nal chapter considers when a bred 2-knot with
geometric bre is determined by its exterior. We settle this question when the
monodromy has nite order or when the bre is R3=Z3 or is a coset space of
the Lie group Nil®.

This book arose out of two earlier books of mine, on \2-Knots and their Groups"
and \The Algebraic Characterization of Geometric 4-Manifolds", published by
Cambridge University Press for the Australian Mathematical Society and for
the London Mathematical Society, respectively.About a quarter of the present
text has been taken from these books. 1 However the arguments have been
improved in many cases, notably in using Bowditch’s homological criterion for
virtual surface groups to streamline the results on surface bundles, using L?-
methods instead of localization, completing the characterization of mapping
tori, relaxing the hypotheses on torsion or on abelian normal subgroups in
the fundamental group and in deriving the results on 2-knot groups from the
work on 4-manifolds. The main tools used here beyond what can be found in
Algebraic Topology [Sp] are cohomology of groups, equivariant Poincare duality
and (to a lesser extent) L?-(co)homology. Our references for these are the books
Homological Dimension of Discrete Groups [Bi], Surgery on Compact Manifolds
[WI] and L2-Invariants: Theory and Applications to Geometry and K -Theory
[LU], respectively. We also use properties of 3-manifolds (for the construction
of examples) and calculations of Whitehead groups and surgery obstructions.

This work has been supported in part by ARC small grants, enabling visits
by Steve Plotnick, Mike Dyer, Charles Thomas and Fang Fuquan. | would
like to thank them all for their advice, and in particular Steve Plotnick for
the collaboration reported in Chapter 18. | would also like to thank Robert
Bieri, Robin Cobb, Peter Linnell and Steve Wilson for their collaboration, and
Warren Dicks, William Dunbar, Ross Geoghegan, F.T.Farrell, lan Hambleton,
Derek Holt, K.F.Lai, Eamonn O’Brien, Peter Scott and Shmuel Weinberger for
their correspondance and advice on aspects of this work.

Jonathan Hillman

1See the Acknowledment following this preface for a summary of the textual bor-
rowings.
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Chapter 1

Group theoretic preliminaries

The key algebraic idea used in this book is to study the homology groups
of covering spaces as modules over the group ring of the group of covering
transformations. In this chapter we shall summarize the relevant notions from
group theory, in particular, the Hirsch-Plotkin radical, amenable groups, Hirsch
length, niteness conditions, the connection between ends and the vanishing of
cohomology with coe cients in a free module, Poincare duality groups and
Hilbert modules.

Our principal references for group theory are [Bi], [DD] and [Ro].

1.1 Group theoretic notation and terminology

We shall reserve the notation Z for the free (abelian) group of rank 1 (with a
prefered generator) and Z for the ring of integers. Let F(r) be the free group
of rank r.

Let G be a group. Then G’ and G denote the commutator subgroup and
centre of G, respectively. The outer automorphism group of G is Out(G) =
Aut(G)=Inn(G), where Inn(G) = G= G is the subgroup of Aut(G) consist-
ing of conjugations by elements of G. If H is a subgroup of G let Ng(H)
and Cg(H) denote the normalizer and centralizer of H in G, respectively.
The subgroup H is a characteristic subgroup of G if it is preserved under all
automorphisms of G. In particular, 1(G) = fg 2 G j 9n > 0; g" 2 G'g
is a characteristic subgroup of G, and the quotient G=I1(G) is a torsion free
abelian group of rank 1(G). A group G is indicable if there is an epimorphism
p:G ¥ Z,orif G=1. The normal closure of a subset S G is hhSiig, the
intersection of the normal subgroups of G which contain S.

If P and Q are classes of groups let P Q denote the class of (\P by Q") groups
G which have a normal subgroup H in P such that the quotient G=H s in
Q, and let “P denote the class of (\locally-P ') groups such that each nitely
generated subgroup is in the class P. In particular, if F is the class of nite
groups ‘F is the class of locally- nite groups. In any group the union of all
the locally- nite normal subgroups is the unique maximal locally- nite normal
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4 Chapter 1: Group theoretic preliminaries

subgroup. Clearly there are no nontrivial homomorphisms from such a group to
a torsion free group. Let poly-P be the class of groups with a nite composition
series such that each subquotient is in P. Thus if Ab is the class of abelian
groups poly-Ab is the class of solvable groups.

Let P be a class of groups which is closed under taking subgroups. A group
is virtually P if it has a subgroup of nite index in P. Let vP be the class
of groups which are virtually P. Thus a virtually poly-Z group is one which
has a subgroup of nite index with a composition series whose factors are all
in nite cyclic. The number of in nite cyclic factors is independent of the choice
of nite index subgroup or composition series, and is called the Hirsch length
of the group. We shall also say that a space virtually has some property if it
has a nite regular covering space with that property.

If p: G ¥ Q is an epimorphism with kernel N we shall say that G is an
extension of Q = G=N by the normal subgroup N. The action of G on N
by conjugation determines a homomorphism from G to Aut(N) with kernel
Cs(N) and hence a homomorphism from G=N to Out(N) = Aut(N)=Inn(N).
If G=N = Z the extension splits: a choice of element t in G which projects to a
generator of G=N determines a right inverse to p. Let be the automorphism
of N determined by conjugation by t in G. Then G is isomorphic to the
semidirect product N  Z. Every automorphism of N arises in this way, and
automorphisms whose images in Out(N) are conjugate determine isomorphic
semidirect products. In particular, G=N Z if is an inner automorphism.

Lemma 1.1 Let and automorphisms of a group G such that Hy( ;Q)—1
and Hy( ;Q) — 1 are automorphisms of H1(G; Q) = (G=G") QL Then the
semidirect products =G Z and =G  Z are isomorphic if and only
if isconjugate to or ~!in Out(G).

Proof Let t and u be xed elements of and , respectively, which map
tolin Z. Since Hi( ;Q) = Hi( ;Q) = Q the image of G in each group
is characteristic. Hence an isomorphism h : 1 induces an isomorphism

e:Z ¥ Z of the quotients, for some e = 1, and so h(t) = u®g for some g in
G. Therefore h( (h™1(j)))) = h(th~1(j)t™) = uégjg~tu=® = ¢(gjg™?) for all
Jj in G. Thus is conjugate to € in Out(G).

Conversely, if and are conjugate in Out(G) there is an f in Aut(G) and a
g in G such that (j) = f~1 ef(gjg™?) forall j in G. Hence F(j) = f(j) for
all j in G and F(t) = u®f(g) de nes an isomorphism F : LI O
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1.2 Matrix groups 5

1.2 Matrix groups
In this section we shall recall some useful facts about matrices over Z.

Lemma 1.2 Let p be an odd prime. Then the kernel of the reduction modulo
(p) homomorphism from SL(n;Z) to SL(n;F,) is torsion free.

Proof This follows easily from the observation that if A is an integral matrix
and k = p¥q with g not divisible by p then (1 +p"A)X 1 +kp"A mod (p2+Y),
and kp' 6 0 mod (p>*V) ifr 1. 0

The corresponding result for p = 2 is that the kernel of reduction mod (4) is
torsion free.

Since SL(n;Fp) has order ( }28_1(p“ —pl)=(p — 1), it follows that the order
of any nite subgroup of SL(n;Z) must divide the highest common factor of
these numbers, as p varies over all odd primes. In particular, nite subgroups
of SL(2;7Z) have order dividing 24, and so are solvable.

Let A = ?—01 , B = I:_‘!l% and R = (9%). Then A? = B3 = —I and
A% = B = |. The matrices A and R generate a dihedral group of order 8,
while B and R generate a dihedral group of order 12.

Theorem 1.3 Let G be a nontrivial nite subgroup of GL(2;Z). Then G
is conjugate to one of the cyclic groups generated by A, A%, B, B2, R or
RA, or to a dihedral subgroup generated by one of the pairs fA;Rg, fA%;Rg,
fA2;RAg, fB;Rg, fB?;Rg or fB?;RBg.

Proof If M 2 GL(2;Z) has nite order then its characteristic polynomial has
cyclotomic factors. If the characteristic polynomial is (X 1)2 then M = 1.
(This uses the nite order of M.) If the characteristic polynomial is X? — 1
then M is conjugate to R or RA. If the characteristic polynomial is X2 + 1,
X?—=X+1or X2+ X +1 then M is irreducible, and the corresponding ring of
algebraic numbers is a PID. Since any Z-torsion free module over such a ring
is free it follows easily that M is conjugate to A, B or BZ.

The normalizers in SL(2;Z) of the subgroups generated by A, B or B? are
easily seen to be nite cyclic. Since G\ SL(2;Z) is solvable it must be cyclic
also. As it has index at most 2 in G the theorem follows easily. O
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6 Chapter 1: Group theoretic preliminaries

Although the 12 groups listed in the theorem represent distinct conjugacy
classes in GL(2;Z), some of these conjugacy classes coalesce in GL(2;R). (For
instance, R and RA are conjugate in GL(2; Z[3]).)

Corollary 1.3.1 Let G be a locally nite subgroup of GL(2;R). Then G is
nite, and is conjugate to one of the above subgroups of GL(2;Z).

Proof Let L be a lattice in R2. If G is nite then [gocoL is a G-invariant
lattice, and so G is conjugate to a subgroup of GL(2;Z). In general, as the
nite subgroups of G have bounded order G must be nite. ]

The main results of this section follow also from the fact that PSL(2;Z) =
SL(2;Z)=h i is a free product (Z=2Z) (Z=3Z), generated by the images
of A and B. (In fact hA;B j A2 = B3 A% = 1i is a presentation for
SL(2;Z).) Moreover SL(2;Z)" = PSL(2;Z)" is freely generated by the im-
ages of B"1AB72A = (1 1) and B72AB 1A = (} 1), while the abelianizations
are generated by the images of B*A = (19). (See x6.2 of [Ro].)

Let = Z[t;t™1] be the ring of integral Laurent polynomials. The next theorem
is a special case of a classical result of Latimer and MacDu ee.

Theorem 1.4 There is a 1-1 correspondance between conjugacy classes of
matrices in GL(n;Z) with irreducible characteristic polynomial (t) and iso-
morphism classes of ideals in  =( (t)). The set of such ideal classes is nite.

Proof Let A 2 GL(n;Z) have characteristic polynomial (t) and let R =

=( (). As (A) =0, by the Cayley-Hamilton Theorem, we may de ne an
R-module Ma with underlying abelian group Z" by t:z = A(z) forall z 2 Z".
As R is a domain and has rank n as an abelian group My is torsion free and of
rank 1 as an R-module, and so is isomorphic to an ideal of R. Conversely every
R-ideal arises in this way. The isomorphism of abelian groups underlying an
R-isomorphism between two such modules Ma and Mg determines a matrix
C 2 GL(n;Z) such that CA = BC. The nal assertion follows from the
Jordan-Zassenhaus Theorem. O

1.3 The Hirsch-Plotkin radical
The Hirsch-Plotkin radical p@ of a group G is its maximal locally-nilpotent

normal subgroug; in a virtually poly-Z group every subgroup is nitely gen-
erated, and so = G is then the maximal nilpotent normal subgroup. If H is
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1.3 The Hirsch-Plotkin radical 7

. P— . . o .
normal in G then = H is normal in G also, gince it is a characteristic subgroup
of H, and in particular it is a subgroup of = G.

For each natural number g 1 let [y be the group with presentation
hx;y;z j Xz = zx; yz = zy; Xy = z9yxi:

Every such group [T is torsion free and nilpotent of Hirsch length 3.

Theorem 1.5 Let G be a nitely generated torsion free nilpotent group of
Hirsch length h(G) 4. Then either

(1) G is free abelian; or

(2) h(G)=3and G=T, forsome q 1;or

(3) h(G)=4, G=Z%?and G=T, Z forsomeq 1;or
4 h(G)=4, G=Z and G= G=T, forsomeq 1.

In the latter case G has characteristic subgroups which are free abelian of rank
1, 2 and 3. In all cases G is an extension of Z by a free abelian normal
subgroup.

Proof The centre G is nontrivial and the quotient G= G is again torsion
free, by Proposition 5.2.19 of [Ro]. We may assume that G is not abelian,
and hence that G= G is not cyclic. Hence h(G= G) 2, so h(G) 3 and
1 h(G) h(G)—2.Inallcases G is free abelian.

If h(G) =3 then G = Z and G= G = Z2. On choosing elements x and y
representing a basis of G= G and z generating G we quickly nd that G is
isomorphic to one of the groups Iy, and thus is an extension of Z by zZ2.

If h(G) =4 and G = Z? then G= G = Z?, s0 G’ G. Since G may be
generated by elements X;y;t and u where x and y represent a basis of G= G
and t and u are central it follows easily that G is in nite cyclic. Therefore
G is not contained in G' and G has an in nite cyclic direct factor. Hence
G=2Z Ty, forsomeq 1,and thusisan extension of Z by Z3.

The remaining possibility is that h(G) =4 and G = Z. In this case G= G
is torsion free nilpotent of Hirsch length 3. If G= G were abelian G’ would
also be in nite cyclic, and the pairing from G= G G= G into G’ de ned by
the commutator would be nondegenerate and skewsymmetric. But there are no
such pairings on free abelian groups of odd rank. Therefore G= G = Iy, for
some q 1.
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8 Chapter 1: Group theoretic preliminaries

Let »G bethe preimage in G of (G= G). Then ,G = Z? and is a characteris-
tic subgroup of G, so Cg( 2G) is also characteristic in G. The quotient G= ,G
acts by conjugation on ,G. Since Aut(Z?) = GL(2;Z) is virtually free and
G= ,G =Tg= I'; = Z% and since ,G & G it follows that h(Cg( 2G)) = 3.
Since Cg( 2G) is nilpotent and has centre of rank 2 it is abelian, and so
Cc( 2G) = Z3. The preimage in G of the torsion subgroup of G=Cg( 2G)
is torsion free, nilpotent of Hirsch length 3 and virtually abelian and hence is
abelian. Therefore G=Cg( 2G) = Z. ]

Theorem }JG Let be a torsion free virtually poly-Z group of Hirsch length
4. Then h( 3.

Proof Let S be a solvable normal subgroup of nite index in . Then the
lowest nontrivial term of the derived series of S |ﬁoan abelian suBgroup which
Bcharacterlstlc in S and so normal in . Hence & 1. If h( 2 then

= Z or Z?. Suppose has an in nlte cyclic normal subgroup A. On
replacing by a normal subgroup of nite index we may assume that A is
central and that =A is poly-Z. Let B be the preimage in  of a nontrivial
abelian normal subgroup of =A. Then B is nilpotent (since A is central and
Bz pA is abeIBn) and h(B) > 1 (since B=A & 1 and =A is torsion free). Hence

)>1.

If has a normal subgroup N = Z? then Aut(N) = GL(2;Z) is virtually free,
and so the kernel of the natural map from  to Aut(N) is nontrivial. Hence
h(C (N)) 3. Since h( =N) = 2 the quotient =N is virtually abelian, and
so C (N) is virtually nilpotent.

In all cases we must have h(p_) 3. O

1.4 Amenable groups

The class of amenable groups arose rst in connection with the Banach-Tarski
paradox. A group is amenable if it admits an invariant mean for bounded C-
valued functions [Pi]. There is a more geometric characterization of nitely
presentable amenable groups that is more convenient for our purposes. Let X
be a nite cell-complex with universal cover X. Then X is an increasing union
of nite subcomplexes X;  Xj+1 X = [n 1Xn such that X; is the union
of Nj < 1 translates of some fundamental domain D for G = ((X). Let NJEJ

be the number of translates of D which meet the frontier of X; in X. The
sequence X;g is a F Iner exhaustion for X if Iim(Nj°=Nj) =0,and 1(X) is

Geometry & Topology Monographs, Volume 5 (2002)



1.4 Amenable groups 9

amenable if and only if XX has a F Iner exhaustion. This class contains all nite
groups and Z, and is closed under the operations of extension, increasing union,
and under the formation of sub- and quotient groups. (However nonabelian free
groups are not amenable.)

The subclass EA generated from nite groups and Z by the operations of
extension and increasing union is the class of elementary amenable groups. We
may construct this class as follows. Let Uy =1 and U; be the class of nitely
generated virtually abelian groups. If U has been de ned for some ordinal
let U +1 = (U )Up and if U has been de ned for all ordinals less than some
limitordinal letU = < U . Let bethe rstuncountable ordinal. Then
EA="U .

This class is well adapted to arguments by trans nite induction on the ordinal
(G) = minf jG 2 U g. Itis closed under extension (in fact U U Us)
and increasing union, and under the formation of sub- and quotient groups. As
U contains every countable elementary amenable group, U = ‘U = EA if
> . Torsion groups in EA are locally nite and elementary amenable free
groups are cyclic. Every locally- nite by virtually solvable group is elementary
amenable; however this inclusion is proper.

For example, let Z1 be the free abelian group with basis fx; ji 2 Zg and let G
be the subgroup of Aut(Z1) generated by fe; j i 2 Zg, where e;(Xi) = Xj+Xi+1
and ej(xj) = x; if j & i. Then G is the increasing union of subgroups isomor-
phic to groups of upper triangular matrices, and so is locally nilpotent. However
it has no nontrivial abelian normal subgroups. If we let  be the automorphism
of G de ned by (ej) =ej+1 forall i then G  Z isa nitely generated torsion
free elementary amenable group which is not virtually solvable.

It can be shown (using the F Iner condition) that nitely generated groups
of subexponential growth are amenable. The class SA generated from such
groups by extensions and increasing unions contains EA (since nite groups and
nitely generated abelian groups have polynomial growth), and is the largest
class of groups over which topological surgery techniques are known to work
in dimension 4 [FT95]. Is every amenable group in SA? There is a nitely
presentable group in SA which is not elementary amenable [Gr98].

A group is restrained if it has no noncyclic free subgroup. Amenable groups
are restrained, but there are nitely presentable restrained groups which are
not amenable [OS01]. There are also in nite nitely generated torsion groups.
(See x14.2 of [Ro].) These are restrained, but are not elementary amenable. No
known example is also nitely presentable.
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10 Chapter 1: Group theoretic preliminaries

1.5 Hirsch length

In this section we shall use trans nite induction to extend the notion of Hirsch
length (as a measure of the size of a solvable group) to elementary amenable
groups, and to establish the basic properties of this invariant.

Lemma 1.7 Let G bea nitely generated in nite elementary amenable group.
Then G has normal subgroups K < H such that G=H is nite, H=K is free
abelian of positive rank and the action of G=H on H=K by conjugation is
e ective.

Proof We may show that G has a normal subgroup K such that G=K is
an in nite virtually abelian group, by trans nite induction on (G). We may
assume that G=K has no nontrivial nite normal subgroup. If H is a subgroup
of G which contains K and is such that H=K is a maximal abelian normal
subgroup of G=K then H and K satisfy the above conditions. O

In particular, nitely generated in nite elementary amenable groups are virtu-
ally indicable.

If G isin Uy let h(G) be the rank of an abelian subgroup of nite index in G.
If h(G) has been de ned forall Gin U and H isin ‘U let

h(H) = Lu:b:fh(F)jF H; F2U g:

Finally, if G isin U 41, so has a normal subgroup H in ‘U with G=H in Uy,
let h(G) = h(H) + h(G=H).

Theorem 1.8 Let G be an elementary amenable group. Then
(1) h(G) is well de ned,;
(2) If H is a subgroup of G then h(H) h(G);
(3) h(G) =lLu:b:fh(F) j F is a finitely generated subgroup of Gg;
(4) if H is a normal subgroup of G then h(G) = h(H) + h(G=H).

Proof We shall prove all four assertions simultaneously by induction on (G).
They are clearly true when (G) = 1. Suppose that they hold for all groups in
U andthat (G) = +1. If Gisin LU so is any subgroup, and (1) and
(2) are immediate, while (3) follows since it holds for groups in U and since
each nitely generated subgroup of G is a U -subgroup. To prove (4) we may
assume that h(H) is nite, for otherwise both h(G) and h(H) + h(G=H) are
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1.5 Hirsch length 11

1, by (2). Therefore by (3) there is a nitely generated subgroup J H with
h(J) = h(H). Given a nitely generated subgroup Q of G=H we may choose a

nitely generated subgroup F of G containing J and whose image in G=H is
Q. Since F is nitely generated itisin U and so h(F) = h(H)+h(Q). Taking
least upper bounds over all such Q we have h(G) h(H) + h(G=H). On the
other hand if F is any U -subgroup of G then h(F) = h(F \H) + h(FH=H),
since (4) holds for F, and so h(G) h(H) + h(G=H), Thus (4) holds for G
also.

Now suppose that G is not in LU , but has a normal subgroup K in LU such
that G=K isin U;. If K; is another such subgroup then (4) holds for K and K;
by the hypothesis of induction and so h(K) = h(K \ K;) + h(KK;=K). Since
we also have h(G=K) = h(G=KK1)+h(KK=K) and h(G=K;) = h(G=K K1)+
h(KK1=K}) it follows that h(K1)+h(G=K;) = h(K)+h(G=K) and so h(G) is
well de ned. Property (2) follows easily, as any subgroup of G is an extension
of a subgroup of G=K by a subgroup of K. Property (3) holds for K by the
hypothesis of induction. Therefore if h(K) is nite K has a nitely generated
subgroup J with h(J) = h(K). Since G=K is nitely generated there is a

nitely generated subgroup F of G containing J and such that F K=K = G=K.
Clearly h(F) = h(G). If h(K) isin nite then for every n 0 thereisa nitely
generated subgroup J, of K with h(J,) n. In either case, (3) also holds for
G. If H is a normal subgroup of G then H and G=H are also in U 41, while
H\ K and KH=H = K=H \ K are in LU and HK=K = H=H \ K and
G=HK are in U;. Therefore

h(H) + h(G=H) = h(H \ K) + h(HK=K) + h(HK=H) + h(G=HK)
=h(H \ K) + h(HK=H) + h(HK=K) + h(G=HK):

Since K isin LU and G=K is in Uy this sum gives h(G) = h(K) + h(G=K)
and so (4) holds for G. This completes the inductive step. ]

Let (G) be the maximal locally- nite normal subgroup of G.

Theorem 1.9 There are functions d and M from Z ¢ to Z ¢ such that if G
is an elementary amenable group of Hirsch length at most h and (G) is its
maximal locally nite normal subgroup then G= (G) has a maximal solvable
normal subgroup of derived length at most d(h) and index at most M (h).

Proof We argue by induction on h. Since an elementary amenable group
has Hirsch length 0 if and only if it is locally nite we may set d(0) = 0 and
M (0) = 1. assume that the result is true for all such groups with Hirsch length
at most h and that G is an elementary amenable group with h(G) = h + 1.
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12 Chapter 1: Group theoretic preliminaries

Suppose rstthat G is nitely generated. Then by Lemma 1.7 there are normal
subgroups K < H in G such that G=H is nite, H=K is free abelian of rank
r 1 and the action of G=H on H=K by conjugation is e ective. (Note that
r = h(G=K) h(G) = h+ 1.) Since the kernel of the natural map from
GL(r;Z) to GL(r; F3) is torsion free, by Lemma 1.2, we see that G=H embeds
in GL(r;F3) and so has order at most 3. Since h(K) = h(G)—r h the
inductive hypothesis applies for K, so it has a normal subgroup L containing

(K) and of index at most M (h) such that L= (K) has derived length at
most d(h) and is the maximal solvable normal subgroup of K= (K). As (K)
and L are characteristic in K they are normal in G. (In particular, (K) =
K\ (G).) The centralizer of K=L in H=L is a normal solvable subgroup of
G=L with index at most [K : L]'[G : H] and derived length at most 2. Set
M(h + 1) = M(h)!30+D? and d(h + 1) = M(h + 1) + 2+ d(h). Then G: (G)
has a maximal solvable normal subgroup of index at most the centralizer of
K=L in H=L).

In general, let fG; j i 2 1g be the set of nitely generated subgroups of G.
By the above argument G; has a normal subgroup H; containing (G;) and
such that Hij= (G;j) is a maximal normal solvable subgroup of Gj= (Gj) and
has derived length at most d(h + 1) and index at most M(h +1). Let N =
maxf[G; : Hij]ji 2 1g and choose 21 suchthat[G :H ]=N.IfG; G

then Hij\G H .Since[G :H ] [G :Hij\G ]=[HiG :Hj] I[Gj:Hi]
we have [Gj: Hij]= N and H;j H . It follows easily that if G Gi Gj
then H; H;j.

SetJ=fi2ljH Hig and H = [i2gH;. If X;y 2 H and g 2 G then there
are indices i;k and k 2 J such that x 2 H;, y 2 H; and g 2 G¢. Choose 1 2 J
such that G, contains Gi [ Gj [ Gk. Then xy~! and gxg~! are in H; H,

representatives for H in G then it remains a set of coset representatives for
H in G, and so [G;H] = N.

Let D; be the d(h + 1) derived subgroup of H;j. Then Dj is a locally- nite
normal subgroup of G; and so, bu an argument similar to that of the above
paragraph [i23D;j is a locally- nite normal subgroup of G. Since it is easily
seen that the d(h + 1)™ derived subgroup of H is contained in [i>3D; (as
each iterated commutator involves only nitely many elements of H) it follows
that H (G)= (G) = H=H \ (G) is solvable and of derived length at most
d(h+1). O

The above result is from [HL92]. The argument can be simpli ed to some
extent if G is countable and torsion-free. (In fact a virtually solvable group
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1.6 Modules and niteness conditions 13

of nite Hirsch length and with no nontrivial locally- nite normal subgroup
must be countable, by Lemma 7.9 of [Bi]. Moreover its Hirsch-Plotkin radical
is nilpotent and the quotient is virtually abelian, by Proposition 5.5 of [BH72].)

Lemma 1.10 Let G be an elementary amenable group. If h(G) = 1 then
for every k > 0 there is a subgroup H of G with k<h(H) < 1.

Proof We shall argue by induction on (G). The result is vacuously true if
(G) = 1. Suppose that it is true for all groups in U and G is in “U . Since
h(G) = Lu.b.fh(F)jF G; F 2 U g either there is a subgroup F of G in U
with h(F) = A4, in which case the result is true by the inductive hypothesis, or
h(G) is the least upper bound of a set of natural numbers and the result is true.
If Gisin U 41 then it has a normal subgroup N which is in “U with quotient
G=N in U;. But then h(N) = h(G) = 1 and so N has such a subgroup. O

Theorem 1.11 Let G be a countable elementary amenable group of nite
cohomological dimension. Then h(G) c¢:d:G and G is virtually solvable.

Proof Since ¢:d:G < 1L the group G is torsion free. Let H be a subgroup of
nite Hirsch length. Then H is virtually solvable and c:d:H  c¢:d:G so h(H)
c:d:G. The theorem now follows from Theorem 1.9 and Lemma 1.10. ]

1.6 Modules and niteness conditions

Let G beagroupand w : G ¥ Z=2Z a homomorphism, and let R be a
commutative ring. Then g = (—1)¥@g~1 de nes an anti-involution on R[G].
If L is a left R[G]-module L shall denote the conjugate right R[G]-module with
the same underlying R-module and R[G]-action given by I:.g = g:l, forall | 2 L
and g 2 G. (We shall also use the overline to denote the conjugate of a right
R[G]-module.) The conjugate of a free left (right) module is a free right (left)
module of the same rank.

We shall also let ZW denote the G-module with underlying abelian group Z
and G-action given by g:n = (—1)"¥@n for all g in G and n in Z.

Lemma 1.12 [WI65] Let G and H be groups such that G is nitely pre-
sentable and there are homomorphisms j : H ¥ G and :G ¥ H with
j =idy. Then H is also nitely presentable.
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14 Chapter 1: Group theoretic preliminaries

Proof Since G is nitely presentable there is an epimorphism p: F ¥ G from
a free group F(X) with a nite basis X onto G, with kernel the normal closure
of a nite set of relators R. We may choose elements wy in F(X) such that
Jj p(x) = p(wy), for all x in X. Then factors through the group K with

presentation hX j R;x 1wy;8x 2 Xi, say = vu. Now uj is clearly onto,
while vuj = j = idy, and so v and uj are mutually inverse isomomorphisms.
Therefore H = K is nitely presentable. O

A group G is FP, if the augmentation Z[G]-module Z has a projective reso-
lution which is nitely generated in degrees n, and it is FP if it has nite
cohomological dimension and is FP, for n = c¢:d:G. It is FF if moreover
Z has a nite resolution consisting of nitely generated free Z[G]-modules.
\Finitely generated" is equivalent to FP;, while \ nitely presentable™ implies
FP,. Groups which are FP, are also said to be almost nitely presentable.
(There are FP groups which are not nitely presentable [BB97].) An elemen-
tary amenable group G is FP4 if and only if it is virtually FP, and is then
virtually constructible and solvable of nite Hirsch length [Kr93].

If the augmentation Q[ ]-module Q has a nite resolution F by nitely gen-
erated projective modules then () = (—1)idimQ(Q [H;) is independent of
the resolution. (If is the fundamental group of an aspherical nite complex K
then ()= (K).) We may extend this de nition to groups which have a
subgroup of nite index with such a resolution by setting ( )= ( )=[ : ].
(It is not hard to see that this is well de ned.)

Let P be a nitely generated projective Z[ ]-module. Then P is a direct
summand of Z[ ]", for some r 0, and so is the image of some idempotent
r r-matrix M with entries in Z[ ]. The Kaplansky rank (P) is the coe cient
of 1 2 in the trace of M. It depends only on P and is strictly positive if
P & 0. Thegroup satis es the Weak Bass Conjecture if (P) = dimgQ [H.
This conjecture has been con rmed for linear groups, solvable groups and groups
of cohomological dimension 2 over Q. (See [Dy87, Ec86, Ec96] for further
details.)

The following result from [BS78] shall be useful.

Theorem 1.13 (Bieri-Strebel) Let G be an FP, group such that G=G! is in-
nite. Then G is an HNN extension with nitely generated base and associated
subgroups.

Proof (Sketch { We shall assume that G is nitely presentable.) Let h :
F(m) ¥ G be an epimorphism, and let g; = h(x;) for 1 i m. We may
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1.6 Modules and niteness conditions 15

assume that gm has in nite order modulo the normal closure of fg; j 1

i <mg. Since G is nitely presentable the kernel of h is the normal closure
of nitely many relators, of weight O in the letter xn,. Each such relator is a
product of powers of conjugates of the generators fxj j1 i < mg by powers of
Xm. Thus we may assume the relators are contained in the subgroup generated
by fxhxixe? j1 i m;—p j pg, for some su ciently large p. Let
U be the subgroup of G generated by fghgior? j1 i m;—p j < pg,
and let V = gmUgt. Let B be the subgroup of G generated by U [V and
let G be the HNN extension with base B and associated subgroups U and
V presented by G = hB;s j sus* = (u)8u 2 Ui, where :U ¥ V is
the isomorphism determined by conjugation by gm in G. There are obvious
epimorphisms :F(m+1) ¥ G and :G ¥ G with composite h. It is easy
to see that Ker(h) Ker( ) andso G =G. O

In particular, if G is restrained then it is an ascending HNN extension.

A ring R is weakly nite if every onto endomorphism of R" is an isomorphism,
for all n 0. (In [H2] the term \SIBN ring" was used instead.) Finitely
generated stably free modules over weakly nite rings have well de ned ranks,
and the rank is strictly positive if the module is nonzero. Skew elds are weakly

nite, as are subrings of weakly nite rings. If G is a group its complex group
algebra C[G] is weakly nite, by a result of Kaplansky. (See [Ro84] for a proof.)

A ring R is (regular) coherent if every nitely presentable left R-module has a

( nite) resolution by nitely generated projective R-modules, and is (regular)

noetherian if moreover every nitely generated R-module is nitely presentable.

A group G is regular coherent or regular noetherian if the group ring R[G] is

regular coherent or regular noetherian (respectively) for any regular noetherian

ring R. It is coherent as a group if all its nitely generated subgroups are
nitely presentable.

Lemma 1.14 If G is a group such that Z[G] is coherent then every nitely
generated subgroup of G is FP7 .

Proof Let H be a subgroup of G. Since Z[H] Z[G] is a faithfully flat
ring extension a left Z[H]-module is nitely generated over Z[H] if and only if
the induced module Z[G] [ M is nitely generated over Z[G]. It follows by
induction on n that M is FP, over Z[H] if and only if Z[G] (4 M is FP,
over Z[G].

If H is nitely generated then the augmentation Z[H]-module Z is nitely
presentable over Z[H]. Hence Z[G] Lo X is nitely presentable over Z[G], and
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16 Chapter 1: Group theoretic preliminaries

so is FP4 over Z[G], since that ring is coherent. Hence Z is FP4 over Z[H],
ie., His FP4. O

Thus if either G is coherent (as a group) or Z[G] is coherent (as a ring) every

nitely generated subgroup of G is FP;,. As the latter condition shall usually
su ce for our purposes below, we shall say that such a group is almost coherent.
The connection between these notions has not been much studied.

The class of groups whose integral group ring is regular coherent contains the
trivial group and is closed under generalised free products and HNN extensions
with amalgamation over subgroups whose group rings are regular noetherian,
by Theorem 19.1 of [Wd78]. If [G : H] is nite and G is torsion free then Z[G]
is regular coherent if and only if Z[H] is. In particular, free groups and surface
groups are coherent and their integral group rings are regular coherent, while
(torsion free) virtually poly-Z groups are coherent and their integral group
rings are (regular) noetherian.

1.7 Ends and cohomology with free coe cients

A nitely generated group G has 0, 1, 2 or in nitely many ends. It has 0 ends
if and only if it is nite, in which case H%(G;Z[G]) = Z and HY(G;Z[G]) =0
for g > 0. Otherwise H°(G; Z[G]) = 0 and H!(G; Z[G]) is a free abelian group
of rank e(G) — 1, where e(G) is the number of ends of G [Sp49]. The group
G has more than one end if and only if it is either a nontrivial generalised free
product with amalgamation G = A ¢ B or an HNN extension A ¢ where C
isa nite group. In particular, it has two ends if and only if it is virtually Z if
and only if it has a (maximal) nite normal subgroup F such that the quotient
G=F is either in nite cyclic (Z) or in nite dihedral (D = (Z=2Z) (Z=22)).
(See [DD].)

Lemma 1.15 Let N be a nitely generated restrained group. Then N is
either nite or virtually Z or has one end.

Proof Groups with in nitely many ends have noncyclic free subgroups. O

It follows that a countable restrained group is either elementary amenable of
Hirsch length at most 1 or it is an increasing union of nitely generated, one-
ended subgroups.
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1.7 Ends and cohomology with free coe cients 17

If G is a group with a normal subgroup N, and A is a left Z[G]-module there
is a Lyndon-Hochschild-Serre spectral sequence (LHSSS) for G as an extension
of G=N by N and with coe cients A:

E, = HP(G=N;HI(N;A)) D HP(G; A);
the r'" di erential having bidegree (r;1 —r). (See Section 10.1 of [Mc].)

Theorem 1.16 [Ro75] If G has a normal subgroup N which is the union of
an increasing sequence of subgroups N such that HS(N; Z[G]) =0 for s r
then HS(G;Z[G]) =0 for s .

Proof Let s r. Let f be an s-cocycle for N with coe cients Z[G], and
let f,, denote the restriction of ¥ to a cocycle on N. Then there is an (s —
1)-cochain gn on Np such that g, = f,. Since (gn+1ijn, —9n) = 0 and
HS™Y(Np; Z[G]) = 0 there is an (s—2)-cochain hp on N, with h, = gn+1jn, —
On. Choose an extension hl, of hy to Np+1 and let §n+1 = gn+1 — hY. Then
On+1JN, = On and  Gn+1 = Fa+1. In this way we may extend go to an (s —1)-
cochain g on N such that f = g and so H3(N; Z[G]) = 0. The LHSSS for G as
an extension of G=N by N, with coe cients Z[G], now gives H%(G; Z[G]) =0
fors r. ]

Corollary 1.16.1 The hypotheses are satis ed if N is the union of an increas-
ing sequence of FP, subgroups N, such that HS(N,;Z[Nn]) = 0 for s .
In particular, if N is the union of an increasing sequence of nitely generated,
one-ended subgroups then G has one end.

Proof We have H3(Np; Z[G]) = H5(Np; Z[Nn]) CLZIG=N,] =0, forall s r
and all n, since N, is FP,. O

In particular, G has one end if N is a countable elementary amenable group
and h(N) > 1, by Lemma 1.15.

The following results are Theorems 8.8 of [Bi] and Theorem 0.1 of [BG85],
respectively.

Theorem (Bieri) Let G be a nonabelian group with c:d:G = n. Then
cd: G n—1,andif G hasrank n—1 then G’ is free. O

Theorem (Brown-Geoghegan) Let G be an HNN extension B in which the
base H and associated subgroups | and (1) are FP,. If the homomorphism
from HY(B;Z[G]) to HY(l;Z[G]) induced by restriction is injective for some
g n then the corresponding homomorphism in the Mayer-Vietoris sequence
is injective, so HY(G; Z[G]) is a quotient of HI™1(I; Z[G]). O
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18 Chapter 1: Group theoretic preliminaries

The second cohomology of a group with free coe cients (H?(G;R[G]), R =7Z
or a eld) shall play an important role in our investigations.

Theorem (Farrell) Let G be a nitely presentable group. If G has an ele-
ment of in nite order and R = Z or is a eld then H?(G; R[G]) is either 0 or
R or is not nitely generated. O

Farrell also showed in [Fa74] that if H?(G;F,[G]) = Z=2Z then every nitely
generated subgroup of G with one end has nite index in G. Hence if G is also
torsion free then subgroups of in nite index in G are locally free. Bowditch has
since shown that such groups are virtually the fundamental groups of aspherical
closed surfaces ([Bo99] - see x8 below).

We would also like to know when H?(G; Z[G]) is 0 (for G nitely presentable).
In particular, we expect this to the case if G is an ascending HNN extension
over a nitely generated, one-ended base, or if G has an elementary amenable,
normal subgroup E such that either h(E) = 1 and G=E has one end or h(E) =
2 and [G:E]= 21 or h(E) 3. However our criteria here at present require

niteness hypotheses, either in order to apply an LHSSS argument or in the
form of coherence.

Theorem 1.17 Let G bea nitely presentable group with an almost coherent,
locally virtually indicable, restrained normal subgroup E. Suppose that either
E is abelian of rank 1 and G=E has one end or that E has a nitely generated,
one-ended subgroup and G is not elementary amenable of Hirsch length 2.
Then HS(G;Z[G]) =0 for s 2.

Proof If E is abelian of positive rank and G=E has one end then G is 1-
connected at A1 and so H3(G;Z[G]) = 0 for s 2, by Theorem 1 of [Mi87],
and so H3(G; Z[G]) =0 for s 2, by [GM86].

We may assume henceforth that E is an increasing union of nitely generated
one-ended subgroups E, Ep+1 E = [En. Since E is locally virtually
indicable there are subgroups F,  En such that [E, : Fn] < 1 and which
map onto Z. Since E is almost coherent these subgroups are FP,. Hence they
are HNN extensions over FP, bases Hp, by Theorem 1.13, and the extensions
are ascending, since E is restrained. Since E, has one end Hy, has one or two
ends.

If H, has two ends then Ej, is elementary amenable and h(En) = 2. Therefore
if H, has two ends for all n then [En+1 : Eq] < A, E is elementary amenable

Geometry & Topology Monographs, Volume 5 (2002)



1.7 Ends and cohomology with free coe cients 19

and h(E) = 2. If [G: E] < L then G is elementary amenable and h(G) = 2,
and so we may assume that [G : E] = . If E is nitely generated then it is
FP, and so H3(G;Z[G]) =0 for s 2, by an LHSSS argument. This is also
the case if E is not nitely generated, for then HS(E;Z[G]) =0 for s 2, by
the argument of Theorem 3.3 of [GS81], and we may again apply an LHSSS
argument. (The hypothesis of [GS81] that \each G, is FP and c:d:G,, = h"
can be relaxed to \each G, is FPL".)

Otherwise we may assume that H, has one end, for all n 1. In this case
HS(Fn; Z[Fn]) =0 for s 2, by the Theorem of Brown and Geoghegan. There-
fore HS(G;Z[G]) =0 for s 2, by Theorem 1.16. O

The theorem applies if E is almost coherent and elementary amenable, and
either h(E) =2 and [G: E] = A or h(E) 3, since elementary amenahle
groups are restrained and locally virtually indicable. It also applies if E = G
is large enough, since nitely generakggnilpotent groups are virtually poly-Z.
A similar argumergt_shows that if h(' G) r then H3(G;Z[G]) =0 for s<rr.
If moreover [G:  G] = A then H"(G; Z[G]) = 0 also.

Are the hypotheses that E be almost coherent and locally virtually indicable
necessary? Is it su cient that E be restrained and be an increasing union of
nitely generated, one-ended subgroups?

Theorem 1.18 Let G = B be an HNN extension with FP, base B and
associated subgroups I and (1) = J, and which has a restrained normal
subgroup N hhBii. Then H5(G;Z[G]) =0 for s 2 if either

(1) the HNN extension is ascending and B =1 = J has one end;
(2) N is locally virtually Z and G=N has one end; or

(3) N has a nitely generated subgroup with one end.

Proof The rst assertion follows immediately from the Brown-Geogeghan
Theorem.

Let t be the stable letter, so that tit™ = (i), for all i 2 I. Suppose that
N\XJ&N\B,andlet b2 N\B—J. Then bt =t bt isin N, since N is
normal in G. Let a be any element of N \ B. Since N has no noncyclic free
subgroup there is a word w 2 F (2) such that w(a;bt) =1 in G. It follows from
Britton’s Lemma that a must be in I and so N\B =N \1. In particular, N
is the increasing union of copies of N \ B.
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20 Chapter 1: Group theoretic preliminaries

Hence G=N is an HNN extension with base B=N \ B and associated subgroups
I=N \'I and J=N \ J. Therefore if G=N has one end the latter groups are
in nite, and so B, | and J each have one end. If N is virtually Z then
HS(G;Z[G]) = 0 for s 2, by an LHSSS argument. If N is locally virtually
Z but is not nitely generated then it is the increasing union of a sequence
of two-ended subgroups and HS(N;Z[G]) = 0 for s 1, by Theorem 3.3
of [GS81]. Since H?(B;Z[G]) = H°(B;H?(N \ B;Z[G])) and H?(l;Z[G]) =
HO(1; H2(N \ I;Z[G])), the restriction map from H?(B;Z[G]) to H2(l;Z[G])
is injective. If N has a nitely generated, one-ended subgroup N1, we may
assume that N7 N\ B, and so B, I and J also have one end. Moreover
HS(N \ B;Z[G]) = 0 for s 1, by Theorem 1.16. We again see that the
restriction map from H?(B;Z[G]) to H?(l;Z[G]) is injective. The result now
follows in these cases from the Theorem of Brown and Geoghegan. O

1.8 Poincare duality groups

A group G is a PDp-group if it is FP, HP(G;Z[G]) = 0 for p & n and
H"(G; Z[G]) = Z. The \dualizing module”™ H"(G;Z[G]) = ExtQ[G](Z;Z[G])
is a right Z[G]-module; the group is orientable (or is a P D/ -group) if it acts
trivially on the dualizing module, i.e., if H"(G; Z[G]) is isomorphic to the aug-
mentation module Z. (See [Bi].)

The only PD;-group is Z. Eckmann, Linnell and Miiller showed that every
P D,-group is the fundamental group of a closed aspherical surface. (See Chap-
ter VI of [DD].) Bowditch has since found a much stronger result, which must
be close to the optimal characterization of such groups [B099].

Theorem (Bowditch) Let G be an almost nitely presentable group and F
a eld. Then G is virtually a PD,-group if and only if H2(G;F[G]) has a
1-dimensional G-invariant subspace. O

In particular, this theorem applies if H2(G;Z[G]) = Z. for then the image of
H2(G; Z[G]) in H?(G;F,[G]) under reduction mod (2) is such a subspace.

The following result from [St77] corresponds to the fact that an in nite covering
space of a PL n-manifold is homotopy equivalent to a complex of dimension
<n.

Theorem (Strebel) Let H be a subgroup of in nite index in a P Dp-group
G. Then c:d:H <n. ]
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1.8 Poincare duality groups 21

If R is a subring of S, A is a left R-module and C is a left S-module then
the abelian groups Homgr(Cjr;A) and Homg(C; Homgr(Sjr;A)) are natu-
rally isomorphic, where Cjr and Sjr are the left R-modules underlying C
and S respectively. (The maps I and J de ned by I(f)(c)(s) = f(sc) and
J())= (@©@) for f:C ¥ Aand :C ¥ Homgr(S;A) are mutually in-
verse isomorphisms.) When K is a subgroup of and R=Z[K]and S =7Z][ ]
these isomorphisms give rise to Shapiro’s lemma. In our applications =K shall
usually be in nite cyclic and S is then a twisted Laurent extension of R.

Theorem 1.19 Let bea PDj-group with an FP, normal subgroup K such
that G= =K isa PDn—r group and 2r n—1. Then K is a P D,-group.

Proof It shall su ce to show that H3(K;F) = 0 for any free Z[K]-module
F and all s > r, for then c:d:K = r and the result follows from Theorem
9.11 of [Bi]. Let W = Homy (Z[ |;F) be the Z[ ]-module coinduced from
F. Then HS(K;F) = HS( ;W) = Hn—s( ;W), by Shapiro’s lemma and
Poincare duality. As a Z[K]-module W = F© (the direct product of jGj
copies of F), and so Hq(K;W) =0for0<q r (since K is FP;), while
Ho(K;W) = A®, where A = Ho(K;F). Moreover A® = Homgz(Z[G]; A)
as a Z[G]-module, and so is coinduced from a module over the trivial group.
Therefere if n—s  r the LHSSS gives H3(K;F) = Hn—s(G; A®). Poincare
duality for G and another application of Shapiro’s lemma now give HS(K;F) =
HS™M(G; A®) = HS"(1;A) =0, if s>. m]

If the quotient is poly-Z we can do somewhat better.

Theorem 1.20 Let bea PDp-group which is an extension of Z by a normal
subgroup K which is FP[,-. Then K is a P Dp—;-group.

Proof It is su cient to show that lign HY(K;M;) = 0 for any direct system
fMigi2; with limit 0 and for all ¢ ~ n — 1, for then K is FP,—1 [Br75],
and the result again follows from Theorem 9.11 of [Bi]. Since K is FPp=
we may assume g > n=2. We have HY(K;M;) = HY( ;W) = Hn—q( ; Wi),
where Wi = Homy (Z[ 1; M), by Shapiro’s lemma and Poincare duality. The
LHSSS for  as an extension of Z by K reduces to short exact sequences

0 ¥ Ho( =K;Hs(K;Wj)) ¥ Hs( ;Wi) ¥ Hi( =K;Hs—1(K;Wj)) ¥ O

As a Z[K]-module W; = (M;) K (the direct product of countably many copies
of Mj). Since K is FPpy=5; homology commutes with direct products in this
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22 Chapter 1: Group theoretic preliminaries

range, and so Hs(K;W;) = Hs(K;M;) K if s  n=2. As =K acts on this
module by shifting the entries we see that Hs( ; W;) = Hs—1(K; M;) if s n=2,
and the result now follows easily. O

A similar argument shows that if is a PDp-group and 1 Z is any
epimorphism then c:d:Ker( ) < n. (This weak version of Strebel’s Theorem
su ces for some of the applications below.)

Corollary 1.20.1 If a PDn-group is an extension of a virtually poly-Z
group Q by an FPps=5 normal subgroup K then K is a P Dp_pgy-group. 0O

1.9 Hilbert modules

Let be a countable group and let “?( ) be the Hilbert space completion of
C[ ] with respect to the inner product given by ( agg; bph) = ag@. Left
and right multiplication by elements of  determine left and right actions of
C[ ] as bounded operators on “?( ). The (left) von Neumann algebra N ( ) is
the algebra of bounded operators on “2( ) which are C[ ]-linear with respect to
the left action. By the Tomita-Takesaki theorem this is also the bicommutant
in B(*2()) of the right action of C[ ], i.e., the set of operators which commute
with every operator which is right C[ ]-linear. (See pages 45-52 of [Su].) We
may clearly use the canonical involution of C[ ] to interchange the roles of left
and right in these de nitions.

If e 2 is the unit element we may de ne the von Neumann trace on N( )
by the inner product tr(f) = (f(e);e). This extends to square matrices over
N ( ) by taking the sum of the traces of the diagonal entries. A Hilbert N( )-
module is a Hilbert space M with a unitary left -action which embeds iso-
metrically and -equivariantly into the completed tensor product H 172 ) for
some Hilbert space H. It is nitely generated if we may take H = C" for
some integer n. (In this case we do not need to complete the ordinary ten-
sor product over C.) A morphism of Hilbert N ( )-modules isa -equivariant
bounded linear operator f: M ¥ N. It is a weak isomorphism if it is injective
and has dense image. A bounded -linear operator on “?( )" = C" [2( )
is represented by a matrix whose entries are in N( ). The von Neumann
dimension of a nitely generated Hilbert N ( )-module M is the real num-
ber dimy ¢ y(M) = tr(P) 2 [0; 1), where P is any projection operator on
H [ ) with image -isometric to M. In particular, dimy(y(M) = 0 if
and only if M = 0. The notions of nitely generated Hilbert N ( )-module
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1.9 Hilbert modules 23

and nitely generated projective N ( )-module are essentially equivalent, and
arbitrary N ( )-modules have well-de ned dimensions in [0; 1] [LU].

A sequence of bounded maps between Hilbert N ( )-modules

M—L1 N —Lxp
is weakly exact at N if Ker(p) is the closure of Im(J). fO ¥ M I N T P E Q
is weakly exact then j is injective, Ker(p) is the closure of Im(j) and Im(p) is
dense in P, and dimy ¢ y(N) = dimy( y(M) +dimy y(P). A nitely gener-
ated Hilbert N ( )-complex C is a chain complex of nitely generated Hilbert
N ( )-modules with bounded C[ ]-linear operators as di erentials. The re-
duced L2-homology is de ned to be Héz)(C ) = Ker(dp)=Im(dp+1). The pth
L2-Betti number of C is then dimpy )Héz)(C ). (As the images of the dif-

ferentials need not be closed the unreduced L?-homology modules Héz)(C ) =
Ker(dp)=Im(dy+1) are not in general Hilbert modules.)

See [Li] for more on modules over von Neumann algebras and L? invariants of
complexes and manifolds.

[In this book L2?-Betti number arguments shall replace the localization argu-
ments used in [H2]. However we shall recall the de nition of safe extension used
there. An extension of rings Z[G] < is a safe extension if it is faithfully flat,

is weakly nite and  [zd)Z = 0. It was shown there that if a group has a
nontrivial elementary amenable normal subgroup whose nite subgroups have
bounded order and which has no nontrivial nite normal subgroup then Z[G]
has a safe extension.]

Geometry & Topology Monographs, Volume 5 (2002)






25

Chapter 2

2-Complexes and P Ds;-complexes

This chapter begins with a review of the notation we use for (co)homology
with local coe cients and of the universal coe cient spectral sequence. We
then de ne the L2-Betti numbers and present some useful vanishing theorems
of Liick and Gromov. These invariants are used in x3, where they are used to
estimate the Euler characteristics of nite [ ; m]-complexes and to give a con-
verse to the Cheeger-Gromov-Gottlieb Theorem on aspherical nite complexes.
Some of the arguments and results here may be regarded as representing in
microcosm the bulk of this book; the analogies and connections between 2-
complexes and 4-manifolds are well known. We then review Poincare duality
and P Dp-complexes. In x5-x9 we shall summarize briefly what is known about
the homotopy types of P D3-complexes.

2.1 Notation

Let X be a connected cell complex and let X be its universal covering space. If
H is a normal subgroup of G = 1(X) we may lift the cellular decomposition of
X to an equivariant cellular decomposition of the corresponding covering space
Xp . The cellular chain complex C of Xy with coe cients in a commutative
ring R is then a complex of left R[G=H]-modules, with respect to the action
of the covering group G=H. Moreover C is a complex of free modules, with
bases obtained by choosing a lift of each cell of X. If X isa nite complex G
is nitely presentable and these modules are nitely generated. If X is nitely
dominated, i.e., is a retract of a nite complex Y, then G is a retract of 1(Y)
and so is nitely presentable, by Lemma 1.12. Moreover the chain complex C

of the universal cover is chain homotopy equivalent over R[G] to a complex of

nitely generated projective modules [WI65].

The ith equivariant homology module of X with coe cients R[G=H] is the left
module H;(X; R[G=H]) = H;(C ), which is clearly isomorphic to H;(Xy;R) as
an R-module, with the action of the covering group determining its R[G=H]-
module structure. The i equivariant cohomology module of X with coe -
cients R[G=H] is the right module H'(X;R[G=H]) = H(C ), where C =
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26 Chapter 2: 2-Complexes and P D3z-complexes

Homgg-n)(C ; R[G=H]) is the associated cochain complex of right R[G=H]-
modules. More generally, if A and B are right and left Z[G=H]-modules (re-
spectively) we may de ne Hj(X;A) = Hj(A Lzd-yy; C ) and H"I(X;B) =
H"J(Homyg-n1(C ;B)). There is a Universal Coe cient Spectral Sequence
(UCSS) relating equivariant homology and cohomology:

EPY = Exthgopy; (Hp(X; RIG=H]); RIG=H]) D HP™(X; R[G=H]);

with rt" di erential d, of bidegree (1 —r;r).

If J is a normal subgroup of G which contains H there is also a Cartan-Leray
spectral sequence relating the homology of Xy and Xj:

EZ, = TorXSHI(H, (X; R[G=H]); R[G=J]) D Hp+q(X;R[G=J]);

with rth di erential d" of bidegree (—r;r —1). (See [Mc] for more details on
these spectral sequences.)

If M isacell complexlet cpy : M ¥ K( 1(M); 1) denote the classifying map for
the fundamental group and let fy : M ¥ P,(M) denote the second stage of the
Postnikov tower for M. (Thus cm = cp,(myfm.) Amap f: X ¥ K( 1(M);1)
lifts to a map from X to P,(M) if and only if ¥ ky(M) = 0, where ki(M)
is the rst k-invariant of M in H3( 1(M); 2(M)). In particular, if ky(M) =
0 then cp,vy has a cross-section. The algebraic 2-type of M is the triple
[ ; 2(M);ki(M)]. Two such triples [ ; ; Jand [ % U "] (corresponding to
M and M, respectively) are equivalent if there are isomorphisms : ¥ ¢
and : % Osuchthat (gm) = (g) (m) forall g2 and m 2

and = " in H3( ; Y. Such an equivalence may be realized by
a homotopy equivalence of P,(M) and P,(M"). (The reference [Ba] gives a
detailed treatment of Postnikov factorizations of nonsimple maps and spaces.)

Throughout this book closed manifold shall mean compact, connected TOP
manifold without boundary. Every closed manifold has the homotopy type of
a nite Poincare duality complex [KS].

2.2 L2-Betti numbers

Let X be a nite complex with fundamental group . The L?-Betti num-
bers of X are de ned by P (X) = dimy )(Héz)(ﬁ)) where the L?-homology

Hi(z)(ﬁ) = Hi(C(z)) is the reduced homology of the Hilbert N ( )-complex

c® =<2 [CI(X) of square summable chains on X [At76]. They are multi-
plicative in nite covers, and for i =0 or 1 depend only on . (In particular,
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2.2 L2-Betti numbers 27

62)( )=0if isin nite.) The alternating sum of the L?-Betti numbers is the

Euler characteristic (X) [At76]. The usual Betti numbers of a space or group
with coe cients in a eld F shall be denoted by (X;F) = dimgH;i(X;F)
(or just i(X), if F =Q).
It may be shown that ?(X) = dimy( yHi(N( ) [z} C (R)), and this for-
mulation of the de nition applies to arbitrary complexes (see [CG86], [Lu]).
(However we may have i(z)(X) = 1..) These numbers are nite if X is nitely
dominated, and the Euler characteristic formula holds if also  satis es the
Strong Bass Conjecture [Ec96]. In particular, i(z)( ) = dimyyHi( ;N())
is de ned for any group, and 52)( 1(X)) 52)(X). (See Theorems 1.35 and
6.54 of [LU].)

Lemma 2.1 Let =H bea nitely presentable group which is an ascend-
ing HNN extension with nitely generated base H. Then 52)( ) =0.

Proof Let t be the stable letter and let H, be the subgroup generated by H
and t", and suppose that H is generated by g elements. Then [ : Hn] =n,

SO 52)(Hn) =n 52)( ). But each Hy is also nitely presentable and generated
by g +1 elements. Hence P(H,) g+1,andso P()=o. =

In particular, this lemma holds if is an extension of Z by a nitely generated
normal subgroup. We shall only sketch the next theorem (from Chapter 7 of
[LiU]) as we do not use it in an essential way. (See however Theorems 5.8 and
9.9)

Theorem 2.2 (Lick) Let be a group with a nitely generated in nite

normal subgroup such that = has an element of in nite order. Then
@ y=o
1 ()=0.
Proof (Sketch) Let be a subgroup containing such that = =

Z. The terms in the line p+q = 1 of the homology LHSSS for as an
extension of Z by with coe cients N( ) have dimension 0, by Lemma
2.1. Since dimy ¢ )M =dimy y(N( ) Lydy M) for any N( )-module M the
corresponding terms for the LHSSS for  as an extension of = by  with
coe cients N( ) also have dimension 0 and the theorem follows. O

Gaboriau has shown that the hypothesis \ = has an element of in nite or-

der" can be relaxed to \ = isin nite" [Ga00]. A similar argument gives the
following result.
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28 Chapter 2: 2-Complexes and P D3z-complexes

Theorem 2.3 Let be agroup with an in nite subnormal subgroup N such
that @(N)=o0foralli s. Then P()=o0foralli s.

Proof Suppose rstthat N isnormalin . If [ : N] < A the result follows
by multiplicativity of the L2-Betti numbers, while if [ : N] = 1 it follows
from the LHSSS with coe cients N( ). We may then induct up a subnormal
chain to obtain the theorem. O

In particular, we obtain the following result from page 226 of [Gr]. (Note also
that if A is an amenable ascendant subgroup of  then its normal closure in
is amenable.)

Corollary 2.3.1 (Gromov) Let be agroup with an in nite amenable nor-
mal subgroup A. Then i(z)( ) =0 for all i.

Proof If A is an in nite amenable group i(z)(A) =0 for all i [CG86]. O

2.3 2-Complexes and nitely presentable groups

Ifagroup hasa nite presentation P with g generators and r relators then
the de ciency of P is def(P) =g —r, and def( ) is the maximal de ciency of
all nite presentations of . Such a presentation determines a nite 2-complex
C(P) with one 0-cell, g 1-cells and r 2-cells and with ((C(P)) = . Clearly
def(P) =1— (P) = 1(C(P)) — 2(C(P)) and so def( )  1()— 20).
Conversely every nite 2-complex with one 0-cell arises in this way. In general,
any connected nite 2-complex X is homotopy equivalent to one with a single
0-cell, obtained by collapsing a maximal tree T in the 1-skeleton X[,

We shall say that  has geometric dimension at most 2, written g:d: 2, if
it is the fundamental group of a nite aspherical 2-complex.

Theorem 2.4 Let X beaconnected nite 2-complex with fundamental group
.Then (X)  P()— @)1 X) == D) then X is aspherical
and &1.

Proof The lower bound follows from the Euler characteristic formula (X) =
Bxy— Pxy+ Px), since @)= @x) for i =0 and 1 and
52)( ) éz)(X). Since X is 2-dimensional ,(X) = H,(X;Z) is a subgroup

of HA2R). 1If (X) = — P() then P(X) =0, s0 s in nite, and
52)(X) =0,s0 Héz)(k) = 0. Therefore »(X) =0 and so X is aspherical. 0O
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Corollary 2.4.1 Let be a nitely presentable group. Then def( ) 1+
Oy- POy afdef()=1+ P() then g 2.

Let G=F(2) F(2). Then g:d:G = 2 and def(G) 1(G)— 2(G) =0. Hence
hu;Vv; X;y j UX = Xu; Uy = yu; VX = XV; vy = yvi is an optimal presentation,
and def(G) = 0. The subgroup N generated by u, vx~! and y is normal in
G and G=N = Z, so f)(G) = 0, by Lemma 2.1. Thus asphericity need not
imply equality in Theorem 2.4, in general.

Theorem 2.5 Let be a nitely presentable group such that 52)( ) = 0.
Then def( ) 1, with equality if and only if g:d: 2and ()= 1()—1.

Proof The upper bound and the necessity of the conditions follow from The-
orem 2.4. Conversely, if they hold and X is a nite aspherical 2-complex with

1(X)= then (X)=1-— 1( )+ 2() = 0. After collapsing a maximal
tree in X we may assume it has a single 0-cell, and then the presentation read
0 the 1- and 2-cells has de ciency 1. O

This theorem applies if is a nitely presentable group which is an ascending
HNN extension with nitely generated base H, or has an in nite amenable nor-
mal subgroup. In the latter case, the condition »( )= 1( )—1 is redundant.
For suppose that X is a nite aspherical 2-complex with ((X) = . If has
an in nite amenable normal subgroup then i(z)( ) = 0 for all i, by Theorem
2.3,andso (X)=0.

[Similarly, if Z[ ] has a safe extension W and C is the equivariant cellular
chain complex of the universal cover X then W [} C is a complex of free
left W-modules with bases corresponding to the cells of X. Since W is a safe
extension Hi(X; W) = W Lz hH;(X;Z[ ]) =0 forall i, and so again (X) =0.]

Corollary 2.5.1 Let be a nitely presentable group which is an extension
of Z by an FP, normal subgroup N and such that def( ) = 1. Then N is
free.

Proof This follows from Corollary 8.6 of [Bi]. ]

The subgroup N of F(2) F(2) de ned after the Corollary to Theorem 2.4
is nitely generated, but is not free, as u and y generate a rank two abelian
subgroup. (Thus N is not FP, and F(2) F(2) is not almost coherent.)

The next result is a version of the \Tits alternative™ for coherent groups of coho-
mological dimension 2. Foreach m 2 Z let Z , be the group with presentation
ha;tjtat™r =a™i. (Thus Z g=Z and Z 1 =Z _1Z.)
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Theorem 2.6 Let bea nitely generated group such that c:d: = 2. Then
= Z m for some m & 0 if and only if it is almost coherent and restrained
and = Yisin nite.

Proof The conditions are easily seen to be necessary. Conversely, if is al-
most coherent and = Y isin nite is an HNN extension with almost nitely
presentable base H, by Theorem 1.13. The HNN extension must be ascend-
ing as  has no noncyclic free subgroup. Hence H2( ;Z[ ]) is a quotient of
HI(H:;Z[ 1) = HY(H;Z[H]) CZ] =H], by the Brown-Geoghegan Theorem.
Now H?( ;Z[ ]) & 0, since c:d: = 2, and so H(H;Z[H]) & 0. Since H is
restrained it must have twoends,soH=Zand =Z ,forsome m&0. O

Does this remain true without any such coherence hypothesis?

Corollary 2.6.1 Let be an FP, group. Then the following are equivalent:

1) =Z nforsomem2Z;

2) is torsion free, elementary amenable and h( ) 2;
3) is elementary amenable and c:d: 2;

4 is elementary amenable and def( ) = 1; and

5) is almost coherent and restrained and def( ) = 1.

Proof Condition (1) clearly ilaplies the others. Suppose (2) holds. We may
assume that h( ) =r§_and h( ) =1 (f%r_otherwise =Z,Z2°=2Z1o0r
Z —1). Hence h( = ) =1, andso = is an extension of Z or D by
a nite normal subgroup. If = maps onto D then = A ¢ B, where
[A:C]= [Bp: Cl=2and h(A)=h(B)=h(C) =1,andso =Z _1Z.
But then h(" ) = 2. Hence we may assume that maps onto Z, and so

is an ascending HNN extension with nitely generated base H, by Theorem
1.13. Since H is torsion free, elementary amenable and h(H) = 1 it must be
in nite cyclic and so (2) implies (1). If def( ) =1 then is an ascending HNN
extension with nitely generated base, so f)( ) =0, by Lemma 2.1. Hence
(4) and (5) each imply (3) by Theorem 2.5, together with Theorem 2.6. Finally
(3) implies (2), by Theorem 1.11. ]

In fact all nitely generated solvable groups of cohomological dimension 2 are
as in this corollary [Gi79]. Are these conditions also equivalent to \ is almost
coherent and restrained and c:d: 2"? Note also that if def( ) > 1 then
has noncyclic free subgroups [Ro77].
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Let X be the class of groups of nite graphs of groups, all of whose edge and
vertex groups are in nite cyclic. Kropholler has shown that a nitely generated,
noncyclic group G is in X if and only if c:d:G = 2 and G has an in nite cyclic
subgroup H which meets all its conjugates nontrivially. Moreover G is then
coherent, one ended and g:d:G = 2 [Kr90’].

Theorem 2.7 Let be a nitely generated group such that c.d: = 2. If

has a nontrivial normal subgroup E which either is almost coherent, locally
virtually indicable and restrained or is elementary amenable then is in X
and either E=Z or = Yisin niteand  is abelian.

Proof Let F bea nitely generated subgroup of E. Then F is metabelian, by
Theorem 2.6 and its Corollary, and so all words in E of tige form [[g; h; [9”% h]
are trivial. Hence E is metabelian also. Therefore A = E is nontrivial, and
as A is characteristic in E it is normal in . Since A is the union of its nitely
generated subgroups, which are torsion free nilpotent groups of Hirsch length
2, it is abelian. If A=2Z then [ : C (A)] 2. Moreover C (A) is free,
by Bieri’s Theorem. If C (A)! is cyclic then = Z2o0or Z _1Z; if C (A)
is nonabelian then E = A = Z. Otherwise ¢:d:A = ¢:d:C (A) = 2 and so
C (A) = A, by Bieri’s Theorem. If A has rank 1 then Aut(A) is abelian, so
® C (A) and is metabelian. If A = Z? then =A is isomorphic to a
subgroup of GL(2;7Z), and so is virtually free. As A together with an element
t 2 of in nite order modulo A would generate a subgroup of cohomological
dimension 3, which is impossible, the quotient =A must be nite. Hence
=Z%o0rZ _1Z.Inallcases isin X, by Theorem C of [Kr90’]. O

If c:.d: =2, & 1 and is nonabelianthen =Z and ' is free, by Bieri’s
Theorem. On the evidence of his work on 1-relator groups Murasugi conjectured
that if G is a nitely presentable group other than Z? and def(G) 1 then

G =Z or 1, and is trivial if def(G) > 1, and he veri ed this for classical link
groups [Mu65]. Theorems 2.3, 2.5 and 2.7 together imply that if G isin nite
then def(G) =1 and G =Z.

It remains an open question whether every nitely presentable group of coho-
mological dimension 2 has geometric dimension 2. The following partial answer
to this question was rst obtained by W.Beckmann under the additional as-
sumption that the group was FF (cf. [Dy87’]).

Theorem 2.8 Let be a nitely presentable group. Then g:d: 2 if and
only if c:d: 2and def( )= 1( )— 20).
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Proof The necessity of the conditions is clear. Suppose that they hold and
that C(P) is the 2-complex corresponding to a presentation for  of maximal

de ciency. The cellular chain complex of C(P) gives an exact sequence
OFYK= ,CP)2Z[ "1 Z |°" "7Z[10YO:

As c:d: 2 the image of Z[ 1" in Z[ ]9 is projective, by Schanuel’s Lemma.
Therefore the inclusion of K into Z[ ]" splits, and K is projective. Moreover
dimg(Q [z} K) =0, and so K =0, since the Weak Bass Conjecture holds for

[Ec86]. Hence C(P) is contractible, and so C(P) is aspherical. O

The arguments of this section may easily be extended to other highly connected
nite complexes. A [ ;m]g-complex is a nite m-dimensional complex X with

1(X) = and with (m — 1)-connected universal cover X. Such a [ ;m]¢-
complex X is aspherical if and only if ,,()X) = 0. In that case we shall say
that has geometric dimension at most m, written g:d: m.

Theorem 2.4" Let X bea [ ;m]s-complex and suppose that i(2)( ) =0 for
i<m. Then (=1)™ (X) 0. If (X) =0 then X is aspherical. ]

In general the implication in the statement of this theorem cannot be reversed.
For S St is an aspherical [F (2); 1] -complex and éz)(F (2) =0, but (S!_
sh=-160.

One of the applications of L?-cohomology in [CG86] was to show that if X is
a nhite aspherical complex such that 1(X) has an in nite amenable normal
subgroup A then (X) = 0. (This generalised a theorem of Gottlieb, who
assumed that A was a central subgroup [Go65].) We may similarly extend
Theorem 2.5 to give a converse to the Cheeger-Gromov extension of Gottlieb’s
Theorem.

Theorem 2.5 Let X bea[ ;m]s-complex and suppose that has anin nite
amenable normal subgroup. Then X is aspherical if and only if (X) =0. O

2.4 Poincare duality

The main reason for studying P D-complexes is that they represent the ho-
motopy theory of manifolds. However they also arise in situations where the
geometry does not immediately provide a corresponding manifold. For instance,
under suitable niteness assumptions an in nite cyclic covering space of a closed
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4-manifold with Euler characteristic 0 will be a P D3-complex, but need not be
homotopy equivalent to a closed 3-manifold (see Chapter 11).

A PDp-complex is a nitely dominated cell complex which satis es Poincare
duality of formal dimension n with local coe cients. Itis nite if it is homotopy
equivalent to a nite cell complex. (It is most convenient for our purposes
below to require that P D-complexes be nitely dominated. If a CW-complex
X satis es local duality then 1(X) is FP,, and X is nitely dominated if
and only if 1(X) is nitely presentable [Br72, Br75]. Ranicki uses the broader
de nition in his book [Rn].) All the P D-complexes that we consider shall be
assumed to be connected.

Let P be a PDp-complex and C be the cellular chain complex of B. Then the
Poincare duality isomorphism may also be described in terms of a chain homo-
topy equivalence from C to Cn— , which induces isomorphisms from HI(C )
to Hn—j(C ), given by cap product with a generator [P] of Hn(P;Z":(®)) =
Hn(Z Lzl py C ). (Here the rst Stiefel-Whitney class w;(P) is considered as
a homomorphism from 1(P) to Z=2Z.) From this point of view it is easy to see
that Poincare duality gives rise to (Z-linear) isomorphisms from HJ(P;B) to
Hn—j(P;B), where B is any left Z[ 1(P)]-module of coe cients. (See [WI67]
or Chapter Il of [WI] for further details.) If P is a Poincare duality complex
then the L2-Betti numbers also satisfy Poincare duality. (This does not require
that P be nite or orientable!)

A nitely presentable group is a P Dp-group (as de ned in Chapter 2) if and
only if K(G;1) is a PDp-complex. For every n 4 there are P Dp-groups
which are not nitely presentable [Da98].

Dwyer, Stolz and Taylor have extended Strebel’s Theorem to show that if H is
a subgroup of in nite index in 1(P) then the corresponding covering space Py
has homological dimension < n; hence if moreover n & 3 then Py is homotopy
equivalent to a complex of dimension < n [DST96].

2.5 PDs-complexes

In this section we shall summarize briefly what is known about P D, -complexes
of dimension at most 3. It is easy to see that a connected P D;-complex must
be homotopy equivalent to S*. The 2-dimensional case is already quite di -
cult, but has been settled by Eckmann, Linnell and Miiller, who showed that
every P D;,-complex is homotopy equivalent to a closed surface. (See Chapter
V1 of [DD]. This result has been further improved by Bowditch’s Theorem.)

Geometry & Topology Monographs, Volume 5 (2002)



34 Chapter 2: 2-Complexes and P D3z-complexes

There are P D3-complexes with nite fundamental group which are not homo-
topy equivalent to any closed 3-manifold [Th77]. On the other hand, Turaev’s
Theorem below implies that every P D3-complex with torsion free fundamental
group is homotopy equivalent to a closed 3-manifold if every P D3-group is a
3-manifold group. The latter is so if the Hirsch-Plotkin radical of the group is
nontrivial (see x7 below), but remains open in general.

The fundamental triple of a P D3-complex P is ( 1(P);w1(P);cp [P]). This
is a complete homotopy invariant for such complexes.

Theorem (Hendriks) Two P Djs-complexes are homotopy equivalent if and
only if their fundamental triples are isomorphic. O

Turaev has characterized the possible triples corresponding to a given nitely
presentable group and orientation character, and has used this result to deduce
a basic splitting theorem [Tu90].

Theorem (Turaev) A P Djs-complex is irreducible with respect to connected
sum if and only if its fundamental group is indecomposable with respect to free
product. O

Wall has asked whether every P D3-complex whose fundamental group has in-

nitely many ends is a proper connected sum [WI67]. Since the fundamental
group of a P D3-complex is nitely presentable it is the fundamental group of
a nite graph of ( nitely generated) groups in which each vertex group has at
most one end and each edge group is nite, by Theorem VI1.6.3 of [DD]. Start-
ing from this observation, Crisp has given a substantial partial answer to Wall’s
question [Cr00].

Theorem (Crisp) Let X be an indecomposable P D3 -complex. If 1(X) is
not virtually free then it has one end, and so X is aspherical. ]

With Turaev’s theorem this implies that the fundamental group of any P D3-
complex is virtually torsion free, and that if X is irreducible and  has more
than one end then it is virtually free. There remains the possibility that, for
instance, the free product of two copies of the symmetric group on 3 letters with
amalgamation over a subgroup of order 2 may be the fundamental group of an
orientable P Djs-complex. (It appears di cult in practice to apply Turaev’s
work to the question of whether a given group can be the fundamental group
of a P D3z-complex.)
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2.6 The spherical cases

The possible P D3-complexes with nite fundamental group are well understood
(although it is not yet completely known which are homotopy equivalent to 3-
manifolds).

Theorem 2.9 [WI67] Let X be a PDs-complex with nite fundamental
group F. Then

(1) X ~ S3, F has cohomological period dividing 4 and X is orientable;
(2) the rst nontrivial k-invariant k(X) generates H*(F;Z) = Z=jFjZ.

(3) the homotopy type of X is determined by F and the orbit of k(M) under
Out(F) f 1g.

Proof Since the universal cover X is also a nite P D3-complex it is homotopy
equivalent to S3. A standard Gysin sequence argument shows that F has
cohomological period dividing 4. Suppose that X is nonorientable, and let C be
a cyclic subgroup of F generated by an orientation reversing element. Let Z be
the nontrivial in nite cyclic Z[C]-module. Then H?(X¢c:Z) = Hi(Xc:Z) =C,
by Poincare duality. But H?(Xc;Z) = H?(C; Z) = 0, since the classifying map
from Xc = X=C to K(C;1) is 3-connected. Therefore X must be orientable
and F must act trivially on 3(X) = H3(X;Z).

The image  of the orientation class of X generates H3z(F;Z) = Z=jFjZ, and
corresponds to the rst nonzero k-invariant under the isomorphism Hs(F;Z) =
H*(F:;Z) [WI67]. Inner automorphisms of F act trivially on H*(F;Z), while
changing the orientation of X corresponds to multiplication by —1. Thus the
orbit of k(M) under Out(F) f 1g is the signi cant invariant.

We may construct the third stage of the Postnikov tower for X by adjoining
cells of dimension greater than 4 to X. The natural inclusion j : X ¥ P3(X)
is then 4-connected. If X; is another such PDjz-complex and : 1(X1) ¥ F
is an isomorphism which identi es the k-invariants then there is a 4-connected
map ji : X3 ¥ P3(X) inducing , which is homotopic to a map with image
in the 4-skeleton of P3(X), and so there is a map h: X; ¥ X such that j; is
homotopic to jh. The map h induces isomorphisms on ; for i 3, since j
and j; are 4-connected, and so the lift i : X; 7 S B R ~ S3 js a homotopy
equivalence, by the theorems of Hurewicz and Whitehead. Thus h is itself a
homotopy equivalence. O
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The list of nite groups with cohomological period dividing 4 is well known.
Each such group F and generator k 2 H*(F;Z) is realized by some PD3 -
complex [Sw60, WI67]. (See also Chapter 11 below.) In particular, there is
an unique homotopy type of P D3-complexes with fundamental group the sym-
metric group Ss, but there is no 3-manifold with this fundamental group.

The fundamental group of a P D3-complex P has two ends if and only if B ~
S?, and then P is homotopy equivalent to one of the four S? E!-manifolds
S2 S!,s2~s! RP?2 S!or RP3IRP3. The following simple lemma leads
to an alternative characterization.

Lemma 2.10 Let P be a nite dimensional complex with fundamental group
and such that Hq(F;Z) = 0 for all ¢ > 2. If C is a cyclic subgroup of
then Hg43(C;Z) = H(C; »(P)) forall s dim(P).

Proof Since Hy(F;Z) = ,(P) and dim(®=C) dim(P) this follows either
from the Cartan-Leray spectral sequence for the universal cover of B=C or by
devissage applied to the homology of C (), considered as a chain complex
over Z[C]. ]

Theorem 2.11 Let P be a P D3-complex whose fundamental group  has a
nontrivial nite normal subgroup N. Then either P is homotopy equivalent to
RP2 Slor is nite.

Proof We may clearly assume that isin nite. Then Hq(®;Z) =0 for q > 2,
by Poincare duality. Let = ,(P). The augmentation sequence

OYA()YTZ[]TZ1YO
gives rise to a short exact sequence
0 ¥ Homy 1(Z[ T;Z[ 1) ¥ Homg (A »Z[ ) ® HY(;Z[ ) ¥ O

Let f: A() ¥ Z[ ] be a homomorphism and be a central element of .
Then f: (i)=F@{) = f@)=Ff(i)=F@ )andso (f: —F)(i)=F(i( —1)) =
if( —1) forall i 2 A( ). Hence f: —f is the restriction of a homomorphism
from Z[ ] to Z[ ]. Thus central elements of  act trivially on H( ;Z[ ]).

If n 2 N the centraliser y = C (hni) has nite index in , and so the covering
space Py is again a P D3-complex with universal covering space B. Therefore

= H(y;Z[y]) as a (left) Z[y]-module. In particular, is a free abelian
group. Since n is central in y it acts trivially on H(y;Z[y]) and hence via
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w(n) on . Suppose rst that w(n) = 1. Then Lemma 2.10 gives an exact
sequence
0% Zzjnjz ¥ ¥ 1Q;

where the right hand homomorphism is multiplication by jnj, since n has nite
order and acts trivially on . As is torsion free we must have n = 1.

Therefore if n 2 N is nontrivial it has order 2 and w(n) = —1. In this case
Lemma 2.10 gives an exact sequence

0or 1 ¥ 7=27 1 0

where the left hand homomorphism is multiplication by 2. Since s a free
abelian group it must be in nite cyclic, and so B * S2. The theorem now
follows from Theorem 4.4 of [WI67]. O

If 1(P) hasa nitely generated in nite normal subgroup of in nite index then
it has one end, and so P is aspherical. We shall discuss this case next.

2.7 PDs-groups

If Wall’s question has an a rmative answer, the study of P D3-complexes re-
duces largely to the study of P D3z-groups. It is not yet known whether all such
groups are 3-manifold groups. The fundamental groups of 3-manifolds which
are nitely covered by surface bundles or which admit one of the geometries of
aspherical Seifert type may be characterized among all P D3-groups in simple
group-theoretic terms.

Theorem 2.12 Let G be a P D3-group with a nontrivial almost nitely pre-
sentable normal subgroup N of in nite index. Then either

(1) N =Z and G=N s virtually a P D,-group; or
(2) N isa PD;-group and G=N has two ends.

Proof Let e be the number of ends of N. If N is free then H3(G;Z[G]) =
H2(G=N;H(N;Z[G])). Since N is nitely generated and G=N is FP, this
is in turn isomorphic to H2(G=N; Z[G=N])¢"D. Since G is a P D3-group we
must have e —1 = 1 and so N = Z. We then have H?(G=N;Z[G=N]) =
H3(G;Z[G]) = Z, so G=N is virtually a P D,-group, by Bowditch’s Theorem.

Otherwise c:d:N =2 and so e =1 or .. The LHSSS gives an isomorphism
H2(G;Z[G]) = HY(G=N;Z[G=N]) [CH(N;Z[N]) = H(G=N;Z[G=N])*L.
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Hence either e = 1 or HY(G=N;Z[G=N]) = 0. But in the latter case we
have H3(G;Z[G]) = H?(G=N;Z[G=N]) [CH}(N;Z[N]) and so H3(G;Z[G])
is either 0 or in nite dimensional. Therefore e = 1, and so H3(G;Z[G]) =
H1(G=N;Z[G=N]) CHF(N;Z[N]). Hence G=N has two ends and H?(N;Z[N])
=2Z,s0 N is a PD;,-group. O

We shall strengthen this result in Theorem 2.16 below.

Corollary 2.12.1 A PD3-complex P is homotopy equivalent to the mapping
torus of a self homeomorphism of a closed surface if and only if there is an
epimorphism : 1(P) ¥ Z with nitely generated kernel.

Proof This follows from Theorems 1.20, 2.11 and 2.12. D

If 1(P) is in nite and is a nontrivial direct product then P is homotopy
equivalent to the product of S with a closed surface.

Theorem 2.13 Let G be a PDjs-group. Then every almost coherent, lo-
cally virtually indicable subgroup of G is either virtually solvable or contains a
noncyclic free subgroup.

Proof Let S be a restrained, locally virtually indicable subgroup of G. Sup-
pose rstthat S has nite index in G, and so is again a P D3-group. Since S
is virtually indicable we may assume without loss of generality that 1(S) > 0.
Then S is an ascending HNN extension H  with nitely generated base. Since
G is almost coherent H is nitely presentable, and since H3(S;Z[S]) = Z it
follows from Lemma 3.4 of [BG85] that H is normal in S and S=H = Z. Hence
H is a PD;,-group, by Theorem 1.20. Since H has no noncyclic free subgroup
it is virtually Z2 and so S and G are virtually poly-Z.

If [G:S]= 4 then c:d:S 2, by Strebel’s Theorem. As the nitely generated
subgroups of S are virtually indicable they are metabelian, by Theorem 2.6
and its Corollary. Hence S is metabelian also. ]

As the fundamental groups of virtually Haken 3-manifolds are coherent and
locally virtually indicable, this implies the \Tits alternative™ for such groups
[EJ73]. In fact solvable subgroups of in nite index in 3-manifold groups are
virtually abelian. This remains true if K(G;1) is a nite PD3s-complex, by
Corollary 1.4 of [KK99]. Does this hold for all P D3-groups?

A slight modi cation of the argument gives the following corollary.
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Corollary 2.13.1 A PDgs-group G is virtually poly-Z if and only if it is
coherent, restrained and has a subgroup of nite index with in nite abelianiza-
tion. O

If 1(G) 2 the hypothesis of coherence is redundant, for there is then an epi-
morphism p: G ¥ Z with nitely generated kernel, by [BNS87], and Theorem
1.20 requires only that H be nitely generated.

The argument of Theorem 2.13 and its corollary extend to show by induction
on m that a P Dy, -group is virtually poly-Z if and only if it is restrained and
every nitely generated subgroup is FPm—1 and virtually indicable.

Theorem 2.14 Let G be a PD3-group. Then G is the fundamental group of
an aspherical Seifert bred 3-manifold or a Sol®-manifold if and only if ~ G & 1.
Moreover

D h(pé) =1 if and only if G is the group of an H2 E!- or L-manifold;
2) h(pé) =2 if and only if G is the group of a Sol®-manifold;
©)) h(pﬁ) =3 if and only if G is the group of an E3- or Nil®*-manifold.

Proof The necessity of the conggons is C'fﬁi (See [Sc837], or x2 aﬁd_x3 of
Chapter 7 below.) I§_ertain|y h(C G) c¢di G 3. Moreover ccd: G = 3
if and only if [G: Q] isp_nite, by Strel&gﬁs Theorem. d—l_ence G is virtually
nilpotent if and only if h(C' G) %i. If h( G) =2 then = G is locally abelian,
ancbﬁence abelian , Moreover = G must be nitely generated, for otherwise
ccd G=3. Thus G = Z? and case (2) follows from Theorem 2.12.

Suppose now that h(pﬁ) =1landlet C = CG(pE). Then p@ is torsion free
abelian of rank 1, so Aut(' G) is isomorphic to a subgroup of Q . Therefgre
G=C is abelian. If G=C isin nitethen c:d:C 2 by Strebel’s Theoremand = G
is not nitely generatgi,_so C is abelian, by Bieri’s Theorem, and hence G is
solvable. But then h(" G) > 1, which is contrary to our hypothesis. Therefore
G=C is isomorphic to a nite subgroupof Q =ZzZ<1 (Z=2Z) ang so has order
at most 2. In particular, if A is an in nite cyclic subgroup of © G then A is
normal in G, and so G=A is virtually a P D,-group, by Theorem 2.12. If G=A
is a PD,-group then G is the fundamental group of an S*-bundle over a closed
surface. In general, a nite torsion free extension of the fundamental group of
a closed Seifert bred 3-manifold is again the fundamental group of a closed
Seifert bred 3-manifold, by [Sc83] and Section 63 of [Zi]. O
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The heart of this result is the deep theorem of Bowditch. The weaker character-
ization of fundamental groups of Sol®-manifolds and aspherical Seifert bred
3-manifolds as P D3-groups G such that = G & 1 and G has a subgroup of

nite index with in nite abelianization is much easier to prove [H2]. There is
as yet no comparable characterization of the groups of H2-manifolds, although
it may be conjectured that these are exactly the P D3-groups with no noncyclic
abelian subgroups. (Note also that it remains an open question whether every
closed H3-manifold is nitely covered by a mapping torus.)

Nil3- and $L-manifolds are orientable, and so their groups are P D3 -groups.
This can also be seen algebraically, as every such group has a characteristic
subgroup H which is a nonsplit central extension of a PD; -group by Z. An
automorphism of such a group H must be orientation preserving.

Theorem 2.14 implies that if a P D3-group G is not virtually poly-Z then its
maximal elementary amenable normal subgroup is Z or 1. For this suggroup
is virtually solvable, by Theorem 1.11, and if it is nontrivial then sois = G.

Lemma 2.15 Let G be a P D3-group with subgroups H and J such that H
is almost nitely presentable, has one end and is normal in J. Then either
[J:H]or [G:J]is nite.

Proof Suppose that [J : H] and [G : H] are both in nite. Since H has one
end it is not free and so c:d:H = c:d:J = 2, by Strebel’s Theorem. Hence there
is a free Z[J]-module W such that H?(J; W) & 0, by Proposition 5.1 of [Bi].
Since H is FP, and has one end HY(H; W) =0 for q =0 or 1 and H2(H; W) is
an induced Z[J=H]-module. Since [J : H] is in nite H°(J=H;H?(H;W)) =0,
by Lemma 8.1 of [Bi]. The LHSSS for J as an extension of J=H by H now
gives H"(J; W) =0 for r 2, which is a contradiction. O

Theorem 2.16 Let G be a P D3-group with a nontrivial almost nitely pre-
sentable subgroup H which is subnormal and of in nite index in G. Then
either H is in nite cyclic and is normal in G or G is virtually poly-Z or H is
a PDy-group, [G: Ng(H)] < L and Ng(H)=H has two ends.

Proof Since H is subnormal in G there is a nite increasing sequence TJj j
0 i ng of subgroups of G with Jo = H, J; normal in Jj+; for each i <n
and J, = G. Since [G : H] = A either c:d:H = 2 or H is free, by Strebel’s
Theorem. Suppose rst that c:d:H = 2. Let k = minfi j [J; : H] = 1g.
Then H has nite index in Jx—1, which therefore is also FP,. Suppose that
c.d:Jy = 2. If K is a nitely generated subgroup of Jx which contains Jx—1
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then [K : Jk—1] is nite, by Corollary 8.6 of [Bi], and so Jik is the union of a
strictly increasing sequence of nite extensions of Jx—;. But it follows from the
Kurosh subgroup theorem that the number of indecomposable factors in such
intermediate groups must be strictly decreasing unless one is indecomposable (in
which case all are). (See Lemma 1.4 of [Sc76].) Thus Jk—; is indecomposable,
and so has one end (since it is torsion free but not in nite cyclic). Therefore
[G: J] < 4, by Lemma 2.15, and so Jx is a PDs-group. Since Jx—; is

nitely generated, normal in Jx and [Jxk—1 : H] < A it follows easily that
[Ok : Ny (H)] < L. Therefore [G : Ng(H)] < 1 and so H is a PD,-group
and Ng(H)=H has two ends, by Theorem 2.12.

Next suppose that H = Z. Since pJ_i is characteristic in J; lg_ls normal in
Ji+1, for each 1 < n. A nite induction now shows that H G. Therefore
either G =2Z,s0 H = Z and is normal in G, or G is virtually poly-Z, by
Theorem 2.14.

Suppose nally that G has a nitely generated noncyclic free subnormal sub-
group. We may assume that fJ; jO i ng is a chain of minimal length n
among subnormal chains with H = Jg a nitely generated noncyclic free group.
In particular, [J1 : H] = 1, for otherwise J; would also be a nitely generated
noncyclic free group. We may also assume that H is maximal in the partially
ordered set of nitely generated free normal subgroups of J;. (Note that as-
cending chains of such subgroups are always nite, for if F(r) is a nontrivial
normal subgroup of a free group G then G is also nitely generated, of rank s
say,and and [G:F](1—s)=1-r.)

Since J; hasa nitely generated noncyclic free normal subgroup of in nite index
it is not free, and nor isita P D3-group. Therefore c:d:J; = 2. The kernel of the
homomorphism from J;=H to Out(H) determined by the conjugation action
of 33 on H is HC;,(H)=H, which is isomorphic to C;,(H) since H =1. As
Out(H) is virtually of nite cohomological dimension and c:d:Cj, (H) is nite
v.c.d:J;=H < 1. Therefore c:d:J; = c:d:H + v:c:d:J;=H, by Theorem 5.6 of
[Bi], so v:c:d:J;=H =1 and Ji=H is virtually free.

If g normalizes J; then HH9=H = H9%=H \ HY is a nitely generated normal
subgroup of J;=H and so either has nite index or is nite. (Here HY9 =
gHg™1.) In the former case J;=H would be nitely presentable (since it is then
an extension of a nitely generated virtually free group by a nitely generated
free normal subgroup) and as it is subnormal in G it must be a P D,-group,
by our earlier work. But P D,-groups do not have nitely generated noncyclic
free normal subgroups. Therefore HHY%9=H is nite and so HHY = H, by
the maximality of H. Since this holds for any g 2 J, the subgroup H is
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normal in J, and so is the initial term of a subnormal chain of length n —1
terminating with G, contradicting the minimality of n. Therefore G has no
nitely generated noncyclic free subnormal subgroups. O

The theorem as stated can be proven without appeal to Bowditch’s Theorem
(used here for the cases when H = Z) [BH91].

If H isa PD,-group Ng(H) is the fundamental group of a 3-manifold which is
double covered by the mapping torus of a surface homeomorphism. There are
however Nil®-manifolds with no normal P D,-subgroup (although they always
have subnormal copies of Z?2).

Theorem 2.17 Let G be a PDj-group with an almost nitely presentable
subgroup H which has one end and is of in nite index in G. Let Hp = H and
Hi+1 = Ng(H;) for i 0. Then R = [ H; is almost nitely presentable and
has one end, and either c:d:@ =2 and Ng(B) =M or [G: ] < 1 and G is
virtually the group of a surface bundle.

Proof Ifcid:Hj=2foralli 0 then[Hj+:Hjj< X foralli 0, byLemma
2.15. Hence h:d:R = 2, by Theorem 4.7 of [Bi]. Therefore [G : Ih] =1, s0
c:d:l =2 also. Hence M is nitely generated, and so B = H; for i large, by
Theorem 3.3 of [GS81]. In particular, Ng(H) = 1.

Otherwise let k = maxfi j c:d:H; = 29. Then Hy is FP, and has one end and
[G : Hk+1] < A, so G is virtually the group of a surface bundle, by Theorem
2.12 and the observation preceding this theorem. O

Corollary 2.17.1 If G has a subgroup H which is a P D,-group with (H) =
0 (respectively, < 0) then either it has such a subgroup which is its own nor-
malizer in G or it is virtually the group of a surface bundle.

Proof If c:d: =2 then [ : H] < 1, so B isa PD,-group, and (H) =
[[:H] (R). D

2.8 Subgroups of PDs-groups and 3-manifold groups

The central role played by incompressible surfaces in the geometric study of

Haken 3-manifolds suggests strongly the importance of studying subgroups of

in nite index in PD3-groups. Such subgroups have cohomological dimension
2, by Strebel’s Theorem.
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There are substantial constraints on 3-manifold groups and their subgroups.
Every nitely generated subgroup of a 3-manifold group is the fundamental
group of a compact 3-manifold (possibly with boundary) [Sc73], and thus is

nitely presentable and is either a 3-manifold group or has nite geometric
dimension 2 or is a free group. All 3-manifold groups have Max-c (every strictly
increasing sequence of centralizers is nite), and solvable subgroups of in nite
index are virtually abelian [Kr90a]. If the Thurston Geometrization Conjecture
is true every aspherical closed 3-manifold is Haken, hyperbolic or Seifert bred.
The groups of such 3-manifolds are residually nite [He87], and the centralizer
of any element in the group is nitely generated [JS79]. Thus solvable subgroups
are virtually poly-Z.

In contrast, any group of nite geometric dimension 2 is the fundamental group
of a compact aspherical 4-manifold with boundary, obtained by attaching 1-
and 2-handles to D*. On applying the orbifold hyperbolization technique of
Gromov, Davis and Januszkiewicz [DJ91] to the boundary we see that each
such group embeds in a PD4-group. Thus the question of which such groups
are subgroups of P Djs-groups is critical. (In particular, which X -groups are
subgroups of P D3-groups?)

The Baumslag-Solitar groups hx;t j txPt™! = x%i are not hop an, and hence
not residually nite, and do not have Max-c. As they embed in P Dg4-groups
there are such groups which are not residually nite and do not have Max-c.
The product of two nonabelian P D3 -groups contains a copy of F(2) F(2),
and so is a P D} -group which is not almost coherent.

Kropholler and Roller have shown that F(2) F(2) is not a subgroup of any
P Dj-group [KR89]. They have also proved some strong splitting theorems
for PDy-groups. Let G be a PDs-group with a subgroup H = Z2. If G is
residually B@ then it is virtually split over a subgroup commensurate with H
[KR88]. If = G =1 then G splits over an X -group [Kr93]; if moreover G has
Max-c then it splits over a subgroup commensurate with H [Kro0].

The geometric conclusions of Theorem 2.14 and the coherence of 3-manifold
groups suggest that Theorems 2.12 and 2.16 should hold under the weaker
hypothesis that N be nitely generated. (Compare Theorem 1.20.)

Is there a characterization of virtual P D3-groups parallel to Bowditch’s Theo-
rem? (It may be relevant that homology n-manifolds are manifolds for n 2.
High dimensional analogues are known to be false. For every k 6 there are
FPy groups G with HX(G; Z[G]) = Z but which are not virtually torsion free
[FS93].)
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29 ,(P) as a Z[ ]-module

The cohomology group H?(P; »(P)) arises in studying homotopy classes of
self homotopy equivalences of P. Hendriks and Laudenbach showed that if N
is a P2-irreducible 3-manifold and 1(N) is virtually free then H2(N; >(N))
= Z, and otherwise H?(N; >(N)) = 0 [HL74]. Swarup showed that if N is
a 3-manifold which is the connected sum of a 3-manifold whose fundamental
group is free of rank r with s 1 aspherical 3-manifolds then »(N) is a

nitely generated free Z[ ]-module of rank 2r + s — 1 [Sw73]. We shall give
direct homological arguments using Schanuel’s Lemma to extend these results
to P Ds-complexes with torsion free fundamental group.

Theorem 2.18 Let N be a P D3-complex with torsion free fundamental group
. Then
(1) cd: 3;
(2) the Z[ ]-module »(N) is nitely presentable and has projective dimen-

sion at most 1;

(3) if is a nontrivial free group then H?(N; 2(N)) = Z;
(4) if is not a free group then »(N) is projective and H?(N; »(N)) =0;
(5) if is not a free group then any two of the conditions \ is FF",

\N is homotopy equivalent to a nite complex™ and \ (N) is stably
free™ imply the third.

Proof We may clearly assume that & 1. The P D3z-complex N is homotopy
equivalent to a connected sum of aspherical P D3-complexes and a 3-manifold
with free fundamental group, by Turaev’s Theorem. Therefore is a corre-
sponding free product, and so it has cohomological dimension at most 3 and
is FP. Since N is nitely dominated the equivariant chain complex of the
universal covering space M is chain homotopy equivalent to a complex

0FC3¥C,IC; ECyYO
of nitely generated projective left Z[ ]-modules. Then the sequences

0" Z,8C,¥Ci ¥Cp¥Z1TDO
and 0¥C; ¥ 7,1 2(N)!0

are exact, where Z, is the module of 2-cycles in C,. Since is FP and c:d: 3
Schanuel’s Lemma implies that Z, is projective and nitely generated. Hence
2(N) has projective dimension at most 1, and is nitely presentable.
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It follows easily from the UCSS and Poincare duality that »(N) is isomorphic
to H1( ;Z[ ]) and that there is an exact sequence

H3(;Z[ ) ¥ H3(N;Z[ ) ¥ Extl ( 2(N)Z[]) 10 (2.1)

The wq(N)-twisted augmentation homomorphism from Z[ ] to Z which sends
g2 towi(N)(g) induces an isomorphism from H3(N:Z[ ]) to H3(N;Z) =
Z. If isfreethe rstterm in this sequence is 0, and so Ext%[ ]( 20N ZL ] =
Z. (In particular, 2(N) has projective dimension 1.) There is also a short
exact sequence of left modules

O Z[]""Z[]¥YZ 1Y O
where r is the rank of . On dualizing we obtain the sequence of right modules
0z 1Yz 1" " HY(;z[] "o

The long exact sequence of homology with these coe cients includes an exact
sequence

0% Hi(N;HY( ;Z[ 1) ¥ Ho(N;Z[ D) ¥ Ho(N;Z[ 1)

in which the right hand map is 0, and so Hy(N;H( ;Z[ 1)) = Ho(N;Z[ ) =
Z. Hence H?(N; 2(N) = Hi(N; 2(N)) = Hi(N;H(;Z[]) = Z, by
Poincare duality.

If is not free then the map H3( ;Z[ J) ¥ H3(N;Z[ ]) in sequence 2.1 above
is onto, as can be seen by comparison with the corresponding sequence with
coe cients Z. Therefore Ext%[ ]( 2(N);Z[ 1) = 0. Since 2(N) has a short
resolution by nitely generated projective modules, it follows that it is in fact
projective. As H2(N;Z[ ]) = Hi(N:;Z[ ]) = 0 it follows that H?(N;P) = 0
for any projective Z[ ]-module P. Hence H?(N; »(N)) =0.

The nal assertion follows easily from the fact that if ,(N) is projective then
Zo = Z(N) Cs. O

If is not torsion free then the projective dimension of »(N) isin nite. Does
the result of [HL74] extend to all P Dz-complexes?
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Chapter 3

Homotopy invariants of
P Ds-complexes

The homotopy type of a 4-manifold M is largely determined (through Poincare
duality) by its algebraic 2-type and orientation character. In many cases the
formally weaker invariants (M), wi(M) and (M) already su ce. In x1 we
give criteria in such terms for a degree-1 map between P D4-complexes to be a
homotopy equivalence, and for a P D4-complex to be aspherical. We then show
in x2 that if the universal covering space of a P D4-complex is homotopy equiv-
alent to a nite complex then it is either compact, contractible, or homotopy
equivalent to S? or S3. In x3 we obtain estimates for the minimal Euler charac-
teristic of P D4-complexes with fundamental group of cohomological dimension
at most 2 and determine the second homotopy groups of P D4-complexes realiz-
ing the minimal value. The class of such groups includes all surface groups and
classical link groups, and the groups of many other (bounded) 3-manifolds. The
minima are realized by s-parallelizable PL 4-manifolds. In the nal section we
shall show that if (M) =0 then (M) satis es some stringent constraints.

3.1 Homotopy equivalence and asphericity

Many of the results of this section depend on the following lemma, in conjunc-
tion with use of the Euler characteristic to compute the rank of the surgery
kernel. (This lemma and the following theorem derive from Lemmas 2.2 and
2.3 of [Wa].)

Lemma 3.1 Let R bearing and C be a nite chain complex of projective
R-modules. If H;(C ) =0 for i <g and H9**(Homg(C ;B)) = 0 for any left
R-moduIeE then Hq(C ) is_projective. If moreover H;j(C ) =0 for i > g then

Hq(C ) i g+1 (2) Ci= q @) Ci.

Proof We may assume without loss of generality that ¢ = 0 and C; = 0
for i < 0. We may factor @; : C; ¥ Cp through B = Im@; as @1 = j ,
where is an epimorphism and j is the natural inclusion of the submodule
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B. Since j @, = @0, = 0 and j is injective @ = 0. Hence is a 1-

cocycle of the complex Homg(C ;B). Since HY(Homg(C ;B)) = 0 there is

a homomaorphism :Co ¥ Bsuchthat = @ = j . Since is an

epimorphism j = idg and so B is a direct summand of Cy. This proves the
rst assertion.

The second assertion follows by an induction on the length of the complex. O

Theorem 3.2 Let N and M be nite PDg4-complexes. Amap f: M ¥ N
is a homotopy equivalence if and only if 1(f) is an isomorphism, f wi(N) =
wi(M), f[M]= [N]and (M)= (N).

Proof The conditions are clearly necessary. Suppose that they hold. Up
to homotopy type we may assume that f is a cellular inclusion of nite cell
complexes, and so M is a subcomplex of N. We may also identify (M) with

= 1(N). Let C (M), C (N) and D be the cellular chain complexes of L
1§ and (19; W), respectively. Then the sequence

0IC(M)XIC(N)ID 10
is a short exact sequence of nitely generated free Z[ ]-chain complexes.

By the projection formula f (f a\[M]) = a\f[M] = a\[N] for any
cohomology class a 2 H (N;Z[ ]). Since M and N satisfy Poincare du-
ality it follows that f induces split surjections on homology and split injec-
tions on cohomology. Hence Hg(D ) is the \surgery kernel™ in degree q — 1,
and the duality isomorphisms induce isomorphisms from H"(Homg; (D ;B))
to Hg— (D [B), where B is any left Z[ ]-module. Since f induces iso-
morphisms on homology and cohomology in degrees 1, with any coe -
cients, the hypotheses of Lemma 3.1 are satis ed for the Z[ ]-chain com-
plex D , vEch q=3, ilﬂd so Hz(D ) = Ker( »(f)) is projective. Moreover
H3(D ) i 0dd Di = i even Pi- Thus Hz(D ) is a stably free Z[ ]-module
of rank (E;M) = (M)— (E) = 0 and so it is trivial, as Z[ ] is weakly
nite, by a theorem of Kaplansky (see [Ro84]). Therefore f is a homotopy
equivalence. O

If M and N are merely nitely dominated, rather than nite, then Hz(D )
is a nitely generated projective Z[ ]-module such that H3(D ) [z} Z = 0.
If the Wall niteness obstructions satisfy f (M) = (N) in Ko(Z[ ]) then
H3(D ) is stably free, and the theorem remains true. This additional condition
is redundant if  satis es the Weak Bass Conjecture. (Similar comments apply
elsewhere in this section.)
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Corollary 3.2.1 Let N be orientable. Thenamap f: N ¥ N which induces
automorphisms of 1(N) and H4(N;Z) is a homotopy equivalence. O

In the aspherical cases we shall see that we can relax the hypothesis that the
classifying map have degree 1.

Lemma 3.3 Let M be a PDg4-complex with fundamental group . Then
there is an exact sequence

08 H?(;Z[ ) ¥ 2(M) ¥ Homg j( 2(M);Z[ 1) ® H3( ;Z[ ]) ¥ 0

Proof Since Ho(M;Z[ ]) = 2(M) and H3(M;Z[ ]) = Hl(IW; 7) = 0, this
follows from the UCSS and Poincare duality. O

Exactness of much of this sequence can be derived without the UCSS. The mid-

dle arrow is the composite of a Poincare duality isomorphism and the evaluation

homomorphism. Note also that Homy; ;( 2(M); Z[ ]) may be identi ed with

HO( ;H2(W;Z) CZ[1 ]), the -invariant subgroup of the cohomology of the uni-

versal covering space. When is nite the sequence reduces to an isomorphism
2(M) = Homy 1( 2(M); Z[ ]).

Let ev® : H(ZZ)(IW) ¥ Homy 1( 2(M); “?( )) be the evaluation homomor-

phism de ned on the unreduced L2-cohomology by ev®@(f)(z) = (g 1z)g
for all 2-cycles z and square summable 2-cocycles f. Much of the next theorem
is implicit in [Ec94].

Theorem 3.4 Let M be a nite PDg4-complex with fundamental group
Then

@ if P()y=o0then (M) o;
(2) Ker(ev®@) is closed;

@) if M)y= P()=o0thency :H2(;Z[ ) ¥ HXM;Z[ )= (M)
is an isomorphism.

Proof Since M is a PD4-complex (M) = 2 82)( )—2 f)( ) + 52)(M).
Hence (M) Pm) oif P()=o.
Let z 2 C,(W) be a 2-cycle and £ 2 C{? (W) a square-summable 2-cocycle. As

jiev@®@iji>  iifiiziizii2, the map f A ev@(F)(z) is continuous, for xed
z. Hence if f = limf, and ev®@(f,) = 0 for all n then ev®@(f) = 0.
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The inclusion Z[ ] < “?( ) induces a homomorphism from the exact sequence
of Lemma 3.3 to the corresponding sequence with coe cients “?( ). The
module H?(M; *?( )) may be identi ed with the unreduced L2-cohomology,
and ev® may be viewed as mapping H? (W) to H2(W;Z) [ ) [Eco4].
As W is 1-connected the induced homomorphism from HZ(M:; Z) 7] ] to
H2(M; Z) T ) is injective. As ev@( g)(z) = ev®@(g)(@z) = 0 for any
square summable 1-chain g and Ker(ev®) is closed ev(® factors through the
reduced L2-cohomology HZ,(W). In particular, it is O if @cy= vy =o.
Hence the middle arrow of the sequence in Lemma 3.3 is also 0 and c,, is an
isomorphism. O

A related argument gives a complete and natural criterion for asphericity for
closed 4-manifolds.

Theorem 3.5 Let M be a nite PDg4-complex with fundamental group
Then M is aspherical if and only if HS( ;Z[ ) =0 fors 2 and 52)(M) =

P0).

Proof The conditions are clearly necessary. Suppose that they hold. Then as
i(z)(M) = i(z)( ) for i 2 the classifying map Om ! M !_ K( ;1) induces
weak isomorphisms on reduced L2-cohomology HEz)( ) ! HEZ)(IW) fori 2.

The natural homomorphism h : H2(M;“2( )) ¥ H2(W;Z) & ) factors

through H(ZZ)(M:). The induced homomorphism is a homomorphism of Hilbert

modules and so has closed kernel. But the image of H(Zz)( ) is dense in ng)(lﬁ)
and is in this kernel. Hence h = 0. Since H?( ;Z[ ]) = 0 the homomor-
phism from H2(M;Z[ ]) to H2(W;Z) 7] ] obtained by forgetting Z[ ]-
linearity is injective. Hence the composite homomorphism from H2(M;Z[ ])
to Hz(ﬁ; 7) 21 ) is also injective. But this composite may also be factored
as the natural map from H?(M;Z[ ]) to H3(M; “?( )) followed by h. Hence
H2(M;Z[ ) =0 and so M is aspherical, by Poincare duality. O

Corollary 3.5.1 M is aspherical if and only if is an FF P D4-group and
M)= (). m

This also follows immediately from Theorem 3.2, if also ,( ) & 0. For we
may assume that M and are orientable, after passing to the subgroup
Ker(wi(M)) \ Ker(wy( )), if necessary. As Hy(cm;Z) is an epimorphism
it is an isomorphism, and so ¢y must have degree 1, by Poincare duality.
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Corollary 352 If (M)= ®()=0and HS( ;Z[ )=0fors 2 then
M is aspherical and is a P D4-group. O

Corollary 3.5.3 If =2Z" then (M) 0, with equality only if r=1, 2 or
4.

Proof If r>2 then H3( ;Z[ J) =0 fors 2. O

Is it possible to replace the hypothesis \ éz)(M) = 52)( )" in Theorem 3.5 by
\ 2(MT) = ,(Kerwi(M))", where p+: M™ B M is the orientation cover? It
is easy to nd examples to show that the homological conditions on  cannot
be relaxed further.

Theorem 3.5 implies that if isa PDgs-groupand (M) = () then ¢y [M]
is nonzero. If we drop the condition (M) = () this need not be true. Given
any nitely presentable group G there is a closed orientable 4-manifold M with

1(M) = G and such that cpy [M] =0 in H4(G;Z). We may take M to be the
boundary of a regular neighbourhood N of some embedding in R® of a nite
2-complex K with 1(K) = G. As the inclusion of M into N is 2-connected
and K is a deformation retract of N the classifying map cy factors through ck
and so induces the trivial homomorphism on homology in degrees > 2. However
if M and are orientable and >(M) < 2 ,( ) then ¢y must have nonzero
degree, for the image of H?( ; Q) in H2(M; Q) then cannot be self-orthogonal
under cup-product.

Theorem 3.6 Let bea PDg4-group with a nite K( ;1)-complex and such
that ( )=0. Then def( ) O.

Proof Suppose that has a presentation of de ciency > 0, and let X be the
corresponding 2-complex. Then 52)( )— 52)( ) 52)(X)— 52)( )= (X)
0. Wealso have P()—2¥()= ()=0. Hence P()= P()=
(X) = 0. Therefore X is aspherical, by Theorem 2.4, and so c:d: 2. But
this contradicts the hypothesis that is a P D4-group. ]

Is def( ) O for any PDg4-group ? This bound is best possible for groups
with =0, since there is a poly-Z group Z% A Z, where A 2 SL(3;Z), with
presentation hs; x; j sxs™x = xsxs™% s3x = xs%i.

The hypothesis on orientation characters in Theorem 3.2 is often redundant.
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Theorem 3.7 Let f: M ¥ N be a 2-connected map between nite PDy-
complexes with (M) = (N). If H3(N;F,) & 0 then f wy(N) = wi(M),
and if moreover N is orientable and H?(N;Q) & 0 then f is a homotopy
equivalence.

Proof Since  is 2-connected H?(F;F,) is injective, and since (M) = (N)
it is an isomorphism. Since H?(N;F»,) & 0, the nondegeneracy of Poincare
duality implies that H*(f;F,) & 0, and so T is a F2-(co)homology equivalence.
Since wy(M) is characterized by the Wu formula x [ wi(M) = Sg*x for all x
in H3(M;F,), it follows that f wy(N) = wy(M).

If H?(N;Q) & 0 then H?(N;Z) has positive rank and H?(N;F,) & 0, so N
orientable implies M orientable. WWe may then repeat the above argument with
integral coe cients, to conclude that f has degree 1. The result then follows
from Theorem 3.2. O

The argument breaks down if, for instance, M = S1~33 js the nonorientable
S3-bundle over S, N = S! S3 and f is the composite of the projection of
M onto S followed by the inclusion of a factor.

We would like to replace the hypotheses above that there beamap f: M ¥ N
realizing certain isomorphisms by weaker, more algebraic conditions. If M and
N are closed 4-manifolds with isomorphic algebraic 2-types then there is a 3-
connected map f : M ¥ P,(N). The restriction of such a map to M, = MnD*
is homotopic to a map f, : My ¥ N which induces isomorphisms on ; for
i 2. In particular, (M) = (N). Thus if f, extends to a map from M
to N we may be able to apply Theorem 3.2. However we usually need more
information on how the top cell is attached. The characteristic classes and the
equivariant intersection pairing on (M) are the obvious candidates.

The following criterion arises in studying the homotopy types of circle bundles
over 3-manifolds. (See Chapter 4.)

Theorem 3.8 Let E bea nite PDg4-complex with fundamental group and
suppose that H*(fg; ZW1(®) is a monomorphism. A nite P Ds-complex M is
homotopy equivalent to E if and only if there is an isomorphism from (M)
to such that wy(M) = wy(E) , thereis alift ¢: M ¥ P,(E) of cpm such
that ¢ [M]= feg [E]and (M) = (E).

Proof The conditions are clearly necessary. Conversely, suppose that they
hold. We shall adapt to our situation the arguments of Hendriks in analyzing
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the obstructions to the existence of a degree 1 map between P Djz-complexes
realizing a given homomorphism of fundamental groups. For simplicity of no-
tation we shall write Z for ZV1(E) and also for Z"1M)(= Z), and use to
identify (M) with and K( 1(M);1) with K( ;1). We may suppose the
sign of the fundamental class [M] is so chosen that ¢ [M] = fg [E].

Let E, = EnD*. Then P,(E,) = P>(E) and may be constructed as the union
of E, with cells of dimension 4. Let

h:Z Czd 4(P2(Eo); Eo) ¥ Ha(P2(Eo); Eo; Z)

be the wq(E)-twisted relative Hurewicz homomorphism, and let @ be the con-
necting homomorphism from 4(P2(Ey); Ep) to 3(Eo) in the exact sequence of
homotopy for the pair (P2(Eo); Eo). Then h and @ are isomorphisms since fg,
is 3-connected, and so the homomorphism g : Hay(P2(E); Z) ¥ Z [} 3(Eo)
given by the composite of the inclusion

H4(P2(E); Z) = H4(P2(Eo); Z) | H4(P2(Eo); Eo; Z)

with h™ and 1 [z} @ is a monomorphism. Similarly M, = MnD* may
be viewed as a subspace of P,(My) and there is a monomorphism p from
H4(P2(M); Z) to Z [z} 3(Mo). These monomorphisms are natural with
respect to maps de ned on the 3-skeleta (i.e., E; and My).

The classes g(fe [E]) and m(fm [M]) are the images of the primary ob-
structions to retracting E onto E, and M onto My, under the Poincare
duality isomorphisms from H*(E; Eo; 3(Eo)) to Ho(ENnEo; Z Lz} 3(Eo)) =
Z [z} 3(Eo) and H*(M; Mo; 3(Mp)) to Z [z} 3(Mo), respectively. Since
M, is homotopy equivalent to a cell complex of dimension 3 the restriction of
¢ to M, is homotopic to a map from M, to E,. Let ¢} be the homomorphism
from 3(Mo) to 3(Eo) induced by ¢jM,. Then (1 Lz} €)) m(fm [M]) =
e(fe [E]). It follows as in [Hn77] that the obstruction to extending €¢jM, :
My ¥ E, toamap d from M to E is trivial.

Since fg d [M] =¢ [M] = fg [E] and fg is a monomorphism in degree 4 the
map d has degree 1, and so is a homotopy equivalence, by Theorem 3.2. O

If there is such a lift ¢ then ¢, ky(E)=0and c¢m [M]=ce [E].

3.2 Finitely dominated covering spaces

In this section we shall show that if a P D4-complex has an in nite regular
covering space which is nitely dominated then either the complex is aspherical
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or its universal covering space is homotopy equivalent to S? or S2. In Chapters
4 and 5 we shall see that such manifolds are close to being total spaces of bre
bundles.

Theorem 3.9 Let M be a P D4-complex with fundamental group . Suppose
that p: % ¥ M is a regular covering map, with covering group G = Aut(p),
and such that 4 is nitely dominated. Then

(1) G has nitely many ends;
(2) if ®F is acyclic then it is contractible and M is aspherical;

(3) if G has one end and (/%) is in nite and FP3 then M is aspherical
and & is homotopy equivalent to an aspherical closed surface or to S*;

(4) if G hasoneend and (%) is nite but I is not acyclic then & ~ S?
or RP2:

(5) G has two ends if and only if I# is a P D3-complex.

Proof We may clearly assume that G is in nite and that M is orientable. As
Z[G] has no nonzero left ideal (i.e., submodule) which is nitely generated as an
abelian group Homyg;(Hp(I%;Z); Z[G]) = 0 for all p 0, and so the bottom
row of the UCSS for the covering p is 0. From Poincare duality and the UCSS
we nd that H(G;Z[G]) = H3(I%;Z). As this group is nitely generated, and
as G is in nite, G has one or two ends.

If & is acyclic then G is a PD4-group and so &# is a P Dg-complex, hence
contractible, by [Go79]. Hence M is aspherical.

Suppose that G has one end. Then H3(I%;Z) = Hy(;Z) = 0. Since I is

nitely dominated the chain complex C (IW) is chain homotopy equivalent over
Z[ 1(F)] to a complex D of nitely generated projective Z[ 1(/%)]-modules.
If 1(I%F) is FP3 then the aumentation Z[ 1(I¥)]-module Z has a free resolution
P which is nitely generated in degrees 3. On applying Schanuel’s Lemma
to the exact sequences

0" Z, "D, "D, "Dy, ¥ Z1Q

and OY@P; ¥ P, ¥ P BP0 Z1EQ
derived from these two chain complexes we nd that Z, is nitely generated
as a Z[ 1(¥)]-module. Hence = (M) = (%) is also nitely generated
as a Z[ 1(I¥)]-module and so Hom ( ;Z[ ]) = 0. If moreover {(IF) is
in nite then HS( ;Z[ ) =0fors 2,s0 =0, by Lemma 3.3, and M
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is aspherical. A spectral sequence corner argument then shows that either
H2(G; Z[G]) = Z and I is homotopy equivalent to an aspherical closed surface
or H?(G;Z[G]) = 0, H3(G;Z[G]) = Z and & ~ S'. (See the following
theorem.)

If (%) is nite but I is not acyclic then the universal covering space N is
also nitely dominated but not contractible, and = H,(W; Z) is a nontrivial

nitely generated abelian group, while Hs(W;Z) = Hy(W;Z) = 0. If C is a

nite cyclic subgroup of  there are isomorphisms Hn4+3(C;Z) = HL(C; ), for
all n 4, by Lemma 2.10. Suppose that C acts trivially on . Then if n is
odd this isomorphism reduces to 0 = =jCj . Since is nitely generated,
this implies that multiplication by jCj is an isomorphism. On the other hand,
if n is even we have Z=jCjZ =fa2 jjCja=0g. Hence we must have C = 1.
Now since is nitely generated any torsion subgroup of Aut( ) is nite. (Let
T be the torsion subgroup of  and suppose that =T = Z". Then the natural
homomorphism from Aut( ) to Aut( =T) has nite kernel, and its image is
isomorphic to a subgroup of GL(r;Z), which is virtually torsion free.) Hence
as isin nite it must have elements of in nite order. Since H2( :Z[ ) = ,
by Lemma 3.3, it is a nitely generated abelian group. Therefore it must be
in nite cyclic, by Corollary 5.2 of [Fa74]. Hence W~ S2 and 1(I%) has order
at most 2, so IF * S2? or RP2,

Suppose now that & is a P D3-complex. After passing to a nite covering of
M, if necessary, we may assume that I is orientable. Then H(G;Z[G]) =

H3(¥;Z), and so G has two ends. Conversely, if G has two ends we may
assume that G = Z, after passing to a nite covering of M, if necessary. Hence
% is a PD3-complex, by [Go79] again. (See Theorem 4.5 for an alternative
argument, with weaker, algebraic hypotheses.) O

Is the hypothesis in (3) that (%) be FP3 redundant?

Corollary 3.9.1 The covering space 4 is homotopy equivalent to a closed
surface if and only if it is nitely dominated, H?(G;Z[G]) = Z and (%) is
FPs. O

In this case M has a nite covering space which is homotopy equivalent to the
total space of a surface bundle over an aspherical closed surface. (See Chapter
5.)

Corollary 3.9.2 The covering space I is homotopy equivalent to S if and
only if it is nitely dominated, G has one end, H?(G;Z[G]) =0 and (%) is
a nontrivial nitely generated free group.
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Proof If % ~ S! then it is nitely dominated and M is aspherical, and the
conditions on G follow from the LHSSS. The converse follows from part (3)
of the theorem, since a nontrivial nitely generated free group is in nite and
FP. O

In fact any nitely generated free normal subgroup F of a PDp-group
must be in nite cyclic. For =C (F) embeds in Out(F), so v:c.d: =C (F)
v:c:d:Out(F (r)) < . If F is nonabelian then C (F)\F =1 andsoc:d: =F <
A. Since F is nitely generated =F is FP4 . Hence we may apply Theorem
9.11 of [Bi], and an LHSSS corner argument gives a contradiction.

In the simply connected case \ nitely dominated", \homotopy equivalent to a
nite complex™ and \having nitely generated homology' are all equivalent.

Corollary 3.9.3 IfH (M:; 7Z) is nitely generated then either M is aspherical
or M is homotopy equivalent to S2 or S3 or (M) is nite. O

We shall examine the spherical cases more closely in Chapters 10 and 11. (The
arguments in these chapters may apply also to P Dy-complexes with universal
covering space homotopy equivalent to S"~* or S"~2. The analogues in higher
codimensions appear to be less accessible.)

The \ nitely dominated" condition is used only to ensure that the chain com-
plex of the covering is chain homotopy equivalent over Z[ 1(I#)] to a nite
projective complex. Thus when M is aspherical this condition can be relaxed
slightly. The following variation on the aspherical case shall be used in Theorem
4.8, but belongs most naturally here.

Theorem 3.10 Let N be a nontrivial FP3 normal subgroup of in nite index
ina PDg-group , and let G = =N. Then either

(1) N isa PD3s-group and G has two ends;

(2) N isa PD,-group and G is virtually a P D,-group; or

(3) N=2Z, HG;Z[G])) =0 fors 2 and H3(G;Z[G]) = Z.

Proof Since c:d:N < 4, by Strebel’s Theorem, N and hence G are FP.
The E, terms of the LHS spectral sequence with coe cients Q[ ] can then
be expressed as EXY = HP(G; Q[G]) CHF(N; Q[N]). If HI( =N;Q[ =N]) and
HX(N;Q[N]) are the rst nonzero such cohomology groups then Eék persists
to E4 and hence j + k = 4. Therefore HI(G; Q[G]) CHFJ(N;Q[N]) = Q.
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Hence HI(G;Q[G]) = H4J(N;Q[N]) = Q. In particular, G has one or two
ends and N is a PDy—j-group over Q [Fa75]. If G has two ends then it is
virtually Z, and then N is a PD3-group (over Z) by Theorem 9.11 of [Bi]. If
H2(N;Q[N]) = H%(G;Q[G]) = Q then N and G are virtually P D,-groups,
by Bowditch’s Theorem. Since N is torsion free it is then in fact a P D, -group.
The only remaining possibility is (3). ]

Incase (1) has asubgroup of index 2 which is a semidirect product H Z
with N H and [H : N] < 1. Isitsu cient that N be FP,? Must the
quotient =N be virtually a P D3-group in case (3)?

Corollary 3.10.1 If K is FP, and is subnormal in N where N is an FP3
normal subgroup of in nite index in the PDy4-group  then K is a P Dy-group
for some k < 4.

Proof This follows from Theorem 3.10 together with Theorem 2.16. ]

What happens if we drop the hypothesis that the covering be regular? It can be
shown that a closed 3-manifold has a nitely dominated in nite covering space
if and only if its fundamental group has one or two ends. We might conjecture
that if a closed 4-manifold M has a nitely dominated in nite covering space
I# then either M is aspherical or the universal covering space LIS homotopy
equivalent to S? or S® or M has a nite covering space which is homotopy
equivalent to the mapping torus of a self homotopy equivalence of a PDs3-
complex. (In particular, 1(M) has one or two ends.) In [Hi94’] we extend
the arguments of Theorem 3.9 to show that if (I#4) is FP3 and subnormal
in  the only other possibility is that (%) has two ends, h(" ") = 1 and
H2( ;Z[ ]) is not nitely generated. This paper also considers in more detail
F P subnormal subgroups of P D4-groups, corresponding to the aspherical case.

3.3 Minimizing the Euler characteristic

It is well known that every nitely presentable group is the fundamental group
of some closed orientable 4-manifold. Such manifolds are far from unique, for
the Euler characteristic may be made arbitrarily large by taking connected
sums with simply connected manifolds. Following Hausmann and Weinberger
[HW85] we may de ne an invariant q( ) for any nitely presentable group
by

q( ) = minf (M)jM is a PD4 complex with (M) = ¢:
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We may also de ne related invariants g where the minimum is taken over the
class of P Dg-complexes whose normal bration has an X-reduction. There
are the following basic estimates for qS©, which is de ned in terms of PD; -
complexes.

Lemma 3.11 Let be a nitely presentable group with a subgroup H of
nite index and let F be a eld. Then

D) 1- 1(H;F)+ 2(H;F) [ :H]Q —def );
() 2—2 1(H;F)+ 2o(H;F) [ :HIe®®();

(3) a°°( ) 2(1—def());
(4) if H*( ;F)=0then ¢°¢( ) 2(1— 1( ;F)+ 2( ;F)).

Proof Let C be the 2-complex corresponding to a presentation for  of max-
imal de ciency and let Cy be the covering space associated to the subgroup
H. Then (C)=1—def and (Cy)=[ :H] (). Condition (1) follows
since 1(H;F) = 1(Cq;F) and 2(H;F)  2(Ch;F).

Condition (2) follows similarly on considering the Euler characteristics of a
PD, -complex M with (M) = and of the associated covering space My .

The boundary of a regular neighbourhood of a PL embedding of C in R® is a
closed orientable 4-manifold realizing the upper bound in (3).

The image of H?( ;F) in H?(M;F) has dimension ,( ;F), and is self-

annihilating under cup-product if H*( ;F) = 0. In that case »(M;F)
2 2( ;F), which implies (4). O

Condition (2) was used in [HW85] to give examples of nitely presentable su-
perperfect groups which are not fundamental groups of homology 4-spheres.
(See Chapter 14 below.)

If is a nitely presentable, orientable P D4-group we see immediately that
q5%( ) ( ). Multiplicativity then implies that q( )= () if K( ;1) isa
nite P D4-complex.

For groups of cohomological dimension at most two we can say more.

Theorem 3.12 Let M be a nite PD4-complex with fundamental group
Suppose that c:d:g 2and (M) =2 () =2(1— 1( ;Q + 2( ;Q).
Then (M) = H2( ;Z[ ]). If moreover c:d: 2 the chain complex of the
universal covering space N is determined up to chain homotopy equivalence
over Z[ ] by
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Proof Let Ag( ) be the augmentation ideal of Q[ ]. Then there are exact
sequences

O A() Q[ ]TQ
and 0XP EQ[]N Ag()

0 (3.1)
0: (3.2)

where P is a nitely generated projective module. We may assume that that

6 1,ie,that isin nite, and that M isa nite 4-dimensional cell complex.
Let C be the cellular chain complex of M:, with coe cients Q, and let H; =
Hi(C ) = Hi(W;Q) and H' = HY(Homg 1(C ;Q[ ])). Since M is simply
connected and is in nite, Hp = Q and H; = Hy = 0. Poincare duality gives
further isomorphisms H! = H3, H2 =H,, H3 =0 and H* = Q.

The chain complex C breaks up into exact sequences:

0¥ Cs¥Zy ¥ Hy ¥ O; (3.3)
0¥ Z; ¥ Cy ¥ Z, 0 Hy ¥ O; (3.4)
09 Z,¥C,¥C, 1C,1Q1UO: (3.5)

We shall let e'N = Extf@[ J(N; Q[ 1), to simplify the notation in what follows.

The UCSS gives isomorphisms H! = elQ and elH, = e?H; = 0 and another
exact sequence:

0%e’QUEH?EeH, 10 (3.6)
Applying Schanuel’s Lemma to the sequences 3.1, 3.2 and 3.5 we obtain Z,
Ci Q] P=C, Co Q[ ]J8 s0Zyisa nitely generated projective module.
Similarly, Z3 is projective, since Q[ ] has global dimension at most 2. Since
is nitely presentable it is accessible, and hence e'Q is nitely generated as
a Q[ ]-module, by Theorems IV.7.5 and V1.6.3 of [DD]. Therefore Z3 is also
nitely generated, since it is an extension of Hz = e1Q by C4. Dualizing the
sequence 3.4 and using the fact that e'!H, = 0 we obtain an exact sequence of
right modules

0 e'H, ¥ 07, ¥ e0Cy ¥ 075 ¥ e2H, 1 O: (3.7)

Since duals of nitely generated projective modules are projective it follows
that e%H, is projective. Hence the sequence 3.6 gives H2 = e%H, e?Q.

Dualizing the sequences 3.1 and 3.2, we obtain exact sequences of right modules

08 Q[]¥efAq()TelQrO (3.8)
and 08 ePAn( )1 Q[P 1P 1 Q1O (3.9)
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Applying Schanuel’s Lemma twice more, to the pairs of sequences 3.3 and the
conjugate of 3.8 (using Hz = e!Q) and to 3.4 and the conjugate of 3.9 (using
H, = e0H, e2Q) and putting all together, we obtain isomorphisms

Zs @Q[1® Co C, Cy=Zs Q[ P €eP C; Cz €eHy):

On tensoring with the augmentation module we nd that
dimg(Q [—&Hy) +dimg(Q [CR) +dimg(Q [_&PP)= (M) +2g—2:
Now
dimg(Q [B) =dimg(Q &P) =g+ 2(;Q)— 1( :Q);

so dimg(Q CefH,) = (M)—2 () =0. Hence eH, =0, since  satis es the
Weak Bass Conjecture [Ec86]. As Homy ](HZ(IW; 7);Z[ ) e%°Hs it follows
from Lemma 3.3 that (M) = Ho(W;Z) = H2( ;Z[ ]).

If c.d: 2 then e'Z has a short nite projective resolution, and hence so does
Z3 (via sequence 3.2). The argument can then be modi ed to work over Z[ ].
As Z; is then projective, the integral chain complex of M is the direct sum of

a projective resolution of Z with a projective resolution of (M) with degree
shifted by 2. O

There are many natural examples of such manifolds for which c:d:g 2 and
(M) =2 () but is not torsion free. (See Chapters 10 and 11.) However
all the known examples satisfy v:c:d: 2.

Similar arguments may be used to prove the following variations.
Addendum Suppose that c.d:s 2 for some subring S Q. Then q( )
20— 1( ;S)+ 2( ;S)). If moreover the augmentation S[ ]-module S has

a nitely generated free resolution then S [_4(M) is stably isomorphic to
H2( ;S D). D

Corollary 3.12.1 If Hz( ;Q) & 0 the Hurewicz homomorphism from >(M)
to Hy(M; Q) is nonzero.

Proof By the addendum to the theorem, Hy(M; Q) has dimension at least
2 2( ), and so cannot be isomorphic to Hx( ; Q) unless both are 0. O

Corollary 3.12.2 If = 1(P) where P isan aspherical nite 2-complex then
g( ) =2 (P). The minimum is realized by an s-parallelizable PL 4-manifold.
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Proof If we choose a PL embedding j : P ¥ R®, the boundary of a regular
neighbourhood N of j(P) is an s-parallelizable PL 4-manifold with fundamen-
tal group  and with Euler characteristic 2 (P). O

By Theorem 2.8 a nitely presentable group is the fundamental group of an
aspherical nite 2-complex if and only if it has cohomological dimension 2
and is e cient, i.e. has a presentation of de ciency 1( ;Q)— 2( ;Q). Itis
not known whether every nitely presentable group of cohomological dimension
2 ise cient.

In Chapter 5 we shall see that if P is an aspherical closed surface and M is
a closed 4-manifold with (M) = then (M) =q( ) if and only if M is
homotopy equivalent to the total space of an S?-bundle over P. The homotopy
types of such minimal 4-manifolds for may be distinguished by their Stiefel-
Whitney classes. Note that if is orientable then S? P is a minimal 4-
manifold for  which is both s-parallelizable and also a projective algebraic
complex surface. Note also that the conjugation of the module structure in the
theorem involves the orientation character of M which may di er from that of
the P D,-group

Corollary 3.12.3 If is the group of an unsplittable -component 1-link
then g( ) =0. O

If is the group of a -component n-link with n 2 then Hy( ;Q) =0 and
soq( ) 21— ), withequality if and only if is the group of a 2-link. (See
Chapter 14.)

Corollary 3.12.4 If isan extension of Z by a nitely generated free normal
subgroup then g( ) = 0. ]

In Chapter 4 we shall see that if M is a closed 4-manifold with (M) such an
extension then (M) =q( ) if and only if M is homotopy equivalent to a man-
ifold which bres over S with bre a closed 3-manifold with free fundamental
group, and then and w1(M) determine the homotopy type.

Finite generation of the normal subgroup is essential; F(2) is an extension of
Z by F(1), and q(F(2)) =2 (F(2)) = —2.

Let be the fundamental group of a closed orientable 3-manifold. Then =
F  where F isfree of rank r and has noin nite cyclic free factors. Moreover

= 1(N) for some closed orientable 3-manifold N. If Mg is the closed 4-
manifold obtained by surgery on fng S!in N S then M = Mg](J" (St S°9)
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is a smooth s-parallelisable 4-manifold with (M) = and (M) =2(1-r).
Hence qS¢( ) = 2(1 —r), by Lemma 3.11.

The arguments of Theorem 3.12 give stronger results in this case also.

Theorem 3.13 Let M be a nite PD,4-complex whose fundamental group
is a PDs-group such that wi( ) = wi(M). Then (M) >0 and (M) is
stably isomorphic to the augmentation ideal A( ) of Z[ ].

Proof The cellular chain complex for the universal covering space of M gives
exact sequences

0rC,YC3 0 7
and 0" Z, ¥C, 0 Ci X (Cy

H, T 0 (3.10)
Z10: (3.11)
Since is a PD3s-group the augmentation module Z has a nite projective
resolution of length 3. On comparing sequence 3.11 with such a resolution and

applying Schanuel’s lemma we nd that Z, is a nitely generated projective
Z[ ]-module. Since has one end, the UCSS reduces to an exact sequence

09 H2 1 efH, 1 e3Z 8 H3 1 elH, 1 0 (3.12)

and isomorphisms H* =_eZH2 and e3H, = e*H, = 0: Poincare duality implies
that H® =0 and H* = Z. Hence sequence 3.12 reduces to

0¥ H?> 1 e%H, 1 e3Z 10 (3.13)

and e'H, = 0. Hence on dualizing the sequence 3.10 we get an exact sequence
of right modules

0% e®H, ¥ %7, ¥ e0C; ¥ e2Cy ¥ e2H, 1 O (3.14)

Schanuel’s lemma again implies that e°H, is a nitely generated projective
module. Therefore we may splice together 3.10 and the conjugate of 3.13 to get

0¥C,8C312Z,Ve0H, 8 Z1Q: (3.15)

(Note that we have used the hypothesis on w;(M) here.) Applying Schanuel’s
lemma once more to the pair of sequences 3.11 and 3.15 we obtain

Co C C4 2= eOHz Ci Cs3 Zs:

Hence e®H, is stably free, of rank (M). Since sequence 3.15 is exact e'H,
maps onto Z, and so (M) > 0. Since is a PD3-group, e3Z = Z and so the
nal assertion follows from sequence 3.13 and Schanuel’s Lemma. O

Corollary 3.13.1 1 q() 2.
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Proof If M isa nite PDg4-complex with (M) = then the covering space
associated to the kernel of w1 (M) —w;( ) satis es the condition on w;. Since
the condition (M) > 0 is invariant under passage to nite covers, q( ) 1.

Let N be a PD3-complex with fundamental group . We may suppose that
N =N, [ D%, where No\ D3 =S?. Let M =N, S'[S? D?2. Then M is
a nite PDg-complex, (M)=2and ;(M)= . Henceq( ) 2. ]

Can Theorem 3.13 be extended to all torsion free 3-manifold groups, or more
generally to all free products of P D3-groups?

A simple application of Schanuel’s Lemma to C (M) shows that if M isa nite
P D4-complex with fundamental group  such that c:d: 4 and e( ) =1 then

2(M) has projective dimension at most 2. If moreover isan FF P Dg4-group
and cpm has degree 1 then (M) is stably free of rank (M) — (), by the
argument of Lemma 3.1 and Theorem 3.2.

There has been some related work estimating the di erence (M) —j (M)j

where M is a closed orientable 4-manifold M with (M) = and where
(M) is the signature of M. In particular, this di erence is always 0 if
@()=0. (See [JK93] and x3 of Chapter 7 of [Li].) The minimum value of

this di erence (p( ) = minf (M) —j (M)jg) is another numerical invariant of
, Which is studied in [K094].

3.4 Euler Characteristic O

In this section we shall consider the interaction of the fundamental group and
Euler characteristic from another point of view. We shall assume that (M) =0
and show that if is an ascending HNN extension then it satis es some very
stringent conditions. The groups Z ., shall play an important role. We shall
approach our main result via several lemmas.

We begin with a simple observation relating Euler characteristic and fundamen-
tal group which shall be invoked in several of the later chapters. Recall that if
G is a group then I(G) is the minimal normal subgroup such that G=1(G) is
free abelian.

Lemma 3.14 Let M be a PD4-complex with (M) 0. If M is orientable

then HY(M;Z) & 0andso = 1(M) mapsonto Z. If HY(M;Z) = 0 then
maps onto D.
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Proof The covering space My corresponding to W = Ker(w1(M)) is ori-
entable and (Mw) =2—-2 1(Mw)+ >(Mw)=[ :W] (M) 0. Therefore
1(W) = 1(Mw) >0 and so W=I(W) = Z" for some r > 0. Since I(W) is
characteristic in W it is normal in . As [ : W] 2 it follows easily that
=I(W) maps onto Z or D. O

Note that if M = RP*]RP%, then (M) =0 and (M) = D, but (M)
does not map onto Z.

Lemma 3.15 Let M be a PDj, -complex such that (M)=0and = ;(M)
is an extension of Z , by a nite normal subgroup F, for some m & 0. Then
the abelian subgroups of F are cyclic. If F & 1 then has a subgroup of nite
index which is a central extension of Z , by a nontrivial nite cyclic group,
where n is a power of m.

Proof Let 4 be the in nite cyclic covering space corresponding to the sub-
group I( ). Since M is compact and = Z[Z] is noetherian the groups
Hi(%;Z) = Hj(M; ) are nitely generated as -modules. Since M is ori-
entable, (M) = 0 and H;(M;Z) has rank 1 they are -torsion modules,
by the Wang sequence for the projection of 4 onto M. Now H,(I%;Z) =
Ext! (1( )=1( )%; ), by Poincare duality. There is an exact sequence
OXT HI()=I()YYI(Z m)= =(t—m) 1O

where T is a nite -module. Therefore Ext!(1( )=1( )"; ) = =(t—m)
and so Hx(I( );Z) is a quotient of =(mt — 1), which is isomorphic to Z[%]
as an abelian group. Now I( )=Ker(f) = Z[1] also, and H,(Z[1];Z) =
Z[L]1~Z[1] = 0 (see page 334 of [Ro]). Hence Hp(I( );Z) is nite, by an
LHSSS argument, and so is cyclic, of order relatively prime to m.

Let t in generate =I( ) = Z. Let A be a maximal abelian subgroup of
F and let C = C (A). Then g = [ : C]is nite, since F is nite and
normal in . In particular, t% is in C and C maps onto Z, with kernel J, say.
Since J is an extension of Z[%] by a nite normal subgroup its centre J has

nite index in J. Therefore the subgroup G generated by J and t% has nite
index in , and there is an epimorphism f from G onto Z ya, with kernel
A. Moreover 1(G) = f71(1(Z ma)) is abelian, and is an extension of Z[%] by
the nite abelian group A. Hence it is isomorphic to A Z[%] (see page 106
of [Ro]). Now H,(1(G);Z) is cyclic of order prime to m. On the other hand
H.(1(G);Z2) = (A™NA) (A EZ]%]) and so A must be cyclic.

If F & 1 then A is cyclic, nontrivial, central in G and G=A =Z 4. D
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Lemma 3.16 Let M be a nite PDg4-complex with fundamental group

Suppose that has a nontrivial nite cyclic central subgroup F with quotient

G = =F such that g:d:G =2, e(G) =1 and def(G) =1. Then (M) 0. If
(M) =0 and Fp[G] is a weakly nite ring for some prime p dividing jFj then
is virtually Z2.

Proof Let K# be the covering space of M with group F, and let = Fp[G].
Let C =C (M; ) =TFp LCI(M) be the equivariant cellular chain complex

of I# with coe cients Fp, and let cq be the number of g-cells of M, for
q 0. Let Hy = Hy(M; ) = Hp(%;Fp). For any left -module H let
e9H = Ext! (H; ).

Suppose rst that M is orientable. Since 4 is a connected open 4-manifold
Ho = Fp and Hs = 0, while H; = Fp also. Since G has one end Poincare
duality and the UCSS give Hz = 0 and e?H, = Fp,, and an exact sequence

0% e?F, " Hy ¥ ¢°H, ¥ eH; ¥ Hy ¥ elHy ¥ O

In particular, etH, = Fp oris 0. Since g:d:G = 2 and def(G) = 1 the augmen-
tation module has a resolution

o "y ™y W¥F, N0

The chain complex C gives four exact sequences

0" Z, ¥C, "Cop ¥ Fp YOy
0Y2Z,¥C, "7, 1 [, 1 Q;
0YB,"Z, "H ¥ O

and 0OrC, ¥C31B 10

Using Schanuel’s Lemma several times we nd that the cycle submodules Z;
and Z, are stably free, of stable ranks ¢c; —cg and ¢, — ¢ + cg, respectively.
Dualizing the last two sequences gives two new sequences

09e'B, 1e'Cz ¥elC,¥elB, "0

and 0% e®H, ¥ 92, ¥ B, 1 elH, 1 0;
and an isomorphism e'B, = e’H, = Fy. Further applications of Schanuel’s
Lemma show that e°B, is stably free of rank c3 — ¢4, and hence that e°H, is
stably free of rank ¢, —c1 +cg—(c3 —c4) = (M). (Note that we do not need

to know whether e'H, = F,, or is 0, at this point.) Since maps onto the eld
[Fp the rank must be non-negative, and so (M) 0.
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If (M) =0and = Fy[G] is a weakly nite ring then e°H, = 0 and so
e’Fp, = e?H; is a submodule of F, = Hy. Moreover it cannot be 0, for otherwise
the UCSS would give H, = 0 and then H; = 0, which is impossible. Therefore
e’Fp, = Fp.

If M is nonorientable and p > 2 the above argument applies to the orientation
cover, since p divides jKer(wi(M)jg)j, and Euler characteristic is multiplicative
in nite covers. If p =2 a similar argument applies directly without assuming
that M is orientable.

Since G is torsion free and indicable it must be a P D,-group, by Theorem
V.12.2 of [DD]. Since def(G) = 1 it follows that G is virtually Z2, and hence
that is also virtually Z?2. O

We may now give the main result of this section.

Theorem 3.17 Let M be a nite P D4-complex whose fundamental group

is an ascending HNN extension with nitely generated base B. Then (M) 0,

andhenceqg( ) O0.If (M)=0and B is FP, and nitely ended then either
has two ends or has a subgroup of nite index which is isomorphic to Z2 or
=Z morZ q ~(Z=2Z) forsome m& 0 or 1 or M is aspherical.

Proof The L? Euler characteristic formula gives (M) = 52)(M) 0, since
i(z)(M) = i(z)( )y=0fori=0or1, by Lemma 2.1.

Let : B ¥ B be the monomorphism determining =B . If B is nite
then is an automorphism and so  has two ends. If B is FP, and has one
end then HS( ;Z[ ]) = 0 for s 2, by the Brown-Geoghegan Theorem. If
moreover (M) = 0 then M is aspherical, by Corollary 3.5.1.

If B has two ends then it is an extension of Z or D by a nite normal subgroup
F. As must map F isomorphically to itself, F is normal in , and is the
maximal nite normal subgroup of . Moreover =F =Z |, for some m & 0,
if B=F = Z, and is a semidirect product Z , ~(Z=2Z), with a presentation
ha;t;u j tat™ = a™ tut™! = ua”; u?> = 1; uau = ati, for some m & 0 and
some r 2 Z, if B=F = D. (On replacing t by al"™2t, if necessary, we may
assume that r =0 or 1.)

Suppose rst that M is orientable, and that F & 1. Then has a subgroup

of nite index which is a central extension of Z « by a nite cyclic group,
for some g 1, by Lemma 3.15. Let p be a prime dividing q. Since Z ma is a
torsion free solvable group the ring = Fp[Z ma] has a skew eld of fractions
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L, which as a right -module is the direct limit of the system f jO& 2 g,

where each = , the index set is ordered by right divisibility ( ) and

the map from to sends to [KLM88]. In particular, is a weakly
nite ring and so s torsion free, by Lemma 3.16. Therefore F = 1.

If M is nonorientable then w1(M)jr must be injective, and so another appli-
cation of Lemma 3.16 (with p = 2) shows again that F = 1. O

Is M still aspherical if B is assumed only nitely generated and one ended?

Corollary 3.17.1 Let M be a nite PDg4-complex such that (M) =0 and

= (M) is almost coherent and restrained. Then either has two ends or
isvirtually Z2 or =Z mor Z o, ~(Z=2Z) forsome m&0or 1or M is
aspherical.

Proof Let * = Ker(wi(M)). Then * mapsonto Z, by Lemma 3.14, and so

is an ascending HNN extension * =B  with nitely generated base B. Since

is almost coherent B is FP,, and since  has no nonabelian free subgroup

B has at most two ends. Hence Lemma 3.16 and Theorem 3.17 apply, so either

has two ends or M is aspheriISaI or "=2Z norZ . ~(Z=2Z) for some

mé&O0or 1.1In tBe_Iatter case = isisomorphic to a subgroup obt_he additive
)

rationals Q, and = C (' ). Hence the image of in Aut( Q is
in nite. Therefore maps onto Z and so is an ascending HNN extension B,
and we may again use Theorem 3.17. ]

Does this corollary remain true without the hypothesis that  be almost co-
herent?

There are nine groups which are virtually Z? and are fundamental groups of
P D4-complexes with Euler characteristic 0. (See Chapter 11.) Are any of the
semidirect products Z ., ~(Z=2Z) realized by P D4-complexes with = 0?
If is restrained and M is aspherical must be virtually poly-Z? (Aspheri-
cal 4-manifolds with virtually poly-Z fundamental groups are characterized in
Chapter 8.)

Let G is a group with a presentation of de ciency d and w : G ¥ f 1g be
a homomorphism, and let hxj; 1 1 mjrj;; 1 J  ni be a presentation
for G with m —n = d. We may assume that w(x;) = +1 fori m—1. Let
X =\"(s! D% ifw=1and X =(\" 1St D3)\(S!~D?3) otherwise. The
relators rj may be represented by disjoint orientation preserving embeddings
of S in @X, and so we may attach 2-handles along product neighbourhoods,
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to get a bounded 4-manifold Y with 1(Y) = G, wi(Y) =w and (Y) =
1 —d. Doubling Y gives a closed 4-manifold M with (M) = 2(1 —d) and
( 1(M);w1(M)) isomorphic to (G;w).

Since the groups Z , have de ciency 1 it follows that any homomorphism
w:Z n ¥ f 1g may be realized as the orientation character of a closed 4-
manifold with fundamental group Z ., and Euler characteristic 0. What other
invariants are needed to determine the homotopy type of such a manifold?

Geometry & Topology Monographs, Volume 5 (2002)



69

Chapter 4

Mapping tori and circle bundles

Stallings showed that if M is a 3-manifold and f : M ¥ S! a map which
induces an epimorphism f : (M) ¥ Z with in nite kernel K then T is
homotopic to a bundle projection if and only if M is irreducible and K is
nitely generated. Farrell gave an analogous characterization in dimensions
6, with the hypotheses that the homotopy bre of f is nitely dominated
and a torsion invariant (f) 2 Wh( 1(M)) is 0 . The corresponding results
in dimensions 4 and 5 are constrained by the present limitations of geometric
topology in these dimensions. (In fact there are counter-examples to the most
natural 4-dimensional analogue of Farrell’s theorem [We87].)

Quinn showed that the total space of a bration with nitely dominated base
and bre is a Poincare duality complex if and only if both the base and bre
are Poincare duality complexes. (See [Go79] for a very elegant proof of this
result.) The main result of this chapter is a 4-dimensional homotopy bration
theorem with hypotheses similar to those of Stallings and a conclusion similar
to that of Quinn and Gottlieb.

The mapping torus of a self homotopy equivalence £ : X ¥ X is the space
M(f) =X [0;1]= , where (x;0) (f(x);1) for all x 2 X. If X is nitely
dominated then 1(M(f)) is an extension of Z by a nitely presentable normal
subgroup and  (M(f)) = (X) (S!) = 0. We shall show that a nite PDy-
complex M is homotopy equivalent to such a mapping torus, with X a PDg3-
complex, if and only if (M) is such an extension and (M) = 0.

In the nal section we consider instead bundles with bre S'. We give con-
ditions for a 4-manifold to be homotopy equivalent to the total space of an
S1-pundle over a P D3-complex, and show that these conditions are su cient
if the fundamental group of the P D3-complex is torsion free but not free.

4.1 Some necessary conditions
Let E be a connected cell complex and let f : E ¥ S! be a map which induces

an epimorphism f : 4(E) ¥ Z, with kernel . The associated covering
space with group iSE =E g R=Ff(x;y)2E R jf(x)=¢? Vg, and
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E ” M(),where :E ¥ E isthe generator of the covering group given
by (x;y) =(xy+1) forall (x;y) in E . If E isa PDg-complex and E is
nitely dominated then E is a P Dz-complex, by Quinn’s result. In particular,
is FP, and (E) = 0. The latter conditions characterize aspherical mapping
tori, by the following theorem.

Theorem 4.1 Let M be a nite P Dg4-complex whose fundamental group
is an extension of Z by a nitely generated normal subgroup , and let M be
the in nite cyclic covering space corresponding to the subgroup . Then

(1) (M) 0, with equality if and only if H,(M ;Q) is nitely generated;
(2) if (M) =0 then M is aspherical if and only if is in nite and
H?( ;Z[ 1) =0;
(3) M s an aspherical P D3s-complex if and only if (M) =0 and is
almost nitely presentable and has one end.

Proof Since M is a nite complex and Q = Q[t;t™1] is noetherian the

homology groups Hq(M ;Q) are nitely generated as Q -modules. Since s
nitely generated they are nite dimensional as Q-vector spaces if g < 2, and

hence also if ¢ > 2, by Poincare duality. Now H,(M ;Q) = Q" (Q )S for

some r;s 0, by the Structure Theorem for modules over a PID. It follows

easily from the Wang sequence for the covering projection from M to M, that
(M)=s 0.

Since is nitely generated 52)( ) = 0, by Lemma 2.1. If M is aspherical
then clearly is in nite and H?( ;Z[ ]) = 0. Conversely, if these conditions
hold then H3( ;Z[ ]) =0 for s 2. Hence if moreover (M) =0 then M is
aspherical, by Corollary 3.5.2.

If is FP, and has one end then H2( ;Z[ J) = HY( ;Z[ ]) = 0, by the
LHSSS. As M is aspherical is a P D3s-group, by Theorem 1.20, and therefore
is nitely presentable, by Theorem 1.1 of [KK99]. Hence M ~ K{( ;1) is
nitely dominated and so is a P D3-complex [Br72]. O

In particular, if (M) = 0 then g( ) = 0. This observation and the bound
(M) 0 were given in Theorem 3.17. (They also follow on counting bases for
the cellular chain complex of M and extending coe cients to Q(t).)

Let F be the orientable surface of genus 2. Then M = F F is an aspher-
ical closed 4-manifold, and =G G where G = 1(F) has a presentation
hay;az; bi;bs j[az;b1] = [az;bo]i. The subgroup generated by the images
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of (a;;a;) and the six elements (x;1) and (1; %), for x = ay, by or by, is normal
in and = = Z. However cannot be FP, since ( ) =4 & 0. Is there
an aspherical 4-manifold M such that (M) is an extension of Z by a nitely
generated subgroup  which is not FP, and with (M) = 0? (Note that
H>( ; Q) must be nitely generated, so showing that is not nitely related
may require some nesse.)

If H2( ;Z[ 1) = 0 then H( ;Z[ ]) = 0, by an LHSSS argument, and so
must have one end, if it is in nite. Can the hypotheses of (2) above be replaced
by\ (M)=0and hasoneend"? It can be shown that the nitely generated
subgroup N of F(2) F(2) de ned after Theorem 2.4 has one end. However
H2(F(2) F(2);Z[F(2) F()]) & 0. (Note that q(F(2) F(2) = 2, by
Corollary 3.12.2.)

4.2 Change of rings and cup products

In the next two sections we shall adapt and extend work of Barge in setting up
duality maps in the equivariant (co)homology of covering spaces.

Let be an extension of Z by a normal subgroup and x an element t of
whose image generates = . Let : ¥  be the automorphism determined
by (h) =tht™! for all h in . This automorphism extends to a ring automor-
phism (also denoted by ) of the group ring Z[ ], and the ring Z[ ] may then
be viewed as a twisted Laurent extension, Z[ ] = Z[ ] [t;t™!]. The quotient of
Z[ ] by the two-sided ideal generated by fh—1jh 2 g is isomorphic to , while
as a left module over itself Z[ ] is isomorphic to Z[ ]=Z[ ](t — 1) and so may
be viewed as a left Z[ ]-module. (Note that is not a module automorphism
unless t is central.)

If M is a left Z[ ]-module let Mj denote the underlying Z[ ]-module, and let
N = Homy ;(Mj ;Z[ 1). Then N is a right Z[ ]-module via

(F Y(m)=Ff(m) forall 227[]; £2M and m 2 M:
If M =7Z[ ] then ﬁ'] is also a left Z[ ]-module via
(tF)( )= “S(FE Nforalf27]; : 2 andrs22z:

As the left and right actions commute %F'] isa (Z] 1;Z[ 1)-bimodule. We may
describe this bimodule more explicitly. Let Z[ ][[t;t™%]] be the set of doubly
in nite power series nozt" , with  in Z[ ] for all n in Z, with the obvious
right Z[ ]-module structure, and with the left Z[ ]-module structure given by

t'(t" )= t"" ") Lforall ; n27Z[ Jandr 2 Z:
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(Note that even if = 1 this module is not a ring in any natural way.) Then
the homomorphism j : %F'] 1 7Z[ J[[t;t™4] given by j(F) = t"F(t") for all
f in %F'] is a (Z] 1;Z[ ])-bimodule isomorphism. (Indeed, it is clearly an
isomorphism of right Z[ ]-modules, and we have de ned the left Z[ ]-module
structure on Z:[j] by pulling back the one on Z[ ][[t;t™1]].)

For each f in M we may de ne a function Tyf: M ¥ %F'] by the rule
(TmHME) =F(E™"m) forallm2 M and n 2 Z:

It is easily seen that Tp f is Z[ ]-linear, and that Ty : M ¥ Homy; ](M;ﬁj])
is an isomorphism of abelian groups. (It is clearly a monomorphism, and if

g:M 1 %F'] is Z[ ]-linear then g = T\ F where £(m) = g(m)(1) for all m in
M. In fact if we give Homy ](M;ZSFl]) the natural right Z[ ]-module structure
by ( )(m) = (m) forall 2 Z[], Z[ ]-homomorphisms : M ¥ Zs[d]
and m 2 M then Ty is an isomorphism of right Z[ ]-modules.) Thus we have
a natural equivalence T : Homgy (=] ;Z[ ]) > Homy ](—;%Fl]) of functors
from Mody; ; to Mody ;. If C s a chain complex of left Z[ ]-modules T in-
duces natural isomorphisms from H (C j ;Z[ ]) = H (Homgz 1(C j ;Z[ ]) to
H (C;v) =H (Homg {(C ;%F'])). In particular, since the forgetful functor
—j is exact and takes projectives to projectives there are isomorphisms from
Eth[ ](Mj Z[ ] to Eth[ ](M;ﬁF']) which are functorial in M.

If M and N are left Z[ ]-modules let M [CNI denote the tensor product over
7Z with the diagonal left -action, de ned by g(m [n) = gm [gn for all
m2 M, n2Nand g2 . The function ppy : [M ¥ M de ned by
pm( Cmh = (1)m is then a Z[ ]-linear epimorphism.

We shall de ne products in conomology by means of the Z[ ]-linear homomor-
phism e: [ZH] ¥ 7[ ] given by
e(t" CEY=t"F(t") for all f 2 Z ] and n 2 z:

Let A bea -chaincomplexand B a Z[ ]-chain complex and give the tensor
product the total grading A [BI1 and di erential and the diagonal -action.
Let e} be the change of coe cients homomorphism induced by e, and let u 2
HP(A; ) and v 2 HY(B ;ﬁ']). Then u V1A ej(u V) de nes a pairing
from HP(A ; ) CHF(B ; ZH) to HP*I(A [BI1;7Z] ]).

Now let A be the -chain complex concentrated in degrees 0 and 1 with

Ap and A; free of rank 1, with bases fagg and fai;g, respectively, and with
@1: A1 ¥ Aggiven by @1(a1) = (t—1)ag. Let A :A; ¥  be the isomorphism
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determined by a(a;) =1, and let A : Ap ¥ Z be the augmentation deter-
mined by a(ap) = 1. Then [ a] generates H1(A ; ). Let B be a projective
Z[ ]-chain complex and let pg : A [B1 ¥ B be the chain homotopy equiv-
alence de ned by pgj(( ag) Chyd) = (1)b; and pgj(( ar) Chl1) =0, for all

2 ,bj—12Bj-1and bj 2Bj. Let jg : B ¥ A [BI be achain homotopy
inverse to pg . De ne a family of homomorphisms hz; ; from HY9(B ;ﬁ']) to
HY*Y(B ;Z[ ]) by

hzyo D =ldge1l Al [

for :Bg ¥ A such that @q+1 =0. Let f: B ¥ B’ be a chain homomor-
phism of projective Z[ ]-chain complexes. Then hy ([ fg) = T hy ([ D,
and so these homomorphisms are functorial in B . In particular, if B is a
projective resolution of the Z[ ]-module M we obtain homomorphisms hy y:

Exty, ](M;ﬁ]) L EXt%rl](M;Z[ 1) which are functorial in M.

Lemma 4.2 Let M be a Z[ ]-module such that Mj is nitely generated as
a Z[ ]-module. Then hy; | : Homy ](M;ﬂ]) | Ext%[ J(M;Z[ ) is injective.

Proof Let B be a projective resolution of the Z[ ]-module M and let q :
By ¥ M be the de ning epimorphism (so that q@; = 0). We may use compo-
sition with g to identify Homy ](M;ﬁ']) with the submodule of 0-cocycles in

Hom(B ;ZA]), and we set hy; 1( ) =hy ([ q) forall :M ¥ ZH].

Suppose that hy; j( ) =0andletg= q:Bp ¥ %F']. Then there is a Z[ ]-
linear homomorphism f : Ag (B} ¥ Z[ ] such that ([ aA] [9]) = f. We
may write g(b) = t"gn(b) = t"go(t™"b), where go: Bo ¥ Z[ ] is Z[ ]-linear
(and go@; = 0). We then have go(b) = f((t — 1)ag D)l for all b 2 By, while
f(1 C@) = 0. Let k() = f(agp Ch)ifor b 2 Bg. Then k : Bop ¥ Z[ ] is
Z[ ]-linear, and k@; = 0, so k factors through M. In partiCLiIEr, k(Bg) is

nitely generated as a Z[ ]-submodule of Z[ ]. Butas Z[ | = t"Z[ ] and
go(b) = tk(t™1b) — k(b) for all b 2 By, this is only possible if k = go = 0.
Therefore =0 and so hy j is injective. O

Let B be a projective Z[ ]-chain complex such that B; = 0 for j <0 and
Ho(B ) = Z. Then there is a Z[ ]-chain homomorphism g :B ¥ A which
induces an isomorphism Ho(B ) = Ho(A ), and g = A, :Bo ¥ Zisa
generator of HO(B ;Z). Let g = A B, . B1 ¥ . If moreover Hi(B ) =0
then HY(B ; ) =Z and is generated by [ g] = s([ AD

Geometry & Topology Monographs, Volume 5 (2002)



74 Chapter 4: Mapping tori and circle bundles

43 Thecase =1

When =1 (so Z[ ] = ) we shall show that h is an equivalence, and
relate it to other more explicit homomorphisms. Let S be the multiplicative
system in consisting of monic polynomials with constant term 1. Let
Lexp(f;a) be the Laurent expansion of the rational function ¥ about a. Then
‘() = Lexp(f; 1) — Lexp(F;0) de nes a homomorphism from the localization

sto b= Z[[t;t1]], with kernel . (Barge used a similar homomorphism
to embed Q(t)= in Q[[t;t™1]] [Ba 80].) Let : b ¥ Z be the additive
homomorphism de ned by ( t"f,) = fy. (This is a version of the \trace"
function used by Trotter to relate Seifert forms and Blanch eld pairings on a
knot module M [Tr78].)

Let M be a -module which is nitely generated as an abelian group, and
let N be its maximal nite submodule. Then M=N is Z-torsion free and
Ann (M=N) = ( m), where \, is the minimal polynomial of t, considered as
an automorphism of (M=N)jz. (See Chapter 3 of [H3].) Since Mjz is nitely
generated pm 2 S. The inclusion of s= in Q(t)= induces an isomorphism
D(M) =Hom (M; s= )=Hom (M;Q(t)= ). We shall show that D(M) is
naturally isomorphic to each of B(M) = Hom (M;"), E(M) = Ext'(M; )
and F(M) = Homz(Mjz; Z).

Let ‘m : D(M) ¥ D(M) and v : D(M) ¥ F(M) be the homomorphisms
de ned by composition with “ and , respectively. It is easily veri ed that
and Ty are mutually inverse.

Let B be a projective resolution of M. If 2 D(M) let o :Bg ¥ Q(t)
be a lift of . Then (@; has image in , and so de nes a homomorphism

1:B1 ¥ such that 1@ = 0. Consideration of the short exact sequence of
complexes

0¥ Hom (B ; ) ¥ Hom (B ;Q(t)) ¥ Hom (B ;Q()= ) ¥ 0

shows that pm( ) =[ 1], where » : D(M) ¥ E(M) is the Bockstein homo-
morphism associated to the coe cient sequence. (The extension corresponding
to m is the pullback over of the sequence 0 X T QM " QM= T10)

Lemma 4.3 The natural transformation h is an equivalence, and h “\ =
M -

Proof The homomorphism j\ sending the image of g in  =( \) to the class
of g( M)t in s= induces an isomorphism Hom (M; =( m)) = D(M).
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Hence we may assume that M = =( ) and it shall su ce to check that
h “‘mUm) = (m). Moreover we may extend coe cients to C, and so we
may reduce to the case = (t— )".

We may assume that B; and By are freely generated by b; and bg, respectively,
and that @(by) = bg. The chain homotopy equivalence jg may be de ned by
Jo(bo) = ap [heland ji(by) = ap [hyl+  pg(tPay) [(ilbg), where — pgxPyd =
()= M)=X—1) =Yy g ren(Xxy— )'(y— "L, (This formula arises
naturally if we identify [z with Z[x;y;x % y™!], with t 2  acting via
xy.) Note that (jm)(b1) = on=1and pg=0unless0 m<gqg n.

Now h “m(@m)(1) =ej( o ‘mAm)( (b)) = pgt? p—q, Where _, is the
coe cientof t™" in Lexp( ~1;1). Clearly =0if—n<r<Oand _,=1,
since “1=tT""(1— t71)™". Hence h ‘Mm(m)(01) = on = (jm)(b1), and so
h “m = wm, by linearity and functoriality.

Since is a natural equivalence and h is injective, by Lemma 4.2, h is also
a natural equivalence. O

It can be shown that the ring s de ned above is a PID.

4.4 Duality in in nite cyclic covers

Let E, f and be as in x1, and suppose also that E is a P D4-complex with

(E) =0 and that is nitely generated and in nite. Let C = C (E). Then
Ho(C) = Z, Hy(C) = 2(E) and Hy(C ) = 0 if g & 0 or 2, since E is
simply connected and  has one end. Since Hi( [z }4C ) =Hi(E ;Z) = = 0
is nitely generated as an abelian group, Homgz; j(Hi( [zh C); ) = 0.
An elementary computation then shows that HX(C ; ) is in nite cyclic, and
generated by the class = ¢ de ned in x2. Let [E] be a xed generator of
Hy(Z Lz C)=2Z,andlet [E | = \[E]in H3(E ;Z) = H3( [z}C)=2Z.

Since E is also the universal covering space of E , the cellular chain complex
for F is C j - In order to verify that E is a P Dz-complex (with orientation
class [E ]) it shall su ce to show that (for each p  0) the homomorphism

p from HP(C ;Z[ ]) = HP(C ;%F']) to HP+1(C ;Z[ ]) given by cup product
with is an isomorphism, by standard properties of cap and cup products. We
may identify these cup products with the degree raising homomorphisms hy; 1,
by the following lemma.

Lemma 4.4 Let X be a connected space with (X) = andlet B =
C (X). Then hy /([ ) =T[8lLI I
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76 Chapter 4: Mapping tori and circle bundles

Proof The Alexander Whitney diagonal approximation d from B to B [B]
is -equivariant, if the tensor product is given the diagonal left -action, and
we may take jg = (g [CDH as a chain homotopy inverse to pg . Therefore

hy I D=dee]l [D=[sILl] D

The cohomology modules HP(C ;Z[ ]) and HP(C ;Z[ ]) may be \computed"
via the UCSS. Since cross product with a 1-cycle induces a degree 1 cochain ho-
momorphism, the functorial homomorphisms hz; ; determine homomorphisms
between these spectral sequences which are compatible with cup product with
on the limit terms. In each case the ES columns are nonzero only for p =0
or 2. The EY terms of these spectral sequences involve only the cohomology of
the groups and the homomorphisms between them may be identi ed with the
maps arising in the LHSSS for  as an extension of Z by , under appropriate
niteness hypotheses on

4.5 Homotopy mapping tori

In this section we shall apply the above ideas to the non-aspherical case. We
use coinduced modules to transfer arguments about subgroups and covering
spaces to contexts where Poincare duality applies, and L?-cohomology to iden-
tify (M), together with the above strategy of describing Poincare duality for
an in nite cyclic covering space in terms of cup product with a generator  of
HY(M; ).

Note that most of the homology and cohomology groups de ned below do not

have natural module structures, and so the Poincare duality isomorphisms are
isomorphisms of abelian groups only.

Theorem 4.5 A nite PD4-complex M with fundamental group is ho-
motopy equivalent to the mapping torus of a self homotopy equivalence of a
P Ds-complex if and only if (M) =0 and is an extension of Z by a nitely
presentable normal subgroup

Proof The conditions are clearly necessary, as observed in x1 above. Suppose
conversely that they hold. Let M be the in nite cyclic covering space of M
with fundamental group ,andlet :M ¥ M be a covering transformation
corresponding to a generator of = =Z. Then M is homotopy equivalent to
the mapping torus M( ). Moreover HY(M; ) = HI( ; ) is in nite cyclic,
since is nitely generated. Let Ej,(M ) and Ef.,(M) be the UCSS for the
cohomology of M with coe cients Z[ ] and for that of M with coe cients
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7Z[ 1, respectively. A choice of generator for HY(M; ) determines homo-
morphisms hy ;: E;;q(M ) ! Eg;qH(M), giving a homomorphism of bidegree
(0; 1) between these spectral sequences corresponding to cup product with
on the abutments, by Lemma 4.4.

Suppose rst that is nite. The UCSS and Poincare duality then imply
that Hi(W:;Z) = Z for i = 0 or 3 and is 0 otherwise. Hence W > S3 and
so M = W= isa Swan complex for . (See Chapter 11 for more details.)
Thus we may assume henceforth that is in nite. We must show that the
cup product maps : HP(M ;Z[ ) ¥ HP*Y(M;Z[ ]) are isomorphisms, for
0 p 4. If p=0 or 4 then all the groups are 0, and so o and 4 are
isomorphisms.

Applying the isomorphisms de ned in x8 of Chapter 1 to the cellular chain
complex C of MT, we see that HI(M ;A) = HI(M; Homy (Z[ ];A)) is iso-
morphic to Hy—q(M;Homy 1(Z[ ];A)) for any local coe cient system (left
Z[ ]-module) Aon M . Lett2 represent a generator of = . Since multipli-
cation by t—1 is surjective on Homg; {(Z[ ]; A), the homology Wang sequence
for the covering projection of M onto M gives Ho(M; Homg 1(Z[ ];A)) =0.
Hence H*(M ;A) = 0 for any local coe cient system A, and so M is homo-
topy equivalent to a 3-dimensional complex (see [WI65]). (See also [DST96].)

Since is an extension of Z by a nitely generated normal subgroup 52)( )=
0,andso (M) =H?(M;Z[ 1) = H?( ;Z[ ]), by Theorem 3.4. Hence 1 may
be identi ed with the isomorphism H( ;Z[ 1) = H%( ;Z[ ]) coming from the
LHSSS for the extension. Moreover >(M)j = H?( ;Z[ ]) is nitely generated
over Z[ ], and so Homg 1( 2(M);Z[ ]) = 0. Therefore H3( ;Z[ ]) =0, by
Lemma 3.3, and so the Wang sequence map t—1:H?( ;Z[ ) ¥ H2( ;Z[ ]
is onto. Since is FP, this cohomology group is isomorphic to H2( :Z[ ]) [=1
Z[ =], where Z[ = 1= acts diagonally. It is easily seen that if H?( ;Z[ ])
has a nonzero element h then h Ik not divisible by t—1. Hence H2( ;Z[ ]) =
0. The di erential d3.;(M) is a monomorphism, since H3(M;Z[ ]) = 0, and
hzr 1@ E5o(M ) ¥ EZ,(M) is a monomorphism by Lemma 4.2. Therefore
d3.,(M ) is also a monomorphism and so H*(M ;Z[ ]) = 0. Hence ; is an
isomorphism.

It remains only to check that H3(M ;Z[ ]) = Z and that 3 is onto. Now
H3(M ;Z[ 1) = Hi(M;Homyg ((Z[ T,Z[ 1)) = Hi( ;Z[ ] = ). (The exponent
denotes direct product indexed by = rather than xed points!) The natural
homomorphism from Hi( ;Z[ ] 7 ) to Hy( = ;Ho( ;Z[ ] 7)) is onto, with
kernel Ho( = ;H1( ;Z[ ] 7)), by the LHSSS for . Since is nitely gener-
ated homology commutes with direct products in this range, and it follows that
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Hi( ;Z[ 17 ) =Hi( = ;Z ~ ). Since = = Z and acts by translation on the
index set this homology group is Z. The homomorphisms from H3(M :Z[ ]) to
H3(M ;Z) and from H*(M;Z[ ]) to H*(M; ) induced by the augmentation
homomomorphism and the epimorphism from Z[ ] to Z[ = ]= are epimor-
phisms, since M and M are homotopy equivalent to 3- and 4-dimensional
complexes, respectively. hence they are isomorphisms, since these cohomol-
ogy modules are in ite cyclic as abelian groups. These isomorphisms form the
vertical sides of a commutative square

H3(M_;Z[ 1) —H HAYM 2 ])
w? ?
y y
H3M ;z) —Lo H4M; )
The lower horizontal edge is an isomorphism, by Lemma 4.3. Therefore 3 is
also an isomorphism.

Thus M satis es Poincare duality of formal dimension 3 with local coe cients.
Since (M ) = is nitely presentable M is nitely dominated, and so is a
P D3-complex [Br72]. O

Note that M need not be homotopy equivalent to a nite complex. If M is a
simple P D4-complex and a generator of Aut(M =M) = = has nite order in
the group of self homotopy equivalences of M then M is nitely covered by a
simple P D4-complex homotopy equivalent to M S'. In this case M must
be homotopy nite by [Rn86]. The hypothesis that M be nite is used in the
proof of Theorem 3.4, but is probably not necessary here.

The hypothesis that  be almost nitely presentable (FP,) su ces to show
that M satis es Poincare duality with local coe cients. Finite presentability
is used only to show that M is nitely dominated. (Does the coarse Alexander
duality argument of [KK99] used in part (3) of Theorem 4.1 extend to the non-
aspherical case?) In view of the fact that 3-manifold groups are coherent, we
might hope that the condition on  could be weakened still further to require
only that it be nitely generated.

Some argument is needed above to show that , is injective. If M is homo-
topy equivalent to a 3-manifold with more than one aspherical summand then
HY( ;Z[ ]) is a nonzero free Z[ ]-module and so Homy 1( j;Z[ ]) &0.

A rather di erent proof of this theorem could be given using Ranicki’s criterion
for an in nite cyclic cover to be nitely dominated [Rn95] and the Quinn-
Gottlieb theorem, if nitely generated stably free modules of rank 0 over the
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Novikov rings A = Z[ ] ((t 1)) are trivial. (For H{(A [CT)=A [
H(C)=0if q& 2, since t—1 isinvertible in A . Hence Hy(A [T )isa
stably free module of rank 0, by Lemma 3.1.)

An alternative strategy would be to show that Lim;H9(M ;A;) = 0 for any
direct system with limit 0. We could then conclude that the cellular chain
complex of M = M is chain homotopy equivalent to a nite complex of nitely
generated projective Z[ ]-modules, and hence that M is nitely dominated.
Since is F P this strategy applies easily when q =0, 1, 3 or 4, but something
else is needed when q = 2.

Corollary 4.5.1 Let M be a PDg4-complex with (M) = 0 and whose funda-
mental group is an extension of Z by a normal subgroup = F(r). Then M
is homotopy equivalent to a closed PL 4-manifold which bres over the circle,
with bre ]'St S? if wi(M)j is trivial, and ]"S~S? otherwise. The bundle
is determined by the homotopy type of M.

Proof By the theorem M is a P D3s-complex with free fundamental group,
and so is homotopy equivalent to N = ]"S'  S? if wy(M)j s trivial and
to ]"S1~S? otherwise. Every self homotopy equivalence of a connected sum
of S2-bundles over St is homotopic to a self-homeomorphism, and homotopy
implies isotopy for such manifolds [La]. Thus M is homotopy equivalent to
such a bred 4-manifold, and the bundle is determined by the homotopy type
of M. O

It is easy to see that the natural map from Homeo(N) to Out(F (r) is onto. Ifa
self homeomorphism f of N =]"S! S? induces the trivial outer automorphism
of F(r) then f is homotopic to a product of twists about nonseparating 2-
spheres [He]. How is this manifest in the topology of the mapping torus?

Since ¢:d: =1 and c:d: = 2 the rst k-invariants of M and N both lie in
trivial groups, and so this Corollary also follows from Theorem 4.6 below.

Corollary 4.5.2 Let M be a PDg4-complex with (M) = 0 and whose fun-
damental group is an extension of Z by a normal subgroup . If has an
in nite cyclic normal subgroup C which is not contained in  then the covering
space M with fundamental group is a P Dz-complex.

Proof We may assume without loss of generality that M is orientable and
that C is central in . Since C\ =1 the subgroup C =C has nite
index in . Thus by passing to a nite cover we may assume that =C

Hence is nitely presentable and so the Theorem applies. O
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See [Hi89] for di erent proofs of Corollaries 4.5.1 and 4.5.2.

Since  has one or two ends if it has an in nite cyclic normal subgroup, Corol-
lary 4.5.2 remains true if C and is nitely presentable. In this case is
the fundamental group of a Seifert bred 3-manifold, by Theorem 2.14.

Corollary 4.5.3 Let M be a PD4-complex with (M) = 0 and whose fun-

damental group is an extension of Z by an FP, normal subgroup . If
is nite then it has cohomological period dividing 4. If  has one end then
M is aspherical and so is a PDy4-group. If has two ends then = Z,

Z (Z=2Z) or D = (Z=2Z) (Z=2Z). If moreover is nitely presentable the
covering space M with fundamental group is a P D3-complex.

Proof The nal hypothesis is only needed if is one-ended, as nite groups
and groups with two ends are nitely presentable. If is nite then M = S3
and so the rst assertion holds. (See Chapter 11 for more details.) If has one
end then we may apply Theorem 4.1. If has two ends and its maximal nite
normal subgroup is nontrivial then =2z (Z=22), by Theorem 2.11 (applied
to the P Ds-complex M ). Otherwise =2Z or D. O

In Chapter 6 we shall strengthen this Corollary to obtain a bration theorem
for 4-manifolds with torsion free elementary amenable fundamental group.

Our next result gives criteria (involving also the orientation character and rst
k-invariant) for an in nite cyclic cover of a closed 4-manifold M to be homotopy
equivalent to a particular P D3-complex N.

Theorem 4.6 Let M be a PD4-complex whose fundamental group is an
extension of Z by a torsion free normal subgroup  which is isomorphic to
the fundamental group of a PD3s-complex N. Then 2(M) = »(N) as Z[ ]-
modules if and only if Homg 1( 2(M);Z[ ]) = 0. The in nite cyclic covering
space M with fundamental group is homotopy equivalent to N if and only
if wi(M)j =wi(N), Homg ;( 2(M); Z[ ]) = 0 and the images of k;(M) and
ki(N) in H3( ; 2(M)) =H?3( ; 2(N)) generate the same subgroup under the
action of Auty ( 2(N)).

Proof If = ,(M) isisomorphic to »(N) then it is nitely generated as a
Z[ ]-module, by Theorem 2.18. As 0 is the only Z[ ]-submodule of Z[ ] which is

nitely generated as a Z[ ]-module it follows that = Homgy 1( 2(M); Z[ ])
is trivial. It is then clear that the conditions must hold if M is homotopy
equivalent to N.
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Suppose conversely that these conditions hold. If = 1 then M is simply
connected and = Z has two ends. It follows immediately from Poincare
duality and the UCSS that H,(M ;Z) = = =0 and that H3(M ;Z) = Z.

Therefore M is homotopy equivalent to S3. If & 1 then has one end,
since it has a nitely generated in nite normal subgroup. The hypothesis that

= 0 implies that = H?2( ;Z[ ]), by Lemma 3.3. Hence = H( ;Z[ ])
as a Z[ ]-module, by the LHSSS. (The overbar notation is unambiguous since
wi(M)j = wy(N).) But this is isomorphic to »(N), by Poincare duality for
N . Since N is homotopy equivalent to a 3-dimensional complex the condition
on the k-invariants implies that there isa map f : N ¥ M which induces
isomorphisms on fundamental group and second homotopy group. Since the
homology of the universal covering spaces of these spaces vanishes above degree
2 the map T is a homotopy equivalence. O

We do not know whether the hypothesis on the k-invariants is implied by the
other hypotheses.

Corollary 4.6.1 Let M be a PDj4-complex whose fundamental group is
an extension of Z by a torsion free normal subgroup  which is isomorphic to
the fundamental group of a 3-manifold N whose irreducible factors are Haken,
hyperbolic or Seifert bred. Then M is homotopy equivalent to a closed PL
4-manifold which bres over the circle with bre N.

Proof Thereis a homotopy equivalence f : N ¥ M | where N is a 3-manifold
whose irreducible factors are as above, by Turaev’s Theorem. (See x5 of Chapter
2) Lett: M ¥ M be the generator of the covering transformations. Then
there is a self homotopy equivalence u: N ¥ N such that fu tf. As each
irreducible factor of N has the property that self homotopy equivalences are
homotopic to PL homeomorphisms (by [Hm], Mostow rigidity or [Sc83]), u is
homotopic to a homeomorphism [HL74], and so M is homotopy equivalent to
the mapping torus of this homeomorphism. O

All known P D3-complexes with torsion free fundamental group are homotopy
equivalent to connected sums of such 3-manifolds.

If the irreducible connected summands of the closed 3-manifold N = ];N; are
P2-irreducible and su ciently large or have fundamental group Z then every
self homotopy equivalence of N is realized by an unique isotopy class of home-
omorphisms [HL74]. However if N is not aspherical then it admits nontrivial
self-homeomorphisms (\rotations about 2-spheres™) which induce the identity
on , and so such bundles are not determined by the group alone.
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Corollary 4.6.2 Let M be a PDj4-complex whose fundamental group is
an extension of Z by a virtually torsion free normal subgroup . Then the
in nite cyclic covering space M with fundamental group is homotopy equiv-
alent to a P D3-complex if and only if is the fundamental group of a PD3-
complex N, Homgz; ;( 2(M);Z[ ]) = 0 and the images of k;(M) and k;(N) in
H3( o; 2(M)) = H3( o; 2(N)) generate the same subgroup under the action
of Autz; ,;( 2(N)), where , is a torsion free subgroup of nite index in

Proof The conditions are clearly necessary. Suppose that they hold. Let
1 o N\ + \ 4 be atorsion free subgroup of nite index in , where 4+ =
Kerwi(M) and + = Kerwi(N), and let t 2 generate modulo . Then
each of the conjugates tX ;7% in  has the same index in . Since is nitely
generated the intersection = \tK ;t™K of all such conjugates has nite index in

, and is clearly torsion free and normal in the subgroup generated by and
t. If frjg is a transversal for in and f: (M) ¥ Z[ ] is a nontrivial Z[ ]-
linear homomorphism then g(m) = rif(ri_lm) de nes a nontrivial element
of Hom ( 2(M);Z[ ]). Hence Hom ( 2(M);Z[ J) = 0 and so the covering
spaces M and N are homotopy equivalent, by the theorem. It follows easily
that M is also a P D3-complex. ]

All P D3-complexes have virtually torsion free fundamental group [Cr00].

4.6 Products

If M =N S!, where N is a closed 3-manifold, then (M) =0, Z is a
direct factor of 1(M), wy1(M) is trivial on this factor and the Pin™-condition
w, = w? holds. These conditions almost characterize such products up to
homotopy equivalence. We need also a constraint on the other direct factor of
the fundamental group.

Theorem 4.7 Let M be a P D4-complex whose fundamental group  has no
2-torsion. Then M is homotopy equivalent to a product N S*, where N is a
closed 3-manifold, if and only if (M) =0, wa(M) = w;(M)? and there is an
isomorphism . 1 Z such that wy(M) ~1jz =0, where is a (2-torsion
free) 3-manifold group.

Proof The conditions are clearly necessary, since the Pin™-condition holds
for 3-manifolds.
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If these conditions hold then the covering space M  with fundamental group
is a P D3-complex, by Theorem 4.5 above. Since is a 3-manifold group and
has no 2-torsion it is a free product of cyclic groups and groups of aspherical
closed 3-manifolds. Hence there is a homotopy equivalence h: M ¥ N, where
N is a connected sum of lens spaces and aspherical closed 3-manifolds, by
Turaev’s Theorem. (See x5 of Chapter 2.) Let generate the covering group
Aut(M=M ) = Z. Then there is a self homotopy equivalence : N ¥ N
such that h h , and M is homotopy equivalent to the mapping torus
M( ). We may assume that xes a basepoint and induces the identity on
1(N), since 1(M) = Z. Moreover preserves the local orientation,
since wi(M) ~1jz = 0. Since has no element of order 2 N has no two-sided
projective planes and so  is homotopic to a rotation about a 2-sphere [Hn].
Since w,(M) = w1 (M)? the rotation is homotopic to the identity and so M is
homotopy equivalent to N S?. O

Let is an essential map from S! to SO(3), and let M = M( ), where

: St S?2 1 S S? s the twist map, given by (x;y) = (x; (X)(y)) for
all (x;y) inSt* S2. Then M)=2z2 Z, (M) =0, and wy(M) =0,
but wa(M) & w;(M)? = 0, so M is not homotopy equivalent to a product.
(Clearly however M( 2) =SS! s? sl)

To what extent are the constraints on  necessary? There are orientable 4-
manifolds which are homotopy equivalent to products N S* where = 1(N)
is nite and is not a 3-manifold group. (See Chapter 11.) Theorem 4.1 implies
that M is homotopy equivalent to a product of an aspherical P D3-complex
with St ifand only if (M)=0 and (M) = Z where has one end.

There are 4-manifolds which are simple homotopy equivalent to S RP?2 (and
thus satisfy the hypotheses of our theorem) but which are not homeomorphic
to mapping tori [We87].

4.7 Subnormal subgroups

In this brief section we shall give another characterization of aspherical 4-
manifolds with nite covering spaces which are homotopy equivalent to mapping
tori.

Theorem 4.8 Let M be a PDg4-complex. Then M is aspherical and has a
nite cover which is homotopy equivalent to a mapping torus if and only if
(M)=0and = 31(M) hasan FP3 subnormal subgroup G of in nite index

and such that H3(G;Z[G]) = 0 for s 2. In that case G is a PDgs-group,

[ N (G)] <1 and e(N (G)=G) =2.
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Proof The conditions are clearly necessary. Suppose that they hold. Let
G =Gy <G1 <:::G, = be asubnormal chain of minimal length, and
let j = minfi j [Gixs : G] = 1g. Then [Gj : G] < 1 and P(Gj4+1) = 0
[Ga00]. A nite induction up the subnormal chain, using LHSSS arguments
(with coe cients Z[ ] and N(G;), respectively) shows that HS( ;Z[ ]) =0
for s 2 and that 52)( ) = 0. (See x2 of Chapter 2.) Hence M is aspherical,
by Theorem 3.4.

On the other hand H®3(Gj+1;W) =0 for s 3 and any free Z[Gj+1]-module
W, so c:d:Gj+1 = 4. Hence [ : Gj+1] < 1, by Strebel’s Theorem. Therefore
Gj+1 is a PDg4-group. Hence Gj is a PD3-group and Gj+1=G;j has two ends,
by Theorem 3.10. The theorem now follows easily, since [G; : G] < 1 and G;
has only nitely many subgroups of index [G;j : G]. O

The hypotheses on G could be replaced by \G is a PDs-group™, for then
[ :G]= 1, by Theorem 3.12.

We shall establish an analogous result for closed 4-manifolds M such that
(M) = 0 and 1(M) has a subnormal subgroup of in nite index which is
a PDy-group in Chapter 5.

4.8 Circle bundles

In this section we shall consider the \dual" situation, of 4-manifolds which are
homotopy equivalent to the total space of a S*-bundle over a 3-dimensional base
N. Lemma 4.9 presents a number of conditions satis ed by such manifolds.
(These conditions are not all independent.) Bundles ¢y, induced from S!-
bundles over K( 1(N);1) are given equivalent characterizations in Lemma 4.10.
In Theorem 4.11 we shall show that the conditions of Lemmas 4.9 and 4.10
characterize the homotopy types of such bundle spaces E(cy, ), provided 1(N)
is torsion free but not free.

Since BS! 7 K(Z;2) any S-bundle over a connected base B is induced from
some bundle over P»(B). For each epimorphism y : ¥  with cyclic kernel
and such that the action of by conjugation on Ker(y) factors through multi-
plication by 1 there is an S'-bundle p(y) : X(y) ¥ Y (y) whose fundamental
group sequence realizes y and which is universal for such bundles; the total
space E(p(y)) is a K( ;1) space (cf. Proposition 11.4 of [WI]).

Lemma 4.9 Let p: E ¥ B be the projection of an St-bundle over a
connected nite complex B. Then
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1 (E)=0;

(2) thenaturalmapp : = 41(E) ¥ = 1(B) is an epimorphism with
cyclic kernel, and the action of on Ker(p ) induced by conjugation in

isgivenby w=wjy(): 1(B) ¥ Z=2Z =F 1g Aut(Ker(p));

(3) if B isa PD-complex wi(E) =p (w1(B) +w);

(4) if B is a PD3s-complex there are maps ¢: E ¥ P,(B) and
y : P2(B) ¥ Y(p) such that cp,g)y = Cy(p )Y, Y& = p(p )ce and
(6;ce) [E] = G(fs [B]) where G is the Gysin homomorphism from
H3(P2(B); Z"1(®)) to Ha(P2(E); Z1(®));

(5) If B is a PDs-complex ce [E] = G(cg [B]), where G is the Gysin
homomorphism from Hz( ;Z"B) to Hy( ;ZVE);

(6) Ker(p ) acts trivially on »(E).

Proof Condition(1) follows from the multiplicativity of the Euler characteris-
tic in a bration. If is any loop in B the total space of the induced bundle

is the torus if w( ) = 0 and the Klein bottle if w( ) =1 in Z=2Z; hence
gzg™t = z @ where (g) = (—1)V® @) for g in 4(E) and z in Ker(p ).
Conditions (2) and (6) then follow from the exact homotopy sequence. If the
base B is a PD-complex then so is E, and we may use naturality and the
Whitney sum formula (applied to the Spivak normal bundles) to show that
wi(E) =p (Wi(B) +wi()). (As p : HY(B;F,) ¥ HY(E;F,) is a monomor-
phism this equation determines w1 ( ).)

Condition (4) implies (5), and follows from the observations in the paragraph
preceding the lemma. (Note that the Gysin homomorphisms G in (4) and (5)
are well de ned, since Hy(Ker(y); Z“E) is isomorphic to Z"“e, by (3).) |

Bundles with Ker(p ) = Z have the following equivalent characterizations.

Lemma 4.10 Let p: E ¥ B be the projection of an S'-bundle over a
connected nite complex B. Then the following conditions are equivalent:

(1) is induced from an S'-bundle over K( (B);1) via cg;
(2) for each map :S? ¥ B the induced bundle is trivial;
(3) the induced epimorphism p : 1(E) ¥ 1(B) has in nite cyclic kernel.

If these conditions hold then c¢( ) =cg , where c( ) is the characteristic class
of in H%(B;ZY) and is the class of the extension of fundamental groups
in H2( 1(B);Z%) = HZ(K( 1(B);1);Z"%), where w = wy( ).
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Proof Condition (1) implies condition (2) as for any such map  the com-
posite cg is nullhomotopic. Conversely, as we may construct K( 1(B);1) by
adjoining cells of dimension 3 to B condition (2) implies that we may extend

over the 3-cells, and as S-bundles over S" are trivial for all n > 2 we may
then extend over the whole of K( 1(B);1), so that (2) implies (1). The equiv-
alence of (2) and (3) follows on observing that (3) holds if and only if @ =0
for all such , where @ is the connecting map from »(B) to 1(S?') in the ex-
act sequence of homotopy for , and on comparing this with the corresponding
sequence for

As the natural map from the set of S*-bundles over K( ;1) with w; = w (which
are classi ed by H2(K( ;1);Z%)) to the set of extensions of by Z with

acting via w (which are classi ed by H?( ;Z"™)) which sends a bundle to the
extension of fundamental groups is an isomorphism we have ¢( ) =cg( ). D

If N is a closed 3-manifold which has no summands of type S S2 or S1~S?
(i.e., if 1(N) has no in nite cyclic free factor) then every S!-bundle over N
with w = 0 restricts to a trivial bundle over any map from S? to N. For if s
such a bundle, with characteristic class ¢( ) in H?(N;Z), and :S? I N is
any map then (c( )N[S?D= ( c()\[S?D=c()\ [S?]=0, as the
Hurewicz homomorphism is trivial for such N. Since is an isomorphism in
degree O it follows that ¢c( ) =0 and so is trivial. (A similar argument
applies for bundles with w & 0, provided the induced 2-fold covering space N"
has no summands of type S S2 or S1~52))

On the other hand, if is the Hopf bration the bundle with total space S* S3,
base S S? and projection idg: has nontrivial pullback over any essential
map from S? to S' S?, and is not induced from any bundle over K(Z;1).
Moreover, S S2? s a 2-fold covering space of RP3]RP?3, and so the above
hypothesis on summands of N is not stable under passage to 2-fold coverings
(corresponding to a homomorphism w from ;(N) to Z=27).

Theorem 4.11 Let M bea nite PD4-complex and N a nite P D3-complex
whose fundamental group is torsion free but not free. Then M is homotopy
equivalent to the total space of an S*-bundle over N which satis es the condi-
tions of Lemma 4:10 if and only if

@ M)=0;

(2) thereis an epimorphismy: = (M) ¥ = ;(N) with Ker(y) =Z;

B) wi(M) = (wi(N)+w)y, where w: ¥ Z=27 = Aut(Ker(y)) is

determined by the action of on Ker(y) induced by conjugation in ;
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(4) ki(M) =y ki(N) (and so P2(M) * P2(N) ¢ ;1) K( 1 D))

(5) fm [M] = G(fn [N]) in Hg(Po(M); ZW1 M)y where G is the Gysin
homomorphism in degree 3.

If these conditions hold then M has minimal Euler characteristic for its funda-
mental group, i.e. q( ) =0.

Remark The rst three conditions and Poincare duality imply that (M) =
y 2(N), the Z[ ]-module with the same underlying group as >(N) and with
Z[ ]-action determined by the homomorphism y.

Proof Since these conditions are homotopy invariant and hold if M is the
total space of such a bundle, they are necessary. Suppose conversely that they
hold. As is torsion free N is the connected sum of a 3-manifold with free
fundamental group and some aspherical P D3-complexes [Tu90]. As is not free
there is at least one aspherical summand. Hence c:d: = 3 and Hs(cn; 22 (ND)
is @ monomorphism.

Let p(y) : K( ;1) ¥ K( ;1) be the S'-bundle corresponding to y and let
E=N k¢ K( ;1) be the total space of the S1-bundle over N induced by
the classifying map cy : N ¥ K( ;1). The bundle map covering cy is the
classifying map ce. Then (E) = = 1(M), wi(E) = (Wi(N) +w)y =
wi(M), as maps from to Z=2Z,and (E) =0 = (M), by conditions (1)
and (3). The maps cy and ceg induce a homomorphism between the Gysin
sequences of the S!-bundles. Since N and  have cohomological dimension 3
the Gysin homomorphisms in degree 3 are isomorphisms. Hence Ha(cg; ZW1(E))
is a monomorphism, and so a fortiori Hy(fg;Z"(®) is also a monomorphism.

Since (M) =0 and f)( ) = 0, by Theorem 2.3, part (3) of Theorem 3.4
implies that (M) = H2( ;Z[ ]). It follows from conditions (2) and (3) and
the LHSSS that (M) = 2(E) =y 2(N) as Z[ ]-modules. Conditions (4)
and (5) then give us a map (¢;cm) from M to Po(E) = P2(N) (.1 K( ;1)
such that (¢;cpm) [M] = T [E]. Hence M is homotopy equivalent to E, by
Theorem 3.8.

The nal assertion now follows from part (1) of Theorem 3.4. ]
As »(N) is a projective Z[ ]-module, by Theorem 2.18, it is homologically
trivial and so Hq( ;y 2(N) CzMM)) = 0 if ¢ 2. Hence it follows

from the spectral sequence for cp,(v) that Ha(P2(M); ZV2(M)) maps onto
Ha( ;ZVrM)) | with kernel isomorphic to Ho( ;T( 2(M))) CZ2V2M)) where
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F( 2(M)) = Hy(K( 2(M); 2);Z) is Whitehead’s universal quadratic construc-
tionon (M) (see Chapter | of [Ba’]). This suggests that there may be another
formulation of the theorem in terms of conditions (1-3), together with some in-
formation on ki(M) and the intersection pairing on >(M). If N is aspherical
conditions (4) and (5) are vacuous or redundant.

Condition (4) is vacuous if is a free group, for then c:d: 2. In this
case the Hurewicz homomorphism from 3(N) to Hz(N;Z":M)) js 0, and so
Hz(fn; Z%+(MN)) is a monomorphism. The argument of the theorem would then
extend if the Gysin map in degree 3 for the bundle P,(E) ¥ P,(N) were a
monomorphism. If = 1 then M is orientable, = Z and (M) = 0, so
M > S® S, In general, if the restriction on is removed it is not clear that
there should be a degree 1 map from M to such a bundle space E.

It would be of interest to have a theorem with hypotheses involving only M,
without reference to a model N. There is such a result in the aspherical case.

Theorem 4.12 A nite PDg4-complex M is homotopy equivalent to the total
space of an S*-bundle over an aspherical P D3-complex if and only if (M) =0
and = 1(M) has an in nite cyclic normal subgroup A such that =A has
one end and nite cohomological dimension.

Proof The conditions are clearly necessary. Conversely, suppose that they
hold. Since =A has one end HS( =A;Z[ =A]) =0 for s 1 and so an LHSSS
calculation gives HY( ;Z[ ) =0 for t 2. Moreover f)( ) = 0, by Theorem
2.3. Hence M is aspherical and is a P D4-group, by Corollary 3.5.2. Since A
is FP4 and c:d: =A < 1 the quotient =A is a P D3-group, by Theorem 9.11
of [Bi]. Therefore M is homotopy equivalent to the total space of an S*-bundle
over the P D3-complex K( =A;1). O

Note that a nitely generated torsion free group has one end if and only if it is
indecomposable as a free product and is neither in nite cyclic nor trivial.

In general, if M is homotopy equivalent to the total space of an S'-bundle
over some 3-manifold then (M) =0 and (M) has an in nite cyclic normal
subgroup A such that 31(M)=A is virtually of nite cohomological dimension.
Do these conditions characterize such homotopy types?
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Chapter 5

Surface bundles

In this chapter we shall show that a closed 4-manifold M is homotopy equiv-
alent to the total space of a bre bundle with base and bre closed surfaces if
and only if the obviously necessary conditions on the Euler characteristic and
fundamental group hold. When the base is S? we need also conditions on the
characteristic classes of M, and when the base is RP? our results are incom-
plete. We shall defer consideration of bundles over RP? with bre T or Kb
and @ & 0 to Chapter 11, and those with bre S2 or RP? to Chapter 12.

5.1 Some general results

If B, E and F are connected nite complexes and p: E ¥ B is a Hurewicz
bration with bre homotopy equivalent to F then (E)= (B) (F) and the
long exact sequence of homotopy gives an exact sequence

2B) ¥ 4(F) Y 4(E)Y (B)Y1

in which the image of »(B) under the connecting homomorphism @ is in the
centre of 1(F). (See page 51 of [G068].) These conditions are clearly homotopy
invariant.

Hurewicz brations with base B and bre X are classi ed by homotopy classes
of maps from B to the Milgram classifying space BE(X), where E(X) is the
monoid of all self homotopy equivalences of X, with the compact-open topology
[Mi67]. If X has been given a base point the evaluation map from E(X) to
X is a Hurewicz bration with bre the subspace (and submonoid) Eq(X) of
base point preserving self homotopy equivalences [Go068].

Let T and Kb denote the torus and Klein bottle, respectively.

Lemma 5.1 Let F be an aspherical closed surface and B a closed smooth
manifold. There are natural bijections from the set of isomorphism classes of
smooth F -bundles over B to the set of bre homotopy egquivalence classes of
Hurewicz brations with bre F over B and to the set []HZ(B; 1(F) ),
where the union is over conjugacy classes of homomorphisms : (B) X
Out( 1(F)) and 1(F) is the Z[ 1(F)]-module determined by
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90 Chapter 5: Surface bundles

Proof If 1(F) = 1 the identity components of Diff(F) and E(F) are
contractible [EE69]. Now every automorphism of 1(F) is realizable by a dif-
feomorphism and homotopy implies isotopy for self di eomorphisms of surfaces.
(See Chapter V of [ZVC].) Therefore o(Diff(F)) = o(E(F)) = Out( 1(F)),
and the inclusion of Diff(F) into E(F) is a homotopy equivalence. Hence
BDiff(F) * BE(F) * K(Out( 1(F);1), so smooth F-bundles over B and
Hurewicz brations with bre F over B are classi ed by the (unbased) homo-
topy set

[B; K(Out( 1(F);1))] = Hom( 1(B); Out( 1(F)))=

where « UYifthereisan 2 Out( 1(F)) such that °(b) = (b) ! for all
b2 1(B).

If 1(F)&1then F =T or Kb. Left multiplication by T on itself induces
homotopy equivalences from T to the identity components of Diff(T) and
E(T). (Similarly, the standard action of S on Kb induces homotopy equiv-
alences from S! to the identity components of Diff(Kb) and E(Kb). See
Theorem 111.2 of [Go65].) Let : GL(2;Z) ¥ Aut(T) Diff(T) be the
standard linear action. Then the natural maps from the semidirect product
T GL(2;Z) to Diff(T) and to E(T) are homotopy equivalences. There-
fore BDIiff(T) is a K(Z?;2)- bration over K(GL(2;Z);1). It follows that
T -bundles over B are classi ed by two invariants: a conjugacy class of ho-
momorphisms : 1(B) ¥ GL(2;Z) together with a cohomology class in
H2(B;(Z?) ). A similar argument applies if F = Kb. O

Theorem 5.2 Let M be a PDy4-complex and B and F aspherical closed
surfaces. Then M is homotopy equivalent to the total space of an F -bundle
over B ifandonly if (M)= (B) (F) and (M) is an extension of ;(B)
by 1(F). Moreover every extension of 1(B) by 1(F) is realized by some
surface bundle, which is determined up to isomorphism by the extension.

Proof The conditions are clearly necessary. Suppose that they hold. If

1(F) = 1 each homomorphism : 1(B) ¥ Out( 1(F)) corresponds to
an unique equivalence class of extensions of 1(B) by 1(F), by Proposition
11.4.21 of [Ro]. Hence there is an F-bundle p: E ¥ B with 1(E) = 1(M)
realizing the extension, and p is unique up to bundle isomorphism. If F =T
then every homomorphism : 1(B) ¥ GL(2;Z) is realizable by an extension
(for instance, the semidirect product Z2 1(B)) and the extensions realizing

are classi ed up to equivalence by H?( 1(B);(Z?) ). As B is aspherical the
natural map from bundles to group extensions is a bijection. Similar arguments
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apply if F = Kb. In all cases the bundle space E is aspherical, and so 1(M)
isan FF PDg-group. Hence M ~ E, by Corollary 3.5.1. O

Such extensions (with (F) < 0) were shown to be realizable by bundles in
[Jo79].

5.2 Bundles with base and bre aspherical surfaces

In many cases the group (M) determines the bundle up to di eomorphism
of its base. Lemma 5.3 and Theorems 5.4 and 5.5 are based on [J094].

Lemma 5.3 Let G; and G, be groups with no nontrivial abelian normal
subgroup. If H is a normal subgroup of G = G; G, which contains no
nontrivial direct product then either H G; flgorH flg G;.

Proof Let P; be the projection of H onto Gj, for i = 1;2. If (h;h°) 2 H,
g1 2 Gy and g» 2 G, then ([h;g1];1) = [(h; h"); (g1;1)] and (1;[h%; go]) are in
H. Hence [P1;P1] [P2;P2] H. Therefore either P, or P, is abelian, and so
is trivial, since P;j is normal in Gj, for i =1;2. O

Theorem 5.4 Let be a group with a normal subgroup K such that K and
=K are P D;-groups with trivial centres.

(1) If C (K)=1and K; isa nitely generated normal subgroup of then
C (K1) =1 also.

(2) The index [ : KC (K)] is nite if and only if is virtually a direct
product of P D;-groups.

Proof (1) Letz2 C (Ky). If Ki K then [K:K;]< 1 and K; =1.
Let M = [K : Ki]!. Then f(k) = k~1zMkz™ is in Ky for all k in K. Now
f(kky) = kl_lf(k)kl and also f(kky) = f(kkik™1k) = (k) (since K; is a
normal subgroup centralized by z), for all k in K and k; in K;. Hence f(k) is
central in Ky, and so f(k) =1 for all k in K. Thus zM centralizes K. Since

is torsion free we must have z = 1. Otherwise the image of K; under the
projection p: ¥ =K is a nontrivial nitely generated normal subgroup of

=K, and so has trivial centralizer. Hence p(z) = 1. Now [K;K31] K\K; and
so K\ K;j & 1, for otherwise K; C (K). Since z centralizes the nontrivial
normal subgroup K \ K; in K we must again have z = 1.
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(2) Since K has trivial centre KC (K) =K C (K) and so the condition is
necessary. Suppose that f:G; G, ¥ is an isomorphism onto a subgroup
of nite index, where G; and G, are PDy-groups. Let L=K\Xf(G; G5).
Then [K:L]< A andso L is also a PDy-group, and is normal in f(G; Gy).
We may assume that L  f(G1), by Lemma 5.3. Then f(Gi)=L is nite
and is isomorphic to a subgroup of f(G; Gy)=K =K, so L = f(Gy).
Now f(Gz) normalizes K and centralizes L, and [K : L] < 1. Hence f(G>)
has a subgroup of nite index which centralizes K, as in part (1). Hence
[ KC (K)]<1. O

It follows immediately that if and K are as in the theorem whether
1) C(K)yeland [ :KC (K)]=1;
2 [ :KC (K)<X;o0r

® CK)=1
depends only on  and not on the subgroup K. In [J094] these cases are labeled
as types I, Il and 111, respectively. (In terms of the action: if Im( ) is in nite

and Ker( ) & 1 then isof typel, if Im( ) is nite then is of type Il, and
if is injective then is of type IIl.)

Theorem 5.5 Let be a group with normal subgroups K and Kj such that
K, Ki, =K and =Kj are PD,-groups with trivial centres. If C (K) & 1
but [ : KC (K)] = 1 then K; = K is unique. If [ : KC (K)] < 1 then
either K; = K or Ky \ K =1; in the latter case K and K; are the only such
normal subgroups which are P D,-groups with torsion free quotients.

Proof Letp: ¥ =K be the quotient epimorphism. Then p(C (K)) is a
nontrivial normal subgroup of =K, since K\ C (K) = K = 1. Suppose

that Ki \ K & 1. Let = K; \ (KC (K)). Then contains K; \ K,
and 6 C (K),since KI1\K\C (K)=K;\ K =1. Since is normal
in KC (K) = K C (K) we must have K1, by Lemma 5.3. Hence

K1 \ K. Hence p(Ki) \ p(C (K)) = 1, and so p(K1) centralizes the
nontrivial normal subgroup p(C (K)) in =K. Therefore Ky K and so
[K:Ki]< 4. Since =Kj is torsion free we must have K; = K.

If Ki\ K =1 then [K;K;] = 1 (since each subgroup is normal in ) so
Ki C(K)and[ : KC (K)] [ =K :p(Ky] < 1. Suppose K, is a
normal subgroup of  which is a PD,-group with K, = 1 and such that
=K is torsion free and K; \ K = 1. Then H = K, \ (KK3) is normal in
KK; =K Kjand [Ky; : Hl < A, s0 H isa PDy-group with H =1
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and H\ K = 1. The projection of H to K; is nontrivial since H\ K = 1.
Therefore H Kj, by Lemma 5.3, and so K; K;. Hence K; = Kj. O

Corollary 5.5.1 [Jo93] Let and be automorphisms of , and sup-
pose that (K)\NK =1. Then (K) =K or (K), andso Aut(K K) =
Aut(K)?~(Z=22).

We shall obtain a somewhat weaker result for groups of type Il as a corollary
of the next theorem.

Theorem 5.6 Let be a group with normal subgroups K and Kj such that
K, K; and =K are PD,-groups, =Kj istorsion freeand ( =K) < 0. Then
either K=K or Ki\K=1and =K Kjor (Kp)< (=K).

Proof Let p : ¥ =K be the quotient epimorphism. If K; K then
K1 = K, as in Theorem 5.5. Otherwise p(Ki1) has nite index in =K and so
p(K1) is also a P D,-group. As the minimum number of generators of a P D5-
group G is 1(G;F,), we have (Kj) (P(K1) ( =K). We may assume
that (Kj) ( =K). Hence (K1) = ( =K) andso pjk, is an epimorphism.
Therefore K; and =K have the same orientation type, by the nondegeneracy
of Poincare duality with coe cients F, and the Wu relation w; [ x = x? for
all x 2 HY(G;F,) and PD,-groups G. Hence K; = =K. Since P D,-groups
are hop an pjk, is an isomorphism. Hence [K;Kj] K\XK; =1 and so

=KK; =K =K. O

Corollary 5.6.1 [J098] The group has only nitely many such subgroups
K.

Proof We may assume given (K) <0 and that is of type IIl. If is an

epimorphism from  to Z= ( )Z such that (K) = 0 then (Ker( )=K)
(K). Since is not a product K is the only such subgroup of Ker( ). Since
(K) divides () and Hom( ;Z= ( )Z) is nite the corollary follows. O

The next two corollaries follow by elementary arithmetic.

Corollary 5.6.2 If (K)=0or (K)=-1and =Kj isa PD,-group then
either K=K or =K Kj. O

Corollary 5.6.3 If K and =K are PDs-groups, ( =K) <0, and (K)?
( ) then either K is the unique such subgroupor =K K. O
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Corollary 5.6.4 Let M and M" be the total spaces of bundles and ! with
the same base B and bre F, where B and F are aspherical closed surfaces
such that (B) < (F). Then M?is di eomorphic to M via a bre-preserving
di eomorphism if and only if (M%) = ((M). O

Compare the statement of Melvin’s Theorem on total spaces of S2-bundles
(Theorem 5.13 below.)

We can often recognise total spaces of aspherical surface bundles under weaker
hypotheses on the fundamental group.

Theorem 5.7 Let M be a PDg4-complex with fundamental group . Then
the following conditions are equivalent:

(1) M is homotopy equivalent to the total space of a bundle with base and
bre aspherical closed surfaces:

2) has an FP, normal subgroup K such that =K is a P D,-group and

2(M) =0;
3) has a normal subgroup N which is a P D,-group, =N is torsion free
and »(M) =0.

Proof Clearly (1) implies (2) and (3). Conversely they each imply that

has one end and so M is aspherical. If K is an FP, normal subgroup in

and =K is a PD;,-group then K is a PD,-group, by Theorem 1.19. If N
is a normal subgroup which is a P D,-group then an LHSSS argument gives
H2( =N;Z[ =N]) = Z. Hence =N is virtually a P D,-group, by Bowditch’s
Theorem. Since it is torsion free it is a P D,-group and so the theorem follows
from Theorem 5.2. ]

If K =1 we may avoid the di cult theorem of Bowditch here, for then =K
is an extension of C (K) by a subgroup of Out(K), so v:c.d: =K < 1 and
thus =K is virtually a P D;-group, by Theorem 9.11 of [Bi].

Kapovich has given an example of an aspherical closed 4-manifold M such that
1(M) is an extension of a P D,-group by a nitely generated normal subgroup
which is not FP, [Ka98].

Theorem 5.8 Let M be a P D4-complex with fundamental group  and such
that (M) = 0. If has a subnormal subgroup G of in nite index which is
a PD,-group then M is aspherical. If moreover G =1 there is a subnormal
chain G<J <K suchthat [ :K]< 1 and K=J =J=G =Z.
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5.2 Bundles with base and bre aspherical surfaces 95

Proof Let G = Gy < G; < :::G,h = be a subnormal chain of minimal
length. Let j = minfi j [Gj+1 : G] = 1g. Then [G; : G] < 1, s0 Gj is FP.
It is easily seen that the theorem holds for G if it holds for Gj. Thus we may
assume that [G1 : G] = .. A nite induction up the subnormal chain using
the LHSSS gives H3( ;Z[ ]) =0 for s 2. Now 52)(61) = 0, since G is

nitely generated and [G; : G] = A [Ga00]. (This also can be deduced from
Theorem 2.2 and the fact that Out(G) is virtually torsion free.) Inducting up

the subnormal chain gives 52)( ) =0 and so M is aspherical, by Theorem 3.4.

If G < G are two normal subgroups of G; with cohomological dimension 2
then G=G is locally nite, by Theorem 8.2 of [Bi]. Hence G=G is nite, since
(G) = [H : G] (H) for any nitely generated subgroup H such that G
H G. Moreover if G is normal in J then [J : N3j(G)] < A, since G has only

nitely many subgroups of index [G : G].

Therefore we may assume that G is maximal among such subgroups of G;. Let
n be an element of G, such that nGn™! & G, and let H = G:nGn~!. Then
G is normal in H and H is normal in G, so [H : G] = 1 and c:d:H = 3.
Moreover H is FP and HS(H;Z[H]) =0 for s 2, so either Gy=H is locally

nite or ¢:d:G; > c:d:H, by Theorem 8.2 of [Bi]. If Gi=H is locally nite but
not nite then we again have c:d:G; > c:d:H, by Theorem 3.3 of [GS81].

If ccd:Gy =4 then|[ :N (G)] [ :Gi] < . An LHSSS argument gives
H2(N (G)=G;Z[N (G)=G]) = Z. Hence N (G)=G is virtually a P D,-group,
by [B099]. Therefore  has a normal subgroup K N (G) such that [
K] < 1 and K=G is a PD,-group of orientable type. Then (G) (K=G) =
[ K] ()=0andso (K=G)=0,since (G)<0. Thus K=G = Z?, and
there are clearly many possibilities for J.

If ¢:d:G; = 3 then G;=H is locally nite, and hence is nite, by Theorem
3.3 of [GS81]. Therefore G; is FP and HS(G1;Z[G1]) = 0 for s 2. Let
k = minfi j [Gj+1 : G1] = 1g. Then HS5(Gk;W) = 0 for s 3 and any
free Z[Gk]-module W . Hence ¢:d:Gx =4 and so [ : Gk] < A, by Strebel’s
Theorem. An LHS spectral sequence corner argument then shows that Gy=Gy—1
has 2 ends and H3(Gy—1);Z[Gk-1]) = Z. Thus Gy_; is a P D3-group, and
therefore so is G;. By a similar argument, G;=G has two ends also. The
theorem follows easily. O

Corollary 5.8.1 If G=1and Gisnormalin then M hasa nite covering
space which is homotopy equivalent to the total space of a surface bundle over
T.
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Proof Since G is normal in and M is aspherical M has a nite covering
which is homotopy equivalent to a K(G; 1)-bundle over an aspherical orientable
surface, as in Theorem 5.7. Since (M) = 0 the base must be T. O

If =G is virtually Z? then it has a subgroup of index at most 6 which maps
onto Z%2 or Z _1Z.

Let G be a PDy-group such that G = 1. Let be an automorphism of G
whose class in Out(G) has in nite orderandlet :G ¥ Z be an epimorphism.
Let =(G Z) Zwhere (g;n)=((9); (@+n)forallg2Gand n2Z.
Then G is subnormal in  but this group is not virtually the group of a surface
bundle over a surface.

H)_ has a subnormal subgroup G which is a PDio-group with G &pl then

G = Z? issubnormal in  and hence contained in © . Inthiscase h(" ) 2
and so either Theorem 8.1 or Theorem 9.2 applies, to show that M has a nite
covering space which is homotopy equivalent to the total space of a T -bundle
over an aspherical closed surface.

5.3 Bundles with aspherical base and bre S? or RP?

Let E*(S?) denote the connected component of idsz2 in E(S?), i.e., the sub-
monoid of degree 1 maps. The connected component of idsz in Eq(S?) may be
identi ed with the double loop space Q?S?2.

Lemma 5.9 Let X be a nite 2-complex. Then there are natural bijections
[X;BO@®)] = [X;BE(S)] = HI(X;F2) H?(X;F2).

Proof As a self homotopy equivalence of a sphere is homotopic to the identity
if and only if it has degree +1 the inclusion of O(3) into E(S?) is bijective
on components. Evaluation of a self map of S? at the basepoint determines

brations of SO(3) and E*(S?) over S?, with bre SO(2) and Q?S?, respec-
tively, and the map of bres induces an isomorphism on 1. On comparing the
exact sequences of homotopy for these brations we see that the inclusion of
SO(3) in E*(S?) also induces an isomorphism on 1. Since the Stiefel-Whitney
classes are de ned for any spherical bration and w; and w, are nontrivial on
suitable S2-bundles over St and S?, respectively, the inclusion of BO(3) into
BE(S?) and the map (w1;w.) : BE(S?) ¥ K(Z=2Z;1) K(Z=2Z;2) induces
isomorphisms on ; for i 2. The lemma follows easily. O
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Thus there is a natural 1-1 correspondance between S2-bundles and spherical

brations over such complexes, and any such bundle is determined up to
isomorphism over X by its total Stiefel-Whitney class w( ) = 1+wy( )+wz( ).
(From another point of view: if wi( ) =wy( %) there is an isomorphism of the
restrictions of and ° over the 1-skeleton X3, The di erence wa( ) —wa( %)
is the obstruction to extending any such isomorphism over the 2-skeleton.)

Theorem 5.10 Let M be a PDg4-complex and B an aspherical closed surface.
Then the following conditions are equivalent:

1) 1M)= 1(B)and (M)=2 (B);
2 1(M)= 1(B) and W ~ s,
(3) M is homotopy equivalent to the total space of an S?-bundle over B.

Proof If (1) holds then H3(W;Z) = Hy(W;Z) = 0, as 1(M) has one end,
and (M) = H2( ;Z[ ]) = Z, by Theorem 3.12. Hence W s homotopy
equivalent to S2. If (2) holds we may assume that there is a Hurewicz bra-
tion h : M ¥ B which induces an isomorphism of fundamental groups. As
the homotopy bre of h is W, Lemma 5.9 implies that h is bre homotopy
equivalent to the projection of an S?-bundle over B. Clearly (3) implies the
other conditions. ]

We shall summarize some of the key properties of the Stiefel-Whitney classes
of such bundles in the following lemma.

Lemma5.11 Let bean S?-bundle over a closed surface B, with total space
M and projection p: M ¥ B. Then

D) is trivial if and only if w(M) =p w(B);
2) 1(M)= 1(B) actson (M) by multiplication by wi( );
(3) the intersection form on Hy(M; F») is even if and only if wy( ) =0;

(@) if q:B' ¥ B is a 2-fold covering map with connected domain B’ then
w2(q ) =0.

Proof (1) Applying the Whitney sum formula and naturality to the tangent
bundle of the B23-bundle associated to  gives w(M) =p w(B) [p w( ). Since
p is a 2-connected map the induced homomorphism p is injective in degrees

2 and so w(M) = p w(B) if and only if w( ) = 1. By Lemma 5.9 this is so
if and only if s trivial, since B is 2-dimensional.
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(2) Itissu cient to consider the restriction of over loops in B, where the
result is clear.

(3) By Poincare duality, the intersection form is even if and only if the Wu
class vo(M) = wy(M) + w1(M)? is 0. Now

Va(M) =p (w1 (B) +wi( ))? +p (Wa(B) +wi(B) [wi( ) +wz())
=p Wa(B) +wi(B) [wi( ) +wo( ) +wy(B)* +wy( )?)
=p (wa2());

since wi(B) [ = 2 and w1(B)? = w»(B), by the Wu relations for B. Hence
Vvo(M) =0 if and only if wo( ) =0, as p is injective in degree 2.

(4) We have q (w2(q ) \[B’) =g ((@ wz2( )) \[B]) = w2( )\ q [B], by the
projection formula. Since g has degree 2 this is 0, and since g is an isomorphism
in degree 0 we nd w»o(q )\ [BY = 0. Therefore wo(q ) = 0, by Poincare
duality for B?. O

Melvin has determined criteria for the total spaces of S2-bundles over a compact
surface to be di eomorphic, in terms of their Stiefel-Whitney classes. We shall
give an alternative argument for the cases with aspherical base.

Lemma 5.12 Let B be a closed surface and w be the Poincare dual of w;(B).
If u;y and u, are elements of H;(B;F,) — f0; wg such that ui:u; = uy:u, then
there is a homeomorphism f : B ¥ B which is a composite of Dehn twists
about two-sided essential simple closed curves and such that f (u;) = u».

Proof For simplicity of notation, we shall use the same symbol for a simple
closed curve u on B and its homology class in Hy(B;F,). The curve u is
two-sided if and only if u:u = 0. In that case we shall let ¢, denote the
automorphism of Hy(B;F,) induced by a Dehn twist about u. Note also that
u:u = uw:w and ¢y (u) =u+ (u:v)v for all u and two-sided v in Hy(B; F>).

If B is orientable it is well known that the group of isometries of the intersection
form acts transitively on H1(B;F,), and is generated by the automorphisms
cy. Thus the claim is true in this case.

If wi(B)? & 0 then B = RP?2]T,, where Ty is orientable. If uj:u; = uziup; =0
then u; and u, are represented by simple closed curves in Tqy, and so are
related by a homeomorphism which is the identity on the RP? summand. If
Up:u; = Up:up =1 let vi = uj +w. Then vj:vi = 0 and this case follows from
the earlier one.
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Suppose nally that wy(B) 6 0 but w1(B)? = 0; equivalently, that B = Kb]T,,
where Tg is orientable. Let fw;zg be a basis for the homology of the Kb
summand. In this case w is represented by a 2-sided curve. If uj:u; = u:up; =0
and ui:z = uy:z = 0 then u; and u, are represented by simple closed curves
in Tg, and so are related by a homeomorphism which is the identity on the Kb
summand. The claim then follows if u:z =1 for u = u; or u,, since we then
have cy(u):cw(u) = cw(u):iz =0. If u:u & 0 and u:z =0 then (u+2):(u+z) =0
and cy+z (W) =z. If LLUE 0, u:z& 0 and u & z then cy+z+wCw(u) =2z. Thus
if uj:uy = u:up, = 1 both u; and u, are related to z. Thus in all cases the
claim is true. ]

Theorem 5.13 (Melvin) Let and ° be two S?-bundles over an aspherical
closed surface B. Then the following conditions are equivalent:

(1) there is a di eomorphism f:B ¥ B suchthat =f !;
(2) the total spaces E( ) and E( ) are di eomorphic; and

() wi( ) =w( %) if wi( ) =0 or wi(B), wi( ) [wi(B) =wi( ") [wi(B)
and wa( ) = wa( ).

Proof Clearly (1) implies (2). A di eomorphism h : E ¥ E' induces an
isomorphism on fundamental groups; hence there is a di eomorphism f:B 1
B such that fp is homotopic to p’h. Now h w(E") = w(E) and f w(B) =
w(B). Hence p f w( ) =pw()andsow(f " =Ffw(?=w(). Thus
f "= | by Theorem 5.10, and so (2) implies (1).

If (1) holds then  w( %) = w( ). Since wi(B) = vi(B) is the character-
istic element for the cup product pairing from H(B;F,) to H?(B;F,) and
H2(f;F2) is the identity £ wy(B) = wi(B), wi( ) [wi(B) = wi( ?) [w1(B)
and wa( ) = wo( 9. Hence(1) implies (3).

If wi( ) [wi(B) = wi( ") [wi(B) and wi( ) and wy( ') are neither 0 nor
w1 (B) then there is a di eomorphism f : B ¥ B such that f wi( ) =wy(),
by Lemma 5.12 (applied to the Poincare dual homology classes). Hence (3)
implies (1). ]

Corollary 5.13.1 There are 4 di eomorphism classes of S?-bundle spaces if
B is orientable and (B) 0, 6 if B = Kb and 8 if B is nonorientable and
(B) <O0. ]

See [Me84] for a more geometric argument, which applies also to S2-bundles
over surfaces with nonempty boundary. The theorem holds also when B = S?
or RP?2; there are 2 such bundles over S? and 4 over RP2. (See Chapter 12.)
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Theorem 5.14 Let M be a PD4-complex with fundamental group . The
following are equivalent:

(1) M has a covering space of degree 2 which is homotopy equivalent to
the total space of an S2-bundle over an aspherical closed surface;

(2) the universal covering space N s homotopy equivalent to S?;
B 6&land (M)=Z.

If these conditions hold the kernel K of the natural action of on (M) is a
P D,-group.

Proof Clearly (1) implies (2) and (2) implies (3). Suppose that (3) holds.
If is nite and (M) = Z then N > CP2, and so admits no nontrivial
free group actions, by the Lefshetz xed point theorem. Hence  must be
in nite. Then Ho(W;2) = Z, Hy(W;2Z) = 0 and Ho(W;2Z) = (M), while
Ha(MT; Z) = H1(;Z[ 1) and Ha(MT;Z) = 0. Now Homg 1( 2(M);Z[ ]) =0,
since is in nite and (M) = Z. Therefore H%( ;Z[ ]) is in nite cyclic,
by Lemma 3.3, and so s virtually a P D,-group, by Bowditch’s Theorem.
Hence H3(IW; 7Z) =0 and so W - S2 I1fCisa nite cyclic subgroup of K
then Hp4+3(C; Z) = HL(C; HZ(M:; 7)) forall n 2, by Lemma 2.10. Therefore
C must be trivial, so K is torsion free. Hence K is a P D,-group and (1) now
follows from Theorem 5.10. O

A straightfoward Mayer-Vietoris argument may be used to show directly that
if H2( ;Z[ J) = Z then  has one end.

Lemma 5.15 Let X bea nite 2-complex. Then there are natural bijections
[X;BSO(3)] = [X; BE(RP?)] = H*(X; F2).

Proof Let (1;0;0) and [1 : 0 : 0] be the base points for S and RP? re-
spectively. A based self homotopy equivalence f of RP? lifts to a based self
homotopy equivalence F* of S2. If T is based homotopic to the identity then
deg(f*) = 1. Conversely, any based self homotopy equivalence is based homo-
topic to a map which is the identity on RP?; if moreover deg(f*) = 1 then
this map is the identity on the normal bundle and it quickly follows that f
is based homotopic to the identity. Thus Eq(RP?) has two components. The
homeomorphism g de ned by g([x:y:z]) =[x:y:—2z] is isotopic to the iden-
tity (rotate in the (Xx;y)-coordinates). However deg(g*) = —1. It follows that
E(RP?) is connected. As every self homotopy equivalence of RP? is covered
by a degree 1 self map of S?, there is a natural map from E(RP?) to E*(S?).
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We may use obstruction theory to show that 1(Eq(RP?)) has order 2. Hence
1(E(RP?)) has order at most 4. Suppose that there were a homotopy f;
through self maps of RP? with fy = f; = idgp2 and such that the loop f( )
is essential, where is a basepoint. Let F be the map from RP? S! to
RP? determined by F(p;t) = fi(p), and let and  be the generators of
H1(RP?;F,) and H1(S!;F,), respectively. Then F = [I3 1 [Jand so
(F )3 = 2 [which is nonzero, contradicting 2 = 0. Thus there can be
no such homotopy, and so the homomorphism from {(E(RP?)) to 1(RP?)
induced by the evaluation map must be trivial. It then follows from the exact
sequence of homotopy for this evaluation map that the order of 1(E(RP?)) is
at most 2. The group SO(3) = O(3)=( 1) acts isometrically on RP?. As the
composite of the maps on 1 induced by the inclusions SO(3) E(RP?)
E*(S?) is an isomorphism of groups of order 2 the rst map also induces an
isomorphism. It follows as in Lemma 5.9 that there are natural bijections
[X;BS0O(3)] = [X;BE(RP?)] = H?(X;F,). O

Thus there is a natural 1-1 correspondance between RP ?-bundles and orientable
spherical brations over such complexes. The RP ?-bundle corresponding to an
orientable S?-bundle is the quotient by the brewise antipodal involution. In
particular, there are two RP ?-bundles over each closed aspherical surface.

Theorem 5.16 Let M be a P D4-complex and B an aspherical closed surface.
Then M is homotopy equivalent to the total space of an RP2-bundle over B
if and only if (M) = 1(B) (Z=2Z) and (M) = (B).

Proof If E is the total space of an RP?-bundle over B, with projection p,
then (E) = (B) and the long exact sequence of homotopy gives a short
exact sequence 1 ¥ z=27 ¥ 4(E) ® ,(B) ¥ 1. Since the bre has a
product neighbourhood, j wi(E) = wy(RP?), where j : RP? ¥ E is the
inclusion of the bre over the basepoint of B, and so wi(E) considered as a
homomorphism from ;(E) to Z=2Z splits the injection j . Therefore ((E) =

1(B) (Z=2Z) and so the conditions are necessary, as they are clearly invariant
under homotopy.

Suppose that they hold, and let w: (M) ¥ Z=2Z be the projection onto the
Z=2Z factor. Then the covering space associated with the kernel of w satis es
the hypotheses of Theorem 5.10 and so M > S2. Therefore the homotopy bre
of the map h from M to B inducing the projection of (M) onto :(B) is
homotopy equivalent to RP2. The map h is bre homotopy equivalent to the
projection of an RP2-bundle over B, by Lemma 5.15. O
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We may use the above results to re ne some of the conclusions of Theorem 3.9
on P Dg4-complexes with nitely dominated covering spaces.

Theorem 5.17 Let M bea PD4-complex and p: 4 ¥ M a regular covering
map, with covering group G = Aut(p). If the covering space & is nitely
dominated and H?(G;Z[G]) = Z then M has a nite covering space which
is homotopy equivalent to a closed 4-manifold which bres over an aspherical
closed surface.

Proof By Bowditch’s Theorem G is virtually a P D,-group. Therefore as I#
is nitely dominated it is homotopy equivalent to a closed surface, by [Go79].
The result then follows as in Theorems 5.2, 5.10 and 5.16. O

Note that by Theorem 3.11 and the remarks in the paragraph preceding it the
total spaces of such bundles with base an aspherical surface have minimal Euler
characteristic for their fundamental groups (i.e. (M) =q( )).

Can the hypothesis that I# be nitely dominated be replaced by the more alge-
braic hypothesis that the chain complex of the universal cover C (M) be chain
homotopy equivalent over Z[ 1(I#)] to a complex of free Z[ 1(I#)]-modules
which is nitely generated in degrees 2? One might hope to adapt the strat-
egy of Theorem 4.5, by using cup-product with a generator of H?(G; Z[G]) = Z
to relate the equivariant cohomology of 4 to that of M. (See also [Ba80’].)

Theorem 5.18 A PDj4-complex M is homotopy equivalent to the total space
of a surface bundle over T or Kb if and only if = 1(M) is an extension of
Z2 or Z _1Z (respectively) by an FP, normal subgroup K and (M) =0.

Proof The conditions are clearly necessary. If they hold then the covering
space associated to the subgroup K is homotopy equivalent to a closed surface,
by Corollary 4.5.3 together with Corollary 2.12.1, and so the theorem follows
from Theorems 5.2, 5.10 and 5.16. O

In particular, if is the nontrivial extension of Z2 by Z=2Z then q( ) > 0.

5.4 Bundles over S2

Since S? is the union of two discs along a circle, an F-bundle over S2 s
determined by the homotopy class of the clutching function, which is an element
of (Diff(F)).
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Theorem 5.19 Let M be a PDg4-complex with fundamental group  and
F a closed surface. Then M is homotopy equivalent to the total space of an
F -bundle over S? if and only if (M) =2 (F) and

(1) (when (F)<O0and wi(F)=0) = 1(F)and wy(M) =w,(M) =0;
or
(2) (when (F)<Oandwi(F)&0) = 31(F), wi(M) &0 and wp,(M) =

wi(M)? = (cp, Wi (F))?; or

(3 (when F=T) =2Z2and wi(M) =wo,(M)=0,0or =2Z (Z=nZ)
for some n>0 and, if n=1 or 2, wi(M) =0; or

(4) (when F=Kb) =2Z _1Z, wi(M) & 0 and wp(M) = wy(M)? =0,
or has a presentation hx;y j yxy™t = x~1; y?" = 1j for some n > 0,
where wi(M)(x) = 0 and wi(M)(y) =1, and thereisamap p: M ¥ S?
which induces an epimorphism on 3; or

(5) (when F =S2) =1 and the index (M) =0; or

(6) (when F =RP?) =Z=2Z, w;(M) & 0 and there is a class u of in nite
order in H?(M;Z) and such that u? = 0.

Proof Let pe : E ¥ S2? be such a bundle. Then (E) = 2 (F) and
1(E) = 1(F)=@ 2(S?), where Im(@) 1(F) [G068]. The characteristic
classes of E restrict to the characteristic classes of the bre, as it has a product
neighbourhood. As the base is 1-connected E is orientable if and only if the
bre is orientable. Thus the conditions on , and w; are all necessary. We
shall treat the other assertions case by case.

() and (2) If (F) <0 any F-bundle over S? is trivial, by Lemma 5.1. Thus
the conditions are necessary. Conversely, if they hold then cyp is  bre homotopy
equivalent to the projection of an S?-bundle  with base F, by Theorem 5.10.
The conditions on the Stiefel-Whitney classes then imply that w( ) = 1 and
hence that the bundle is trivial, by Lemma 5.11. Therefore M is homotopy
equivalent to S? F.

(3) If @ =0 thereisamap q: E ¥ T which induces an isomorphism of
fundamental groups, and the map (pg;q) : E ¥ S? T is clearly a homotopy
equivalence, so W(E) = 1. Conversely, if (M) =0, =2Z2 and w(M) =1
then M is homotopy equivalent to S? T, by Theorem 5.10 and Lemma 5.11.

If (M)=0and =2Z (Z=nZ) for some n > 0 then the covering space
Mz-,z corresponding to the torsion subgroup Z=nZ is homotopy equivalent
to a lens space L, by Corollary 4.5.3. As observed in Chapter 4 the manifold
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M is homotopy equivalent to the mapping torus of a generator of the group
of covering transformations Aut(M»-,>=M) = Z. Since the generator induces
the identity on 1(L) = Z=nZ it is homotopic to id_, if n > 2. This is also
true if n=1 or 2 and M is orientable. (See Section 29 of [Co].) Therefore M
is homotopy equivalent to L S, which bres over S? via the composition of
the projection to L with the Hopf bration of L over S?. (Hence w(M) =1
in these cases also.)

(4) Asinpart(3),if 1(E)=2Z —1Z = 1(Kb) then E is homotopy equivalent
to S? Kb and so wi(E) & 0 while wo(E) = 0. Conversely, if (M)=0, =

1(Kb), M is nonorientable and wi(M)? = w,(M) = 0 then M is homotopy
equivalent to S> Kb. Suppose now that @ & 0. The homomorphism 3(pg)
induced by the bundle projection is an epimorphism. Conversely, if M satis es
these conditions and q : M* ¥ M s the orientation double cover then M™*
satis es the hypotheses of part (3), and so M = S3. Therefore as 3(p) is onto
the composition of the projection of M onto M with p is essentially the Hopf
map, and so induces isomorphisms on all higher homotopy groups. Hence the
homotopy bre of p is aspherical. As (M) = 0 the fundamental group of the
homotopy bre of p is a torsion free extension of by Z, and so the homotopy

bre must be Kb. As in Theorem 5.2 above the map p is bre homotopy
equivalent to a bundle projection.

(5) There are just two S?-bundles over S?, with total spaces S° S? and
S2~S2 = CP?] — CP?, respectively. Thus the conditions are necessary. If M
satis es these conditions then H2(M;Z) = Z? and there is an element u in
H2(M;Z) which generates an in nite cyclic direct summand and has square
U[Lu=0. Thus u = f i, for some map f : M ¥ S? where i, generates
H2(S?;7Z), by Theorem 8.4.11 of [Sp]. Since u generates a direct summand
there is a homology class z in Hy(M; Z) such that u\z =1, and therefore (by
the Hurewicz theorem) there is a map z : S?> ¥ M such that fz is homotopic
to ids2. The homotopy bre of T is 1-connected and has », = Z, by the long
exact sequence of homotopy. It then follows easily from the spectral sequence
for f that the homotopy bre has the homology of S?. Therefore f is bre
homotopy equivalent to the projection of an S?-bundle over S2.

(6) Since 1(Diff(RP?)) = Z=2Z (see page 21 of [EE69]) there are two RP2-
bundles over S?. Again the conditions are clearly necessary. If they hold then
u=gi, forsomemap g: M ¥ S2 Letq:M* I M be the orientation
double cover and g* =gq. Since Hy(Z=2Z;7Z) = 0 the second homology of M
is spherical. As we may assume u generates an in nite cyclic direct summand
of H2(M;Z) there is a map z = qz* : S?> ¥ M such that gz = g*z* is
homotopic to idsz. Hence the homotopy bre of g* is S?, by case (5). Since
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5.5 Bundles over RP?2 105

the homotopy bre of g has fundamental group Z=2Z and is double covered
by the homotopy bre of g* it is homotopy equivalent to RP?2. It follows as
in Theorem 5.16 that g is bre homotopy equivalent to the projection of an
RP2-bundle over S?2. O

Theorems 5.2, 5.10 and 5.16 may each be rephrased as giving criteria for maps
from M to B to be bre homotopy equivalent to bre bundle projections. With
the hypotheses of Theorem 5.19 (and assuming also that @ =0 if (M) =0)
we may conclude that a map f: M ¥ S? is bre homotopy equivalent to a

bre bundle projection if and only if T i, generates an in nite cyclic direct
summand of H2(M; Z).

Is there a criterion for part (4) which does not refer to 3? The other hypotheses
are not su cient alone. (See Chapter 11.)

It follows from Theorem 5.10 that the conditions on the Stiefel-Whitney classes
are independent of the other conditions when = ;(F). Note also that the
nonorientable S3- and RP 3-bundles over St are not T -bundles over S?, while
if M =CP2]JCP%2then =1and (M)=4but (M)& 0. See Chapter 12
for further information on parts (5) and (6).

5.5 Bundles over RP?

Since RP2 = Mb [ D? is the union of a Mobius band Mb and a disc D?, a
bundle p: E ¥ RP? with bre F is determined by a bundle over Mb which
restricts to a trivial bundle over @Mb, i.e. by a conjugacy class of elements of
order dividing 2 in g(Homeo(F)), together with the class of a gluing map over
@Mb = @D?2 modulo those which extend across D2 or Mb, i.e. an element of a
quotient of ;(Homeo(F)). If F is aspherical o(Homeo(F)) = Out( 1(F)),
while j(Homeo(F)) = 1(F) [Go65].

We may summarize the key properties of the algebraic invariants of such bundles
with F an aspherical closed surface in the following lemma. Let Z be the non-
trivial in nite cyclic Z=2Z-module. The groups H1(Z=2Z;2), H1(Z=2Z;F,)
and H'(RP?;Z) are canonically isomorphic to Z=2Z.

Lemma 5.20 Let p: E ¥ RP? be the projection of an F -bundle, where F is
an aspherical closed surface, and let x be the generator of HY(RP?;Z). Then

@ E= (F);
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2 @( 2(RP?) 1(F) and there is an exact sequence of groups

08 E)vz —La (F)Y (E)WZz=2Z ¥

(3) if @ =0 then 1(E) has one end and acts nontrivially on »(E) =Z, and
the covering space Eg with fundamental group 1(F) is homeomorphic
to S? F, so wi(E)j .F) = W1(Er) = wy(F) (as homomorphisms from

1(F) to Z=2Z) and w(Er) = w1(Er)?;

(4) if@6&0then (F)=0, 1(E) hastwo ends, »(E)=0 and Z=2Z acts
by inversion on @(Z);

(5) p x3=02H3E;p 2).

Proof Condition (1) holds since the Euler characteristic is multiplicative in

brations, while (2) is part of the long exact sequence of homotopy for p.
The image of @ is central by [Go68], and is therefore trivial unless (F) = 0.
Conditions (3) and (4) then follow as the homomorphisms in this sequence are
compatible with the actions of the fundamental groups, and Eg is the total
space of an F -bundle over S?, which is a trivial bundle if @ = 0, by Theorem
5.19. Condition (5) holds since H3(RP?;Z) = 0. O

Let be a group which is an extension of Z=2Z by a normal subgroup G, and

let t2 be an element which maps nontrivially to =G = Z=2Z. Then u = t?

is in G and conjugation by t determines an automorphism  of G such that
(W) =u and 2 is the inner automorphism given by conjugation by u.

Conversely, let  be an automorphism of G whose square is inner, say 2(g) =
ugu™! forall g 2 G. Let v= (u). Then 3@ = ?( (@) =u (gt =

( (@) =v (g)v?! forall g2 G. Therefore vu™? is central. In particular, if
the centre of G is trivial xes u, and we may de ne an extension

181G 1 1 7=27 11

in which has the presentation hG;t jt gt™ = (g); t* = ui. If s
another automorphism in the same outer automorphism class then and

are equivalent extensions. (Note that if = :cn, where cy, is conjugation by
h, then ( (h)uh) = (h)uh and 2(g) = (h)uh:g:( (h)uh)™! forall g 2 G.)

Lemma 521 If (F) <Oor (F) =0 and @ = 0 then an F-bundle
over RP? is determined up to isomorphism by the corresponding extension of
fundamental groups.
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Proof If (F) < 0 such bundles and extensions are each determined by an
element  of order 2 in Out( 1(F)). If (F) = 0 bundles with @ = 0 are
the restrictions of bundles over RP 1 = K(Z=2Z;1) (compare Lemma 4.10).
Such bundles are determined by an element of order 2 in Out( 1(F)) and
a cohomology class in H2(Z=2Z; 1(F) ), by Lemma 5.1, and so correspond
bijectively to extensions also. ]

Lemma 5.22 Let M be a PD4-complex with fundamental group . A map
f:M Y RP?is bre homotopy equivalent to the projection of a bundle over
RP?2 with bre an aspherical closed surface if 1(f) is an epimorphism and
either

(1) (M) O0and ,(f) is an isomorphism; or
(2) (M)=0, hastwoendsand 3(f) isan isomorphism.

Proof Ineach case isin nite, by Lemma 3.14. Incase (1) H?( ;Z[ D) =Z
(by Lemma 3.3) and so  has one end, by Bowditch’s Theorem. Hence N~ s2,
Moreover the homotopy bre of f is aspherical, and its fundamental group is a
surface group. (See Chapter X for details.) In case (2) N~ s3, by Corollary
4.5.3. Hence the lift £: M ¥ S2 s homotopic to the Hopf map, and so induces
isomorphisms on all higher homotopy groups. Therefore the homotopy bre of
f is aspherical. As »(M) = 0 the fundamental group of the homotopy bre
is a (torsion free) in nite cyclic extension of  and so must be either Z? or
Z _1Z. Thus the homotopy bre of f is homotopy equivalent to T or Kb. In
both cases the argument of Theorem 5.2 now shows that f is bre homotopy
equivalent to a surface bundle projection. O

5.6 Bundles over RP2 with @ =0

If we assume that the connecting homomorphism @ : »(E) ¥ 1(F) is trivial
then conditions (2), (3) and (5) of Lemma 5.20 simplify to conditions on E and
the action of 1(E) on »(E). These conditions almost su ce to characterize
the homotopy types of such bundle spaces; there is one more necesssary condi-
tion, and for nonorientable manifolds there is a further possible obstruction, of
order at most 2.

Theorem 5.23 Let M be a PDy4-complex and let m : My ¥ M be the
covering associated to = Ker(u), where u: = (M) ¥ Aut( »2(M)) is
the natural action. Let x be the generator of H1(Z=2Z;Z). If M is homo-
topy equivalent to the total space of a bre bundle over RP? with bre an
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aspherical closed surface and with @ = 0 then »(M) = Z, u is surjective,
w2 (My) = wi(My)? and u x3 has image 0 in H3(M;F»). Moreover the homo-
morphism from H2(M; ZY) to H?(S?;ZY) induced by a generator of (M) is
onto. Conversely, if M is orientable these conditions imply that M is homo-
topy equivalent to such a bundle space. If M is nonorientable there is a further
obstruction of order at most 2.

Proof The necessity of most of these conditions follows from Lemma 5.20.
The additional condition holds since the covering projection from S? to RP?
induces an isomorphism H2(RP?;ZY) = H?(S?;ZY) = H?(S?;Z).

Suppose that they hold. Let g : S> ¥ P»(RP?) and j : S> ¥ M represent
generators for ,(P2(RP?)) and (M), respectively. After replacing M by a
homotopy equivalent space if necessary, we may assume that j is the inclusion
of a subcomplex. We may identify u with a map from M to K(Z=2Z;1), via
the isomorphism [M; K(Z=2Z;1)] = Hom( ;Z=2Z). The only obstruction to
the construction of a map from M to P»(RP?) which extends g and lifts u
lies in H3(M;S?;ZY), since u »(RP?)) = ZY. This group maps injectively to
H3(M; ZY), since restriction maps H2(M;Z"Y) onto H?(S?;ZY), and so this
obstruction is 0, since its image in H3(M;ZY) is u ky(RP?) = u x2 = 0.
Therefore there isamap h: M ¥ P,(RP?) such that q(h) =u and »(h) is
an isomorphism. The set of such maps is parametrized by H?(M; S?;ZY).

As Z=2Z7 acts trivially on 3(RP?) = Z the second k-invariant of RP?2 lies in
H4(P,(RP?);Z). Thisgroup isin nite cyclic, and is generated by t = ko(RP?).
(See x3.12 of [Si67].) The obstruction to lifting h to a map from M to P3(RP?)
is ht. Let n:B,(RP?) ¥ P,(RP?) be the universal covering, and let z be a
generator of H2(B,(RP?);Z) = Z. Then h liftsto amap hy : My ¥ B,(RP?),
so that nhy, = hm. (Note that hy is determined by h,z, since B,(RP?) ~
K(Z:2).)

The covering space My is homotopy equivalent to the total space of an S2-
bundle g: E ¥ F, where F is an aspherical closed surface, by Theorem 5.14.
Since  acts trivially on (M) the bundle is orientable (i.e., wi(q) = 0)
and so q wa(q) = wo(E) + wy(E)?, by the Whitney sum formula. Therefore
q wo(q) = 0, since wo(My) = wi(My)?, and so wo(q) = 0, since q is 2-
connected. Hence the bundle is trivial, by Lemma 5.11, and so My, is homotopy
equivalent to S? F. Let je and js be the inclusions of the factors. Then hyjs
generates 2(P2). We may choose h so that hyjg is null homotopic. Then h,z
is Poincare dual to je [F], and so h,z? =0, since jr [F] has self intersection
0. As n t is a multiple of z2, it follows that m h t = 0.
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If M is orientable m = H*(m;Z) is a monomorphism and so h t = 0. Hence
h lifts to amap f : M T P3(RP?). As P3(RP?) may be constructed from
RP?2 by adjoining cells of dimension at least 5 we may assume that f maps M
into RP?2, after a homotopy if necessary. Since 1(f) = u is an epimorphism
and »(F) is an isomorphism f is bre homotopy equivalent to the projection
of an F -bundle over RP?, by Lemma 5.22.

In general, we may assume that h maps the 3-skeleton Ml to RP2. Let w
be a generator of H2(P»(RP?);Z) = H?(RP?;Z) = Z and de ne a function

‘H2M;ZY) 1 H*(M;Z) by (@) =gL[g+g[hwforall g2 H?%M;ZY).
If M is nonorientable H*(M;Z) = Z=2Z and is a homomorphism. The sole
obstruction to extending hjy,z to amap f: M ¥ RP?2 is the image of h t in
Coker( ), which is independent of the choice of lift h. (See x3.24 of [Si67].) O

Are these hypotheses independent? A closed 4-manifold M with = (M)
a PDy-group and (M) = Z is homotopy equivalent to the total space of an
S2-bundle p: E ¥ B, where B is an aspherical closed surface. Therefore if
u is nontrivial My * E*, where ¢ : E* ¥ B™ is the bundle induced over a
double cover of B. As wi(q) = 0 and q w»(q) = 0, by part (3) of Lemma
5.11, we have w1 (E™*) =q w1(B*) and wo(E™) =q w,(B™), by the Whitney
sum formula. Hence wy(My) = wi(My)?. (In particular, wo(My) =0 if M is
orientable.) Moreover since c:d: = 2 the condition u x® = 0 is automatic. (It
shall follow directly from the results of Chapter 10 that any such S2-bundle
space with u nontrivial bres over RP?2, even if it is not orientable.)

On the other hand, if Z=2Z is a (semi)direct factor of  the cohomology of
Z=2Z is a direct summand of that of and so the image of x® in H3( ;2) is
nonzero.

Is the obstruction always 0 in the nonorientable cases?
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Chapter 6

Simple homotopy type and surgery

The problem of determining the high-dimensional manifolds within a given
homotopy type has been successfully reduced to the determination of normal
invariants and surgery obstructions. This strategy applies also in dimension
4, provided that the fundamental group is in the class SA generated from
groups with subexponential growth by extensions and increasing unions [FT95].
(Essentially all the groups in this class that we shall discuss in this book are
in fact virtually solvable). We may often avoid this hypothesis by using 5-
dimensional surgery to construct s-cobordisms.

We begin by showing that the Whitehead group of the fundamental group is
trivial for surface bundles over surfaces, most circle bundles over geometric 3-
manifolds and for many mapping tori. In x2 we de ne the modi ed surgery
structure set, parametrizing s-cobordism classes of simply homotopy equiva-
lences of closed 4-manifolds. This notion allows partial extensions of surgery ar-
guments to situations where the fundamental group is not elementary amenable.
Although many papers on surgery do not explicitly consider the 4-dimensional
cases, their results may often be adapted to these cases. In x3 we comment
briefly on approaches to the s-cobordism theorem and classi cation using sta-
bilization by connected sum with copies of S2 S? or by cartesian product
with R.

In x4 we show that 4-manifolds M such that = 1(M) is torsion free virtually
poly-Z and (M) = 0 are determined up to homeomorphism by their funda-
mental group (and Stiefel-Whitney classes, if h( ) < 4). We also characterize
4-dimensional mapping tori with torsion free, elementary amenable fundamen-
tal group and show that the structure sets for total spaces of RP?2-bundles
over T or Kb are nite. In x5 we extend this niteness to RP?-bundle spaces
over closed hyperbolic surfaces and show that total spaces of bundles with bre
S? or an aspherical closed surface over aspherical bases are determined up to
s-cobordism by their homotopy type. (We shall consider bundles with base or
bre geometric 3-manifolds in Chapter 13).
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6.1 The Whitehead group

In this section we shall rely heavily upon the work of Waldhausen in [Wd78].
The class of groups Cl is the smallest class of groups containing the trivial group
and which is closed under generalised free products and HNN extensions with
amalgamation over regular coherent subgroups and under Itering direct limit.
This class is also closed under taking subgroups, by Proposition 19.3 of [Wd78].
If G is in Cl then Wh(G) = 0, by Theorem 19.4 of [Wd78]. The argument for
this theorem actually shows that if G = A ¢ B and C is regular coherent then
there are \Mayer-Vietoris" sequences:

Wh(A) Wh(B) ® Wh(G) ¥ K(Z[C]) ¥ K(Z[A]) K(zZ[B]) ¥ K(Z[G]) T 0;
and similarly if G = A <. (See Sections 17.1.3 and 17.2.3 of [Wd78]).

The class Cl contains all free groups and poly-Z groups and the class X of
Chapter 2. (In particular, all the groups Z , are in CI). Since every PD;-
group is either poly-Z or is the generalised free product of two free groups with
amalgamation over in nite cyclic subgroups it is regular coherent, and is in Cl.
Hence homotopy equivalences between S2-bundles over aspherical surfaces are
simple. The following extension implies the corresponding result for quotients
of such bundle spaces by free involutions.

Theorem 6.1 Let be asemidirect product ~(Z=2Z) where is a surface
group. Then Wh( ) =0.

Proof Assume rstthat = (Z=2Z). Let ' = Z[ ]. There is a cartesian
square expressing I'[Z=2Z]=7Z[ (Z=22)] as the pullback of the reduction of
coe cients map from I' to I, = =2" = Z=27][ ] over itself. (The two maps
from [Z=2Z] to I send the generator of Z=2Z to +1 and —1, respectively).
The Mayer-Vietoris sequence for algebraic K-theory traps Ki(I'[Z=2Z]) be-
tween Ky(I») and Kq(M)? (see Theorem 6.4 of [Mi]). Now since c:d: = 2
the higher K-theory of R[ ] can be computed in terms of the homology of
with coe cients in the K-theory of R (cf. the Corollary to Theorem 5 of the
introduction of [Wd78]). In particular, the map from Ky(I") to K,(I") is onto,
while Ky(MN = Ky(Z) (=9 and Ky(2) = = ". It now follows easily that
Ki1(I'[Z=2Z]) is generated by the images of Ky(Z) = f 1g and (Zz=22),
and so Wh(  (Z=22)) =0.

If = ~(Z=2Z) is not such a direct product it is isomorphic to a discrete
subgroup of 1som(X) which acts properly discontinuously on X, where X = [E?
or H?. (See [EM82], [Zi]). The singularities of the corresponding 2-orbifold
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X=are either cone points of order 2 or reflector curves; there are no corner
points and no cone points of higher order. Let jX= j be the surface obtained
by forgetting the orbifold structure of X= , and let m be the number of cone
points. Then (jX= ) —(m=2) = ,n(X=) 0, by the Riemann-Hurwitz
formula [Sc83], so either (jX=j) Oor (X=j)=landm 2orjX= j=
S2and m 4.

We may separate X= along embedded circles (avoiding the singularities) into
pieces which are either (i) discs with at least two cone points; (ii) annuli with
one cone point; (iii) annuli with one boundary a reflector curve; or (iv) surfaces
other than D? with nonempty boundary. In each case the inclusions of the
separating circles induce monomorphisms on orbifold fundamental groups, and
so is a generalized free product with amalgamation over copies of Z of groups
of the form (i) ™(Z=2Z) (with m 2); (ii)) Z (Z=22); (iii)) Z (Z=2Z); or
(iv) ™z, by the Van Kampen theorem for orbifolds [Sc83]. The Mayer-Vietoris
sequences for algebraic K-theory now give Wh( ) =0. ]

The argument for the direct product case is based on one for showing that
Wh(Z (Z=22)) =0 from [Kw86].

Not all such orbifold groups arise in this way. For instance, the orbifold fun-
damental group of a torus with one cone point of order 2 has the presentation
hx;y j [x;y]* = 1i. Hence it has torsion free abelianization, and so cannot be a
semidirect product as above.

The orbifold fundamental groups of flat 2-orbifolds are the 2-dimensional crys-
tallographic groups. Their nite subgroups are cyclic or dihedral, of order
properly dividing 24, and have trivial Whitehead group. In fact Wh( ) =0 for

any such 2-dimensional crystallographic group [Pe98]. (If is the fundamen-
tal group of an orientable hyperbolic 2-orbifold with k cone points of orders
fng;:::ngg then Wh( ) = K., Wh(Z=n;Z) [LS00]).

The argument for the next result is essentially due to F.T.Farrell.

Theorem 6.2 If is an extension of 1(B) by 1(F) where B and F are
aspherical closed surfaces then Wh( ) = 0.

Proof If (B) <0 then B admits a complete riemannian metric of constant
negative curvature —1. Moreover the only virtually poly-Z subgroups of 1(B)
are 1 and Z. If G is the preimage in  of such a subgroup then G is either

1(F) or is the group of a Haken 3-manifold. It follows easily that forany n 0
the group G Z" isin Cl and so Wh(G Z") = 0. Therefore any such G
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is K-flat and so the bundle is admissible, in the terminology of [FJ86]. Hence
Wh( ) = 0 by the main result of that paper.

If (B) =0 then this argument does not work, although if moreover (F) =10
then is poly-Z so Wh( ) = 0 by Theorem 2.13 of [FJ]. We shall sketch an
argument of Farrell for the general case. Lemma 1.4.2 and Theorem 2.1 of [FJ93]
together yield a spectral sequence (with coe cients in a simplicial cosheaf)
whose E? term is Hi(X= 1(B); Whl(p™*( 1(B)*))) and which converges to
Wh?ﬂ-( ). Here p: ¥ 4(B) is the epimorphism of the extension and X
is a certain universal 1(B)-complex which is contractible and such that all
the nontrivial isotropy subgroups 1(B)* are in nite cyclic and the xed point
set of each in nite cyclic subgroup is a contractible (nonempty) subcomplex.
The Whitehead groups with negative indices are the lower K-theory of Z[G]
(i.e., Whi(G) = Kn(Z[G)]) for all n —1), while Wh{(G) = Ko(Z[G]) and
Wh{(G) = Wh(G). Note that Wh'(G) is a direct summand of Wh(G

ZM1). If i+j > 1 then Whi,; ( ) agrees rationally with the higher Whitehead
group Whi+j( ). Since the isotropy subgroups 1(B)* are in nite cyclic or
trivial Wh(p~2( 1(B)*) Z") = 0 for all n 0, by the argument of the
above paragraph, and so Wh% (e~ 1(B))) =0if j 1. Hence the spectral
sequence gives Wh( ) = 0. ]

A closed 3-manifold is a Haken manifold if it is irreducible and contains an
incompressible 2-sided surface. Every Haken 3-manifold either has solvable
fundamental group or may be decomposed along a nite family of disjoint in-
compressible tori and Klein bottles so that the complementary components
are Seifert bred or hyperbolic. It is an open question whether every closed
irreducible orientable 3-manifold with in nite fundamental group is virtually
Haken (i.e., nitely covered by a Haken manifold). (Non-orientable 3-manifolds
are Haken). Every virtually Haken 3-manifold is either Haken, hyperbolic or
Seifert- bred, by [CS83] and [GMT96]. A closed irreducible 3-manifold is a
graph manifold if either it has solvable fundamental group or it may be de-
composed along a nite family of disjoint incompressible tori and Klein bottles
so that the complementary components are Seifert bred. (There are several
competing de nitions of graph manifold in the literature).

Theorem 6.3 Let = Z where is torsion free and is the fundamental
group of a closed 3-manifold N which is a connected sum of graph manifolds.
Then s regular coherent and Wh( ) =0.

Proof The group is a generalized free product with amalgamation along
poly-Z subgroups (1, Z2 or Z —_1Z) of polycyclic groups and fundamental
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groups of Seifert bred 3-manifolds (possibly with boundary). The group rings
of torsion free polycyclic groups are regular noetherian, and hence regular co-
herent. If G is the fundamental group of a Seifert bred 3-manifold then it has
a subgroup G, of nite index which is a central extension of the fundamental
group of a surface B (possibly with boundary) by Z. We may assume that G is
not solvable and hence that (B) < 0. If @B is nonempty then G, =Z F and
so is an iterated generalized free product of copies of Z?2, with amalgamation
along in nite cyclic subgroups. Otherwise we may split B along an essential
curve and represent G, as the generalised free product of two such groups, with
amalgamation along a copy of Z2. In both cases G, is regular coherent, and
therefore so is G, since [G: Gyl < 1 and c:d:G < 1.

Since is the generalised free product with amalgamation of regular coher-
ent groups, with amalgamation along poly-Z subgroups, it is also regular co-
herent. Let N; be an irreducible summand of N and let ; = 1(Nj). If
N; is Haken then j is in Cl. Otherwise N; is a Seifert bred 3-manifold
which is not su ciently large, and the argument of [PI80] extends easily to
show that Wh( ; Z%) =0, forany s 0. Since K(Z[ i]) is a direct sum-
mand of Wh( ; Z), it follows that in all cases K(Z[ i]) = Wh( ;) = 0.
The Mayer-Vietoris sequences for algebraic K-theory now give rstly that
Wh( ) =K(Z[ ]) =0 and then that Wh( ) = 0 also. ]

All 3-manifold groups are coherent as groups [Hm]. If we knew that their group
rings were regular coherent then we could use [Wd78] instead of [FJ86] to give
a purely algebraic proof of Theorem 6.2, for as surface groups are free products
of free groups with amalgamation over an in nite cyclic subgroup, an extension
of one surface group by another is a free product of groups with Wh = 0,
amalgamated over the group of a surface bundle over St. Similarly, we could
deduce from [Wd78] that W h( Z) = 0 for any torsion free group = 1(N)
where N is a closed 3-manifold whose irreducible factors are Haken, hyperbolic
or Seifert bred.

Theorem 6.4 Let be a group with an in nite cyclic normal subgroup A
such that = =A istorsion free and is a free product = ; j  j where each
factor is the fundamental group of an irreducible 3-manifold which is Haken,
hyperbolic or Seifert bred. Then Wh( ) =Wh( ) =0.

Proof (Note that our hypotheses allow the possibility that some of the factors
i are in nite cyclic). Let ; be the preimage of ;in ,forl i n. Then
is the generalized free product of the ;’s, amalgamated over in nite cyclic

Geometry & Topology Monographs, Volume 5 (2002)



116 Chapter 6: Simple homotopy type and surgery

subgroups. Forall 1 i n we have Wh( ;) =0, by Lemma 1.1 of [St84] if
K( i;1) is Haken, by the main result of [FJ86] if it is hyperbolic, by an easy
extension of the argument of [PI80] if it is Seifert bred but not Haken and by
Theorem 19.5 of [Wd78] if ; is in nite cyclic. The Mayer-Vietoris sequences
for algebraic K-theory now give Wh( ) =Wh( ) =0 also. O

Theorem 6.4 may be used to strengthen Theorem 4.11 to give criteria for a
closed 4-manifold M to be simple homotopy equivalent to the total space of an
S!-bundle, if the irreducible summands of the base N are all virtually Haken
and (M) is torsion free.

6.2 The s-cobordism structure set

Let M be a closed 4-manifold with fundamental group and orientation
character w : ¥ f 1g, and let G=TOP have the H-space multiplication
determined by its loop space structure. Then the surgery obstruction maps
i= M, [M DLe(M D'),G=TOP;f g] ¥ LS,;( ;w) are homomor-
phisms. If is in the class SA then LZ( ;w) acts on Stop(M), and the
surgery sequence

[SM;G=TOP] =¥ L§( ;w) =¥ Srop(M) —¥ [M;G=TOP] —¥ L§( ;w)

is an exact sequence of groups and pointed sets, i.e., the orbits of the action
1 correspond to the normal invariants (f) of simple homotopy equivalences
[FQ, FT95]. As it is not yet known whether 5-dimensional s-cobordisms over
other fundamental groups are products, we shall rede ne the structure set by
setting

Siop(M)=Fff:N ¥ M jN a TOP 4—manifold; f a simple h:e:g= ;

where f; f, if thereisamap F : W ¥ M with domain W an s-cobordism
with @W = N; [ N2 and Fjn; = i for i = 1;2. If the s-cobordism theorem
holds over  this is the usual TOP structure set for M. We shall usually write
Ln( ;w) for L3( ;w) if Wh( ) =0 and Ln( ) if moreover w is trivial. When
the orientation character is nontrivial and otherwise clear from the context we
shall write L,( ;).

The homotopy set [M; G=TOP] may be identi ed with the set of normal maps
(f;b), where f : N ¥ M isadegree 1 map and b is a stable framingof Ty f
for some TOP R"-bundle over M. (If f: N ¥ M is a homotopy equivalence,
with homotopy inverse h, we shall let f = (f;b), where =h  and b is the
framing determined by a homotopy from hf to idy). The Postnikov 4-stage
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of G=TOP is homotopy equivalent to K(Z=2Z;2) K(Z;4). Let k, generate
H2(G=TOP;F,) = Z=2Z and |, generate H*(G=TOP;Z) = Z. The function
from [M;G=TOP] to H2(M;F,) H*(M;Z) which sends f to (f (k2); T (14))
is an isomorphism.

The Kervaire-Arf invariant of a normal map ¢ : N2 ¥ G=TOP is the image of
the surgery obstruction in Lyq(Z=2Z; —) = Z=2Z under the homomorphism in-
duced by the orientation character, ¢(4) = Loq(W1(N))( 24(8)). The argument
of Theorem 13.B.5 of [WI] may be adapted to show that there are universal
classes Kuisp in H4+2(G=TOP;F,) (for i 0) such that

o) = (W(M) [ ¢ (1 +Sq® +Sq°Sq®) Kais2)) \ [M]:

Moreover K, = k3, since ¢ induces the isomorphism ,(G=TOP) =Z=2Z. In
the 4-dimensional case this expression simpli es to

c(8) = (W2(M) [ ¢ (k2) + ¢ (Sa°k2))IM] = Wi(M)? [ ¢ (k2))M]:

The codimension-2 Kervaire invariant of a 4-dimensional normal map ¢ is
kerv(¢) = ¢ (k2). Its value on a 2-dimensional homology class represented
by an immersion y : Y ¥ M is the Kervaire-Arf invariant of the normal map
induced over the surface Y .

The structure set may overestimate the number of homeomorphism types within
the homotopy type of M, if M has self homotopy equivalences which are not
homotopic to homeomorphisms. Such \exotic™ self homotopy equivalences may
often be constructed as follows. Given :S2 ¥ M, let :S* & M be the
composition S , where is the Hopf map, and let s: M ¥ M _ S* be the
pinch map obtained by shrinking the boundary of a 4-disc in M. Then the
composite T = (idg _ )s is a self homotopy equivalence of M.

Lemma 6.5 [No64] Let M be a closed 4-manifold and let :S? ¥ M bea
map such that  [S?] & 0 in Hy(M;F,) and  w,(M) = 0. Then kerv(f) &0
and so T is not normally cobordant to a homeomorphism.

Proof There is a class u 2 Ho(M;F>,) such that [S?]:u =1, since [S?] &
0. As low-dimensional homology classes may be realized by singular manifolds
there is a closed surface Y and amapy : Y ¥ M transverse to f and
such that £ [Y] = u. Then y kerv(f5)[Y] is the Kervaire-Arf invariant of the
normal map induced over Y and is nontrivial. (See Theorem 5.1 of [CH90] for
details). O
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The family of surgery obstruction maps may be identi ed with a natural trans-
formation from LLp-homology to L-theory. (In the nonorientable case we must
use w-twisted Lg-homology). In dimension 4 the cobordism invariance of
surgery obstructions (as in x13B of [WI]) leads to the following formula.

Theorem 6.6 [Da95] There are homomorphisms lg : Ho( ;Z%) ¥ La( ;w)
and 2 :Hy( ;F2) ¥ L4( ;w) such that for any f:M ¥ G=TOP the surgery
obstruction is  4(f) = locm (f (12) \[M]) + 2cm (kerv(f) \ [M]) 0

If w = 1 the signature homomorphism from L4( ) to Z is a left inverse for
lop:Z ¥ Ly4( ), but in general g is not injective. This formula can be made
somewhat more explicit as follows. Let KS(M) 2 H4(M;F,) be the Kirby-
Siebenmann obstruction to lifting the TOP normal bration of M to a vector
bundle. If M is orientable and (f;b) : N ¥ M is a degree 1 normal map with
classifying map f then

(KS(M) = (f )'KS(N) —kerv(f)?)[M]  ( (M) — (N))=8 mod (2):
(See Lemma 15.5 of [Si71] - page 329 of [KS]).

Theorem [Da95, 6'] If f = (f;b) where f : N ¥ M is a degree 1 map then
the surgery obstructions are given by

4 =16(( (N)— (M))=8) + zcm (kerv()\[M])  ifw=1,and
4(F) = 1o(KS(N)—=KS(M) +kerv(H)2)+ scm (kerv(f)\[M])  if w6 1.

(In the latter case we identify H*(M;Z), H*(N;Z) and H*(M;F;) with
Ho( ;Z%) = Z=2Z). O

The homomorphism 4 is trivial on the image of , but in general we do not
know whether a 4-dimensional normal map with trivial surgery obstruction
must be normally cobordant to a simple homotopy equivalence. In our appli-
cations we shall always have a simple homotopy equivalence in hand, and so
if 4 is injective we can conclude that the homotopy equivalence is normally
cobordant to the identity.

A more serious problem is that it is not clear how to de ne the action ! in
general. We shall be able to circumvent this problem by ad hoc arguments in
some cases. (There is always an action on the homological structure set, de ned
in terms of Z[ ]-homology equivalences [FQ]).

If we x an isomorphism iz : Z ¥ Ls(Z) we may de ne a function 1 : X
L2( ) forany group by I (g) =g (iz(1)), whereg : Z=1Ls(Z) ¥ L3( ) is
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induced by the homomorphism sending1in Z togin . Then Iz =iz and |
is natural in the sense that if f: ¥ H is a homomorphism then Ls(f)I =
I . As abelianization and projection to the summands of Z2 induce an iso-
morphism from Ls(Z Z) to Ls(Z)? [Ca73], it follows easily from naturality
that 1 is a homomorphism (and so factors through = ") [We83]. We shall
extend this to the nonorientable case by de ning 1™ :Ker(w) ¥ L3( ;w) as
the composite of lkerw) With the homomorphism induced by inclusion.

Theorem 6.7 Let M be a closed 4-manifold with fundamental group  and
let w =w.(M). Given any y 2 Ker(w) there is a normal cobordism from idm
to itself with surgery obstruction 17(y) 2 L3( ;w).

Proof We may assume that y is represented by a simple closed curve with a
product neighbourhood U = S D3, Let P be the Eg manifold [FQ] and
delete the interior of a submanifold homeomorphic to D® [0;1] to obtain
Po. There is a normal map p : P, ¥ D2 [0;1] (rel boundary). The surgery
obstruction for p idg: in Ls(Z) = L4(2) is given by a codimension-1 signature
(see x12B of [WI]), and generates Ls(Z). Let Y = (MnintU) [0;1] [P, S*%,
where we identify (@U) [0;1] = S* S? [0;1] with S?2 [0;1] S! in
@P, S'. Matching together idj(mnintuy [0; @and p  ids: gives a normal
cobordism Q from idp to itself. The theorem now follows by the additivity of
surgery obstructions and naturality of the homomorphisms 1. ]

Corollary 6.7.1 Let CLE() ¥ Ls(2)? = z9 be the homomorphism
induced by a basis T 1;:::; gg for Hom( ;Z). If M is orientable, f: M; ¥ M
is a simple homotopy equivalence and 2 Ls(Z)¢ there is a normal cobordism
from f to itself whose surgery obstruction in Ls( ) has image under

Proof If fyy;::;;yq0 2  represents a \dual basis" for Hy( ;Z) modulo torsion

(so that (yj) = jj for 1 &;J d), then ¥ (1 (y));=5 (1 (va))g is a
basis for Ls(Z)Y. O

If s free oris a P D, -group the homomorphism is an isomorphism [Ca73].
In most of the other cases of interest to us the following corollary applies.

Corollary 6.7.2 If M is orientable and Ker( ) is nite then S35,(M) is
nite. In particular, this is so if Coker( s) is nite.
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Proof The signature di erence maps [M;G=TOP]=H*(M;Z) H?(M;F,)
onto L4(1) = Z and so there are only nitely many normal cobordism classes
of simple homotopy equivalences f : M; ¥ M. Moreover, Ker( ) is -
nite if 5 has nite cokernel, since [SM;G=TOP] = z9 (Z=2Z)Y. Sup-

pose that F : N ¥ M | is a normal cobordism between two simple ho-
motopy equivalences F— = Fj@—_N and F+ = Fj@+N. By Theorem 6.7
there is another normal cobordism F*: N ¥ M | from F. to itself with

( 5(FY) = (= s(F)). The union of these two normal cobordisms along

@+N = @-N" is a normal cobordism from F_ to F. with surgery obstruc-
tion in Ker( ). If this obstruction is 0 we may obtain an s-cobordism W by
5-dimensional surgery (rel @). O

The surgery obstruction groups for a semidirect product =G  Z, may be
related to those of the ( nitely presentable) normal subgroup G by means of
Theorem 12.6 of [WI]. If Wh( ) = Wh(G) = 0 this theorem asserts that there
is an exact sequence

i Lm(Giwie) o Ln(Giwie) ¥ Lin( W) ¥ Lin—1(Giwje) i1

where t generates modulo G and = Ly ( ;wjg). The following lemma is
adapted from Theorem 15.B.1 of [WI].

Lemma 6.8 Let M be the mapping torus of a self homeomorphism of an
aspherical closed (n — 1)-manifold N. Suppose that Wh( 1(M)) = 0. If the
homomorphisms N are isomorphisms for all large i then so are the M.

Proof This is an application of the 5-lemma and periodicity, as in pages 229-
230 of [wI]. O

The hypotheses of this lemma are satis ed if n =4 and ;(N) is square root
closed accessible [Ca73], or N is orientable and ;(N) > 0 [Ro00], or is hyper-
bolic or virtually solvable [FJ], or admits an e ective S!-action with orientable
orbit space [St84, NS85]. It remains an open question whether aspherical closed
manifolds with isomorphic fundamental groups must be homeomorphic. This
has been veri ed in higher dimensions in many cases, in particular under geo-
metric assumptions [FJ], and under assumptions on the combinatorial structure
of the group [Ca73, St84, NS85]. We shall see that many aspherical 4-manifolds
are determined up to s-cobordism by their groups.

There are more general \Mayer-Vietoris" sequences which lead to calculations
of the surgery obstruction groups for certain generalized free products and HNN
extensions in terms of those of their building blocks [Ca73, St87].
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Lemma 6.9 Let be either the group of a nite graph of groups, all of whose

vertex groups are in nite cyclic, or a square root closed accessible group of

cohomological dimension 2. Then 1" is an isomorphism. If M is a closed 4-

manifold with fundamental group  the surgery obstruction maps 4(M) and
5(M) are epimorphisms.

Proof Since is in Cl we have Wh( ) = 0 and a comparison of Mayer-
Vietoris sequences shows that the assembly map from H ( ;L{) to L ( ;w)
is an isomorphism [Ca73, St87]. Since c:d: 2 and H;(Ker(w); Z) maps onto
Hy( ;Z%) the component of this map in degree 1 may be identi ed with 1*. In
general, the surgery obstruction maps factor through the assembly map. Since
c:d: 2 the homomorphismcyy :H (M;D) ¥ H ( ;D) is onto for any local
coe cient module D, and so the lemma follows. D

The class of groups considered in this lemma includes free groups, P D,-groups
and the groups Z . Note however that if is a PD,-group w need not be
the canonical orientation character.

6.3 Stabilization and h-cobordism

It has long been known that many results of high dimensional di erential topol-
ogy hold for smooth 4-manifolds after stabilizing by connected sum with copies
of S2 S2 [CS71, FQ80, La79, Qu83]. In particular, if M and N are h-
cobordant closed smooth 4-manifolds then M](¥S2 S2) is di eomorphic
to NJ(JkS? S?) for some k 0. In the spin case wa(M) = 0 this is an
elementary consequence of the existence of a well-indexed handle decompo-
sition of the h-cobordism [Wa64]. In Chapter VII of [FQ] it is shown that
5-dimensional TOP cobordisms have handle decompositions relative to a com-
ponent of their boundaries, and so a similar result holds for h-cobordant closed
TOP 4-manifolds. Moreover, if M is a TOP 4-manifold then KS(M) = 0 if
and only if M](J¥S? S?) is smoothable for some k 0 [LS71].

These results suggest the following de nition. Two 4-manifolds M; and M, are
stably homeomorphic if M1](JKS? S?) and M5](]'S? S?) are homeomorphic,
for some k, I 0. (Thus h-cobordant closed 4-manifolds are stably homeo-
morphic). Clearly (M), w;(M), the orbit of cpy [M] in Ha( 1(M); ZW2(M))
under the action of Out( 1(M)), and the parity of (M) are invariant under
stabilization. If M is orientable (M) is also invariant.

Kreck has shown that (in any dimension) classi cation up to stable homeo-
morphism (or di eomorphism) can be reduced to bordism theory. There are
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three cases: If wpo(M) & 0 and wy(N) & 0 then M and N are stably homeo-
morphic if and only if for some choices of orientations and identi cation of the
fundamental groups the invariants listed above agree (in an obvious manner).
If wo(M) =wy(N) =0 then M and N are stably homeomorphic if and only if
for some choices of orientations, Spin structures and identi cation of the fun-
damental group they represent the same element in Q3PP (K( ;1)). The
most complicated case is when M and N are not Spin, but the universal covers
are Spin. (See [Kr99], [Te] for expositions of Kreck’s ideas).

We shall not pursue this notion of stabilization further (with one minor excep-
tion, in Chapter 14), for it is somewhat at odds with the tenor of this book.
The manifolds studied here usually have minimal Euler characteristic, and of-
ten are aspherical. Each of these properties disappears after stabilization. We
may however also stabilize by cartesian product with R, and there is then the
following simple but satisfying result.

Lemma 6.10 Closed 4-manifolds M and N are h-cobordant if and only if
M R and N R are homeomorphic.

Proof If W is an h-cobordism from M to N (with fundamental group =

1(W)) then W St is an h-cobordism from M S! to N S!. The torsion
is0in Wh(  Z), by Theorem 23.2 of [Co], and so there is a homeomorphism
fromM S!toN S!whichcarries (M) to 3(N). HenceM R=N R.
Conversely, if M R =N R then M R contains a copy of N disjoint from
M  10g, and the region W between M  fOg and N is an h-cobordism. 0O

6.4 Manifolds with ; elementary amenable and =0

In this section we shall show that closed manifolds satisfying the hypotheses of
Theorem 3.17 and with torsion free fundamental group are determined up to
homeomorphism by their homotopy type. As a consequence, closed 4-manifolds
with torsion free elementary amenable fundamental group and Euler character-
istic 0 are homeomorphic to mapping tori. We also estimate the structure sets
for RP2-bundles over T or Kb. In the remaining cases involving torsion com-
putation of the surgery obstructions is much more di cult. We shall comment
briefly on these cases in Chapters 10 and 11.

Theorem 6.11 Let M be a closed 4-manifold with (M) = 0 and whose
fundamental group s torsion free, coherent, locally virtually indicable and
restrained. Then M is determined up to homeomorphism by its homotopy
type. If moreover h( ) = 4 then every automorphism of s realized by a self
homeomorphism of M.
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Proof By Theorem 3.17 either = Z or Z , for some m & 0, or M is
aspherical, is virtually poly-Z and h( ) = 4. Hence Wh( ) = 0, in all
cases. If = Z or Z \, then the surgery obstruction homomorphisms are

epimorphisms, by Lemma 6.9. We may calculate L4( ;w) by means of Theorem
12.6 of [WI], or more generally x3 of [St87], and we nd thatif =Z or Z ,,
then 4(M) isin fact an isomorphism. If = 2Z ;441 then there are two normal
cobordism classes of homotopy equivalences h : X ¥ M. Let generate the
image of H2( ;F,) = Z=2Z in H3(M;F,) = (Z=2Z)?, and let j : S2 I M
represent the unique nontrivial spherical class in Hy(M;F;). Then 2 = 0,
since c:d: = 2,and \j [S?] = 0, since cpmj is nullhomotopic. It follows
that j [S?] is Poincare dual to , and so vo(M) \j [S’] = 2\ [M] = 0.
Hence j wo(M) =j vo(M) + (j wi(M))? =0 and so fj has nontrivial normal
invariant, by Lemma 6.5. Therefore each of these two normal cobordism classes
contains a self homotopy equivalence of M.

If M is aspherical, is virtually poly-Z and h( ) =4 then Syop (M) has just
one element, by Theorem 2.16 of [FJ]. The theorem now follows. O

Corollary 6.11.1 Let M be a closed 4-manifold with (M) = 0 and funda-
mental group =2Z, Z? or Z _1Z. Then M is determined up to homeomor-
phism by and w(M).

Proof If =Z then M is homotopy equivalent to the total space of an S3-
bundle over S, by Theorem 4.2, while if = Z? or Z _;Z it is homotopy
equivalent to the total space of an S?-bundle over T or Kb, by Theorem 5.10.

O

Is the homotopy type of M also determined by and w(M) if =2Z , for
some jmj > 1?

We may now give an analogue of the Farrell and Stallings bration theorems
for 4-manifolds with torsion free elementary amenable fundamental group.

Theorem 6.12 Let M be a closed 4-manifold whose fundamental group  is
torsion free and elementary amenable. A map f: M ¥ S! is homotopic to a

bre bundle projection if and only if (M) =0 and f induces an epimorphism
from to Z with almost nitely presentable kernel.

Proof The conditions are clearly necessary. Suppose that they hold. Let =

Ker( 1(f)), let M be the in nite cyclic covering space of M with fundamen-
tal group andlett: M ¥ M be a generator of the group of covering
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transformations. By Corollary 4.5.3 eitner =1 (so M ~ S3or =2Z (so
M > S?2 S!or S?2~S!)or M is aspherical. In the latter case is a torsion
free virtually poly-Z group, by Theorem 1.11 and Theorem 9.23 of [Bi]. Thus
in all cases there is a homotopy equivalence ¥ from M to a closed 3-manifold
N. Moreover the self homotopy equivalence ¥ tF~% of N is homotopic to a
homeomorphism, g say, and so f is bre homotopy equivalent to the canonical
projection of the mapping torus M(g) onto S'. It now follows from Theo-
rem 6.11 that any homotopy equivalence from M to M(g) is homotopic to a
homeomorphism. O

The structure sets of the RP2-bundles over T or Kb are also nite.

Theorem 6.13 Let M be the total space of an RP2-bundle over T or Kb.
Then Stop (M) has order at most 32.

Proof As M is nonorientable H*(M;Z) = Z=2Z and as 1(M;F,) = 3 and

(M) = 0 we have H?(M;F,) = (Z=2Z)*. Hence [M;G=TOP] has order 32.
Let w = w;(M). It follows from the Shaneson-Wall splitting theorem (Theorem
12.6 of [WI]) that L4( ;W) = L4(Z=2Z;-) L2(Z=2Z;—) = (Z=2Z)?, detected
by the Kervaire-Arf invariant and the codimension-2 Kervaire invariant. Simi-
larly Ls( ;w) = L4(Z=2Z;—)? and the projections to the factors are Kervaire-
Arf invariants of normal maps induced over codimension-1 submanifolds. (In
applying the splitting theorem, note that Wh(Zz (Z=2Z)) =Wh( ) =0, by
Theorem 6.1 above). Hence Stop (M) has order at most 128.

The Kervaire-Arf homomorphism c is onto, since ¢(¢) = (W? [ ¢ (k2)) \ [M],
w? & 0 and every element of H2(M;F,) is equal to ¢ (ko) for some normal
map ¢ : M ¥ G=TOP. Similarly there is a normal map f, : X, ¥ RP? with

»(F2) &0 in Lo(Z=2Z;—). If M = RP? B, where B =T or Kb is the base
of the bundle, then f, idg : X, B ¥ RP2 B is a normal map with surgery
obstruction (0; 2(f2)) 2 L4(Z=2Z;—) L,(Z=2Z;—). We may assume that f,
is a homeomorphism over a disc RP?2. As the nontrivial bundles may be
obtained from the product bundles by cutting M along RP? @ and regluing
via the twist map of RP? S, the normal maps for the product bundles may
be compatibly modi ed to give normal maps with nonzero obstructions in the
other cases. Hence 4 is onto and so Stop (M) has order at most 32. O

In each case Hy(M;TF,) = Hy( ;F2), so the argument of Lemma 6.5 does not
apply. However we can improve our estimate in the abelian case.
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Theorem 6.14 Let M be the total space of an RP?-bundle over T. Then
Ls( ;w) acts trivially on the class of idyp in Stop(M).

Proof Let 1; »: ¥ Z be epimorphisms generating Hom( ;Z) and let
t1;t2 2 represent a dual basis for =(torsion) (i.e., (t;) = i for i =1;2).
Let u be the element of order 2 in and let k; : Z (Z=2Z) 1 be the
monomorphism de ned by kj(a;b) = atj + bu, for i = 1;2. De ne splitting
homomorphisms ps;p2 by pi(g9) = ki_l(g — i(9)t) forall g2 . Then pik; =
idz (z=2zy and pijks—j factors through Z=2Z, for i = 1;2. The orientation
character w = wj; (M) maps the torsion subgroup of onto Z=2Z, by Theorem
5.13, and t; and t, are in Ker(w). Therefore p;j and k; are compatible with
w, for i = 1;2. As Ls(Z=2Z;—) = 0 it follows that Ls(ki) and Ls(ky) are
inclusions of complementary summands of Ls( ;w) = (Z=2Z)?, split by the
projections Ls(p1) and Ls(p2).

Let y; be a simple closed curve in T which represents t; 2 . Then v;
has a product neighbourhood N; = S' [—1;1] whose preimage U; M is
homeomorphic to RP2 S! [—1;1]. As in Theorem 6.13 there is a nor-
mal map 4 : X4 ¥ RP? [—1;1]? (rel boundary) with 4(f;) & 0 in
L4(Z=2Z;—). Let Y; = (MnintU;) [-1;1] [ X2 S, where we identify
@uyp) [-1;1] = RP?2 s s0 [-1;1] with RP? [-1;1] S° St
in @X; S*. If we match together idnintu;) [-1:1) and f4  ids: we ob-
tain a normal cobordism Q; from idy to itself. The image of 5(Qj) in
La(Ker( i);w) = L4(Z=2Z;—) under the splitting homomorphism is 4(fs).
On the other hand its image in Ls(Ker( 3—j);w) is 0, and so it generates the
image of Ls(ks—j). Thus Ls( ;w) is generated by s5(Q1) and 5(Q2), and so
acts trivially on idy; . ]

Does Ls( ;w) act trivially on each class in Stop(M) when M is an RP?-
bundle over T or Kb? If so, then Stop (M) has order 8 in each case. Are these
manifolds determined up to homeomorphism by their homotopy type?

6.5 Bundles over aspherical surfaces

The fundamental groups of total spaces of bundles over hyperbolic surfaces
all contain nonabelian free subgroups. Nevertheless, such bundle spaces are
determined up to s-cobordism by their homotopy type, except when the bre
is RP2, in which case we can only show that the structure sets are nite.
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Theorem 6.15 Let M be a closed 4-manifold which is homotopy equivalent
to the total space E of an F-bundle over B where B and F are aspherical
closed surfaces. Then M is s-cobordant to E and M is homeomorphic to R.

Proof Since 1(B) is either an HNN extension of Z or a generalised free
product F > F!, where F and F? are free groups, Z is a square root closed
generalised free product with amalgamation of groups in Cl. Comparison of
the Mayer-Vietoris sequences for ILg-homology and L-theory (as in Proposition
2.6 of [St84]) shows that Stop(E  S?!) has just one element. (Note that even
when (B) = 0 the groups arising in intermediate stages of the argument all
have trivial Whitehead groups). Hence M S!' = E S!, and so M is s-
cobordant to E by Lemma 6.10 and Theorem 6.2. The nal assertion follows
from Corllary 7.3B of [FQ] since M is aspherical and is 1-connected at 1
[Ho77]. O

Davis has constructed aspherical 4-manifolds whose universal covering space is
not 1-connected at 1. [Da83].

Theorem 6.16 Let M be a closed 4-manifold which is homotopy equivalent
to the total space E of an S2-bundle over an aspherical closed surface B. Then
M is s-cobordant to E, and M is homeomorphic to S2 R2.

Proof Let = {(E)= 1(B). Then Wh( )=0,and H ( ;L§) =L ( ;w),
as in Lemma 6.9. Hence L4( ;w) = Z (Z=2Z) if w = 0 and (Z=2Z)?
otherwise. The surgery obstruction map 4(E) is onto, by Lemma 6.9. Hence
there are two normal cobordism classes of maps h : X ¥ E with 4(h) =
0. The kernel of the natural homomorphism from Hy(E;F,) = (Z=2Z)? to
Ho( ;F,) = Z=2Z is generated by j [S?], where j : S ¥ E is the inclusion
of a bre. As j [S?] & —0, while wo(E)(j [S?]) = j Wo(E) = 0 the normal
invariant of fj is nontrivial, by Lemma 6.5. Hence each of these two normal
cobordism classes contains a self homotopy equivalence of E.

Let f: M ¥ E be ahomotopy equivalence (necessarily simple). Then there is a
normal cobordism F :V ¥ E [0; 1] from f to some self homotopy equivalence
of E. As I is an isomorphism, by Lemma 6.9, there is an s-cobordism W
from M to E, as in Corollary 6.7.2.

The universal covering space W is a proper s-cobordism from W to B =
S2 RZ?. Since the end of B is tame and has fundamental group Z we may
apply Corollary 7.3B of [FQ] to conclude that W is homeomorphic to a product.
Hence W is homeomorphic to S2  R2. O
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Let be a PDy-group. As = (Z=22) is square-root closed accessi-
ble from Z=2Z, the Mayer-Vietoris sequences of [Ca73] imply that Ls( ;w) =
L4(Z=2Z;—) Ly(Z=2Z;—) and that Ls( ;w) = L4(Z=2Z;—) , where w =
pro: ¥ Z=27Z and = 1( ;F,). Since these L-groups are nite the struc-
ture sets of total spaces of RP2-bundles over aspherical surfaces are also nite.
(Moreover the arguments of Theorems 6.13 and 6.14 can be extended to show
that 4 is an epimorphism and that most of Ls( ;w) acts trivially on idg,
where E is such a bundle space).
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Chapter 7

Geometries and decompositions

Every closed connected surface is geometric, i.e., is a quotient of one of the
three model 2-dimensional geometries E?, H? or S? by a free and properly
discontinuous action of a discrete group of isometries. Much current research
on 3-manifolds is guided by Thurston’s Geometrization Conjecture, that ev-
ery closed irreducible 3-manifold admits a nite decomposition into geometric
pieces. In x1 we shall recall Thurston’s de nition of geometry, and shall de-
scribe briefly the 19 4-dimensional geometries. Our concern in the middle third
of this book is not to show how this list arises (as this is properly a question
of di erential geometry; see [Fi], [Pa96] and [WI85,86]), but rather to describe
the geometries su ciently well that we may subsequently characterize geomet-
ric manifolds up to homotopy equivalence or homeomorphism. In x2 we relate
the notions of \geometry of solvable Lie type" and \infrasolvmanifold”. The
limitations of geometry in higher dimensions are illustrated in x3, where it is
shown that a closed 4-manifold which admits a nite decomposition into ge-
ometric pieces is (essentially) either geometric or aspherical. The geometric
viewpoint is nevertheless of considerable interest in connection with complex
surfaces [Ue90,91, WI85,86]. With the exception of the geometries S> H?,
H2 M2, H2 E? and L E! no closed geometric manifold has a proper
geometric decomposition.

A number of the geometries support natural Seifert brations or compatible
complex structures. In x4 we characterize the groups of aspherical 4-manifolds
which are orbifold bundles over flat or hyperbolic 2-orbifolds. We outline what
we need about Seifert brations and complex surfaces in x5 and x6.

Subsequent chapters shall consider in turn geometries whose models are con-
tractible (Chapters 8 and 9), geometries with models di eomorphic to S? R?
(Chapter 10), the geometry S® [E?! (Chapter 11) and the geometries with com-
pact models (Chapter 12). In Chapter 13 we shall consider geometric structures
and decompositions of bundle spaces. In the nal chapter of the book we shall
consider knot manifolds which admit geometries.
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7.1 Geometries

An n-dimensional geometry X in the sense of Thurston is represented by a pair
(X; Gx) where X is a complete 1-connected n-dimensional Riemannian mani-
fold and Gx is a Lie group which acts e ectively, transitively and isometrically
on X and which has discrete subgroups I which act freely on X so that 'nX
has nite volume. (Such subgroups are called lattices.) Since the stabilizer of
a point in X is isomorphic to a closed subgroup of O(n) it is compact, and so
X is compact if and only if T'nGx is compact. Two such pairs (X;G) and
(X" G" de ne the same geometry if there is a di eomorphism f : X ¥ X!
which conjugates the action of G onto that of G'. (Thus the metric is only
an adjunct to the de nition.) We shall assume that G is maximal among Lie
groups acting thus on X, and write 1som(X) = G, and Isomy(X) for the com-
ponent of the identity. A closed manifold M is an X-manifold if it is a quotient
X for some lattice in Gx. Under an equivalent formulation, M is an X-
manifold if it is a quotient 'nX for some discrete group I of isometries acting
freely on a 1-connected homogeneous space X = G=K, where G is a connected
Lie group and K is a compact subgroup of G such that the intersection of
the conjugates of K is trivial, and X has a G-invariant metric. The manifold
admits a geometry of type X if it is homeomorphic to such a quotient. If G is
solvable we shall say that the geometry is of solvable Lie type. If X = (X;Gx)
and Y = (Y;Gy) are two geometries then X Y supports a geometry in a
natural way; however the maximal group of isometries Gx y may be strictly
larger than Gx Gy .

The geometries of dimension 1 or 2 are the familiar geometries of constant cur-
vature: E!, E?2, H? and S?. Thurston showed that there are eight maximal
3-dimensional geometries (E3, Nil3, Sol®, £, H2 E!, H3, S? E! and S3.)
Manifolds with one of the rst ve of these geometries are aspherical Seifert

bred 3-manifolds or Sol®-manifolds. These are determined among irreducible
3-manifolds by their fundamental groups, which are the P D3-groups with non-
trivial Hirsch-Plotkin radical. There are just four S> E!-manifolds. It is not
yet known whether every aspherical 3-manifold whose fundamental group con-
tains no rank 2 abelian subgroup must be hyperbolic, and the determination
of the closed H2-manifolds remains incomplete. Nor is it known whether every
3-manifold with nite fundamental group must be spherical. For a detailed and
lucid account of the 3-dimensional geometries see [Sc83’].

There are 19 maximal 4-dimensional geometries; one of these (Solﬁm) is in
fact a family of closely related geometries, and one (F*) is not realizable by
any closed manifold [Fi]. We shall see that the geometry is determined by
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the fundamental group (cf. [WI86, K092]). In addition to the geometries of
constant curvature and products of lower dimensional geometries there are
seven \new" 4-dimensional geometries. Two of these are modeled on the ir-
reducible Riemannian symmetric spaces CP? = U(3)=U(2) and H?(C) =
SU(2;1)=S(U(2) U(1)). The model for the geometry F* is C H2. The
component of the identity in its isometry group is the semidirect product
R? SL(2;R), where is the natural action of SL(Z;%) on R?. This group
acts on C H? as follows: if (u;v) 2 R? and A = 32 2 SL(2;R) then
(U v)(w; ) = (u—vz+w;z) and A(W; 2) = (Gxg "é‘zz—j:db) forall (w;z) 2C H?2.
The other four new geometries are of solvable Lie type, and shall be described
in x2 and x3.

In most cases the model X is homeomorphic to R*, and the corresponding ge-
ometric manifolds are aspherical. Six of these geometries (E*, Nil*, Nil® [E?,
Solfi.., Sol and Sol?) are of solvable Lie type; in Chapter 8 we shall show man-
ifolds admitting such geometries have Euler characteristic 0 and fundamental
group a torsion free virtually poly-Z group of Hirsch length 4. Such manifolds
are determined up to homeomorphism by their fundamental groups, and every
such group arises in this way. In Chapter 9 we shall consider closed 4-manifolds
admitting one of the other geometries of aspherical type (H® E!, L E!,
H? [E?, H*> H?, H* H?(C) and F*). These may be characterised up to
s-cobordism by their fundamental group and Euler characteristic. However it
is unknown to what extent surgery arguments apply in these cases, and we do
not yet have good characterizations of the possible fundamental groups. Al-
though no closed 4-manifold admits the geometry F*, there are such manifolds
with proper geometric decompositions involving this geometry; we shall give
examples in Chapter 13.

Three of the remaining geometries (S> [E?, S H? and S* E!) have models
homeomorphic to S2 R? or S® R. (Note that we shall use E" or H" to refer
to the geometry and R" to refer to the underlying topological space). The nal
three (S*, CP? and S? S?) have compact models, and there are only eleven
such manifolds. We shall discuss these nonaspherical geometries in Chapters
10, 11 and 12.

7.2 Infranilmanifolds

The notions of \geometry of solvable Lie type™ and \infrasolvmanifold™ are
closely related. We shall describe briefly the latter class of manifolds, from
a rather utilitarian point of view. As we are only interested in closed mani-
folds, we shall frame our de nitions accordingly. We consider the easier case of
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infranilmanifolds in this section, and the other infrasolvmanifolds in the next
section.

A flat n-manifold is a quotient of R" by a discrete torsion free subgroup of
E(n) = Isom(E") = R" O(n) (where s the natural action of O(n) on
R™). A group is a flat n-manifold group if it is torsion free and has a nor-
mal subgroup of nite index which is isomorphic to Z". (These are necessary
and su cient conditions for  to be the fundamental group of a closed flat
n-manifold.) The action of by conjugation on its translation subgroup T( )
(the maximal abelian normal subgroup of ) induces a faithful action of =T ( )
on T( ). On choosing an isomorphism T( ) = Z" we may identify =T( )
with a subgroup of GL(n;Z); this subgroup is called the holonomy group of ,
and is well de ned up to conjugacy in GL(n;Z). We say that is orientable if
the holonomy group lies in SL(n;Z). (The group is orientable if and only if the
corresponding flat n-manifold is orientable.) If two discrete torsion free cocom-
pact subgroups of E(n) are isomorphic then they are conjugate in the larger
group Aff(R™) = R"  GL(n;R), and the corresponding flat n-manifolds are
\a nely" di eomorphic. There are only nitely many isomorphism classes of
such flat n-manifold groups for each n.

A nilmanifold is a coset space of a 1-connected nilpotent Lie group by a discrete
subgroup. More generally, an infranilmanifold is a quotient nN where N is a
1-connected nilpotent Lie group and is a discrete torsion free subgroup of the
semidirect product AfFf(N) =N Aut(N) such that \N is a lattice in N
and = \N is nite. Thus infranilmanifogjs are nitely covered by nilmani-
folds. The Lie group N is determined by =, by Mal’cev’s rigidity theorem,
and two infranilmanifolds are di eomorphic if and only if their fundamental
groups are isomorphic. The isomorphism may then be induced by an a ne
di eomorphism. The infranilmanifolds derived from the abelian Lie groups R"
are just the flat manifolds. It is not hard to see that there are just three 4-
dimensional (real) nilpotent Lie algebras. (Compare the analogous argument of
Theorem 1.4.) Hence there are three 1-connected 4-dimensional nilpotent Lie
groups, R*, Nil® R and Nil*.

The group Nil® isdhe subgioup of SL(3;R) consisting of upper triangular
1 r t

matrices [r;s;t] = @0 1 sA: It has abelianization R? and centre Nil® =
0 01

Nil?’ = R. The elements [1;0;0], [0;1;0] and [0;0;1=q] generate a discrete

cocompact subgroup of Nil® isomorphic to Iy, and these are essentially the

only such subgroups. (Since they act orientably on R? they are P D3 -groups.)
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The coset space Nq = Nil3=Iq is the total space of the S!-bundle over S S!?
with Euler number ¢, and the action of Nil® on Nil® induces a free action
of S = Nil= Iy on Ng. The group Nil* is the semidirect product R® R,
where (t) = [t;t;t?=2]. It has abelianization R? and central series Nil* =
R< 2Nil*=Nil* = R2,

These Lie groups have natural left invariant metrics. (See [Sc83’].) The in-
franilmanifolds corresponding to R*, Nil* and Nil® R are the E*-, Nil*-
and Nil® E!-manifolds. (The isometry group of E* is the semidirect product
R* O(4); the group Nil* is the identity component for its isometry group,
while Nil® E! admits an additional isometric action of St.)

7.3 Infrasolvmanifolds

The situation for (infra)solvmanifolds is more complicated. An infrasolvmani-
fold is a quotient M = I'nS where S is a 1-connected solvable Lie group and I is
a closed torsion free subgroup of the semidirect product Aff(S) =S  Aut(S)
such that 'y (the component of the identity of I") is contained in the nilrad-
ical of S (the maximal connected nilpotent normal subgroup of S), M'=F \'S
has compact closure in Aut(S) and M is compact. The pair (S;I") is called a
presentation for M, and is discrete if I" is a discrete subgroup of Aff(S), in
which case (M) = I'. Every infrasolvmanifold has a presentation such that
M=r\S is nite [FJ97], but we cannot assume that I" is discrete, and S is not
determined by

Farrell and Jones showed that in all dimensions except perhaps 4 infrasolv-
manifolds with isomorphic fundamental groups are di eomorphic. However
an a ne di eomorphism is not always possible [FJ97]. They showed also
that 4-dimensional infrasolvmanifolds are determined up to homeomorphism
by their fundamental groups (see Theorem 8.2 below). Using the Mostow orb-
ifold bundle associated to a presentation of an infrasolvmanifold (see x5 below)
and standard 3-manifold theory it is possible to show that, in most cases, 4-
dimensional infrasolvmanifolds are determined up to di eomorphism by their
groups ([Cb] - see Theorem 8.9 below). However there may still be a nonori-
entable 4-dimensional infrasolvmanifold with virtually nilpotent fundamental
group which has no discrete presentation.

An important special case includes most infrasolvmanifolds of dimension 4
(and all infranilmanifolds). Let T, (R) be the subgroup of GL(n;R) consisting
of upper triangular matrices with positive diagonal entries. A Lie group S is
triangular if is isomorphic to a closed subgroup of T (R) for some n. The
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eigenvalues of the image of each element of S under the adjoint representation
are then all real, and so S is of type R in the terminology of [Go71]. (It can
be shown that a Lie group is triangular if and only if it is 1-connected and
solvable of type R.) Two infrasolvmanifolds with discrete presentations (S;; ;)
where each Sj is triangular (for i = 1, 2) are a nely di eomorphic if and
only if their fundamental groups are isomorphic, by Theorem 3.1 of [Le95].
The translation subgroup S \ I of a discrete pair with S triangular can be
characterised intrinsically as the subgroup of I consisting of the elements g 2 I
such that all the eigenval of the automorphisms of the abelian sections of
the lower central series for ' I induced by conjugation by g are positive [De97].
Does every infrasolvmanifold with a presentation (S;I") where S is triangular
have a discrete presentation?

Since S and I, are each contractible, X = I,nS is contractible also. It can
be shown that = I'=[, acts freely on X, and so is the fundamental group
of M = nX. (See Chapter I11.3 of [Au73] for the solvmanifold case.) Since
M is aspherical is a PDy, group, where m is the dimension of M since

is also virtually solvable it is thus virtually poly-Z of Hirsch length m, by
Theorem 9.23 of [Bi], and (M) = () = 0. Conversely, any torsion free
virtually poly-Z group is the fundamental group of a closed smooth manifold
which is nitely covered by the coset space of a lattice in a 1-connected solvable
Lie group [AJ76].

Let S be a connected solvable Lie group of dimension m, and let N be its
nilradical. If is a lattice in S_then it is torsion free and virtually poly-Z of
Hirsch length m and \ N = P- is a lattice in N. 1f.S is 1-connected then
S=N is isomorphic to some vector group R", and = = Z". A complete
characterization of such lattices is not known, but a torsion free virtually p(ig/-
Z group is a lattice in a connected solvable Lie group S if and only if ="
is abelian. (See Sections 4.29-31 of [Rq].)

The 4-dimensional solvable Lie geometries other than the infranil geometries
are Solf,.,, Sol§ and Sol{, and the model spaces are solvable Lie groups with
left invariant metrics. The following descriptions are based on [WI86]. The Lie
group is the identity component of the isometry group for the geometries Solﬁq;n
and Sol?; the identity component of Isom(SoIé) is isomorphic to the semidirect
product (C R) yC , where y(z)(u;x) = (zu;jzj—2x) for all (u;x) inC R
and z in C , and thus Sol(‘)1 admits an additional isometric action of S1, by
rotations about an axis in C R = R3, the radical of Sol.

Solf., = R® .. R, where m and n are integers such that the polynomial
frn = X3—mX2+nX—1 has distinct roots e?, e” and e (with a < h < ¢ real)
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and m:n(t) is the diagonal matrix diag[e; e™;et]. Since mn() = n:m(—t)
WIS may assume that m n; the condition on the roots then holds if and only if
2N m n. The metric given by ds? = e~2dx? + e~ tdy? + e~2°tdz2 + dt?
(in the obvious global coordinates) is left invariant, and the automorphism of
Solﬁ‘n;n which sends (t; x;y;z) to (t; px;qy; rz) is an isometry if and only if p? =
g> =r? =1. Let G be the subgroup of GL(4;RR) of bordered matrices 01
where D = diag[ €®; e"; eJand 2 R3. Then Sol},, is the subgroup of
G with positive diagonal entries, and G = Isom(SoI;‘n;n) ifmé&n. If m=n
then b = 0 and Solf,.,, = Sol®* E!, which admits the additional isometry
sending (t;x;y;z) to (t™1;z;y;x), and G has index 2 in Isom(Sol® E). The
stabilizer of the identity in the full isometry group is (Z=2Z)* for Soly,., if m &
nand Dg (Z=2Z) for Sol® R. Inall cases Isom(Solf,.,) Aff(Solf, ).

In general Sol},., = Solp .. if and only if (a;b;c) = (a';b%c") for some & 0.
Must be rational? (This is a case of the \problem of the four exponentials' of
transcendental number theory.) If m & n then Fy.n = Q[X]=(fm:n) is a totally
real cubic number eld, generated over Q by the image of X. The images of X
under embeddings of Fn:n in R are the roots e?, e? and e®, and so it represents
a unit of norm 1. The group of such units is free abelian of rank 2. Therefore
if =r=s2Q this unitis an r power in Fm:n (and its r'" root satis es
another such cubic). It can be shown that jrj log,(m), and so (modulo the
problem of the four exponentials) there is a canonical \minimal™ pair (m;n)
representing each such geometry.

Sol} = R® R, where (t) is the diagonal matrix diag[e!;et;e™2t]. Note
that if (t) preserves a lattice in R® then its characteristic polynomial has
integral coe cients and constant term —1. Since it has et as a repeated root
we must have (t) = 1. Therefore Solé does not admit any lattices. The metric
given by the expression ds? = e~2Y(dx? + dy?) + e*'dz? + dt? is left invariant,
and O(2) O(1) acts via rotations and reflections in the (X;y)-coordinates and
reflection in the z-coordinate, to give the stabilizer of the identity. These actions
are automorphisms of Sol3, so Isom(Sol}) = Sol§ x(0(2) O(1)) AFf(Sold).
The identity component of 1som(Sol}) is not triangular.

o 1
1 b c

Sol? is the group of real matrices @0 aA: >0;a b c2Rg. The
0 01

metric given by ds? = t=2((1+x?)(dt? +dy?) +t?(dx? + dz?) — 2tx(dtdx + dydz))

is left invariant, and the stabilizer of the identity is Dg, generated by the

isometries which send (t;x;y; z) to (t; —x;y;—z) and to t~1(1; —y; —x; xy —tz).

These are automorphisms. (The latter one is the restriction of the involution
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of GL(3;R) which sends A to J(A")~1J, where J reverses the order of the
standard basis of R3.) Thus Isom(Sol{) Aff(Sol?).

Closed Sol,.,- or Solf-manifolds are clearly infrasolvmanifolds. The Sol§ case
is more complicated. Let y(z)(u;x) = (e?u;e 2Re@x) for all (u;x) in C R
and z in C. Then P = (C R) y C is the universal covering group of
Isom(SoIé). If M is a closed Solg‘-manifold its fundamental group is a
semidirect product Z3  Z, where (1) 2 GL(3;Z) has two complex conjugate
eigenvalues &  with j j & 0 or 1 and one real eigenvalue  such that
j =] j~? (see Chapter 8). If M is orientable (i.e., > 0) then is a lattice
inS =(C R) -R<F where ~(r) =y(rlog( )). Ingeneral, is a lattice in
AFf(S +). The action of P on Sol§ determines a di eomorphism S += =M,
and so M is an infrasolvmanifold with a discrete presentation.

We shall see in Chapter 8 that every orientable 4-dimensional infrasolvmanifold
is di eomorphic to a geometric 4-manifold, but the argument uses the Mostow
bration and is di erential-topological rather than di erential-geometric.

7.4 Geometric decompositions

An n-manifold M admits a geometric decomposition if it has a nite collection
of disjoint 2-sided hypersurfaces S such that each component of M — [S is
geometric of nite volume, i.e., is homeomorphic to 'nX, for some geometry
X and lattice I'. We shall call the hypersurfaces S cusps and the components
of M — [S pieces of M. The decomposition is proper if the set of cusps is
nonempty.

Theorem 7.1 If a closed 4-manifold M admits a geometric decomposition
then either

(1) M is geometric; or
(2) M has a codimension-2 foliation with leaves S? or RP?2; or
(3) the components of M — [S all have geometry H? H?; or
(4) the components of M — [S have geometry H*, H® E!, H> E? or
E!; or
(5) the components of M — [S have geometry H?(C) or F*.
In cases (3), (4) or (5) (M) 0 and in cases (4) or (5) M is aspherical.
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Proof The proof consists in considering the possible ends (cusps) of complete
geometric 4-manifolds of nite volume. The hypersurfaces bounding a com-
ponent of M — [S correspond to the ends of its interior. If the geometry is
of solvable or compact type then there are no ends, since every lattice is then
cocompact [Rg]. Thus we may concentrate on the eight geometries S> H?,
H2 E?2, H2 H?, £ E! H® E! H* H2C) and F*. The ends of a
geometry of constant negative curvature H" are flat [Eb80]; since any lattice
in a Lie group must meet the radical in a lattice it follows easily that the ends
are also flat in the mixed euclidean cases H® E!, H?2 &2 and & E!. Sim-
ilarly, the ends of S> H?-manifolds are S E!-manifolds. Since the elements
of PSL(2;C) corresponding to the cusps of nite area hyperbolic surfaces are
parabolic, the ends of F*-manifolds are Nil®-manifolds. The ends of H?(C)-
manifolds are also Nil®-manifolds [Ep87], while the ends of H? H2-manifolds
are Sol®-manifolds in the irreducible cases [Sh63], and graph manifolds whose
fundamental groups contain nonabelian free subgroups otherwise. Clearly if
two pieces are contiguous their common cusps must be homeomorphic. If the
piece is not a reducible H? H?-manifold then the inclusion of a cusp into the
closure of the piece induces a monomorphism on fundamental group.

If M is a closed 4-manifold with a geometric decomposition of type (2) the
inclusions of the cusps into the closures of the pieces induce isomorphisms on

», and a Mayer-Vietoris argument in the universal covering space M shows
that M is homotopy equivalent to S2. The natural foliation of S2  H2 by
2-spheres induces a codimension-2 foliation on each piece, with leaves S? or
RP2. The cusps bounding the closure of a piece are S*° E!-manifolds, and
hence also have codimension-1 foliations, with leaves S? or RP2. Together
these foliations give a foliation of the closure of the piece, so that each cusp is a
union of leaves. The homeomorphisms identifying cusps of contiguous pieces are
isotopic to isometries of the corresponding S E!-manifolds. As the foliations
of the cusps are preserved by isometries M admits a foliation with leaves S?2
or RP2. (In other words, it is the total space of an orbifold bundle over a
hyperbolic 2-orbifold, with general bre S2.)

If at least one piece has an aspherical geometry other than H? H? then all
do and M is aspherical. Since all the pieces of type H*, H?(C) or H?> H?
have strictly positive Euler characteristic while those of type H® [E!, H? [?,
S E! or F* have Euler characteristic 0 we must have (M) 0. 0

If in case (2) M admits a foliation with all leaves homeomorphic then the
projection to the leaf space is a submersion and so M is the total space of an
S2-bundle or RP2-bundle over a hyperbolic surface. In particular, the covering
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space M corresponding to the kernel  of the action of (M) on ,(M)=Z
is the total space of an S?-bundle over a hyperbolic surface. In Chapter 9
we shall show that S?-bundles and RP2-bundles over aspherical surfaces are
geometric. This surely holds also for orbifold bundles (de ned in the next
section) over flat or hyperbolic 2-orbifolds, with general bre S2.

If an aspherical closed 4-manifold has a nontrivial geometric decomposition
with no pieces of type H? H? then its fundamental group contains nilpotent
subgroups of Hirsch length 3 (corresponding to the cusps).

Is there an essentially unique minimal decomposition? Since hyperbolic surfaces
are connected sums of tori, and a punctured torus admits a complete hyperbolic
geometry of nite area, we cannot expect that there is an unique decomposition,
even in dimension 2. Any P Dy -group satisfying Max-c (the maximal condition
on centralizers) has an essentially unique minimal nite splitting along virtually
poly-Z subgroups of Hirsch length n — 1, by Theorem A2 of [Kr90]. Do all
fundamental groups of aspherical manifolds with geometric decompositions have
Max-c? A compact non-positively curved n-manifold (n 3) with convex
boundary is either flat or has a canonical decomposition along totally geodesic
closed flat hypersurfaces into pieces which are Seifert bred or codimension-1
atoroidal [LS00]. Which 4-manifolds with geometric decompositions admit such
metrics? (Closed L E!-manifolds do not [KL96].)

Closed H*- or H?(C)-manifolds admit no proper geometric decompositions,
since their fundamental groups have no noncyclic abelian subgroups [Pr43]. A
similar argument shows that closed H® E!-manifolds admit no proper decom-
positions, since they are nitely covered by cartesian products of H2-manifolds
with S!. Thus closed 4-manifolds with a proper geometric decomposition in-
volving pieces of types other than S2  H?, H2 E?, H2 H2 or L E! are
never geometric.

Many S? H2?-, H2 H?-, H2 E2- and L E!-manifolds admit proper
geometric decompositions. On the other hand, a manifold with a geometric
decomposition into pieces of type H? [E? need not be geometric. For instance,
let G =hu;v;X;y j[u;v] = [X;y]i be the fundamental group of T]T, the closed
orientable surface of ge 2, and let Egs 1 SL(2;Z) be the epimorphism
determined by (u) = Y, (x) = 21, Then the semidirect product

=Z2 G is the fundamental group of a torus bundle over T]T which has a
geometric decomposition into two pieces of type H? 2, but is not geometric,
since  does not have a subgroup of nite index with centre Z2.

It is easily seen that each S> E!-manifold may be realized as the end of a
complete S H?-manifold with nite volume and a single end. However, if the
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manifold is orientable the ends must be orientable, and if it is complex analytic
then they must be S2 S, Every flat 3-manifold is a cusp of some complete
H*-manifold with nite volume [Ni98]. However if such a manifold has only one
cusp the cusp cannot have holonomy Z=3Z or Z=6Z [LRO00]. The fundamental
group of a cusp of an . E-manifold must have a chain of abelian normal
subgroups Z < Z? < Z3; not all orientable flat 3-manifold groups have such
subgroups. The ends of complete, complex analytic H?>  H?-manifolds with
nite volume and irreducible fundamental group are orientable Sol®-manifolds
which are mapping tori, and all such may be realized in this way [Sh63].

Let M be the double of T, T,, where T, = T — intD? is the once-punctured
torus. Since T, admits a complete hyperbolic geometry of nite area M ad-
mits a geometric decomposition into two pieces of type H? H2. However as
F(2) F(2) has cohomological dimension 2 the homomorphism of fundamental
groups induced by the inclusion of the cusp into T, T, has nontrivial kernel,
and M is not aspherical.

7.5 Orbifold bundles

An n-dimensional orbifold B has an open covering by subspaces of the form
D"=G, where G is a nite subgroup of O(n). Let F be a closed manifold.
An orbifold bundle with general bre F over B isamap f: M ¥ B which is
locally equivalent to a projection Gn(F D") ¥ GnD", where G acts freely
on F and e ectively and orthogonally on D".

If the base B has a nite regular covering B which is a manifold, then p
induces a bre bundle projection p: M ¥ B with bre F, and the action
of the covering group maps bres to bres. Conversely, if p1 : M; ¥ By is a

bre bundle projection with bre F; and G is a nite group which acts freely
on M; and maps bres to bres then passing to orbit spaces gives an orbifold
bundle p: M = GnM; ¥ B = HnB; with general bre F = KnFy, where
H is the induced group of homeomorphisms of B; and K is the kernel of the
epimorphism from G to H.

Theorem 7.2 [Cb] Let M be an infrasolvmanifold. Then there is an orbifold

bundle p : M T B with general bre an infranilmanifold and base a flat
orbifold.

Proof Let (S;IN) be a presentation for M and let R be the nilradical of S.
Then A = S=R is a 1-connected abelian Lie group, and so A = RY for some
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d 0. Since R is characteristic in S there is a natural projection q : Aff(S) ¥
ATf(A). Let 's =T \S and 'k =N\ R. Then the action of 's on S induces
an action of the discrete group q(I's) = RI's=R on A. The Mostow bration for
M; = I'snS is the quotient map to B; = q(I"'s)nA, which is a bundle projection
with bre F; =I'rnR. Now [, is normal in R, by Corollary 3 of Theorem 2.3
of [Rq], and 'r=I, is a lattice in the nilpotent Lie group R=I,. Therefore F;
is a nilmanifold, while B; is a torus.

The nite group M'=ls acts on My, respecting the Mostow bration. Let [ =
q(MN), K =T\ Ker(q) and B =TnA. Then the induced map p: M I B is an
orbifold bundle projection with general bre the infranilmanifold F = KnR =
(K=I,)n(R=I,), and base a flat orbifold. O

We shall call p : M ¥ B the Mostow orbifold bundle corresponding to the
presentation (S;IM). In Theorem 8.9 we shall use this construction to show that
orientable 4-dimensional infrasolvmanifolds are determined up to di eomor-
phism by their fundamental groups, with the possible exception of manifolds
having one of two virtually abelian groups.

7.6 Realization of virtual bundle groups

Every extension of one P D, -group by another may be realized by some surface
bundle, by Theorem 5.2. The study of Seifert bred 4-manifolds and singu-
lar brations of complex surfaces lead naturally to consideration of the larger
class of torsion free groups which are virtually such extensions. Johnson has
asked whether such \ virtual bundle groups™ may be realized by aspherical
4-manifolds.

Theorem 7.3 Let be a torsion free group with normal subgroups K < G <

such that K and G=K are PDy-groups and [ : G] < 1. Then is the
fundamental group of an aspherical closed smooth 4-manifold which is the total
space of an orbifold bundle with general bre an aspherical closed surface over
a 2-dimensional orbifold.

Proof Let p: ¥ =K be the quotient homomorphism. Since is torsion
free the preimage in  of any nite subgroup of =K is a PDy-group. As the

nite subgroups of =K have order at most [ : G], we may assume that =K
has no nontrivial nite normal subgroup, and so is the orbifold fundamental
group of some 2-dimensional orbifold B, by the solution to the Nielsen realiza-
tion problem for surfaces [Ke83]. Let F be the aspherical closed surface with
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1(F) = K. If =K is torsion free then B is a closed aspherical surface, and
the result follows from Theorem 5.2. In general, B is the union of a punctured
surface B, with nitely many cone discs and regular neighborhoods of reflector
curves (possibly containing corner points). The latter may be further decom-
posed as the union of squares with a reflector curve along one side and with
at most one corner point, with two such squares meeting along sides adjacent
to the reflector curve. These suborbifolds U; (i.e., cone discs and squares) are
quotients of D2 by nite subgroups of O(2). Since B is nitely covered (as an
orbifold) by the aspherical surface with fundamental group G=K these nite
groups embed in i’rb(B) = =K, by the Van Kampen Theorem for orbifolds.

The action of =K on K determines an action of 1(B,) on K and hence
an F-bundle over B,. Let H; be the preimage in  of 9®(U;). Then H;
is torsion free and [H; : K] < 4, so H; acts freely and cocompactly on X?,
where X? =R? if (K) =0 and X? = H? otherwise, and F is a nite covering
space of HinX?. The obvious action of H; on X2 D? determines a bundle
with general bre F over the orbifold U;. Since self homeomorphisms of F
are determined up to isotopy by the induced element of Out(K), bundles over
adjacent suborbifolds have isomorphic restrictions along common edges. Hence
these pieces may be assembled to give a bundle with general bre F over the
orbifold B, whose total space is an aspherical closed smooth 4-manifold with
fundamental group . O

We shall verify in Theorem 9.8 that torsion free groups commensurate with
products of two centreless P D,-groups are also realizable.

We can improve upon Theorem 5.7 as follows.

Corollary 7.3.1 Let M be a closed 4-manifold M with fundamental group
. Then the following are equivalent.

(1) M is homotopy equivalent to the total space of an orbifold bundle with
general bre an aspherical surface over an E?- or H2-orbifold;

2) has an FP, normal subgroup K such that =K is virtually a PD,-
group and (M) =0;

(©)) has a normal subgroup N which is a PD,-group and >(M) = 0.

Proof Condition (1) clearly implies (2) and (3). Conversely, if they hold the
argument of Theorem 5.7 shows that K is a PD;,-group and N is virtually a
P D,-group. In each case (1) now follows from Theorem 7.2. O
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It follows easily from the argument of part (1) of Theorem 5.4 that if is a
group with a normal subgroup K such that K and =K are P D,-groups with

K= ( =K) =1, isasubgroup of niteindexin and L =K\ then
C((L)=1ifandonly if C (K) = 1. Since is virtually a product of PD,-
groups with trivial centres if and only if is, Johnson’s trichotomy extends to
groups commensurate with extensions of one centreless P D,-group by another.

Theorem 7.2 settles the realization question for groups of type I. (For suppose

has a subgroup  of nite index with a normal subgroup such that and

= are PDy-groupswith = ( =)=1.lLetG=\h h™tand K= \G.
Then[ :G]l< 1, Gisnormalin ,and K and G=K are P D,-groups. If G is
of type | then K is characteristic in G, by Theorem 5.5, and so is nhormal in .)
Groups of type Il need not have such normal P D,-subgroups - although this
is almost true. It is not known whether every type Il extension of centreless
P D,-groups has a characteristic P D,-subgroup (although this is so in many
cases, by the corollaries to Theorem 5.6).

If s anﬁxtension of Z2 by a normal P D,-subgroup K with K =1 then

C (K)= ,and [ 1 KC (K)]< 4 ifand only if s virtually K Z2, so
Johnson’s trict‘Btomy extend%to such groups. Th(E)three types may be charac-
terize<d by (1) © =2Z, (1) = =22, and (I111) =  =1. As these properties

are shared by commensurate torsion free groups the trichotomy extends further
to torsion free groups which are virtually such extensions. There is at present
no unigueness result corresponding to Theorem 5.5 for such subgroups K <
and (excepting for groups of type Il) it is not known whether every such group
is realized by some aspherical closed 4-manifold. (In fact, it also appears to be
unknown in how many ways a 3-dimensional mapping torus may bre over S'.)

The Johnson trichotomy is inappropriate if K & 1, as there are then nontrivial
extensions with trivial action ( = 1). Moreover Out(K) is virtually free and
so the action is never injective. HoBlever all such groups  may be realized
by aspherical 4-manifolds, for either © = Z? and Theorem 7.2 applies, or
is virtually poly-Z and is the fundamental group of an infrasolvmanifold. (See
Chapter 8.)

7.7 Seifert brations

A closed 4-manifold M is Seifert bred if it is the total space of an orbifold
bundle with general bre a torus or Klein bottle over a 2-orbifold. (In [Zn85],
[Ue90,91] it is required that the general bre be a torus. This is always so if the
manifold is orientable.) The fundamental group  of such a 4-manifold then
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has a rank two free abelian normal subgroup A such that =A is virtually a
surface group. If the base orbifold is good then the manifold is nitely covered
by a torus bundle over a closed surface. This is in fact so in general, by the
following theorem. In particular, (M) =0.

Theorem (Ue) Let S beaclosed orientable 4-manifold which is Seifert bred
over the 2-orbifold B. Then

(1) If B is spherical or bad S has geometry S® E! or S? E?;
(2) If B is euclidean then S has geometry E*, Nil*, Nil® E! or Sol® E?;

(3) If B is orientable and hyperbolic then S is geometric if and only if it
has a complex structure, in which case the geometry is either H?> [E? or

& EL

Conversely, excepting only two flat 4-manifolds, any orientable 4-manifold ad-
mitting one of these geometries is Seifert bred. O

If the base is euclidean or hyperbolic then S is determined up to di eomorphism
by 1(S); if moreover the base is hyperbolic or S is geometric of type Nil* or
Sol® E! there is a bre-preserving di eomorphism. If the base is bad or
spherical then S may admit many inequivalent Seifert brations.

Less is known about the nonorientable cases. Seifert bred 4-manifolds with
general bre a torus and base a hyperbolic orbifold with no reflector curves are
determined up to bre preserving di eomorphism by their fundamental groups
[Zi69]. Closed 4-manifolds which bre over S with bre a small Seifert bred
3-manifold are determined up to di eomorphism by their fundamental groups
[Oh90]. This class includes many nonorientable Seifert bred 4-manifolds over
bad, spherical or euclidean bases, but not all. It may be true in general that a
Seifert bred 4-manifold is geometric if and only if its orientable double covering
space is geometric, and that aspherical Seifert bred 4-manifolds are determined
up to di eomorphism by their fundamental groups.

The homotopy type of a S [E2-manifold is determined up to nite ambiguity
by the fundamental group (which must be virtually Z?), Euler characteristic
(which must be 0) and Stiefel-Whitney classes. There are just nine possible
fundamental groups. Six of these have in nite abelianization, and the above
invariants determine the homotopy type in these cases. (See Chapter 10.) The
homotopy type of a S* E!-manifold is determined by the fundamental group
(which has two ends), Euler characteristic (which is 0), orientation character
wy and rst k-invariant in H*( ; 3). (See Chapter 11.)
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Every Seifert bred 4-manifold with base an euclidean orbifold has Euler char-
acteristic 0 and fundamental group solvable of Hirsch length 4, and so is home-
omorphic to an infrasolvmanifold, by Theorem 6.11 and [AJ76]. As no group
of type Sol, Solf or Solf,., (with m & n) has a rank two free abelian normal
subgroup, the manifold must have one of the geometries E*, Nil*, Nil E?! or
Sol E!. Conversely, excepting only three flat 4-manifolds, such manifolds are
Seifert bred. The fundamental group of a closed Nil* E!- or Nil*-manifold
has a rank two free abelian normal subgroup, by Theorem 1.5. If s the
fundamental group of a Sol® E!-manifold then the commutator subgroup of
the intersection of all index 4 subgroups is such a subgroup. (In the Nil* and
Sol® E? cases there is an unique maximal such subgroup, and the general bre
must be a torus.) Case-by-case inspection of the 74 flat 4-manifold groups shows
that all but three have such subgroups. The only exceptions are the semidirect
products Gg¢ Z where = j, cej and abcej. (See Chapter 8. There is a
minor oversight in [Ue90]; in fact there are two orientable flat four-manifolds
which are not Seifert bred.)

As H2 E?-and L E!-manifolds are aspherical, they are determined up to
homotopy equivalence by their fundamental groups. See Chapter 9 for more
details.

Theorem 7.3 specializes to give the following characterization of the fundamen-
tal groups of Seifert bred 4-manifolds.

Theorem 7.4 A group is the fundamental group of a closed 4-manifold
which is Seifert bred over a hyperbgic base 2-orBifoId with general bre a

torus if and only if it is Brsion free, =2Z%, = has no nontrivial nite
normal subgroup and =" is virtually a P D,-group. O
If P- is central (= Z?) the corresponding Seifert bred manifold M( )

admits an e ective torus action with nite isotropy subgroups.

7.8 Complex surfaces and related structures

In this section we shall summarize what we need from [BPV], [Ue90,91], [WI86]
and [GS], and we refer to these sources for more details.

A complex surface shall mean a compact connected nonsingular complex ana-
lytic manifold S of complex dimension 2. It is Kdhler (and thus di eomorphic
to a projective algebraic surface) if and only if 1(S) is even. Since the K&hler
condition is local, all nite covering spaces of such a surface must also have 1
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even. If S has a complex submanifold L = CP?! with self-intersection —1 then
L may be blown down: there is a complex surface S; and a holomorphic map
p:S ¥ S; such that p(L) is a point and p restricts to a biholomorphic isomor-
phism from S—L to S; —p(L). In particular, S is di eomorphic to S;]JCP?2. If
there is no such embedded projective line L the surface is minimal. Excepting
only the ruled surfaces, every surface has an unigue minimal representative.

For many of the 4-dimensional geometries (X; G) the identity component G, of
the isometry group preserves a natural complex structure on X, and so if isa
discrete subgroup of G, which acts freely on X the quotient nX is a complex
surface. This is clear for the geometries CP?, S S?2, S2 E?, S? H?, H? EZ2,
H? H? and H?(C). (The corresponding model spaces may be identi ed with
cp2,cpt cpPl,cpP! c,cp! H? H? C,H? H? and the unit ball
in C?, respectively, where H? is identi ed with the upper half plane.) It is also
true for Nil® E!, Sol, Sol4, £ E! and F*. In addition, the subgroups
R*~U(2) of E(4) and U(2) R of Isom(S® E!) act biholomorphically on
C? and C2? — f0g, respectively, and so some E*- and S® E!-manifolds have
complex structures. No other geometry admits a compatible complex structure.
Since none of the model spaces contain an embedded S? with self-intersection
—1 any complex surface which admits a compatible geometry must be minimal.

Complex surfaces may be coarsely classi ed by their Kodaira dimension
which may be —1., 0, 1 or 2. Within this classi cation, minimal surfaces may
be further classi ed into a number of families. We have indicated in parentheses
where the geometric complex surfaces appear in this classi cation. (The dashes
signify families which include nongeometric surfaces.)

= —1.: Hopf surfaces (S® [E, -); Inoue surfaces (Sold, Sol?);
rational surfaces (CP?, S2 S?); ruled surfaces (S E?, S2 HZ, -).

= 0: complex tori (E*); hyperelliptic surfaces (E*); Enriques surfaces (-);
K3 surfaces (-); Kodaira surfaces (Nil® E!).

= 1: minimal properly elliptic surfaces (I E!, HZ2 E?).

= 2: minimal (algebraic) surfaces of general type (H?> H?, H2(C), -).

A Hopf surface is a complex surface whose universal covering space is home-
omorphic to S* R = C? — f0g. Some Hopf surfaces admit no compatible
geometry, and there are S° E!-manifolds that admit no complex structure.
The Inoue surfaces are exactly the complex surfaces admitting one of the ge-
ometries Sol$ or Sol}.
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A rational surface is a complex surface birationally equivalent to CP?. Minimal
rational surfaces are di eomorphic to CP2 or to CP CP!. A ruled surface is
a complex surface which is holomorphically bred over a smooth complex curve
(closed orientable 2-manifold) of genus g > 0 with bre CP!. Rational and
ruled surfaces may be characterized as the complex surfaces S with (S) =—1
and 1(S) even. Not all ruled surfaces admit geometries compatible with their
complex structures.

A complex torus is a quotient of C? by a lattice, and a hyperelliptic surface is
one properly covered by a complex torus. If S is a complex surface which is
homeomorphic to a flat 4-manifold then S is a complex torus or is hyperelliptic,
since it is nitely covered by a complex torus. Since S is orientable and 1(S)
iseven = 1(S) must be one of the eight flat 4-manifold groups of orientable
type and with = Z* or I( ) = Z?. In each case the holonomy group is cyclic,
and so is conjugate (in GL*(4;R)) to a subgroup of GL(2;C). (See Chapter
8.) Thus all of these groups may be realized by complex surfaces. A Kodaira
surface is nitely covered by a surface which bres holomorphically over an
elliptic curve with bres of genus 1.

An elliptic surface S is a complex surface which admits a holomorphic map p
to a complex curve such that the generic bres of p are di eomorphic to the
torus T. If the elliptic surface S has no singular bres it is Seifert bred, and
it then has a geometric structure if and only if the base is a good orbifold.
An orientable Seifert bred 4-manifold over a hyperbolic base has a geometric
structure if and only if it is an elliptic surface without singular bres [Ue90].
The elliptic surfaces S with (S) = —1 and 1(S) odd are the geometric
Hopf surfaces. The elliptic surfaces S with (S) = —1 and 1(S) even are
the cartesian products of elliptic curves with CP 1.

All rational, ruled and hyperelliptic surfaces are projective algebraic surfaces, as
are all surfaces with = 2. Complex tori and surfaces with geometry H? [E?
are di eomorphic to projective algebraic surfaces. Hopf, Inoue and Kodaira
surfaces and surfaces with geometry S E! all have ; odd, and so are not
Kahler, let alone projective algebraic.

An almost complex structure on a smooth 2n-manifold M is a reduction of
the structure group of its tangent bundle to GL(n;C) < GL*(2n;R). Such a
structure determines an orientation on M. If M is a closed oriented 4-manifold
and ¢ 2 H?(M; Z) then there is an almost complex structure on M with rst
Chern class ¢ and inducing the given orientation if and only if ¢ =~ w»(M) mod
(2) and >\ [M] =3 (M) +2 (M), by a theorem of Wu. (See the Appendix
to Chapter | of [GS] for a recent account.)
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A symplectic structure on a closed smooth manifold M is a closed nondegenerate
2-form 1. Nondegenerate means that for all x 2 M and all u 2 TxM there is
av 2 TxM such that !(u;v) & 0. Manifolds admitting symplectic structures
are even-dimensional and orientable. A condition equivalent to nondegeneracy
is that the n-fold wedge !”™" is nowhere 0, where 2n is the dimension of M.
The nt cup power of the corresponding cohomology class [!] is then a nonzero
element of H?"(M;R). Any two of a riemannian metric, a symplectic structure
and an almost complex structure together determine a third, if the given two
are compatible. In dimension 4, this is essentially equivalent to the fact that
SO(4)\Sp(4) =SOM)\GL(2;C) =Sp(4)\GL(2;C) = U(2), as subgroups of
GL(4;R). (See [GS] for a discussion of relations between these structures.) In
particular, Kdhler surfaces have natural symplectic structures, and symplectic
4-manifolds admit compatible almost complex tangential structures. However
orientable Sol® E!-manifolds which bre over T are symplectic [Ge92] but
have no complex structure (by the classi cation of surfaces) and Hopf surfaces
are complex manifolds with no symplectic structure (since , =0).
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Chapter 8

Solvable Lie geometries

The main result of this chapter is the characterization of 4-dimensional infra-
solvmanifolds up to homeomorphism, given in x1. All such manifolds are either
mapping tori of self homeomorphisms of 3-dimensional infrasolvmanifolds or
are unions of two twisted I-bundles over such 3-manifolds. In the rest of the
chapter we consider each of the possible 4-dimensional geometries of solvable

Lie type.

In x2 we determine the automorphism groups of the flat 3-manifold groups,
while in x3 and x4 we determine ab initio the 74 flat 4-manifold groups. There
have been several independent computations of these groups; the consensus re-
ported on page 126 of [WOo] is that there are 27 orientable groups and 48 nonori-
entable groups. However the tables of 4-dimensional crystallographic groups in
[B-Z] list only 74 torsion free groups. As these computer-generated tables give
little insight into how these groups arise, and as the earlier computations were
never published in detail, we shall give a direct and elementary computation,
motivated by Lemma 3.14. Our conclusions as to the numbers of groups with
abelianization of given rank, isomorphism type of holonomy group and orienta-
tion type agree with those of [B-Z]. (We have not attempted to make the lists
correspond.)

There are in nitely many examples for each of the other geometries. In x5
we show how these geometries may be distinguished, in terms of the group
theoretic properties of their lattices. In x6, x7 and x8 we consider mapping
tori of self homeomorphisms of E3-, Nil3- and Sol®-manifolds, respectively. In
X9 we show directly that \most™ groups allowed by Theorem 8.1 are realized
geometrically and outline classi cations for them, while in x10 we show that
\most" 4-dimensional infrasolvmanifolds are determined up to di eomorphism
by their fundamental groups.

8.1 The characterization
In this section we show that 4-dimensional infrasolvmanifolds may be charac-

terized up to homeomorphism in terms of the fundamental group and Euler
characteristic.

Geometry & Topology Monographs, Volume 5 (2002)



152 Chapter 8: Solvable Lie geometries

Theorem 8.1 Let M be a closed 4-manifold with fundamental group  and
such that (M) = 0. The following conditions are equivalent:

) is torsion free and virtually poly-Z and h( ) = 4;

@ n" 3

3) has an elementary amenable normal subgroup with h( ) 3, and
H?( ;Z[ ])=0; and

4) is restrained, every nitely generated subgroup of is FP3 and
maps onto a virtually poly-Z group Q with h(Q) 3.

Moreover if these conditions hold M is aspherical, and is determined up to
homeomorphism by , and every automorphism of may be realized by a self
homeomorphism of M.

Proof If (1) holds then h(p_) 3, by Theorem 1.6, and so (2) holds. This
in turn implies (3), by Theorem 1.17. If (3) holds then  has one end, by
Lemma 1.15, and f)( ) = 0, by Corollary 2.3.1. Hence M is aspherical,
by Corollary 3.5.2. Hence isa PDgs-groupand 3 h() cd: 4. In
particular, is virtually solvable, by Theorem 1.11. If ¢:d: =4 then [ : ]
is nite, by Strebel’s Theorem, and so s virtually solvable also. If c:d: =3
then c¢:d: = h( ) and so is a duality group and is FP [Kr86]. Therefore
HY(;Q[ D =HY;Q[ D LA =] and is 0 unless g = 3. It then follows
from the LHSSS for  as an extension of = by (with coe cients Q[ ]) that
H* ;Q[ ) =H( =;Q[ = 1) HI( ;Q[ ]). Therefore H!( = ;Q[ = ) =Q,
so = has two ends and we again nd that is virtually solvable. In all cases

is torsion free and virtually poly-Z, by Theorem 9.23 of [Bi], and h( ) = 4.

If (4) holds then is an ascending HNN extension = B  with base FP3
and so M is aspherical, by Theorem 3.16. As in Theorem 2.13 we may deduce
from [BG85] that B must be a PD3-group and  an isomorphism, and hence
B and are virtually poly-Z. Conversely (1) clearly implies (4).

The nal assertions follow from Theorem 2.16 of [FJ], as in Theorem 6.11 above.
O

Does the hypothesis h( ) 3 in (3) imply H?( ;Z[ ]) = 0? The examples
F S S! where F = S? oris a closed hyperbolic surface show that the
condition that h( ) > 2 is necessary. (See also x1 of Chapter 9.)

Corollary 8.1.1 The 4-manifold M is homeomorphic to an infrasolvmanifold
if and only if the equivalent conditions of Theorem 8:1 hold.
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Proof If M is homeomorphic to an infrasolvmanifold then (M) =0, is
torsion free and virtually poly-Z and h( ) = 4 (see Chapter 7). Conversely, if
these conditions hold then is the fundamental group of an infrasolvmanifold,
by [AJ76]. O

It is easy to see that all such groups are realizable by closed smooth 4-manifolds
with Euler characteristic 0.

Theorem 8.2 If s torsion free and virtually poly-Z of Hirsch length 4 then
it is the fundamental group of a closed smooth 4-manifold M which is either a
mapping torus of a self homeomorphism of a closed 3-dimensional infrasolvman-
ifold or is the union of two twisted | -bundles over such a 3-manifold. Moreover,
the 4-manifold M is determined up to homeomorphism by the group.

Proof The Eilenberg-Mac Lane space K( ;1) is a PDg-complex with Euler
characteristic 0. By Lemma 3.14, either there is an epimorphism : ¥ Z,in
which case isasemidirect product G Z where G =Ker( ),or =G; G
where [G; : G] =[G, : G] = 2. The subgroups G, G; and G, are torsion
free and virtually poly-Z. Since in each case =G has Hirsch length 1 these
subgroups have Hirsch length 3 and so are fundamental groups of closed 3-
dimensional infrasolvmanifolds. The existence of such a manifold now follows
by standard 3-manifold topology, while its uniqueness up to homeomorphism
was proven in Theorem 6.11. O

The rst part of this theorem may be stated and proven in purely algebraic
terms, since torsion free virtually poly-Z groups are Poincare duality groups.
(Sef,)Chapter 11 of [Bi].) If issuch agroup then either it is virtually nilpotent
or - =Z3%or I"q for some ¢, by Theorems 1.5 and 1.6. In the following sections
we shall consider how sucB groups may be realized geometrically. The geometry
is largely determined by = . We shall consider rst the virtually abelian cases.

8.2 Flat 3-manifold groups and their automorphisms

The flat n-manifold groups for n 2 are Z, Z? and K=Z _;Z, the Klein
bottle group. There are six orientable and four nonorientable flat 3-manifold
groups. The rst of the orientable flat 3-manifold groups G; - Gg is Gy = Z3.
The next ﬁ%W hav?%! (Gi) = @2 and are semidirect products Z° 1 Z where
T=—1, 921 ; Y or U3, respectively, is an element of nite order

0
in SL(2;Z). These groups all have cyclic holonomy groups, of orders 2, 3, 4
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and 6, respectively. The group Gg is the group of the Hantzsche-Wendt flat
3-manifold, and has a presentation

h;y jxy?x 7 =y 7% yxy T =y R

Its maximal abelian normal subgroup is generated by x?;y? and (xy)? and
its holonomy group is the diagonal subgroup of SL(3;7Z), which is isomorphic
to (Z=2Z)?. (This group is the generalized free product of two copies of K,
amalgamated over their maximal abelian subgroups, and so maps onto D.)

The nonorientable flat 3-manifold groups B; - B4 are semidirect products
K Z, corresponding to the classes in Out(K) = (Z=2Z)2. In terms of
the presentation hx;y j xyx™* = y~1i for K these classes are represented by
the automorphisms  which x y and send x to x;xy;x "~ and X1y, respec-
tively—The groups B; and B, are also semidirect products Z> 1 Z, where
T= 5§59 or (9}) has determinant —1 and T2 = 1. They have holonomy
groups of order 2, while the holonomy groups of B3 and B4 are isomorphic to
(z=22)>.

All the flat 3-manifold groups either map onto Z or map onto D. The methods
of this chapter may be easily adapted to nd all such groups. Assuming these
are all known we may use Sylow theory and a little topology to show that there
are no others. We sketch here such an argument. Suppose that is a flat 3-
manifold group with nite abelianization. Then0= ( ) =1+ »( )— 3( ),s0

3( )& 0and mustbe orientable. Hence the holonomy group F = =T( ) is
a subgroup of SL(3;Z). Let T be a nontrivial element of F. Then T has order
2, 3,4 or 6, and has a +1-eigenspace of rank 1, since it is orientation preserving.
This eigenspace is invariant under the action of the normalizer Ng (hfi), and
the induced action of Ng (hfi) on the quotient space is faithful. Thus Ng (hfi)
is isomorphic to a subgroup of GL(2;7Z) and so is cyclic or dihedral of order
dividing 24. This estimate applies to the Sylow subgroups of F, since p-groups
have nontrivial centres, and so the order of F divides 24. If F has a nontrivial
cyclic normal subgroup then  has a normal subgroup isomorphic to Z? and
hence maps onto Z or D. Otherwise F has a nontrivial Sylow 3-subgroup C
which is not normal in F. The number of Sylow 3-subgroups is congruent to
1 mod (3) and divides the order of F. The action of F by conjugation on
the set of such subgroups is transitive. It must also be faithful. (For otherwise
\gngN.:(C)g_l & 1. As Ng(C) is cyclic or dihedral it would follow that F
must have a nontrivial cyclic normal subgroup, contrary to hypothesis.) Hence
F must be A or S4, and so contains V = (Z=2Z)? as a normal subgroup.
But any orientable flat 3-manifold group with holonomy V must have nite
abelianization. As Z=3Z cannot act freely on a Q-homology 3-sphere (by the
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Lefshetz xed point theorem) it follows that A4 cannot be the holonomy group
of a flat 3-manifold. Hence we may exclude S4 also.

We shall now determine the (outer) automorphism groups of each of the flat
3-manifold groups. Clearly Out(G;) = Aut(G;) = GL(3;Z). If 2 i 5 let
t 2 G;j represent a generator of the quotient Gj=1(G;) = Z. The automorphisms
of Gj must preserve the characteristic subgroup 1(Gj) and so may be identi ed
with triples (v;A; ) 2 Z? GL(2;Z) f 1g such that ATA™ = T and
which act via A on 1(Gj) = Z? and send t to t v. Such an automorphism is

orientation preserving if and only if = det(A). The multiplication is given
by (v;A; )(w;B; ) = ( v+ Aw;AB; ), where =1if =1and =
=T if = —1. The inner automorphisms are generated by (0;T;1) and
(T = 1DZ?%1;1).

In particular, Aut(G,) = (Z2 GL(2;2)) f 1g, where isthe natural action
of GL(2;Z) on Z2, for s always | if T = —I. The involution (0;1;—1) is

central in Aut(G»), and is orientation reversing. Hence Out(G,) is isomorphic
to ((Z=22)> p PGL(2;Z)) (Z=2Z), where P is the induced action of
PGL(2;Z) on (Z=2Z)3.

If n =3, 4 or 5 the normal subgroup 1(G;) may be viewed as a module over the
ring R = Z[t]=( (t)), where (t) = t?+t+1, t?+1 or t?—t+1, respectively. As
these rings are principal ideal domains and 1(G;) is torsion free of rank 2 as an
abelian group, in each case it is free of rank 1 as an R-module. Thus matrices
A such that AT = TA correspond to units of R. Hence automorphisms of
Gij which induce the identity on Gi=I(G;j) have the form (v; T™;1), for some
m 2 Z and v 2 Z2. There is also an involution (0;(93);—1) which sends
t to t™1. In all cases = det(A). It follows that Out(G3) = S;  (Z=2Z),
Out(Gs) = (Z=2Z)? and Out(Gs) = Z=2Z. All these automorphisms are
orientation preserving.

The subgroup A of Gg generated by fx2;y?;(xy)?g is the maximal abelian
normal subgroup of Gg, and Gg=A = (Z=ZZ)2. Let a, b, c, d, e, f, i and
j be the automorphisms of Gg which send x to x™1; x; X; X; y2X; (Xy)?X; y; Xy
and y to y:y~L: (xy)2y; x2y;y; (Xy)?y; X; X, respectively. The natural homo-
morphism from Aut(Ge) to Aut(Ge=A) = GL(2;F,) is onto, as the images of
i and j generate GL(2;F,), and its kernel E is generated by fa;b;c;d;e; fg.
(For an automorphism which induces the identity on Gg=A must send x to
x?Py24(xy)?"x, and y to x?Sy?Y(xy)?!y. The images of x2, y? and (xy)? are
then x**2, y4*2 gnd (xy)*"—W+2 which generate A if and only if p = 0
or =1, t=0o0r —1 and r = u—1 or u. Composing such an automorphism
appropriately with a, b and ¢ we may acheive p =t =0 and r = u. Then
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by composing with powers of d, e and f we may obtain the identity automor-
phism.) The inner automorphisms are generated by bcd (conjugation by x)
and acef (conjugation by y). Then Out(Gg) has a presentation

ha;b;c;e;i;jja’?=b>=c®=e?=i2=j%=1; a;b;c;e commute, iai = b;
ici =ae; jaj ' =c; jbj~t = abc; jcj ! =be; j3 = abce; (ji)? = bci:
The generators a;b;c; and j represent orientation reversing automorphisms.

(Note that jej~* = bc follows from the other relations. See [Zn90] for an
alternative description.)

The group B; =Z K has a presentation
ht; x;y j tx = xt; ty = yt; xyx 1 =y~ Li;

An automorphism of B; must preserve the centre B; (which has basis t; x?)
and 1(B1) (which is generated by y). Thus the automorphisms of B; may be
identi ed with triples (A;m; )2 , Z f 1g, where 5 is the subgroup of
GL(2; Z) consisting of matrices congruent mod (2) to upper triangular matrices.
Such an automorphism sends t to t2x?, x to t°x%™ and y to y , and induces
multiplication by A on B:=1(B1) = Z?. Composition of automorphisms is
given by (A;m; )(B;n; ) = (AB;m+ n; ). The inner automorphisms are
generated by (1;1;—1) and (I;2;1), and so Out(B,) = , (Z=22).
The group B, has a presentation

ht;x;y j txt™! = xy; ty = yt; xyx * =y~ i
Automorphisms of B, may be identi ed with triples (A; (m;n); ), where A 2
M, mn22zZ, = 1and m= (A;; — )=2. Such an automorphism sends
t to t2xPy™, x to t°x%"™ and y to y , and induces multiplication by A on

B,=1(B,) = Z2. The automorphisms which induce the identity on By=1(B>)
are all inner, and so Out(B;) = ».

The group B3 has a presentation

ht;x;y jixt™t = x71; ty = yt; xyx 1 =y7Li

An automorphism of Bz must preserve 1(B3) = K (which is generated by
x;y) and 1(1(B3)) (which is generated by y). It follows easily that Out(B3) =
(Z=22)3, and is generated by the classes of the automorphisms which x y and
send t to t1;t;tx? and X to x;Xxy; X, respectively.
A similar argument using the presentation

htxyjtxt = x"ly; ty =yt; xyx 1 =y~1
for B, shows that Out(B,) = (Z=2Z)3, and is generated by the classes of the
automorphisms which x y and send t to t~ly~1:t;tx?> and x to x;x1;x,
respectively.
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8.3 Flat 4-manifold groups with in nite abelianization

We shall organize our determination of the flat 4-manifold groups in terms
of I( ). Let be a flat 4-manifold group, = 41() and h = h(l()).
Then =I()=2Z and h+ = 4. If I( ) is abelian then C (I( )) is a
ninoterE normal subgroup of and so is a subgroup of the Hirsch-Plotkin
radical =, which is here the maximal abelian normal subgroup T( ). Hence
C (I( ))=T( ) and the holonomy group is isomorphic to =C (I1( )).

h=0 Inthiscase I( ) =1,s0 =Z* and is orientable.

h=1 Inthiscase I( ) = Z and is nonabelian, so =C (I( )) = Z=2Z.
Hence has a presentation of the form

ht;x;y;z j txt™ = xz?; tyt™! = yz°; tzt7 = z7%; x;y;z commutei;

for some integers a, b. On replacing x by xy or interchanging x and y if
necessary we may assume that a is even. On then replacing x by xz%?2 and y
by yz["2 we may assume that a =0 and b =0 or 1. Thus is a semidirect
product Z3 1 Z, where the normal subgroup Z2 is generated by the images

of X, y and z, and the action of t is determined by a matrix T = ((:;zb) _01 in

GL(3;Z). Hence =Z B;=2Z? K orZ B,. Both of these groups are
nonorientable.

h=2 If I()=2%and =C (I()) is cyclic thga;we may again assume
that is a semidirect product Z% 1 Z, where T = 8 , with = (%) and
U 2GL(2 @ is of cEﬁer 2,3, ztgr 6 and does not have 1 asran eigenvalue. Thus
U=-1p, 721, T or 97! . Conjugating T by T2 replaces by

+ (I, —U) . In each case the choice a =h = 0 leads to a group of the form

=Z G, where G is an orientable flat 3-manifold group with 1(G) = 1.
For each of the three of these matrices there is one other possible group.
However if U = T—' then I, — U is invertible and so Z Gs is the only

possibility. All seven of these groups are orientable.

If 1I( )=2?and =C (I( )) is not cyclic then =C (1( )) = (Z=2Z)?. There
are two conjugacy classes of embeddings of (Z=2Z)? in GL(2;Z). One has
image the subgroup of diagonal matrices. The corresponding groups  have

presentations of the form
ht;u;xy jix = xt; tyt ™ =y~ uxu™t =x71 uyu™t =y xy = yx;

tut™tu™t = xMy"i;

Geometry & Topology Monographs, Volume 5 (2002)



158 Chapter 8: Solvable Lie geometries

for some integers m, n. On replacing t by tx~[M=2ly["=2] jf necessary we may
assumethat 0 m;n 1. On then replacing t by tu and interchanging x and
y if necessary we may assume that m n. The only in nite cyclic subgroups of
I( ) which are normal in  are the subgroups hxi and hyi. On comparing the
quotients of these groups by such subgroups we see that the three possibilities
are distinct. The other embedding of (Z=2Z)? in GL(2;Z) has image generated
by —1 and (93). The corresponding groups  have presentations of the form

hu gy jixt P =y tyt P =x; uxu™t =xL uyut =y xy = yx;

tut tu™t = xMy"i;

for some integers m, n. On replacing t by tx(M™=2] and u by ux™™ if
necessary we may assume that m = 0 and n =0 or 1. Thus there two such
groups. All ve of these groups are nonorientable.

Otherwise, I( ) = K, I(I()) =Z and G = =I(I()) is a flat 3-manifold
group with 1(G) = 2, but with 1(G) = I( )=I(1( )) not contained in G’
(since it acts nontrivially on 1(1( ))). Therefore G=B; =Z K, and so has
a presentation

ht;x;y j tx = xt; ty = yt; xyx ! =y~ Li:

If w: G ¥ Aut(Z) is a homomorphism which restricts nontrivially to 1(G)
then we may assume (up to isomorphism of G) that w(x) =1 and w(y) = —1.
Groups  which are extensions of Z K by Z corresponding to the action
with w(t) =w (= 1) have presentations of the form
ht;x;y;z jtxt™t = xz8; tyt™ = yz° tzt7 = 2%; xyx ! = y71z%; xz = zx;
yzy t=z""
for some integers a;b. Any group with such a presentation is easily seen to be
an extension of Z K by a cyclic normal subgroup. However conjugating the
fourth relation leads to the equation

txt Tyt xtH T = exyx T = ty 120 =yt itz )

which simpli es to xz2yzPz73x~1 = (yz”)™1z"¢ and hence to z¢7% = z"°,
Hence this cyclic normal subgroup is nite unless 2a = (1 — w)c.

Suppose rst that w = 1. Then z?2 = 1 and so we must have a = 0. On
replacing t by tz[®2 and x by xz[°*2, if necessary, we may assume that 0

b;c 1. If b =0 then =Z BszorZ B,4. Otherwise, after further
replacing x by txz if necessary we may assume that ¢ = 0. The three remaining
possibilities may be distinguished by their abelianizations, and so there are three
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such groups. In each case the subgroup generated by ft;x?;y?;zg is maximal
abelian, and the holonomy group is isomorphic to (Z=2Z)3.

If instead w = —1 then z2~® =1 and so we must have a = c¢. On replacing
y by yz[**2 and x by xz[°*2 if necessary we may assume that 0 b;c 1. If
b =1 then after replacing x by txy, if necessary, we may assume that a = 0.
Ifa=b=0then = %=2Z2 (Z=2Z)2. The remaining two possibilities both
have abelianization Z2 (Z=2Z), but one has centre of rank 2 and the other has
centre of rank 1. Thus there are three such groups. The subgroup generated
by fty;x?;y?;zg is maximal abelian, and the holonomy group is isomorphic to
(Z=22)?. All of these groups with I( ) = K are nonorientable.

h =3 In this case is uniquely a semidirect product =1( ) Z, where
I( ) is a flat 3-manifold group and is an automorphism of 1( ) such that the
induced automorphism of 1( )=1(1( )) has no eigenvalue 1, and whose image in
Out(l( )) has nite order. (The conjugacy class of the image of in Out(1( ))
is determined up to inversion by .)

Since T(I1( )) is the maximal abelian normal subgroup of I( ) it is normal in

. It follows easily that T( )\ I1( ) =T(( )). Hence the holonomy group of
I( ) is isomorphic to a normal subgroup of the holonomy subgroup of , with
quotient cyclic of order dividing the order of in Out(l( )). (The order of the
quotient can be strictly smaller.)

If 1( ) = 2Z3 then Out(l( )) = GL(3;Z). If T 2 GL(3;Z) has nite order n
and 1(Z® 12Z)=1 theneither T = —1 or n =4 or 6 and the characteristic
polynomial of T is (t+1) (t) with () =t*+1, tjHt+1 or t* —t+1 I the
Ifgjter casesE'@ is conjugate to a matrix of the form _01 A where A = _01 ,

1:% or 1_11 , respectively. The row vector = (mjy;my) is well de ned
mod Z2(A+1). TE‘;'_IS there are seven such conjugacy classes. All but one pair
(corresponding to ‘11 and 2 Z?(A+1)) are self-inverse, and so there are
six such groups. The holonomy group is cyclic, of order equal to the order of T.
As such matrices all have determinant —1 all of these groups are nonorientable.

If1()=G;for2 i 5 theautomorphism = (v;A; ) musthave =-1,
for otherwise 1( ) =2. We have Out(G;) = ((Z=2Z2)*>~PGL(2;Z)) (Z=2Z).
The ve conjﬁgracy classes ofqﬁnte order imP GL(2;7Z) are represented by the
matrices 1, 9, (98), §% and © 1 . The numbers of conjugacy
classes in Out(Gy) with = —1 corresponding to these matrices are two, two,
two, three and one, respectively. All of these conjugacy classes are self-inverse.
Of these, only the two conjugacy classes corresponding to (23) and the three
conjugacy classes corresponding to 3 %  give rise to orientable groups. The
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I@Jonomy groups are all isomorphic to (Z=2Z)?, except when A = ?‘01 or
2 1, when they are isomorphic to Z=4Z or Z=6Z Z=2Z, respectively.
There are ve orientable groups and ve nonorientable groups.

As Out(G3) =S3  (Z=2Z), Out(G4) = (Z=2Z)? and Out(Gs) = Z=2Z, there
are three, two and one conjugacy classes corresponding to automorphisms with

= —1, respectively, and all these conjugacy classes are closed under inversion.
The holonomy groups are dihedral of order 6, 8 and 12, respectively. The six
such groups are all orientable.

The centre of Out(Gg) is generated by the image of ab, and the image of ce
in the quotient Out(Gg)=habi generates a central Z=2Z direct factor. The
quotient Out(Gg)=hab;cei is isomorphic to the semidirect product of a normal
subgroup (Z=2Z)? (generated by the images of a and c) with Sz (generated
by the images of ia and j), and has ve conjugacy classes, represented by
1;a;i;j and ci. Hence Out(Gg)=habi has ten conjugacy classes, represented by
1;ce; a; ace; i;cei; j; cej; ci and cice = ei. Thus Out(Gg) itself has between 10
and 20 conjugacy classes. In fact Out(Gg) has 14 conjugacy classes, of which
those represented by 1;ab; ace; bce; i;cej, abcej and ei are orientation preserv-
ing, and those represented by a;ce;cei; J;abj and ci are orientation reversing.
All of these classes are self inverse, except for j and abj, which are mutually
inverse (j~! = ai(abj)ia). The holonomy groups corresponding to the classes
1; ab; ace and bce are isomorphic to (Z=2Z)?, those corresponding to a and ce
are isomorphic to (Z=22)%, those corresponding to i;ei;cei and ci are dihedral
of order 8, those corresponding to cej and abcej are isomorphic to A4 and the
one corresponding to j has order 24. There are eight orientable groups and ve
nonorientable groups.

All the remaining cases give rise to nonorientable groups.

I( )=Z K. Ifamatrix Ain » has nite order then as its trace is even the
order must be 1, 2 or 4. If moreover A does not have 1 as;ap eigenvalue then
either A = —1 or A has order 4 and is conjugate (in ) to Z% % . Each of the
four corresponding conjugacy classes in , T 1g is self inverse, and so there
are four such groups. The holonomy groups are isomorphic to Z=nZ Z=2Z,
where n =2 or 4 is the order of A.

I( ) = By. As Out(B,) = , there are two relevant conjugacy classes and
hence two such groups. The holonomy groups are again isomorphic to Z=nzZ
Z=27, where n =2 or 4 is the order of A.

I( ) = B3 or B,. In each case Out(H) = (Z=2Z)3, and there are four outer
automorphism classes determining semidirect products with = 1. (Note that
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here conjugacy classes are singletons and are self-inverse.) The holonomy groups
are all isomorphic to (Z=2Z)3.

8.4 Flat 4-manifold groups with nite abelianization

There remains the case when = " is nite (equivalently, h = 4). By Lemma
3.14 if  is such a flat 4-manifold group it is nonorientable and is isomorphic
to a generalized free product J  J, where is an isomorphism from G < J
toG<Jand [J:G]=[J:G]=2. The groups G, J and J are then flat 3-
manifold groups. If and ~ are automorphisms of G and G which extend to J
and J, respectively, then J Jand J - J areisomorphic, and so we shall say

that and =~  are equivalent isomorphisms. The major di culty in handling
these cases is that some such flat 4-manifold groups split as a generalised free
product in several essentially distinct ways.

It follows from the Mayer-Vietoris sequence for = J J that H.(G;Q)
maps onto Hy(J; Q) Hi1(J;Q), and hence that (J)+ 1(J) 1(G). Since
Gs3, G4, B3 and B4 are only subgroups of other flat 3-manifold groups via
maps inducing isomorphisms on H;(—; Q) and Gs and Gg are not index 2
subgroups of any flat 3-manifold group we may assume that G = Z3, G,,
B, or B,. If j and j are the automorphisms of T(J) and T(J) determined
by conjugation in J and J, respectively, then is a flat 4-manifold group if
and only if = jT( )"YT( ) has nite order. In particular, the trace of
must have absolute value at most 3. At this point detailed computation seems
unavoidable. (We note in passing that any generalised free product J ¢ J with
G =Gz, G4, By or Bg, J and J torsion freeand [J : G] =[J:G] =2 is
a flat 4-manifold group, since Out(G) is then nite. However all such groups
have in nite abelianization.)

Suppose rst that G = Z3, with basis fx;y;zg. Then J and J must have
holonomy of order 2, and :(J)+ 1(J) 3. Hence we may assume that
J =Gy and J = G,, By or By. Ineach case we have G =T (J) and G =T (J).
We may assume that J and J are generated by G and elements s and t,
respectively, such that s? = @nd t> 2 G. We may also assume that the action
of s on G has matrix j = 39 with respect to the b‘i"ﬂf X;y;zg. Fix an
isomorphism :G ¥ Gandlet T =T( ) T() = $D be the matrix
corresponding to the action of t on G. (Here y isa 2 1 column vector, is
al 2rowvectorand D isa 2 2 matrix, possibly singular.) Then T2 = |
and so the trace of T is odd. Since J | mod (2) the trace of = jT is also
odd, and so cannot have order 3 or 6. Therefore 4 =1. If =1 then
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= Yisin nite. If has order 2 then jT =Tjandsoy =0, =0 and
D2 = 1,. Moreover we must have a = —1 for otherwise = ' is in nite. After
conjugatlngE'Il'] by a matrix commuting with j if necessary we may assume that
=1l,or §2° . (Since J must be torsion free we cannot have D = ad)
These two matrlces correspond to the generalized free products G, B; and
G, Gy, with presentations

hs;t;z jst’s t =t72; szs7t =z71; ts?t™t = s72; tz = zti
and hs;t;zjst’s t=t2 szs =zttt =572 tzt 1 =z 7Li;

respectively. These groups each have holonomy group isomorphic to (Z=22)2.
If  has order 4 then we must have (jT)?> = (jT)™2 = (Tj)? and so (jT)?
commutes with j. It can then be shown that after conjugating T by a matrix
commuting with j if necessary we may assume that T is the elementary matrix
which interchanges the rst and third rows. The corresponding group G, B>
has a presentation

hs;t;z jst?’s P =t"2 szs7t =z71 ts’t7 = z; tzt™! = S
Its holonomy group is isomorphic to the dihedral group of order 8.

If G = B; or B, then J and J are nonorientable and ;(J) + 1(J) 2.
Hence J and J are B3z or B4. Since neither of these groups contains B, as an
index 2 subgroup we must have G = B;. In each case there are two essentially
di erent embeddings of B; as an index 2 subgroup of B3 or B4. (The image of
one contains 1(Bj) while the other does not.) In all cases we 'ﬂgij that j and |
are diagonal matrices with determinant —1, and that T( ) = 0 for some
M 2 I,. Calculation now shows that if has nite order then M is diagonal
and hence 1(J J) > 0. Thus there are no flat 4-manifold groups (with

nite abelianization) which are generalized free products with amalgamation
over copies of By or B;.

If G =G, then 1(J)+ 1(J) 1, so we may assume that J = Gg. The
other factor J must then be one of Gy, G4, Gg, B3 or By, and then every
amalgamation has nite abelianization. In each case the images of any two
embeddings of G, in one of these groups are equivalent up to composition with
an automorphisr of the larger group. In all cases the matriges for j and J
have the form ;' § where N*=12GL(2;Z),and T( )= o, for some
M 2 GL(2;Z). Calculation shows that has nite order if and only if M is
in the dihedral subgroup Dg of GL(2;Z) generated by the diagonal matrices
and (93). (In other words, either M is diagonal or both diagonal elements of
M are 0.) Now the subgroup of Aut(G,) consisting of automorphisms which
extend to Gg is (Z2 Dg) T 1g. Hence any two such isomorphisms  from
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8.4 Flat 4-manifold groups with nite abelianization 163

G to G are equivalent, and so there is an unique such flat 4-manifold group
Gg J for each of these choices of J. The corresponding presentations are

' % u(xy)® = (xy)*ui;
Luy?uTt = ()% uy)’uTt =y x = Ut
2

hu;;y jxux T =ut; y2 =u? yxPy = x"

hu; x;y j yxPy ™ = x7?
hu;x;y j xy?x 2 =y72; yx?y ™t = ux?u™! = x7?; y? = u?; yxy = uxui;
ht;xy j xy?x 2 =y72 yx?y = x72 x® = 1% y? = (t71x)?; t(xy)? = (xy)°ti
and ht;x;y jxy?x =y yPyTh = X7 ) = B(xy)% yE = ()5
t(xy)” = (xy)“ti;

respectively. The corresponding holonomy groups are isomorphic to (Z=22)3,
Dg, (Z=2Z)?, (Z=22)® and (Z=2Z)3, respectively.

Thus we have found eight generalized free products J ¢ J which are flat 4-
manifold groups with  =0. The groups G, Bj, G, G, and Gg Gg are
all easily seen to be semidirect products of Gg with an in nite cyclic normal
subgroup, on which Gg acts nontrivially. It follows easily that these three
groups are in fact isomorphic, and so there is just one flat 4-manifold group
with nite abelianization and holonomy isomorphic to (Z=2Z7)3.

The above presentations of G, B, and Gg G4 are in fact equivalent; the
function sending s to y, t to yu™! and z to uy?u™?! determines an isomorphism
between these groups. Thus there is just one flat 4-manifold group with nite
abelianization and holonomy isomorphic to Dg.

The above presentations of Gg G, and Gg B4 are also equivalent; the
function sending x to xt™, y to yt and u to xy 't determines an isomorphism
between these groups (with inverse sending x to uy *x~2, y to ux~! and t to
xuy~1). (This isomorphism and the one in the paragraph above were found by
Derek Holt, using the program described in [HR92].) The translation subgroups
of Gg Bsand Gg B, are generated by the images of U = (ty)?, X = x2,
Y =y? and Z = (xy)? (with respect to the above presentations). In each case
the images of t, x and y act diagonally, via the matrices diag[—1;1;—1;1],
diag[l;1;—1;—1] and diag[—1;—1;1;—1], respectively. However the maximal
orientable subgroups have abelianization Z (Z=2)° and Z (Z=4Z) (Z=22),
respectively, and so Gg  Bj3 is not isomorphic to Gg  By4. Thus there are
two flat 4-manifold groups with nite abelianization and holonomy isomorphic
to (Z=22)3.

In summary, there are 27 orientable flat 4-manifold groups (all with > 0), 43
nonorientable flat 4-manifold groups with > 0 and 4 (nonorientable) flat 4-
manifold groups with = 0. (We suspect that the discrepancy with the results
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reported in [Wo] may be explained by an unnoticed isomorphism between two
examples with nite abelianization.)

8.5 Distinguishing between the geometries

Let M be a closed 4-manifold with fundamental group  and with a geometry
of solvable Lie type,  We shall show that the geometry is largely determined
by the structure of © . (See also Proposition 10.4 of [WI86].) As a geometric
structure on a manifold lifts to each covering space of the manifold it shall su ce
to show that the geometries on suitable nite covering spaces (corresponding
to subgroups of nite index in ) can be recognized.

If M is an infranilmanifold then [ : pj < 4. If jt is flat then P-_ z4,
while if it has the geometry Nil®> E! or Nil* then = is nilpotent of CIE)SS 2
or 3 respectively. (These cases may also be distinguished by the rank of ~ )
All such groups have been classi ed, and may be realized geometrically. (See
[De] for explicit representations of the Nil® E!- and Nil*-groups as lattices
in AFF(NilI® R) and AFF(Nil%), respectively.)

If M is a Sol3- or Solf,.,-manifold then P=_ 73, Hence h( :p_) =1 and
8 has a normal subgroup  of nite index which is a semidirect prlgduct

Z, where the action of a generator t of Z by conjugation on * s
given by a matrix in GL(3;Z). We may further assume that isin SL(3;Z)
and has no negative eigenvalues, and that is maximal among such normal
subgroups. The characteristic polynomial of is X3—mX?+nX—1, where m =
trace( ) and n = trace( _12). The matrix  has in nite order, for otherwise
the subgroup generated by ~  and a suitable power of t would be abelian of
rank 4. Moreover the eigenvalues must be distinct. For otherwise they would
beall1,s0 ( —1)*=0and would be virtually nilpotent.

If M isa Solg‘-manifold two of the eigenvalues are complex conjugates. They
cannot be roots of unity, since  has in nite order, and so the real eigenvalue
isnotl. If Misa Solﬁm-manifold the eigenvalues of are distinct and real.
The geometry is Sol®  E'(= Solf,, for any m 4) if and only if has 1 as
a simple eigenvalue.

The groups of E*-, Nil® E!- and Nil*-manifolds also have nite index sub-
groups = Z3% Z. We may assume that all the eigenvalues of are 1, so
N = —1 is nilpotent. If the geometry is E* then N = 0; if it is Nil® [E! then
N & 0 but N2 = 0, while if it is Nil* then N? & 0 but N3 = 0. (Conversely,
it is easy to see that such semidirect products may be realized by lattices in the
corresponding Lie groups.)
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Finally, if M is a Sol{-manifold then P-_ g for some g 1 (and so is
nonabelian, of Hirsch length 3).

If h(p_) = 3 then s an extension of Z or D by a normal subgroup  which
contains ~ as a subgroup of nite index. Hence either M is the mapping
torus of a self homeomorphism of a flat 3-manifold or a Nil3-manifold, or it is
the union of two twisted I -bundles over such 3-manifolds and is doubly covered
by such a mapping torus. (Compare Theorem 8.2.)

We shall consider the converse question of realizing geametrically such torsion
free virtually poly-Z groups (with h( ) =4 and h(" ) =3) in x9.

8.6 Mapping tori of self homeomorphisms of E2-manifolds

It follows from the above that a 4-dimensional infrasolvmanifold M admits one
of the product geometries of type E*, Nil® E! or Sol®* E! if and only if

1(M) has a subgroup of nite index of the form Z, where s abelian,
nilpotent of class 2 or solvable but not virtually nilpotent, respectively. In
the next two sections we shall examine when M is the mapping torus of a
self homeomorphism of a 3-dimensional infrasolvmanifold. (Note that if M is
orientable then it must be a mapping torus, by Lemma 3.14 and Theorem 6.11.)

Theorem 8.3 Let be the fundamental group of a flat 3-manifold, and let
be an automorphism of . Then
(€)) P- is the maximal abelian subgroup of and -P- embeds in Aut(p_);
(2) Out( )is niteifandonly if [ : pj > 2;
(3) the kernel of the restriction homomorphism from Out( ) to Aut(p_) is

nite;
@ if[ p_] =2 then ( jP-)? has 1 as an eigenvalue;
(B) if[ :" ]=2and jP- hasin nite order but all of its eigenvalues are
roots of unity then (( jP-)?> —1)2 = 0.

p_
the ma>gnal abelian subgroup of . The kernel of the homomorpBism fronb
to Aut(" ) determined bes conjugation is the centralizer C=C ( ). As =

Proof It follows immediately from Theorem 1.5 that = 7% and is thus

is central in C and [C : ~ ] is nite, C has nite commutator subgroup, by
Schur’s Theorem (Proprgsition 10.1.4 of [Iﬁg]). Since C is torsjon free it must
be abelianandso C =" . Hence H = =" embeds in Aut(" )= GL(3;%Z).

(This is just the holonomy representation.)
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If H has order 2 then induces the identity on H; if H t‘Bs order greater than
2 then some power of induces the identity on H, since = is a characteristic
subgroup of nite index. The matrix jP- then commutes with each element of
the image of H in GL(3;Z), and the remaining assertions follow from simple
calculations, on considering the possibilities for and H listed in x3 above. 0O

Corollary 8.3.1 The mapping torus M( ) = N St of a self homeomor-
phism  of a flat 3-manifold N is flat if and only if the outer automorphism
[ ]induced by has nite order. O

If N is flat and [ ] has in nite order then M( ) may admit one of the other
product geometries Sol® E! or Nil® E?!; otherwise it must be a Solf,.,-,
Sol3- or Nil*-manifold. (The latter can only happen if N = R3=Z3, by part
(V) of the theorem.)

Theo|5em 8.4 LetM Be an infrasolvmanifold with fundamental group  such
that © = Z% and =" is an extension of D by a nite normal subgroup.
Then M is a Sol® E!-manifold.

Proof Letp: ¥ D be an epimorphism with kernel K containing P- as a
subgroup of nite index, and let t and u be elements of  whose images under
p generate D and such that p(t) generates an in nite cyclic subgroup of in?)ex
2 in D. Then there is an N > 0 such that the image of s = tN in ="
nerates a normal subgroup. In particular, the subgroup generatedpby s and
“isnormal in  and usu~! and ?)_1 have the same image in = p_ Let
be the matrix of the action of s on =, with respect to some basis = = 3,
Then is conjugate to its inverse, since usu™! and s™! agree modulo
Hence one of the eigenvalues of is 1. Since is not virtually nilpotent
the eigenvalues of  must be distinct, and so the geometry must be of type
Sol® E!. O

Corollary 8.4.1 If M admits one of the geometries Sol§ or Solf,., with m &
n then it is the mapping torus of a self homeomorphism of R3=Z2, and so
=273 Z forsome in GL(3;Z) and is a metabelian poly-Z group.

Proof This follows immediately from Theorems 8.3 and 8.4. O

We may use the idea of Theorem 8.2 to give examples of E4-, Nil*-, Nil® [E!-
and Sol® E!-manifolds which are not mapping tori. For instance, the groups
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with presentations

hu;viX;y:z jxy =yx; xz=zx; yz=zy, uxu *=x"1 v> =y; uzu t =z7%;
vZ =z, vxv t=x71 vyl =yl
hu;viX;y;z jxy =yx; xz =zx; yz=zy; > =x; uyu =y uzut =271

vZ=x; vy l=vily hvzvi =278

and hu;v;X;y;z j Xy = yX; Xz =zX; yz = zy; u> = x; v2 =y;

uyut =xty Tl vxv Tt =xy2 uzumt = vzv it = 278
are each generalised free products of two copies of Z? _; Z amalgamated over
their maximal abelian subgroups. The Hirsch-Plotkin radicals of these groups
are isomorphic to Z* (generated by f(uv)?;x;y;zg), > Z (generated by
fuv; x;y;zg) and Z3 (generated by fx;y;zg), respectively. The group with
presentation

hu;V;X;y;z j Xy = yX; Xz = zX; yz = zy; u?> = x; uz = zu; uyu * = x?y

vZ=y; vxv i =x71 vzvTt = vzl

is a generalised free product of copies of (Z —1Z) Z (generated by fu;y;zg)
and Z? _,Z (generated by fv; x; z; g) amalgamated over their maximal abelian
subgroups. Its Hirsch-Plotkin radical is the subgroup of index 4 generated by
f(uv)?;x;y;zg, and is nilpotent of class 3. The manifolds corresponding to
these groups admit the geometries E4, Nil® E!, Sol® E?! and Nil*, respec-
tively. However they cannot be mapping tori, as these groups each have nite
abelianization.

8.7 Mapping tori of self homeomorphisms of Nil®-manifolds

Let be an automorphism of 'y, sending x to x3y®z™ and y to x°y9z" for
some a:::nin Z. Then A = (29) isin GL(2;Z) and (z) = z%™_ (In
particular, the P D3-group I is orientable, as already observed in x2 of Chapter
7, and is orientation preserving, by the criterion of page 177 of [Bi], or by the
argument of x3 of Chapter 18 below.) Every pair (A; ) inthe set GL(2;Z) Z?
determines an automorphism (with = (m;n)). However Aut(l) is not the
direct product of GL(2;Z) and Z?, as

(A; )(B; )= (AB; B+det(A) +ql(A;B));

where '(A;B) is biguadratic in the entries of A and B. The natural map p :
Aut(ly) ¥ Aut(lg= Iq) = GL(2;Z) sends (A; ) to A and is an epimorphism,
with Ker(p) = Z2. The inner automorphisms are represented by qKer(p),
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and Out(I"y) is the semidirect product of GL(2;Z) with the normal subgroup
(Z=qZ)?. (Let [A; ] be the image of (A; ) in Out(l"g). Then [A; ][B; ] =
[AB; B +det(A) ].) In particular, Out(I'y) = GL(2;7Z).

Theorem 8.5 Let be the fundamental group of a Nil®-manifold N. Then

(1) =P~ embeds in Aut(p_z p_) = GL(2;2);
@ = = P- is a 2-dimensional crystallographic group;

(3) the images of elements of of nite order under the holonomy
3]

representation in Aut(' ) = GL(2;Z) have determinant 1;
(4) Out( ) isin niteifand only if =2Z2or Z2 _, (Z=22);
(5) the kernel of the natural homomorphism from Out( ) to Out( ) is nite.
(6) is orientable and every automorphism of is orientation preserving.

Proof Let h : 1 Aut(p_: IO_) be tBe h(gnomorphism determfged by
conjttgatiorb an(E)Iet C = Ker(h). en = =" iscentral in C= " and
[C=" : " =""]is nite, so C= "~ has nite commutator subgroup, by
Schur’s Theorem (Proposition 10.1.4 of [Ro].) Since C is torsion free it fol-
lows easily that C is nilpotent and hence that C = = . This proves (1) and
(2). In particular, h factors through tlg holonomy representation for , and
gzg~! = z909) for all g 2 and A 2 ", where d(g) = det(h(g)). If g 2
is such that g & 1 and gk 2 " _ for some k > 0 then gk & 1 and so g
must commute with elements of p_, i.e., the determinant of the image of g
is 1. Condition (4) follows as in Theorem 8.3, on considering the possible nite
subgroups of GL(2;Z). (See Theorem 1.3.)

If 6&1lthen = P-_ Z and so the kernel of the natural homomorphism
from Aut( ) to Aut( ) is isomorphii)to Hom( = %Z). If ="is nite this
kernel is trivial. If =Z2 then =" = g, for some q 1, and the kernel

is isomorphic to (Z=gZ)?. Otherwise =Z _1Z,Z Dor D Z (where
is the automorphism of D = (Z=2Z) (Z=2Z) which interchanges the factors).
But then H?( ;Z) is nite and so any central extension of such a group by Z
is virtually abelian, and thus not a Nil®-manifold group.

If =1 then -P- < GL(2;Z) has an element of order 2 with determinant

—1. No such element can be conjugate to (93); for otherwise  would not be
torsion free. Hence the image of—"  in GL(2; Z) is conjugate 8 a subgroup of
the gﬁpup of diagonafomatrices o swithjj=j%=1.1f =" isgenerated
by 3% then =" =2z _4Zand =2Z? Z,where = G for
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sorBe nonzero integer r, and N is a circle bundle over the Klein bottle. If
=" = (Z=2Z)? then has a presentation

ht;u;zju? =z;tzt7r = z7%; ut?u™! = t7225i;

and N is a Seifert bundle over the orbifold P (22). It may be veri ed in each
case that the kernel of the natural homomorphism from Out( ) to Out( ) is
nite. Therefore (5) holds.

Since P-_ My isa PD3 -group, [ : p_] < 1 and every algtomorphism of Iy
is orientation preserving _must also be orientable. Since __ is characteristic
in and the image of H3(" ;Z) in H3( ;Z) hasindex [ : " ] it follows easily
that any automorphism of  must be orientation preserving. O

In fact every Nil®-manifold is a Seifert bundle over a 2-dimensional euclidean
orbifold [Sc83’]. The base orbifold must be one of the seven such with no
reflector curves, by (3).

Theorem 8.6 The mapping torus M( ) =N  S?! of a self homeomorphism
of a Nil®-manifold N is orientable, and is a Nil® E!-manifold if and only
if the outer automorphism [ ] induced by has nite order.

Proof Since N is orientable and is orientation preserving (by part (6) of
Theorem 8.5) M( ) must be orientable.

The subgroup P- is characteristic in  and hence norm%in ,and = P-
is virtually Z2. If M( ) is a Nil® E!-manifold then =" ispalso virtually
abelian. It follows easily that that the image of in Aut( = * ) has nite
order. Hence [ ] has nite order also, by Theorem 8.5. Conversely, if [ ] has

nite order in Out( ) then has a subgroup of nite index which is isomorphic
to Z, and so M( ) has the product geometry, by the discussion above. 0O

Theorem 4.2 of [KLR83] (which extends Bieberbach’s theorem to the virtually
nilpotent case) may be used to show directly that every outer automorphism
class of nite order of the fundamental group of an E3- or Nil®-manifold is
realizable by an isometry of an a nely equivalent manifold.

The image of an automorphism  of 4 in Out(ly) has nite order if and
only if the induced automorphism  of 'y = (= I = Z2 has nite order in
Aut(lg) = GL(2;Z). If has in nite order but has trace 2 (i.e., if 2—1is
a nonzero nilpotent matrix) then =Ty Z is virtually Igilpotent of class 3.
If the trace of has absolute value greater than 2 then h(" ) = 3.
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Theorem 8.7 Let M be a closed 4-manifold which admits one of the geome-
tries Nil* or Sol{. Then M is the mapping torus of a self homeomorphism of
a Nil®-manifold if and only if it is orientable.

Proof If M is such a mapping torus then it is orientable, by Theorem 8.6.
Conversely, if M is orientable then = ;(M) has in nite abelianization, by
Lemma 3.14. Let p: ¥ Z be an epimorphism with kernel K, and let t be
an element of  such that p(t) generates Z. If K is virtually nilpotent of class
2 we are done, by Theorem 6.12. (Note that this must be the case if M is a
Solf-manifold.) If K is virtually abelian then K = Z3, by part (5) of Theorem
8.3. The matrix corresponding to the action of t on K by conjugation must
be orientation preserving, since M is orientable. It follows easily that is
nilpotent. Hence there is another epimorphism with kernel nilpotent of class 2,
and so the theorem is proven. O

Corollary 8.7.1 Let M be a closed Sol{-manifold with fundamental group
. Then (M) 1 and M is orientable if and only if (M) = 1.

Proof The rst assertion is clear if is a semidirect product I Z, and
then follows in general. Hence if there is an epimorphism p: ¥ Z with kernel
K then K must be virtually nilpotent of class 2 and the result follows from the
theorem. O

If M is a Nil® E!- or Nil*-manifold then 1( ) 3 or 2, respectively, with
equality if and only if is nilpotent. In the latter case M is orientable, and
is a mapping torus, both of a self homeomorphism of R3=Z3 and also of a self
homeomorphism of a Nil®-manifold. We have already seen that Nil® [R!-
and Nil*-manifolds need not be mapping tori at all. We shall round out this
discussion with examples illustrating the remaining combinations of mapping
torus structure and orientation compatible with Lemma 3.14 and Theorem 8.7.
As the groups have abelianization of rank 1 the corresponding manifolds are
mapping tori in an essentially unique way. The groups with presentations

htxy;zjxz=zx;yz =zy; txt L =x"L tyt P =yl tzt 7 = yz 7l
ht;x;y;z jxyx ly ™t =z, xz =zx; yz = zy; txt P =x71 tyt ™t =y i
1

and htx;y;zjxy=yx;zxz t=x"1zyz =y L ixtt =x"1 ty =yt

tzt™ 1 =z7Lj

are each virtually nilpotent of class 2. The corresponding Nil®  E!-manifolds
are mapping tori of self homeomorphisms of R3=Z3, a Nil3-manifold and a flat
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manifold, respectively. The latter two of these manifolds are orientable. The
groups with presentations

htxy;zjxz=zx; yz =zy; txt L= x7L tyt P =xy ™t tzt7 = yz 7l
and ht;x;y;z jxyx ly =z, xz=2zx; yz =zy; txt 1 =x71; tyt7t = xy~ti

are each virtually nilpotent of class 3. The corresponding Nil*-manifolds are
mapping tori of self homeomorphisms of R3=Z2 and of a Nil®-manifold, respec-
tively.

The group with presentation
ht;u;xy;z jxyx“ly ™t = 2% xz = zx; yz = zy; txt ™t = XPy; tyt™t = xy;
tz=zt;u*=z; uxu =y L uyut = x; utu™t = t7Li

has Hirsch-Plotkin radical isomorphic to ', (generated by fX;y;zg), and has
nite abelianization. The corresponding Sol{-manifold is nonorientable and is
not a mapping torus.

8.8 Mapping tori of self homeomorphisms of Sol®-manifolds
The arguments in this section are again analogous to those of x6.

Theorem 8.8 Let be the fundamental group of a Sol®-manifold. Then

D P-_z2and P=z or D;

(2) Out( ) is nite.

Proof The argumembof Theorem 1.6 inIies that h(p_) > 1. Since is not
virtually nilpotent h(" ) < 3. Hence ' = Z2, by Theoremr}.s. Let F be
the preimage in  of the maximal nite normal subgroup of =", let t be an
element of whose image generates the maximal abelian subgroup of =F and
let be the automorphism of F determined by conjugation by t. Let 1 be
the subgroup of generated by F @d t. Then 1=F Z,[ : 1] 2,Fis
torsion free and h(F) =2. IFF & then F =Z _;Z. But extensions OIOZ
by Z _1% are virtually abelian, since Out(Z _1Z) is nite. Hence F =
andso = =ZorD.

Every automorphism of  induces automorphisms of P and of :p_. Let

Out™( ) be the subgrou;bof Out( ) represented by automorphisms which in-
E)uce the identity on =" . The restrlicgtion of any such automorphism to
~ commutes with . We may view = as a module over the ring R =

Geometry & Topology Monographs, Volume 5 (2002)



172 Chapter 8: Solvable Lie geometries

Z[X]=( (X)), where (X) = X? —tr( )X + det( ) is the characteristic poly-
nomial of . The polynomial _ is irreducible and has real roots which are not

roots of unity, for otherwise = Z would be virtually nilpotent. Therefore
R is a domain and its eldpof fractions Q[X]=( (X)) is a real quadratic num-
ber eld. The R-module = is clearly nitely geperated, R-torsion free and

of rank 1. Hence the endomorphism ring Endg(" ) is a subring of R, the
integral closure of R. Since R is the ring of integers in Q[X]=( (X)) the group
of units R is isomorphic to f 1g Z. Since determines a unit of in nite
order in R theindex [R : 4] is nite.

Suppose nog that :p_6 Z. If £ is an automorphism \%hich induces the
identity on = andon =" then f(t) = tw for some B in" . |I3W is in the
image of —1 then f is an inner automorphism. Now =~ =( —1)" is nite,

of order det( —1). Since is the image of an inner automorrghism of it
follows that Out™*( ) is an extension of a subgroupof R = < by = =( —1)"
Hence Out( ) has order dividing 2[R : “]det( —1).

B_ -P-_ D therb_ has a chggcteristic subgroup 1 suchthat[ : 1] =2,

< iand 1= = Z = D. Every automorphism of restricts to an
automorphism of ;. It is easily veri ed that the restriction from Aut( ) to
Aut( 1) is a monomorphism. Since Out( ;) is nite it follows that Out( ) is
also nite. O

Corollary 8.8.1 The mapping torus of a self homeomorphism of a Sol3-
manifold is a Sol® E!-manifold. 0

The group with presentation
hx;y:tjxy = yx; txt™t =x3y?: tyt™! = x?yi
is the fundamental group of a nonorientable Sol®>-manifold . The nonori-

entable Sol® E!-manifold St is the mapping torus of id and is also the
mapping torus of a self homeomorphism of R3=Z3.

The groups with presentations

1

ht;x;y;zjxy =yx; zxz 1 =x71; zyz7t =y 7L ixt™ = xy; tyt ™! = x;

tzt™! = z71i;
ht;x;y;z jxy = yx; zxz = x%y; zyz P = xy; tx = xt; tyt 1 =x"y7L
tzt™! = z71i;

ht;X;y;z j Xy = yX; Xz = zx; yz = zy; txt 1 = x?y; tyt t = xy; tzt7 1 =z 2i

and  htu;xy jxy =yx; txt 1 =x%; tyt t = xy; uxu Tt =y

uyu™! =x; utu™t =t
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have Hirsch-Plotkin radical Z3 and abelianization of rank 1. The corresponding
Sol® E!-manifolds are mapping tori in an essentially unique way. The rst two
are orientable, and are mapping tori of self homeomorphisms of the orientable
flat 3-manifold with holonomy of order 2 and of an orientable Sol3-manifold,
respectively. The latter two are nonorientable, and are mapping tori of ori-
entation reversing self homeomorphisms of R3=Z3 and of the same orientable
Sol®-manifold, respectively.

8.9 Realization and classi cation

Let be a torsion free virtually poly-Z group of Hirsch length 4. If is
virtually abelian then it is the fundamental group of a flat 4-manifold, by the
work of Bieberbach, and such groups are listed in x2-x4 above.

If is virtually nilpotent but not virtually abelian tBen P is ninoteE)t of class
_0 —

2 or 3. Inthe rstcase it has a characteristic chain =Z<C= =272,
Let : ¥ Aut(C) = GL(2;Z) be the homomorphism induced by conjugation
in . Then Im( ) is nite and triangular, and so is 1, Z=2Z or (Z=2Z)?. Let
K =C (C) = Ker(). Then K is toBion frereand K = ¢, so K=C is a

flat 2-orbifold group. Moreover K=" K acts trivially on it must 6ct
orientably on Kzlg,_and so K= K is cycIiE)of order 1, 2, 3, 4 orp6. As
is the preimage of K in weseethat[ : ] 24. (Infact == =F or
F (Z=22), where F is a nite subgroup of GL(2;Z), excepting only direct
sunB of therglihedral groups of order 6, 8 or 12 with (Z=2Z) [De].) Otherwise
(if - « ) it has a subgroup of index 2 which is a semidirect product
Z3  Z, by part (5) of Theorem 8.3. Since ( 2—1) is nilpotent it follows that
=P-= 1, Z=2Z or (Z=2Z)?. All these possibilities occur.
Such virtually nilpotent groups are fundamental groups of Nil®> [E!- and Nil*-
manifolds (respectively), and are classi ed in [De]. Dekimpe observes that
has a characteristic subgroup Z such that Q = =Z is a Nil®- or E3-orbifold
group and classi es the torsion free extensions of such Q by Z. There are 61
families of Nil® E!-groups and 7 families of Nil*-groups. He also gives a
faithful a ne representation for each such group.

We shall sketch an alternative approach for the geometry Nil*, which applies
also to Sol,.,, Sol and Sol{. Each such group  has a characteristic sublg)roup

of Hirsch length 3, and suchthat = = Z or D. The preimage in  of =
is characteristic, and is a semidirect product Z. Hence it is determined up
to isomorphism by the union of the conjugacy classes of and ~! in Out( ),
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by Lemma 1.1. All such semidirect products may be realized as lattices and
have faithful a ne representations.

If the geometry is Nil* then = CP—( Zp_) = Z3, by Theorem 1.5 %d
part (5) of Theobem 8.3. Moreover has a basis Xx;y;z such that hzi = =
and hy;zi = , . As these subgroups are characteristic the matrix of
with respect to such a basis is (I + N), where N is strictly lower triangular
and nyinz; & 0. (See x5 above.) The conjugacy class of is determined by
(det( );jna21j; jnazj; [N31 mod (n32)]). (Thus s conjugate to  ~1 if and only if
N3, divides 2n3z;.) The classi cation is more complicated if = =D.

If the geometry is Solf,., for some m & n then = Z3  Z, where the
eigenvalues of  are distinct and real, and not 1, by the Corollary to Theorem
8.4. The translation subgroup \Sol},, is Z3> AZ,where A= or 2isthe
least nontrivial power of  with all eigenvalues positive, and has index 2 in

. Conversely, it is clear from the description of the isometries of Soly,., in x3
of Chapter 7 that every such group is a lattice in Isom(SoI?n;n). The conjugacy
class of is determined by its characteristic polynomial  (t) and the ideal
class of = Z3, considered as a rank 1 module over the order =( (t)), by
Theorem 1.4. (No such is conjugate to its inverse, as neither 1 nor -1 is an
eigenvalue.)

A similar argument applies for Sol§. Although Solg has no lattice subgroups,
any semidirect product Z2  Z where has a pair of complex conjugate roots
which are not roots of unity is a lattice in 1som(Sol}). Such groups are again
classi ed by the characteristic polynomial and an ideal class.

P

If E@e geometry is Solf then P-_ q for some g 1, and either =" or

=" =7=2Z and = " =2Z? _,(Z=2Z). (In the latter case is uniquely
determined by q.) Moreover s orientable if and only if () = 1. In
particular, Ker(wy( B)—: p_ Z forsome 2 AUtfoZ' Let A= jP- and let A
be its image in Aut(" = )=GL(2;Z). If = the translation subgroup

\Solf is T =Ty gZ,where B=A or A? is the Ig{st nontrivial power of A
such that both eigenvalues of A are positive. If & the conjugacy class of

A is only well-de ned up to sign. If moreover = =D then A is conjugate to
its inverse, and so det(A) = E) since A has in nite order. We can then choose
and hence Asothat T=" A Z. Inall cases we nd that [ :T] divides

4. (Note that Isom(Sol{) has 8 components.)

Conversely, it is fairly easy to verify that a torsion free semidirect product A
(with [ : T3] 2 and as above) which is not virtually nilpotent is a lattice
in the group of upper triangular matrices generated by Sol{ and the diagonal
matrix diag[ 1;1; 1], which is contained in Isom(Sol}). The conjugacy class
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of is determined up to a nite ambiguity by the characteristic polynomial
of A. Realization and classi cation of the nonorientable groups seems more
di cult.

In the remaining case Sol® E! the subgrolgp is one of the four flat 3-manifold
groups Z3, Z2 _,Z, By or Bo,and j  has distinct real eigenvalues, one
being 1. The index of the translation subgroup \ (Sol® R) in divides
8. (Note that Isom(Sol® E!) has 16 components.) Conversely any such

semidirect product Z can be realized as a lattice in the index 2 subgroup
G < Isom(Sol® ') de ned in x3 of Chapter 7. Realization and classi cation
of the groups with = = D seems more di cult. (The number of subcases to

be considered makes any classi cation an uninviting task. See however [Cb].)

8.10 Di eomorphism

In all dimensions n & 4 it is known that infrasolvmanifolds with isomorphic
fundamental group are di eomorphic [FJ97]. In general one cannot expect
to nd a ne di eomorphisms, and the argument of Farrell and Jones uses
di erential topology rather than Lie theory for the cases n 5. The cases with
n 3 follow from standard results of low dimensional topology. We shall show
that related arguments also cover most 4-dimensional infrasolvmanifolds. The
following theorem extends the main result of [Cb] (in which it was assumed
that is not virtually nilpotent).

Theorem 8.9 Let M and M' be 4-manifolds which are total spaces of orb-
ifold bundles p : M ¥ B and p’ : M ¥ B’ with flat orbifold bases and
infranilmanifold bres, and suppose that (M) = 1@/!") = . Suppose that

either is orientableor (( )=3o0r i( )=2and ( ) =Z. Then M and
M? are di eomorphic.

Proof We may assume that d = dim(B) d’ = dim(B"). Clearly d’

4— 1(p_). Suppose rst thaﬁ) is nobvirtually abelian or virtually nilpotent
of class 2 (i.e., suppose that (" )" £ ). Then all subgroups of nite index
in have ; 2,andsol d d 2. Moreover has a characteristic
nilpotent subgroup ~ such that h( =~) = 1, by Theorems 1.5 and 1.6. Let

be the preimage in  of the maximal nite normal su?group of =~. Then

is a characteristic virtually nilpotent subgroup (with = = ~)and = =2Z
or D. Ifd=1then (F)= andp:M ¥ B induces this isomorphism. If
d = 2 the image of in $™(B) is normal. Hence there is an orbifold map g
from B to the circle ST or the reflector interval I such that gp is an orbifold
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bundle projection. A similar analysis applies to M'. In either case, M and M’
are canonically mapping tori or the unions of two twisted I-bundles, and the
theorem follows via standard 3-manifold theory.

If is virtually nilpotent it is realized by an infraniIanifold I\/B [DeK]. Hence
we may assume that M = Mg, d = 0 or 4 and (* )’ . 1fd =0
or 4 then M? is also an infranilmanifold and the result is clear. If d' = 1
or if 1( )+ d > 4 then M? is a mapping torus or the union of twisted I -
bundles, and is a semidirect product xZ or a generalized free product with
amalgamation G 3 H where [G : J] = [H : J] = 2. Hence the model My is
also a mapping torus or the union of twisted I-bundles, and we may argue as
before.

Therefore we may assume that either d =2 and () 2 or d° =3 and
1() 1. Ifd =2 then M and M! are Seifert bred. If moreover is

orientable then M is di eomorphic to M', by [Ue90]. If 1( ) = 2 then either
orb(B") maps onto Z or s virtually abelian.

If is orientable then 1( ) > 0, by Lemma 3.14. Therefore the remaining
possibility is that d® = 3 and 1( ) = 1. If (B’ maps onto Z then we
may argue as before. Otherwise 1((F)\ "=1,s0 is virtually abelian and
the kernel of the induced homomorphism from to i’rb(B) is in nite cyclic
and central. Hence the orbifold projection is the orbit map of an S*-action on
M. If M is orientable it is determined up to di eomorphism by the orbifold
data and an Euler class corresponding to the central extension of i’rb(B) by
Z [Fi78]. Thus M and M? are di eomorphic. 0

It is highly probable that the arguments of Ue and of Fintushel can be extended
to all 4-manifolds which are Seifert bred or admit smooth S!-actions, and the
theorem is surely true without any restrictionson . (Ifd"=3and 1( )=0
then maps onto D, by Lemma 3.14, and 1(F) = Z. It is not di cult to
determine the maximal in nite cyclic normal subgroups of the flat 4-manifold
groups with () =0, ang to verify that in each case the quotient maps
onto D. Otherwise 1(F)=( )", since ¢’ =3, and any epimorphism from
to D must factor through (B = = )')

We may now compare the following notions for M a closed smooth 4-manifold:
(1) M is geometric of solvable Lie type;

(2) M is an infrasolvmanifold;

(3) M is the total space of an orbifold bundle with infranilmanifold bre and
flat base.
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Geometric 4-manifolds of solvable Lie type are infrasolvmanifolds, by the ob-
servations in x3 of Chapter 7, and the Mostow orbifold bundle of an infrasolv-
manifold is as in (3), by Theorem 7.2. If s orientable then it is realized
geometrically and determines the total space of such an orbifold bundle up to
di eomorphism. Hence orientable smooth 4-manifolds admitting such orbifold
brations are di eomorphic to geometric 4-manifolds of solvable Lie type.

Are these three notions equivalent in general?
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Chapter 9

The other aspherical geometries

The aspherical geometries of nonsolvable type which are realizable by closed
4-manifolds are the \mixed" geometries H2 E2, §L E! H® E! and the
\semisimple" geometries H?> H?, H* and H?(C). (We shall consider the ge-
ometry F* briefly in Chapter 13.) Closed H2 E2- or L E!-manifolds are
Seifert bred, have Euler characteristic 0 and their fundamental groups have
Hirsch-Plotkin radical Z?. In x1 and x2 we examine to what extent these
properties characterize such manifolds and their fundamental groups. Closed
H® E!-manifolds also have Euler characteristic 0, but we have only a conjec-
tural characterization of their fundamental groups (x3). In x4 we determine the
mapping tori of self homeomorphisms of geometric 3-manifolds which admit
one of these mixed geometries. (We return to this topic in Chapter 13.) In
x5 we consider the three semisimple geometries. All closed 4-manifolds with
product geometries other than H? H? are nitely covered by cartesian prod-
ucts. We characterize the fundamental groups of H? H?-manifolds with this
property; there are also \irreducible” H? H?-manifolds which are not virtually
products. Little is known about manifolds admitting one of the two hyperbolic
geometries.

Although it is not yet known whether the disk embedding theorem holds over
lattices for such geometries, we can show that the fundamental group and Euler
characteristic determine the manifold up to s-cobordism (x6). Moreover an
aspherical orientable closed 4-manifold which is nitely covered by a geometric
manifold is homotopy equivalent to a geometric manifold (excepting perhaps if
the geometry is H2 E2 or L EL).

9.1 Aspherical Seifert bred 4-manifolds

In Chapter 8 we saw that if IM is a closed 4-manifold with fundamental group
suchthat (M)=0and h(" ) 3 then M is horrlgomorphic to an jnfrasolv-
manifold. Here we shall show that if (M)=0,h(" )=2and[ :" ]=1
then M is homotopy equivalent to a 4-manifold which is Seifert breg over a
hyperboI'B 2-orbifold. (We shall consider the case when (M) =0, h(" ) =2
and [ :" ]< A in Chapter 10.)
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Theorem 9.1 Let M be a closed 4-manifold with fundamental group . If

(M) =0and has an elementary amenable normal subgroup with h( ) =2
and such that either H?( ;Z[ ) =0 or s torsion free and [ : ]= A then
M is aspherical and s virtually abelian.

Proof Since has one end, by Corollary 1.16.1, and 52)( ) =0, by Theorem
2.3, M is aspherical if also H2( ;Z[ ]) =0, by Corollary 3.5.2. In this case
is torsion free and of in nite index in , and so we may assume this henceforth.
Since is torsion free elementary amenable and h( ) = 2 it is virtually solvable,
by Theorem 1.11. Therefore A = " is nontrivial, and as it is characteristic
in itis normal in . Since A is torsion free and h(A) 2 it is abelian, by
Theorem 1.5.

Suppose rst that h(A) = 1. Then A is isomorphic to a subgroup of Q and
the homomorphism from B = =A to Aut(A) induced by conjugation in is
injective. Since Aut(A) is isomorphic to a subgroup of @ and h(B) =1 either
B=ZorB=2Z (Z=2Z). We must in fact have B = Z, since is torsion
free. Moreover A is not nitely generated and the centre of is trivial. The
quotient group =A has one end as the image of is an in nite cyclic normal
subgroup of in nite index. Therefore is 1-connected at 1, by Theorem 1 of
[Mi87], and so HS( ;Z[ ]) =0 for s 2 [GM86]. Hence M is aspherical and
is a P D4-group.

As A is a characteristic subgroup every automorphism of  restricts to an au-
tomorphism of A. This restriction from Aut( ) to Aut(A) is an epimorphism,
with kernel isomorphic to A, and so Aut( ) is solvable. Let C =C () be the
centralizer of in . Then C is nontrivial, for otherwise = would be isomor-
phic to a subgroup of Aut( ) and hence would be virtually poly-Z. But then A
would be nitely generated, would be virtually abelian and h(A) = 2. More-
over C\ = =1,s0C =C and c:d:C +c:d: =c:d:C cd: =4.
The quotient group =C is isomorphic to a subgroup of Out( ).

If c:d:C 3 then as C is nontrivial and h( ) = 2 we must have c:d:C =1 and
c.d: =h( ) =2. Therefore C is free and is of type FP [Kr86]. By Theorem
1.13 is an ascending HNN group with base a nitely generated subgroup
of A and so has a presentation ha;t j tat™ = a"i for some nonzero integer
n. We may assume jnj > 1, as is not virtually abelian. The subgroup of
Aut( ) represented by (n — 1)A consists of inner automorphisms. Since n > 1
the quotient A=(n — 1)A = Z=(n — 1)Z is nite, and as Aut(A) = Z[1=n]
it follows that Out( ) is virtually abelian. Therefore  has a subgroup  of
nite index which contains C and such that =C is a nitely generated free
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abelian group, and in particular c:d: =C is nite. As is a PDg4-group it
follows from Theorem 9.11 of [Bi] that C is a P Ds-group and hence that is
a PD;,-group. We reach the same conclusion if c:d:C =4, for then [ : C ]
is nite, by Strebel’s Theorem, and so C is a PDg4-group. As a solvable
P D,-group is virtually Z2 our original assumption must have been wrong.

Therefore h(A) = 2. As =A is nitely generated and in nite is not ele-
mentary amenable of Hirsch length 2. Hence HS( ;Z[ ]) =0 for s 2, by
Theorem 1.17, and so M is aspherical. Moreover as every nitely generated
subgroup of is either isomorphicto Z _; Z oris abelian [ : A] 2. O

The group Z , (with presentation ha;t j tat™* = a"i) is torsion free and
solvable of Hirsch length 2, and is the fundamental group of a closed orientable
4-manifold M with (M) = 0. (See Chapter 3.) Thus the hypothesis that the
subgroup have in nite index in is necessary for the above theorem. Do the
other hypotheses imply that must be torsion free?

TI?)eorem 9.2 let M be a closed 4-manifold with fundamental grlgup f
h(" )=2,[ :7 ]=21 and (M) =0 then M is aspherical and ©~ = Z2.

Proof As HS( ;Z[ ]) =0 for s 2, by Theorem 1.17, M is aspherical, by
Theorem 9.1. We may assume henceforth that = is a torsion free abelian
group of rank 2 which is not nitely generated.

Suppose rstthat [ : C] = A, where C = C (p_). Therbc:d:C 3, by

Strebel’s Theorem. Since = is not nitely generated c:d: = h(C )+
1 = 3, by Theorem 7.14 of @i]. Hence 8 =, by Theorem 8.8 of [Bi], so
the homomorphism from =_ to Aut(" ) determined by conjugatioB in

is @ monomorphism. Since is torsion free abelian of rank 2 Aut(" ) is
isom%phic to a subgroup of GL(2;Q) and th%efog any torsion subgrouppof
Aut(" ) is nite, by Corollary 1.3.1. Thusif " =" isatorsiongroup *
is elementary amenable and so s itself elementary amenable, contradicting
our assumption. Hence we Bay suppose that the'iS is an element g in .’ which
has in nite order modulo ~ . The subgroup h" ;gi generated by =  and
g is an extension of Z by = and haspin nite index ir\o , for otherwise

would be virtually solvable. Hence c:d:h’ gb: 3=h(h ;gi), by Strebel’s
Theorem. By Theorem 7.15 of [Bi], L = Hy(" ;Z) is the underlying abelian
group of a subring Z[m™1] of Q, and the action of g on L is multiplication by a
rational number a=b, where a and blsre relatively prime and ab and m have the
same prim(bdivi%grs. But g actson © as an element of GL(2; Q)" SL(2;Q).
Since L=" """, by Proposition 11.4.16 of [Ro], g acts on L via det(g) = 1.

Geometry & Topology Monographs, Volume 5 (2002)



182 Chapter 9: The other aspherical geometries

Therefore m =1 and so L must be nitely generated. But then P must also
be nitely generated, again contradicting our assumption.

'Ip'hus we may assume that C has niteindexin . Let A< P- be a subgroup of
~ which is free abelian of rank 2. Then A; is central in C and C=A is nitely
presentable. Since [ : C]is nite A has only nitely many distinct conjugates
in , and they are all subgroups of C. Let N be their product. Then N is a
nHe_Iy geneBted torsion free abelian normal subgroup of and 2 h(N)
h( C) h( ) =2. An LHSSS argument gives H2( =N;Z[ =N])p= Z, and
so =N is virtually a P D,-group, by %owditch’s Theorem. Since = =N is a
torsion group it must be nite, andso =~ = Z2. O

Corollary 9.2.1 The manifold M is homotopy equivalent to one which is
Seifert bI5ed with geneIBaI bre T or Kb over a hyperbolic 2-orbifold if and
onlyif h(" )=2,[ :" ]=1 and (M)=0.

Proof This follows from the theorem together with Theorem 7.3. ]

9.2 The Seifert geometries: H2 E? and £ E!

A manifold with geometry H2 E2 or &L E! is Seifert bred with base a
hyperbolic orbifold. However not all such Seifert bred 4-manifolds are geomet-
ric. An orientable Seifert bred 4-manifold over an orientable hyperbolic base
is geometric if and only if it is an elliptic surface; the relevant geometries are
then H2 E2 and L E! [Ue90,91).

In this section we shall show that such manifolds may be characterized up to
homotopy equivalence in terms of their fundamental groups.

Theorem 9.3 Let M be aclosed H3 E!-, L E!-or H2 E2-manifold.
Then M has a nite covering space which is di eomorphic to a product N S*.

Proof If M isan H® E!-manifold then = (M) is a discrete cocompact
subgroup of G = Isom(H® E). The radical of this group is Rad(G) = R,
and G,=Rad(G) = PSL(2;C), where G, is the component of the identity in
G. Therefore A = \ Rad(G) is a lattice subgroup, by Proposition 8.27 of
[Rg]. Since R=A is compact tBe image of =A in Isom(H?) is again a discrete
cocompact subgroup. Hence = = A = Z. Moreover preserves the foliation
of the model space by euclidean lines, so M is an orbifold bundleavith general
bre S over an H3-orbifold with orbifold fundamental group =" .
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On passing to a 2-fold covering ?Bace, if necessary, we may assume that

Isom(H3®) R and (hence) =" . Projection to the second factor maps =
monomorphically to R. Hence on passing to a further E)ite covering space, if
necessary, we may assume that = Z,where = = = {(N) for some

closed orientable H2-manifold N . (Note that we do not claimthat =  Z as
a subgroup of PSL(2;R) R.) The foliation of H® R by lines induces an S?-
bundle structure on M, with base N. As such bundles (with aspherical base)
are determined by their fundamental groups, M is di eomorphic to N S,

Similar arguments apply in the other two cases. If G = Isom(X) where X =
H2 E2 or &£ E!, then Rad(G) = R?, and G,=R? = PSL(2;R). The
intersection A = \ Rad(G) is again a lattice subgroup, ang) the image of

=A in PSL(2;R) is a discrete cocompact subgroup. Hence =~ = A = Z?
and -P- is virtually a PD,-group. If X = . E! then (after passing to a
2-fold covering space, if necessary) we may assume that Isom(%) R.
If X =H? E? then PSL(2;R) R? is a cocompact subgroup of Isom(X).
Hence \PSL(Z;]R]O R? has nite index in . In each case projection to the

second factor maps monomorphically. Moreover  preserves the foliation
of the model space by copies of the euclidean factor. As before, M is virtually
a product. O

In general, there may not be such a covering which is geometrically a cartesian
product. Let be a discrete cocompact subgroup of Isom(X) where X = H?
or £ which admits an epimorphism  : T Z. Denea home;norphism

Z ¥ Isom(X EY by (g:n)(x;r) = (g(X);r+n+ (g) 2) for all
g2 ,n2Z,x2X and r 2R. Then is a monomorphism onto a discrete
subgroup which acts freely and cocompactly on X R, buttheimageof ( Z)
in E(1) has rank 2.

Orientable H2 E2- and L E!-manifolds are determined up to di eomor-
phism (among such geometric manifolds) by their fundamental groups [Ue91].
However we do not yet have a complete characterization of the possible groups.

Corollary 9.3.1 Let M be a closed 4-manifold with fundamental group
Then M has a covering space of degree dividing 4 Wl“kg:h is homotopy'gquivalent
to a ip El- or H2 [E2-manifold if and only if ©=  =2Zz2,[ :" ]= 1,
[ :C( )J))<dand (M)=0.

Proof The necessity of most of these conditions is clear from the proof of
the theorem. If X = H2 [E? then has a subgroup of nite index which is
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isomorphic to z2 where =1. I X=% ! then has algormal
subgroup of nite index which is isomorphic to a prodyct Z ,and = has
a characteristic in nite cyclic subgroup. Hence =C (" ) is isomorphii)to a

nite upper triangular subgroup of GL(2;Z). Since M is aspherical and ™ is
in nite (M) =0.

If these conditions hold 52)( )=0and HS( ;Z[ [)=0fors 2,andso M is
aspherical, by Corollary 3.5.2. Hence M is homotopy equivalent to a manifold
M ( ) which is Seifert bred over a hyperbolic base orbifold, by Theorem 7.3.
On passing to a covering space of degree dividing 4, if necessary, we may assume

at M and the base orbifold are each orientable. Since  must then %t on

~ through a nite subgroup of SL(2;Z) (which is upper triangular if = is
not a direct factor of a subgroup of nite index in ) the result follows from
Theorem B of x5 of [Ue91]. O

Corollary 9.3.2 A group is the fundamental group of a closed orientable
& E!- or H2 _ E2-manifold \%ith orientable base orbifold if and only if it is
a PDj -group, P—_ Z2, [ :"]=1 and actson through a nite
cyclic subgroup of SL(2;7Z). O

The geometry is H? 2 if and only if P—is virtually a direct factor in
This case may also be distinguished as follows.

Theorem 9.4 Let M be a closed 4-manifold with fundamental group . Then

M has a covering space of degree dividing 4 which is homotopy equivalent to

a H? [E?-manifold if and only if has a nitely generated in nite subgroup
suchthat[ :N ()]<d," =1, C()=Z%and (M) =0.

Proof The necessity of the conditions follows from Theorem 9.3. Suppose that
they hold. Then M is aspherical and so is a PD4-group. Let C = C ().
Then C isalso normalin =N (),and C\ =1, since "™ = 1. Hence

C = «C . Now is nontrivial. If  were free then an argument
using the LHSSS for H ( ; Q[ ]) would imply that has two ends, and hence
that =~ = = Z. Hence cd: 2. Since moreover Z? _C we must have
cd: = 6d:C =2and[ : :C]< . It follows easily that P=_ 22 and that
[ :C (" )]< 1. Hence we may apply Corollary 9.3.1. Since s virtually a
product it must be of type H? [E2. O

Is it possible to giv%a more self-contained argument for this case? It is not

hard to see that = acts discretely, cocompactly and isometrically on HZ.
However it is more di cult to nd a suitable homomorphism from to E(2).
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Theorems 9.1 and 9.2 suggest that there should be a characterization of closed
H2 E2-and £ El-manifolds parallel to Theorem 8.1, i.e., in terms of the
conditions\ (M) =0" and \ has an elementary amenable normal subgroup
of Hirsch length 2 and in nite index™.

9.3 H°® E!-manifolds

We have only conjectural characterizations of manifolds homotopy equivalent
to H® E!-manifolds and of their fundamental groups. An argument similar
to that of Corollary 9.3.1 shows that a 4-manifold M with fundamental group
is virtually slgnple homotopy equivalent to an H® E!-manifold if and only
if (M)=0, =2Z and has a normal subgroup of nite index which is
isomorphic to Z where is a discrete cocompact subgroup of PSL(2;C). If
every P Ds-group is the fundamental group of an aspherical closed 3-manifold
and if every atoroidal aspherical closed 3-manifold is hyperbolic we could replace
the last assertion by the more intrinsic conditions that  have one end (which
would su ce with the other conditions to imply that M is aspherical and
hence that is a P Ds-group), no noncyclic abelian subgroups and P--
(which would imply that any irreducible 3-manifold with fundamental group
is atoroidal). Similarly, a group G should be the fundamental group of an
H® E!-manifold if and only if it is torsion free and has a normal subgroup of
nite index isomorphic to Z where isa PDgs-group with ™~ =1 and no
noncyclic abelian subgroups.

Lemma 9.5 Let be a nitely generated %oup with P-_ Z, and which
has a subgroup G of nite index such that _p\ G’ = 1. Then there is a
homomorphism : ¥ D which is injective on =~ .

Proof We may assume that G is normal in and that G < C (p_). Let
H = =I(G) and let A be theimage of = in H. Then H is an extension of the

nite group =G by the nitely generated free abelian group G=1(G), and A =
Z. Conjugation in H determines a homomorphism w from =G to Aut(A) =
f 1g. Since the rational group ring Q[ =G] is semisimple Q [CAlis a direct
summand of Q [(G=1(G)), and so there is a Z[ =G]-linear homomorphism
p:G=1(G) ¥ Z%W which is injective on A. The kernel is a normal subgroup of
H, and H=Ker(p) has two ends. The lemma now follows easily. O

The foliation of H® R by copies of H?3 induces a codimension 1 foliation of

any closed H® E!-manifold. If all the leaves are compact, then it is either a
mapping torus or the union of two twisted I -bundles.

Geometry & Topology Monographs, Volume 5 (2002)



186 Chapter 9: The other aspherical geometries

Theorem 9.6 Let M be aclosed H® E!-manifold. If = Z then M is
homotopy equivalent to a mapping torus of a self homeomorphism of an H?3-
manifold; otherwise M is homotopy equivalent to the union of two twisted
I -bundles over H23-manifold bases.

Proof Let : F"’ D be a homomorphism as in Lemma 9.5 and let K =
KeH ). Then K\~ =1, s0 K is isomorphic to a subgroup of nite index in

=" . Therefore K = {(N) for some closed H?2-manifold, since it is torsion
free. If =Z thenIm( )=Z (since D =1);if =1 then w & 1 and so
Im( ) = D. The theorem now follows easily. O

Is M itself such a mapping torus or union of I-bundles?

9.4 Mapping tori

In this section we shall use 3-manifold theory to characterize mapping tori with
one of the geometries H3 E!, L E! or H2 E2.

Theorem 9.7 Let be aself homeomorphism of a closed 3-manifold N which
admits the geometry H2 E! or L. Then the mapping torus M( ) =N St
admits the corresponding product geometry if and only if the outer automor-
phism [ ] induced by has nite order. The mapping torus of a self homeo-
morphism  of an H3-manifold N admits the geometry H® E?.

Proof Let = 1(N)andlettbeanelementof = ;(M( )) which projects
to a generator of 1(S?). If M( ) has geometry . E! then after passing
to the 2-fold covering space M( ?), if necessary, we may assume that is a
discrete cocompact subgroup of Isom(@) R. As in Theorem 9.3 the intersec-
tion of  with the centre of this group is a lattice subgroup L = Z?2. Since the

centre of is Z the image of L in = is nontrivial, and so  has a subgroup
of nite index which is isomorphic to Z. In particular, conjugation by
tl * 1 induces an inner automorphism of

If M( ) has geometry H? [E? asimilar argument implies that has a subgroup

of nite index which is isomorphic to Z?, where is a discrete cocompact
subgroup of PSL(2;R), and is a subgroup of . It again follows that tl -]
induces an inner automorphism of

Conversely, suppose that N has a geometry of type H?> E! or S and that
[ ]has niteorderin Out( ). Then is homotopic to a self homeomorphism
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of (perhaps larger) nite order [Zn80] and is therefore isotopic to such a self
homeomorphism [Sc85,B0O91], which may be assumed to preserve the geomet-
ric structure [MS86]. Thus we may assume that is an isometry. The self
homeomorphism of N R sending (n;r) to ( (n);r + 1) is then an isometry
for the product geometry and the mapping torus has the product geometry.

If N is hyperbolic then is homotopic to an isometry of nite order, by Mostow
rigidity [Ms68], and is therefore isotopic to such an isometry [GMT96], so the
mapping torus again has the product geometry. O

A closed 4-manifold M which admits an e ective T -action with hyperbolic b&se
orbifold is homotopy equivalent to such a mapping torus. For then ="
and the LHSSS for homology gives an exact sequence

Ho( = Q) T Hi( ;Q) ¥ Hy( ;Q):

As = isvirtually a PDo-group Ho( = ;Q)=Qor0,s0 = \ ?has
rank at least 1. Hence = Z where =Z, = isvirtually a PDy-
group and [ ] has nite order in Out( ). If moreover M is orientable then it
is geometric ([Ue90,91] - see also x7 of Chapter 7). Note also that if M is a
. El-manifold then =" if and only if Isomo(¥E  ED.

Let F be a closed hyperbolic surface and :F ¥ F a pseudo-Anasov home-
omorphism. Let (f;z) = ( (f);z) for all (f;z) in N = F S'. Then
N is an H2 E!-manifold. The mapping torus of  is homeomorphic to an
H® E!-manifold which is not a mapping torus of any self-homeomorphism of
an H®-manifold. In this case [ ] has in nite order. However if N is a -
manifold |8nd [ ] hasin nite order then M( ) admits no geometric structure,
for then = = Z but is not a direct factor of any subgroup of nite index.

If =Zand (= )=1then Hom( = % ) embeds in Out( ), and thus
has outer automorphisms of in nite order, in most cases [CR77].

Let N be an aspherical closed X3-manifold where X3 = H3, S or H2 E?, and
suppose that 1(N) > 0 but N is not a mapping torus. Choose an epimorphism

1(N) ¥ Z and let R be the 2-fold covering space associated to the
subgroup ~1(2Z). If : M ¥ N is the covering involution then (n;z) =
( (n);z) de nes a free involution on N S!, and the orbit space M is an
X3  El-manifold with 1(M) = 0 which is not a mapping torus.

9.5 The semisimple geometries: H? H?, H* and H?(C)

In this section we shall consider the remaining three geometries realizable by
closed 4-manifolds. (Not much is known about H* or H?(C).)
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Let P = PSL(2;R) be the group of orientation preserving isometries of H?.
Then Isom(H? H?) contains P P as a normal subgroup of index 8. If M
is a closed H> H2-manifold then (M) =0 and (M) > 0. It is reducible if
it has a nite cover isometric to a product of closed surfaces. The model space
for H2 H? may be taken as the unit polydisc

f(w;2) 2C?:jwj < 1;jzj < 1g:
Thus M is a complex surface if (and only if) (M) is a subgroupof P P.

We have the following characterizations of the fundamental groups of reducible
H? H?-manifolds.

Theorem 9.8 A group is the fundaguental group of a reducible H? H?-
manifold if and only if it is torsion free, = =1 and has a subgroup of nite
index which is isomorphic to a product of P D,-groups.

Proof The conditions are clearly necessary. Suppose that they hold. Then
is a PDg4-group and has a subgroup of nite index which is a direct product
o= , where and are PDj-groups. Let N bel:;@ intersection of
the conjugates of : in . Then N isnormalin ,so N =1 also, and
[ :N]J<dl.Let K= \XNandL= \N. Then K and L are PD;-groups
with trivial centre, and K:L = K L is normal in N and has nite index in
. Moreover N=K and N=L are isomorphic to subgroups of nite index in
and , respectively, and so are also P D,-groups. Since any automorphism of
N must either X these subgroups or interchange them, by Theorem 5.6, K:L
isnormalin  and [ :N (K)] 2.

Let =N (K). ThenL C (K) and = N (L) also. After enlarging
K and L, if necessary, we may assume that L = C (K) and K = C (L).
Hence =K and =L have no nontrivial nite normal subgroup. (For if K;
is normal in  and contains K as a subgroup of nite index then Ky \ L is

nite, hence trivial, and so K; C (L).) The action of =L by conjugation
on K has nite image in Out(K), and so =L embeds as a discrete cocompact
subgroup of Isom(H?), by the Nielsen conjecture [Ke83]. Together with a
similar embedding for =K we obtain a homomorphism from  to a discrete
cocompact subgroup of Isom(H? H?).

If[ : ]=2lettbeanelementof — ,andletj: =K ¥ Isom(H?) be an
embedding onto a discrete cocompact subgroup S. Then tKt™! = L and con-
jugation by t induces an isomorphism f: =K ¥ =L. The homomorphisms
jand j f~! determine an embedding J : ¥ Isom(H? H?) onto a discrete
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cocompact subgroup of nite indexin S S. Now t> 2 and J(t?) = (s;s),
where s = j(t°K). We may extend J to an embedding of in Isom(H? H?)
by de ning J(t) to be the isometry sending (X;y) to (y;s:x). Thus (in either
case) acts isometrically and properly discontinuously on H2 H?2. Since is
torsion free the action is free, andso = (M), where M = n(H? H?). D

Corollary 9.8.1 Let M be a H> H?-manifold. Then M is reducible if and
only if it has a 2-fold covering space which is homotopy equivalent to the total
space of an orbifold bundle over a hyperbolic 2-orbifold.

Proof That reducible manifolds have such coverings was proven in the the-
orem. Conversely, an irreducible lattice in P P cannot have any nontrivial
normal subgroups of in nite index, by Theorem 1X.6.14 of [Ma]. Hence an
H? H?-manifold which is nitely covered by the total space of a surface bun-
dle is virtually a cartesian product. O

Is the 2-fold covering space itself such a bundle space over a 2-orbifold?

In general, we cannot assume that M s itself bred over a 2-orbifold. Let
G be a PD;,-group with G = 1 and let x be a nontrivial element of G. A
cocompact free action of G on H? determines a cocompact free action of

=hG G;tjt(gr;g2)t " = (xg2x 5;01) for all (91;92) 2G  G;t? = (X; X)i

on HZ  HZ2, by (91;92):(h1;h2) = (91:h1;g2:h2) and t:(hy;hy) = (x:hz;hy),
for all (91;92) 2G G and (hy;hy) 2 H2  H2. The group  has no normal
subgroup which is a P D, -group. (Note also that if G is orientable n(H? H?)
is a compact complex surface.)

We may use Theorem 9.8 to give several characterizations of the homotopy
types of such manifolds.

Theorem 9.9 Let M be aclosed 4-manifold with fundamental group . Then
the following are equivalent:

(1) M is homotopy equivalent to a reducible H?  H?-manifold;

2 has a subnormal subgroup G which is FP,, has one end and such that
C (G) is not a free group, >(M)=0and (M) &O;

3) has a subgroup of nite index which is isomorphic to a product of
two PDjy-groupsand (M)[ : 1= ()&DO.
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%) is virtually a P D4-group, P-— 1 and has a torsion free subgroup
of nite index which is isomorphic to a nontrivial product where

(M) - 1=@— 1(NE— 1(0)).

Proof If (1) holds then M is aspherical and so (2) holds, by Theorem 9.8 and
its Corollary.

Suppose now that (2) holds. Then has one end, by an iterated LHSSS
argument, since G does. Hence M is aspherical and is a P D4-group, since
2(M) =0. Since (M) & 0 we must have P-_ 1. (For otherwise i(z)( )=20
for all i, by Theorem 2.3, and so (M) = 0.) In particular, every subnormal
subgroup of  has trivial centre. Therefore G\XC (G) = G = 1 and so
G C((G = =¢GC (6 . Hence c:.d:C (G) 2. Since C (G) is
not free ¢.d:G C (G) = 4 and so has nite index in . (In particular,
[C (C (G)) : G] is nite.) Hence is a PD4-group and G and C (G) are
P D,-groups, so s virtually a product. Thus (2) implies (1), by Theorem 9.8.

It is clear that (1) implies (3). If (3) holds then on applying Theorems 2.2 and
3.5 to the nite covering space associated to  we see that M is aspherical,
so is a PDg4-group and (4) holds. Similarly, M is asperi%l if (4) holds. In
particular, is a PD4-group and so is torsion free. Since = = 1 neither

nor can be in nite cyclic, and so they are each P D,-groups. Therefore is
the fundamental group of a reducible H?> H?-manifold, by Theorem 9.8, and
M ~ nH? H?2, by asphericity. O

The asphericity of M could be ensured by assuming that be PD,4 and
(M) = (), instead of assuming that (M) =0.

For H? H2-manifolds we can give more precise criteria for reducibility.

Theorem 9.10 Let M be aclosed H? H?-manifold with fundamental group
. Then the following are equivalent:

(1) has a subgroup of nite index which is a nontrivial direct product;
@ z¢< ;

3) has a nontrivial element with nonabelian centralizer;

4 \(flg P)&1;

B) \(P flg &1,

(6) M is reducible.
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Proof Since is torsion free each of the above conditions is invariant under
passage to subgroups of nite index, and so we may assume without loss of
generality that P P. Suppose that is a subgroup of nite index in

which is a nontrivial direct product. Since ( ) & 0 neither factor can be
in nite cyclic, and so the factors must be P D,-groups. In particular, Z? <
and the centraliser of any element of either direct factor is nonabelian. Thus
(1) implies (2) and (3).

Suppose that (a;b) and (a’;b’) generate a subgroup of  isomorphic to Z?2.
Since centralizers of elements of in nite order in P are cyclic the subgroup
of P generated by fa;a’g is in nite cyclic or is nite. Hence we may assume
without loss of generality that ' = 1, and so (2) implies (4). Similarly, (2)
implies (5).

Let g =(01;092) 2P P be nontrivial. Since centralizers of elements of in nite
order in P are in nite cyclic and Cp p(hgi) = Cp(hg1i) Cp(hgoi) it follows
that if C (hgi) is nonabelian then either g, or g> has nite order. Thus (3)
implies (4) and (5).

Let K= \(flg P)and K, = \(P flg). Then Kj is normal in , and
there are exact sequences

1Y K¢ ¢ ;01

where L; = pri( ) is the image of under projection to the it" factorof P P,
for i =1 and 2. Moreover K; is normalised by Lz—j, for i =1 and 2. Suppose
that K; & 1. Then Kj is non abelian, since itisnormalin  and ( ) &0. If
L, were not discrete then elements of L, su ciently close to the identity would
centralize K. As centralizers of nonidentity elements of P are abelian, this
would imply that K; is abelian. Hence L is discrete. Now L,nH? is a quotient
of nH H and so is compact. Therefore L, is virtually a P D,-group. Now
cd:Ky +vicidiL, c¢d: =4,s0 cd:K, 2. In particular, K, & 1 and so a
similar argument now shows that c:d:K; 2. Hence c.d:K; K, 4. Since

K: Ko =KiK; it follows that s virtually a product, and M is nitely
covered by (KinH?) (KynH?). Thus (4) and (5) are equivalent, and imply
(6). Clearly (6) implies (1). O

The idea used in showing that (4) implies (5) and (6) derives from one used in
the proof of Theorem 6.3 of [WI85].

If I is a discrete cocompact subgroup of P P such that M = MnH? H?
is irreducible then T\ P flg =T \flg P =1, by the theorem. Hence
the natural foliations of H> H? descend to give a pair of transverse foliations
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of M by copies of H2. (Conversely, if M is a closed Riemannian 4-manifold
with a codimension 2 metric foliation by totally geodesic surfaces then M has
a nite cover which either admits the geometry H?> E2 or H> H? or is the
total space of an S? or T -bundle over a closed surface or is the mapping torus
of a self homeomorphism of R3=Z3, S2  S! or a lens space [Ca90]).

An irreducible H? H?-lattice is an arithmetic subgroup of Isom(H? H?), and
has no nontrivial normal subgroups of in nite index, by Theorems 1X.6.5 and
14 of [Ma]. Such irreducible lattices are rigid, and so the argument of Theorem
8.1 of [Wa72] implies that there are only nitely many irreducible H?> H?-
manifolds with given Euler characteristic. What values of  are realized by
such manifolds?

Examples of irreducible H? H?-manifolds may be constructed as follows. Let
F be a totally real number eld, with ring of integers Og . Let H be askew eld
which is a quaternion algebra over F such that H LR = M,(R) for exactly
two embeddings of F in R. If A is an order in H (a subring which is also
a nitely generated Of -submodule and such that F:A = H) then the quotient
of the group of units A by 1 embeds as a discrete cocompact subgroup of
P P, and the corresponding H? H2-manifold is irreducible. (See Chapter
IV of [Vi].) It can be shown that every irreducible, cocompact H? H?-lattice
is commensurable with such a subgroup.

Much less is known about H*- or H?(C)-manifolds. If M is a closed orientable
H*-manifold then (M) =0 and (M) > 0 [K092]. If M is a closed H?(C)-
manifold it is orientable and (M) =3 (M) > 0 [WI86]. The isometry group
of H?(C) has two components; the identity component is SU(2;1) and acts via
holomorphic isomorphisms on the unit ball
f(w;z) 2 C?: jwj? +jzj? < 1g:

(No closed H*-manifold admits a complex structure.) There are only nitely
many closed H*- or H?(C)-manifolds with a given Euler characteristic (see
Theorem 8.1 of [Wa72]). The 120-cell space of Davis is a closed orientable H*-
manifold with =26 and ; = 24 > 0 [Da85, TS01], so all positive multiples of
26 are realized. Examples of H?(C)-manifolds due to Mumford and Hirzebruch
have the homology of CP? (so =3),and =15and ;> 0, respectively
[HP96]. It is not known whether all positive multiples of 3 are realized. Since
H* and H?(C) are rank 1 symmetric spaces the fundamental groups can contain
no noncyclic abelian subgroups [Pr43]. In each case there are cocompact lattices
which are not arithmetic. At present there are not even conjectural intrinsic
characterizations of such groups. (See also [Rt] for the geometries H" and [Go]
for the geometries H"(C).)
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Each of the geometries H?> H?, H* and H?(C) admits cocompact lattices
which are not almost coherent (see x1 of Chapter 4 above, [BM94] and [Ka98],
respectively). Is this true of every such lattice for one of these geometries?
(Lattices for the other geometries are coherent.)

9.6 Miscellany

A homotopy equivalence between two closed H"- or H"(C)-manifolds of di-
mension 3 is homotopic to an isometry, by Mostow rigidity [Ms68]. Farrell
and Jones have established \topological™ analogues of Mostow rigidity, which
apply when the model manifold has a geometry of nonpositive curvature and
dimension 5. By taking cartesian products with S, we can use their work
in dimension 4 also.

Theorem 9.11 Let M be a closed 4-manifold M with fundamental group
Then M is s-cobordant to an X*-manifold where X4 = H? H?, H*, H?(C),
H® E! or H? [E? if and only if is isomorphic to a cocompact lattice in
Isom(X%) and (M)= ().

Proof The conditions are clearly necessary. If they hold M is aspherical and
socpm M T nX is a homotopy equivalence, by Theorem 3.5. In all cases the
geometry has nonpositive sectional curvatures, so Wh( ) = Wh( Z)=0
and M S is homeomorphic to ( nX) S [FJ93’]. Hence M and nX are
s-cobordant, by Lemma 6.10. D

A similar result holds for IL E!-manifolds, provided that Isomo(J EY).
This is equivalent to the condition \ = " ". Although closed & E!-
manifolds do not admit metrifjs of nonpositive curvature [KL96], they do admit
e ective T -actions if = ", and we then may appeal to [NS85] instead
of [FJ93’]. (See also Theorem 13.2 below.) The hypothesis that the Seifert
structure derive from a toral group action may well be unnecessary.

Does a similar result hold for aspherical closed 4-manifolds with a geometric
decomposition? Let M be such a manifold andlet = ;(M). Then s built
from the fundamental groups of the pieces by amalgamation along torsion free
virtually poly-Z subgroups. As the Whitehead groups of the geometric pieces
are trivial (by the argument of [FJ86]) and the amalgamated subgroups are
regular noetherian it follows from the K-theoretic Mayer-Vietoris sequence of
Waldhausen that Wh( ) = 0. Is there a corresponding argument in L-theory?
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For the semisimple geometries we may avoid the appeal to L?-methods to estab-
lish asphericity as follows. Since (M) >0 and isin niteand residually nite
there is a subgroup  of nite index such that the associated covering spaces
M and nX are orientable and (M )= ( ) > 2. In particular, H>(M ;Z)
has elements of in nite order. Since the classifyingmap cmy : M T nX is
2-connected it induces an isomorphism on H? and hence is a degree-1 map, by
Poincare duality. Therefore it is a homotopy equivalence, by Theorem 3.2.

Theorem 9.12 If M is an aspherical closed 4-manifold which is nitely cov-
ered by a manifold with a geometry other than H2 E2 or £ E! then M is
homotopy equivalent to a geometric 4-manifold.

Proof The result is clear for infrasolvmanifolds, and follows from Theorem 9.8
if M is nitely covered by a reducible H? H?-manifold. It holds for the other
closed H?> H?-manifolds and for the geometries H* and H?(C) by Mostow
rigidity.
If the geometry is H2 El then P~ =7z and =P is virtually the group of a
H3-manifold. Hence = acts isometrically and properly discontinuously on
H2, by Mostow rigidity. Moreover as the hypotheses of Lemma 9.5 are satis ed,
Theorem 9.3, there is a homomorphism : ¥ D < Isom(E!) which maps
~ injectively. Together these actions determine a discrete and cocompact
action of by isometries on H3 R. Since s torsion free this action is free,
and so M is homotopy equivalent to an H® E!-manifold. m]

The result is not yet clear for H2 E2, I E!, S2 E?or S2 H2. The theorem
holds also for S* and CP?, but fails for S E! or S2 S2. In particular, there
is a closed nonorientable 4-manifold which is doubly covered by S? S2 but is
not homotopy equivalent to an S S2-manifold. (See Chapters 11 and 12.)

If is the fundamental group of an aspherical closed geometric 4-manifold
then §2)( )=0for s=0or1, and so 52)( )= (), by Theorem 1.35 of
[LU]. Therefore def( ) minf0;1— ( )g, by Theorems 2.4 and 2.5. If is
orientable this gives def( ) 2 1( )— 2( )—1. When 1( ) =0 thisis an
improvement on the estimate def( ) 1( )— 2( ) derived from the ordinary
homology of a 2-complex with fundamental group
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Chapter 10
Manifolds covered by S? R?

If the universal covering space of a closed 4-manifold with in nite fundamental
group is homotopy equivalent to a nite complex then it is either contractible
or homotopy equivalent to S? or S3, by Theorem 3.9. The cases when M is
aspherical have been considered in Chapters 8 and 9. In this chapter and the
next we shall consider the spherical cases. We show rst that if N = S2 then M
has a nite covering space which is s-cobordant to a product S° B, where B
is an aspherical surface, and is the group of a S E2-or S?> H2-manifold. In
x2 we show that there are only nitely many homotopy types of such manifolds
for each such group . In x3 we show that all S2- and RP2-bundles over
aspherical closed surfaces are geometric. We shall then determine the nine
possible elementary amenable groups (corresponding to the geometry S? E?).
Six of these groups have in nite abelianization, and in x5 we show that for
these groups the homotopy types may be distinguished by their Stiefel-Whitney
classes. We conclude with some remarks on the homeomorphism classi cation.

For brevity, we shall let X? denote both E? and H?.

10.1 Fundamental groups

The determination of the closed 4-manifolds with universal covering space ho-
motopy equivalent to S? rests on Bowditch’s Theorem, via Theorem 5.14.

Theorem 10.1 Let M be a closed 4-manifold with fundamental group
Then the following conditions are equivalent:

(1) is virtually a PDy-groupand (M) =2 ( );
(2 €&land (M)=2;

(3) M has a covering space of degree dividing 4 which is s-cobordant to
S2 B, where B is an aspherical closed orientable surface;

(4) M is virtually s-cobordant to an S?> X?-manifold.

If these conditions hold then M is homeomorphic to S2  R2.
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Proof If (1) holds then ,(M) = Z, by Theorem 5.10, and so (2) holds. If
(2) holds then the covering space associated to the kernel of the natural action
of on ,(M) is homotopy equivalent to the total space of an S?-bundle

over an aspherical closed surface with w1( ) =0, by Lemma 5.11 and Theorem
5.14. On passing to a 2-fold covering space, if necessary, we may assume that
w2( ) =w; (M) =0 also. Hence s trivial and so the corresponding covering
space of M is s-cobordant to a product S> B with B orientable. Moreover
M =S2 R2, by Theorem 6.16. It is clear that (3) implies (4) and (4) implies
(). O

This follows also from [Fa74] instead of [B0o99] if we know also that (M) 0.
If isin niteand >(M)=Z then may be realized geometrically.

Theorem 10.2 Let M be a closed 4-manifold with fundamental group and
such that »(M) =Z. Then s the fundamental group of a closed manifold
admitting the geometry S 2, if is virtually Z?, or S> H? otherwise.

Proof If is torsion free then it is itself a surface group. If has a nontrivial

nite normal subgroup then it is a direct product Ker(u) (Z=2Z), where
u: I f 1g = Aut( 2(M)) is the natural homomorphism. (See Theorem
5.14). In either case is the fundamental group of a corresponding product of
surfaces. Otherwise is a semidirect product Ker(u)~(Z=22) and is a plane
motion group, by a theorem of Nielsen ([Zi]; see also Theorem A of [EM82]).
This means that there is a monomorphism f : ¥ Isom(X?) with image a
discrete subgroup which acts cocompactly on X, where X is the Euclidean or
hyperbolic plane, according as is virtually abelian or not. The homomorphism
(u:f): T f Ig Isom(X?) Isom(S? X?) is then a monomorphism onto
a discrete subgroup which acts freely and cocompactly on S R?2. In all cases
such a group may be realised geometrically. O

The orbit space of the geometric action of  described above is a cartesian
product with S? if u is trivial and bres over RP? otherwise.

10.2 Homotopy type

In this section we shall extend an argument of Hambleton and Kreck to show
that there are only nitely many homotopy types of manifolds with universal
cover S2 R? and given fundamental group.

We shall rst show that the orientation character and the action of on »
determine each other.
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Lemma 10.3 Let M be a closed 4-manifold with fundamental group & 1
and such that (M) =2Z. Then H?( ;Z[ ]) =Z and u = w;(M) + v, where
u: ¥ Aut( 2(M)) =2Z=2Z and v: ¥ Aut(H?( ;Z[ ])) = Z=2Z are the
natural actions.

Proof Since is in nite Homyz ;( 2(M);Z[ ]) = 0 and so H2( ;Z[ ) =
»(M), by Lemma 3.3. Now H2( ;Z[ ]) = H2( ;:z[ ) C21M) | (where the
tensor product is over Z and has the diagonal -action). Therefore ZY =
ZV z¥+M) and so u = w; (M) +v. o

Note that u and w;(M) are constrained by the further conditions that K =
Ker(u) is torsion free and Ker(w;(M)) has in nite abelianization if (M) 0.
If < Isom(X?) is a plane motion group then v(g) detects whether g 2
preserves the orientation of X2. If s torsion free then M is homotopy
equivalent to the total space of an S2-bundle over an aspherical closed surface
B, and the equation u = w;(M) + v follows from Lemma 5.11.

Let Y be the Bockstein operator associated with the exact sequence of coe -
cients
oxztwzY v T, 1 Q

and let U be the composition with reduction modulo (2). In general Y is NOT
the Bockstein operator for the untwisted sequence 0 ¥ z ¥ Z ¢ [, ¥ 0, and
~Ujs not Sqt, as can be seen already for cohomology of the group Z=2Z acting
nontrivially on Z.

Lemma 10.4 Let M be a closed 4-manifold with fundamental group and
such that »(M) = Z. If has nontrivial torsion H3(M;F,) = H3( ;Fy)
for s 2. The Bockstein operator Y : H?( ;F,) ¥ H3( ;ZY) is onto,
and reduction mod 2 from H3( ;ZY) to H3( ;F,) is a monomorphism. The
restriction of ki(M) to each subgroup of order 2 is nontrivial. Its image in
H3(M;ZY) is 0.

Proof Most of these assertions hold vacuously if s torsion free, so we may
assume that  has an element of order 2. Then M has a covering space M
homotopy equivalent to RP?2, and so the mod-2 Hurewicz homomorphism from

2(M) to Hy(M;TF,) is trivial, since it factors through HZ(M;FZ). Since we
may construct K( ;1) from M by adjoining cells to kill the higher homotopy
of M the rst assertion follows easily.

The group H3( ;ZY) has exponent dividing 2, since the composition of restric-
tion to H3(K; Z) = 0 with the corestriction back to H3( ;Z") is multiplication
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by the index [ : K]. Consideration of the long exact sequence associated to the
coe cient sequence shows that Y isonto. If f:Z=2Z ¥ isa monomorphism
then f ky(M) is the rst k-invariant of I‘ﬁzf(Z=ZZ) ” RP?, which generates
H3(Z=2Z; ,(M)) =Z=2Z. The nal assertion is clear. 0

Theorem 10.5 Let M be a closed 4-manifold such that (M) = Z. Then
there are only nitely many homotopy types of such manifolds with fundamental
group and orientation character wi(M). If wi(M) & 0 there are at most
two such homotopy types with given rst k-invariant.

Proof By the lemma, the action of on (M) is determined by w;(M). As
c:d: =2, an LHSSS calculation shows that H3( ; »(M)) is nite, so there are
only nitely many possible k-invariants. The action and the rst k-invariant
ki(M) determine P = P,(M), the second stage of the Postnikov tower for M.
Let B ~ K(Z;2) denote the universal covering space of P.

As fy : M T P is 3-connected we may de ne a class w in H1(P;Z=27)
by fyuw = wi(M). Let SFP(P) be the set of \polarized" P D4-complexes
(X;f) where f: X ¥ P is 3-connected and w1 (X) = f w, modulo homotopy
equivalence over P. (Note that as is one-ended the universal cover of X
is homotopy equivalent to S2). Let [X] be the fundamental class of X in
H4(X; Z%). It follows as in Lemma 1.3 of [HK88] that given two such polarized
complexes (X;f) and (Y;g) thereisamap h: X ¥ Y with gh = f if and
only if £[X] =g[Y]in Ha(P;Z%). Since X > ® ” S2 and f and g are
3-connected such a map h must be a homotopy equivalence.

From the Cartan-Leray homology spectral sequence for the classifying map
cp . P ¥ K=K{( ;1) we see that there is an exact sequence

0 ¥ Ha( ;Ho(B) LZY)=im(d5) ¥ Ha(P;Z")= ¥ Ha( ;Z");

where J = Ho( ; Ha(®; Z) CZ¥)=im(d3, +dg,) is the image of Ha(®;Z) [Z¥
in Hs(P;Z%). On comparing this spectral sequence with that for cx we see
that f induces an isomorphism from H4(X;Z%) to Ha(P;Z%)=J. We also
see that Hz(F;ZW) is an isomorphism. Hence the cokernel of Hy(f;ZY) is
Ha(P; X;Z%) = Ho( ;H4(®;X;Z) [ZY), by the exact sequence of homology
with coe cients ZW for the pair (P; X). Since H4(; X;Z) =Z asa -module
this cokernel is Z if w = 0 and Z=2Z otherwise. Hence J = Coker(H4(f;Z"Y)).
(Note that Hy( ;H2(®) CZV)=(torsion) = Z and the groups Hy( ;Z%) are

nite if p > 2). Thus if w & 0 there are at most two possible values for f [X],
up to sign. If w = 0 we shall show that there are only nitely many orbits of
fundamental classes of such polarized complexes under the action of the group
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G of (based) self homotopy equivalences of P which induce the identity on
and »(P).

The cohomology spectral sequence for cp gives rise to an exact sequence

0 ¥ H?( ;Z%) ¥ HA(P;Z") ¥ HO( ;H*(®;2) CZ¥)=2Z ¥ H3( ;Z"):
Note that H2( ;Z“) = Z modulo 2-torsion (since w = 0), H?(®;Z) = Z! and
ZY [ZY=Z as -modules. Moreover the right hand map is the transgression,

with image generated by ki1(M). There is a parallel exact sequence with rational
coe cients

0% HZ(;Q")=Q ¥ H*(P;Q") ¥ H(;H*(®;Z) Q1) =Q 1 0
Thus H?(P;QY) has a Q-basis t;z in the image of H2(P;ZY) such that t is

the image of a generator of H?( ; ZY)=(torsion) and z has nonzero restriction
to H?(:;Z). The spectral sequence also gives an exact sequence

01 H2( ;H%(R;Q)) ¥ H4P;Q) ¥ H°( ;H*®;Q)=Q ! 0:

(Note that H2(®; Q) = Q" as a Q[ ]-module). Since cdy = 2 we have t? =0
in H*(P; QY Q) = H*(P;Q); since B > K(Z;2) we have z? & 0. Thus
tz;z? is a Q-basis for H*(P; Q). A self homotopy h in G induces the identity
on , and its lift to a self map of B is homotopic to the identity. Hence h t =t
and h z z modulo Qt. Nevertheless we shall see that the action of G on
H2(P;QY) is nontrivial.

Suppose rst that u =0, so is an orientable surface group and k;(M) = 0.
Then P * K( ;1) K(Z;2) and G = [K( ;1);K(Z;2)]. Let T: K( ;1) ¥
K (Z;2) be a map which induces an isomorphism on H? and X a generator
for H2(K(Z;2);Z). Then t =pr,;f and z = pr, freely generate H?(P;Z),
and so tz;z? freely generate H*(P;Z). Each g 2 [K( ;1);K(Z;2)] deter-
mines a self homotopy equivalence ¢ : P ¥ P by g(k;n) = (k;g(k):n), where
K(Z;2) = QK(Z;3) has the natural loop multiplication. Clearly g is in G,
and all elements of G are of this form [Ts80]. Let d : G ¥ Z be the isomor-
phism determined by the equation g =d(g)f . Thengt= (fprig) =t
and g z = (prog) = (gpr1) +pr, =pri(g )+z=z+d(g)t. On taking
cup products we have h (tz) = tz and h (z?) = z? + 2d(g)tz. On passing to
homology we see that there are two G-orbits of elements in H4(P;Z) whose
images generate Hy(P;Z)=J.

In general let Pk denote the covering space corresponding to the subgroup K,
and let Gk be the image of G in the group of self homotopy equivalences of
Pk . Then lifting self homotopy equivalences de nes a homomorphism from G
to Gk, which by [Ts80] may be identi ed with the restriction from H2( ;ZY)
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to H?(K;Z) = Z, which has image of index 2. Moreover the projection
induces an isomorphism from H*(P;Q) to H*(Pk;Q). Hence the action of
G on Hy4(P;Z)=(torsion) = Z?2 is nontrivial, and so there are only nitely
many G-orbits of elements whose images generate Hy(P;Z)=J. This proves
the theorem. O

As a consequence of Lemma 10.4 we may assume that the cohomology class z in
the above theorem restricts to 2 times a generator of H?(®:; Z), if ky(M) & 0.
A closer study of the action of G on H?(P;Z") suggests that in general there
are at most 4 homotopy types with given , w; and k-invariant. However we
have not succeeded in proving this.

Signi cant features of the duality pairing such as w,(M) are not reflected in
the Postnikov 2-stage. If is torsion free ky(M) = 0 and w; is the only other
invariant needed. For then is a surface group and each such manifold is
homotopy equivalent to the total space of an S2-bundle. There are two such
bundle spaces for each group and orientation character, distinguished by the
value of wp(M).

For RP2-bundles u =w; and =K (Z=2Z). The element of order 2 in

is unique, and the splitting is unique up to composition with an automorphism
of . There are two such bundle spaces for each surface group K, again dis-
tinguished by w,(M). Can it be seen a priori that the k-invariant must be
standard?

If wi(M) =0, wy(M) restricts to 0 in H?(K;F»), u & 0 and H3(u;ZY) is
0 then M is homotopy equivalent to the total space of a surface bundle over
RP?, by Theorem 5.23.

In general, we may view the classifying map ¢y : M ¥ K( ;1) as a bration
with bre S2. Fix a homotopy equivalence M = S2. Then the action of on W
determines a homomorphism j : ¥ Homeo(W) ¥ E(S?), and the bration
cm is induced from the universal S?- bration over BE(S?) by the map Bj :
K( ;1) ¥ BE(S?). The orientation character of this bration is wi(cy) =
u, and is induced by the composite cggs2)Bj @ K( ;1) ¥ K( o(E(S?)); 1).
The (twisted) Euler class is the rst obstruction to a cross-section of ¢y, and
so equals ki(M). Hence the reduction modulo (2) of kiy(M) is wsz(cm) 2
H3( ;F,). Calculation show that Y : H3(BE(S?);F,) ¥ H3(BE(S?);ZY)
is an isomorphism, and so ws(cpm) also determines ki(M). In particular, if j
factors through ¥ 1g < O(3) then ki(M) = Y(U?), where U 2 H( :F,)
is the cohomology class determined by u. (This is so when M is a S> X2-
manifold and  is generated by elements of order 2, by Lemma 10.6 below).
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As M is nitely covered by a cartesian product S> B, where B is a closed
orientable surface, wo(M) restricts to 0 in HZ(IVI:; F,) and so is induced from

. The Wu formulae for M then imply that the total Stiefel-Whitney class
w(M) is induced from . It can be shown that c,,(w(cm)) is determined by
w(M) and ; unfortunately as cy,(ws(cm)) = 0 (by exactness of the Gysin
sequence for ¢y ) we do not know whether ki(M) is also determined by these
invariants.

Is the homotopy type of M determined by (M), w(M) and ki(M)? What is
the role of the exotic class in H3(BE(S?);F2)? Are there any P D4-complexes
M with M ~ S2 and such that the image of this class under (Bj) is nonzero?

10.3 Bundle spaces are geometric

All S X2-manifolds are total spaces of orbifold bundles over X?-orbifolds. We
shall determine the S2- and RP?-bundle spaces among them in terms of their
fundamental groups, and then show that all such bundle spaces are geometric.

Lemma 10.6 Let J = (A; ) 2 03) Isom(X?) be an isometry of order 2
which is xed point free. Then A = —1. If moreover J is orientation reversing
then =idx or has a single xed point.

Proof Since any involution of R? (such as ) must x a point, a line or be
the identity, A 2 O(3) must be a xed point free involution, and so A = —1.
If J is orientation reversing then is orientation preserving, and so must x a
point or be the identity. O

Theorem 10.7 Let M be aclosed S? X?-manifold with fundamental group
. Then

(1) M is the total space of an orbifold bundle with base an X2-orbifold and
general bre S? or RP?;

(2) M is the total space of an S2-bundle over a closed aspherical surface if
and only if s torsion free;

(3) M s the total space of an RP2-bundle over a closed aspherical surface
if and only if = (Z=2Z) K, where K is torsion free.

Proof (1) Thegroup is a discrete subgroup of the isometry group 1som(S?

X?) = O0(@) Isom(X?) which acts freely and cocompactly on S? R?2,
In particular, N = \ (O(3) flg) is nite and acts freely on S?, so has
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order 2. Let p; and p, be the projections of Isom(S® X?) onto O(3)
and Isom(X?), respectively. Then p,( ) is a discrete subgroup of I1som(X?)
which acts cocompactly on R?, and so has no nontrivial nite normal subgroup.
Hence N is the maximal nite normal subgroup of . Projection of S2 R?
onto R? induces an orbifold bundle projection of M onto p2( )nR? and general

bre NnS2. If N & 1 then N = Z=2Z and = (Z=2Z) K, where K is a
P D,-group, by Theorem 5.14.

(2) The condition is clearly necessary. (See Theorem 5.10). The kernel of the
projection of  onto its image in 1som(X?) is the subgroup N. Therefore if
is torsion free it is isomorphic to its image in 1som(X?), which acts freely on
R?. The projection :S2 R? ¥ R? inducesamap r: M ¥ nR?, and we
have a commutative diagram:

S2 R? —1 R?

? ?

? ?

yf yf
M= nS2 R?) —1 nR2

where  and T are covering projections. It is easily seen that r is an S?-bundle
projection.

(3) The condition is necessary, by Theorem 5.16. Suppose that it holds. Then
K acts freely and properly discontinuously on R?, with compact quotient. Let
g generate the torsion subgroup of . Then p1(g) = —1, by Lemma 10.6. Since
p2(9)? = idg2 the xed point set F = fx 2 R? j p2(g)(X) = xg is nonempty,
and is either a point, a line, or the whole of R?. Since p»(g) commutes with
the action of K on R? we have KF = F, and so K acts freely and properly
discontinuously on F. But K is neither trivial nor in nite cyclic, and so we
must have F = R?. Hence p»(g) = idg2. The result now follows, as Kn(S? R?)
is the total space of an S2-bundle over KnR?, by part (1), and g acts as the
antipodal involution on the bres. O

If the S2 X2-manifold M is the total space of an S2-bundle  then wy( ) is
detected by the determinant: det(p1(g)) = (—1)"+)© for all g 2

The total space of an RP?-bundle over B is the quotient of its orientation dou-
ble cover (which is an S2-bundle over B) by the brewise antipodal involution
and so there is a bijective correspondance between orientable S?-bundles over
B and RP?-bundles over B.

Let (A; ;C) 2 0(3) E() = 0@B) (R?>~0(2)) be the S*> E?-isometry
which sends (v;x) 2 S? R? to (Av;Cx+ ).
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Theorem 10.8 Let M be the total space of an S?- or RP?-bundle over T or
Kb. Then M admits the geometry S? 2.

Proof Let R; 2 O(3) be the reflection of R® which changes the sign of the it
coordinate, for i = 1;2;3. If A and B are products of such reflections then the
subgroups of Isom(S? [E2) generated by = (A;(§);1) and = (B;(9);1)
are discrete, isomorphic to Z2 and act freely and cocompactly on S? R2.
Taking

(1) A=B=1I;

(20 A=RiR2;B =RyR3;

B) A=Ry;B=1;and

(4) A=RyiB=RiR;

gives four éz-bundles i over the torus. If instead we use the isometries =

(A; % ;5% Yand = (B;(9);1) we obtain discrete subgroups isomorphic
to Z _;Z which act freely and cocompactly. Taking
1) A=Ry;;B=1;

(2) A=Ry;B =RzRs;

(3) A=1;B =Ry;

(4) A=Ri1R2;B =Ry;

B) A=B=1;and

(6) A=1;B=RiR»
gives six S2-bundles ; over the Klein bottle.
To see that these are genuinely distinct, we check rst the fundamental groups,
then the orientation character of the total space; consecutive pairs of genera-
tors determine bundles with the same orientation character, and we distinguish
these by means of the second Stiefel-Whitney classes, by computing the self-
intersections of cross-sections. (See Lemma 5.11.(2). We shall use the stereo-
graphic projection of 2. R3=C R onto ® = C [ fg, to identify the
reflections R;j : S2 ¥ S? with the antiholomorphic involutions:

Rz BV -7 Fir L

Let T =f(s;t) 2 R?%j0 s;t 1g be the fundamental domain for the standard
action of Z2 on R?. A section :T ¥ S2 R? of the projection to R? over
% such that (1;t) = (0;t) and (s;1) =  (s;0) induces a section of the
bundle ;.
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As the orientable cases ( 1, 2, 1 and ) have been treated in [Ue90] we may
concentrate on the nonorientable cases. In the case of 3 each xed point P of
A determines a section p with p(s;t) = (P;s;t). Since A Xxes a circle on
S? it follows that sections determined by distinct xed points are isotopic and
disjoint. Therefore =0, so vo(M) =0 and hence w,( 3) =0.

We may de ne a 1-parameter family of sections for 4 by
SH=(1- )Qt—1)+ @2—2)e ' 72

Now o and g intersect transversely in a single point, corresponding to s = 1=2
and t=(1+ 5)=4. Hence =1,s0 vo(M) &0 and wy( 4) & 0.

The remaining cases correspond to S?-bundles over Kb with nonorientable total
space. We now take £ = f(s;t) 2 R%j0 s 1;jtj %g as the fundamental
domain for the action of Z _;Z on R2. In thiscaseitsu cesto nd : 8 ¥
S2 RZsuchthat (L;t)= (0;—t)and (s;3)= (s;—3).

The cases of 3 and s are similar to that of 3: there are obvious one-parameter
families of disjoint sections, and so w»( 3) = wo( 5) = 0. However wi( 3) &
wi( 5). (In fact 5 is the product bundle).

The functions (s;t) = (2s— 1+ it) de ne a 1-parameter family of sections
for 4 suchthat o and 1 intersect transversely in one point, so that =1.
Hence vo,(M) & 0 and so wy( 4) & 0.

For ¢ the functions (s;t) = (2s—1)t+i(1— )(4t2—1) de ne a 1-parameter
family of sections such that  and 1(s;t) intersect transversely in one point,
so that = 1. Hence vo(M) & 0 and so w»( g) & 0.

Thus these bundles are all distinct, and so all S2-bundles over T or Kb are
geometric of type S? E2.

Adjoining the xed point free involution (—1;0;1) to any one of the above ten
sets of generators for the S2-bundle groups amounts to dividing out the S2

bres by the antipodal map and so we obtain the corresponding RP 2-bundles.
(Note that there are just four such RP2-bundles - but each has several distinct
double covers which are S?-bundles). O

Theorem 10.9 Let M be the total space of an S?- or RP2-bundle over a
closed hyperbolic surface. Then M admits the geometry S? H?.

Proof Let Ty be the closed orientable surface of genus g, and let ¥9  H? be
a 2g-gon representing the fundamental domain of Ty. The map Q : T9 ¢ ¥
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that collapses 2g — 4 sides of %9 to a single vertex in the rectangle ¥ induces
a degree 1 map O from Tg to T that collapses g —1 handles on T9 to a single
point on T. (We may assume the induced epimorphism from

to Z2 kills the generators aj;bj for j > 1). Hence given an S2-bundle  over
T with total space M =T n(S? E?), where

r =f((h);h)jh2 ((T)g Isom(S? E?)

and :Z2 ¥ O(3) is as in Theorem 10.8, the pullback & ( ) is an S2-bundle
over Ty, with total space M q =T on(S? H?), where I' o = f( Q(h);h) jh 2

1(T9g  Isom(S? H?). As O is of degree 1 it induces monomorphisms in
cohomology, so w( ) is nontrivial if and only if w(€ ( )) = & w( ) is nontrivial.
Hence all S2-bundles over T9 for g 2 are geometric of type S? H?.

Suppose now that B is the closed surface #°RP? = T#RP? = Kb#RP?2.
Then there is a map 8 : T#RP2 ¥ RP2 that collapses the torus summand to
a single point. This map o) again has degree 1 and so induces monomorphisms
in cohomology. In particular @ preserves the orientation character, that is
wi(® () = 8 wi(RP?2) = wy(B), and is an isomorphism on H2. We may
pull back the four S2-bundles over RP2 along 8 to obtain the four bundles
over B with rst Stiefel-Whitney class wl(Q ) either 0 or w1 (B).

Similarly there is a map P : Kb#RP2 ¥ RP2 that collapses the Klein bot-
tle summand to a single point. This map b has degree 1 mod 2 so that
b w;(RP2) has nonzero square since wi(RP2)2 & 0. Note that in this case
b wi(RP2) & wi(B). Hence we may pull back the two S2-bundles  over
RP?2 with wi( ) = wi(RP?) to obtain a further two bundles over B with
wi(P ()2=Db wi()26&0,as P isaring monomorphism.

There is again a map P : Kb#RP2 ¥ Kb that collapses the Klein bottle
summand to a single point. Once again b s of degree 1 mod 2 so that we
may pull back the two S?-bundles over Kb with wi( ) = wy(Kb) along b to
obtain the remaining two S2-bundles over B. These two bundles P () have
wi(P (1)) &0 but wi(P ()2 =0; as wi(Kb) & 0 but wy(Kb)2 =0 and b
is @ monomorphism.

Similar arguments apply to bundles over #"RP? where n > 3.

Thus all S?2-bundles over all closed aspherical surfaces are geometric. Further-
more since the antipodal involution of a geometric S?-bundle is induced by an
isometry (—I;idg2) 2 O(3) Isom(H?) we have that all RP?-bundles over
closed aspherical surfaces are geometric. O
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An alternative route to Theorems 10.8 and 10.9 would be to rst show that
orientable 4-manifolds which are total spaces of S?-bundles are geometric, then
deduce that RP?-bundles are geometric (as above); and nally observe that
every S2-bundle space double covers an RP ?-bundle space.

The other S>  XZ-manifolds are orbifold bundles over flat or hyperbolic orb-
ifolds, with general bre S2. In other words, they have codimension-2 foliation
whose leaves are homeomorphic to S? or RP2. Is every such closed 4-manifold
geometric?

If (F)<Oor (F)=0and@ =0 thenevery F-bundle over RP? is geometric,
by Lemma 5.21 and the remark following Theorem 10.2.

However it is not generally true that the projection of S> X onto S? induces
an orbifold bundle projection from M to an S?-orbifold. For instance, if and

" are rotations of S? about a common axis which generate a rank 2 abelian
subgroup of SO(3) then ( ;(1;0)) and ( % (0;1)) generate a discrete subgroup
of SO(3) R? which acts freely, cocompactly and isometrically on S2 R2?. The
orbit space is homeomorphic to S2 T. (It is an orientable S?-bundle over the
torus, with disjoint sections, detemined by the ends of the axis of the rotations).
Thus it is Seifert bred over S2, but the bration is not canonically associated
to the metric structure, for h ; i does not act properly discontinuously on S2.

10.4 Fundamental groups of S? [E2-manifolds

We shall show rst that if M is a closed 4-manifold any two of the conditions
\ (M) =0",\ {(M) isvirtually Z2" and \ (M) = Z" imply the third, and
then determine the possible fundamental groups.

Theorem 10.10 Let M be a closed 4-manifold with fundamental group
Then the following conditions are equivalent:

(1) s virtually Z? and (M) =0;
2) has an in nite restrained normal subgroup and (M) =Z;
B (M)=0and »(M)=2Z; and

(4) M has a covering space of degree dividing 4 which is homeomorphic to
s T.

(5) M is virtually homeomorphic to an S? E2-manifold.

Geometry & Topology Monographs, Volume 5 (2002)



10.4 Fundamental groups of S> [E?-manifolds 207

Proof If isvirtually a PD,-group and either ( ) =0 or hasan in nite
restrained normal subgroup then s virtually Z2. Hence the equivalence of
these conditions follows from Theorem 10.1, with the exception of the assertions
regarding homeomorphisms, which then follow from Theorem 6.11. O

We shall assume henceforth that the conditions of Theorem 10.10 hold, and shall
show next that there are nine possible groups. Seven of them are 2-dimensional
crystallographic groups, and we shall give also the name of the corresponding
[E2-orbifold, following Appendix A of [Mo]. (The restriction on nite subgroups
eliminates the remaining ten E?-orbifold groups from consideration).

Theorem 10.11 Let M be a closed 4-manifold such that = (M) is
virtually Z? and (M) = 0. Let A and F be the maximal abelian and maximal
nite normal subgroups (respectively) of . If is torsion free then either

(1) = A =2Z2? (the torus); or
(2) =2 _1Z (the Klein bottle).
If F =1 but has nontrivial torsion and [ : A] = 2 then either
@B =D Z=@Z (Z=22)) z(Z (Z=22)), with the presentation
hs;X;y j X% =y? =1; sx = xs; sy = ysi (the silvered annulus); or
@4 =D~zZ=Z z(Z (Z=22)), with the presentation
ht;x j x2 = 1; t?x = xt?i (the silvered Mdbius band); or
(5) =(2Z% -i1(Z=22) =D z D, with the presentations

hs;t;x j x2 = 1; xsx = s~ % xtx = t~% st = tsi and (setting y = xt)
hs; X;y j X2 = y? = 1; xsx = ysy = s~ i (the pillowcase S(2222)).
If F=1and [ :A] =4 then either
6) =D z(Z (Z=2Z)), with the presentations
hs;t;x jx?2 =1; xsx =s7 % xtx =t~% tst™? = s71i and
(setting y = xt) hs;x;y jx? =y? =1; xsx = s~ % ys = syi (D(22)); or
(7) =2Z z D, with the presentations
hrs;x jx?=1; xrx =r~% xsx =rs™% srs! = r~1j and
(setting t = xs) ht;x j x? = 1; xt®x = t~2i (P (22)).
If F is nontrivial then either
8 =2z? (Z=22);o0r
©® =@ 12) (Z=22).

Proof Letu: ¥ f 1g= Aut( 2(M)) be the natural homomorphism. Since
Ker(u) is torsion free it is either Z2 or Z _;Z; since it has index at most 2
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it follows that [ : A] divides 4 and that F has order at most 2. If F =1 then
A=7Z?and =A actse ectively on A, so isa 2-dimensional crystallographic
group. If F & 1 then itis central in and u maps F isomorphically to Z=2Z,
so = (Z=2Z) Ker(u). O

Each of these groups may be realised geometrically, by Theorem 10.2. It is easy
to see that any S> EZ2-manifold whose fundamental group has in nite abelian-
ization is a mapping torus, and hence is determined up to di eomorphism by its
homotopy type. (See Theorems 10.8 and 10.12). We shall show next that there
are four a ne di eomorphism classes of S> [E?-manifolds whose fundamental
groups have nite abelianization.

Let Q be a discrete subgroup of 1som(S? [E?) = O(3) E(2) which acts freely
and cocompactly on S? R?2. If Q=D zDor D 2z (Z (Z=22)) itis
generated by elements of order 2, and so p1(Q) =f 1g, by Lemma 10.6. Since
p2(Q) < E(2) is a 2-dimensional crystallographic group it is determined up to
conjugacy in AFf(2) = R2~GL(2;R) by its isomorphism type, Q is determined
up to conjugacy in O(3) Aff(2) and the corresponding geometric 4-manifold
is determined up to a ne di eomorphism.

Although Z 7 D is not generated by involutions, a similar argument applies.

i i o g P
The isometries T = (; 1 ; 57 ) and X = (=I; 1 ;—I) generate a
2

discrete subgroup of Isom(S? IE?) isomorphic to Z z D and which acts freely
and cocompactly on S? R?, provided 2 = I. Since x? = (xt?)2 = 1 this
condition is necessary, by Lemma 10.6. We shall see below that we may assume
that T is orientation preserving, i.e., that det( ) = —1. (The isometries T?
and XT generate Ker(u)). Thus there are two a ne di eomorphism classes of
such manifolds, corresponding to the choices = —I or Rs.

None of these manifolds bre over S?, since in each case = "is nite. However
if QisaS? [E?-lattice such that py(Q) F Ig then Qn(S? R?) bres over
RP 2, since the map sending (v;x) 2 S?> R? to [ v] 2 RP? is compatible with
the action of Q. If p1(Q) = Ig the breis InR?, where I = Q\(flg E(2));
otherwise it has two components. Thus three of these four manifolds bre over
RP?2 (excepting perhaps only the case Q =Z > D and Rz 2 p1(Q)).

10.5 Homotopy types of S> E?-manifolds

Our next result shows that if M satis es the conditions of Theorem 10.10 and
its fundamental group has in nite abelianization then it is determined up to
homotopy by (M) and its Stiefel-Whitney classes.
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Theorem 10.12 Let M be a closed 4-manifold with (M) = 0 and such that
= (M) is virtually Z2. If = "isin nite then M is homotopy equivalent
to an S E2-manifold which bres over S?t.

Proof The in nite cyclic covering space of M determined by an epimorphism
: ¥ Z is a PDs-complex, by Theorem 4.5, and therefore is homotopy
equivalent to

(1) s? s? (if Ker( )=2Z is torsion free and wi(M)jker¢ y = 0),
(2) S?~St (if Ker( ) =Z and Wi(M)jker ) & 0),

(3) RP? st (ifKer()=2 (Z=22))or

(4) RP3]RP3 (if Ker( ) = D).

Therefore M is homotopy equivalent to the mapping torus M( ) of a self
homotopy equivalence of one of these spaces.

The group of free homotopy classes of self homotopy equivalences E(S? S%) is
generated by the reflections in each factor and the twist map, and has order 8.
The group E(S?~S?') has order 4 [KR90]. Two of the corresponding mapping
tori also arise from self homeomorphisms of S? S!. The other two have
nonintegral wy;. The group E(RP?  S?') is generated by the reflection in the
second factor and by a twist map, and has order 4. As all these mapping tori
are also S2- or RP2-bundles over the torus or Klein bottle, they are geometric
by Theorem 10.8.

The group E(RP3]RP?3) is generated by the reflection interchanging the sum-
mands and the point free involution (cf. page 251 of [Ba’]), and has order 4.
Let =10 G39), =W@E:Dy=0:(D;Dad =(13);ND
Then the subgroups generated by ¥ ; ;yg, f; ; g, f; ygand f; g,
respectively, give the four RP3]RP3-bundles. (Note that these may be distin-
guished by their groups and orientation characters). ]

A T -bundle over RP? which does not also bre over S! has fundamental group
D zD, while the group of a Kb-bundle over RP? which does not also bre over
SlisD 2 (Z (Z=22)) or Z z D (assuming throughout that is virtually
Z2).

When is torsion free every homomorphism from  to Z=2Z arises as the
orientation character for some M with fundamental group . However if =
D Z or D~Z the orientation character must be trivial on all elements of order

2, while if F & 1 the orientation character is determined up to composition with
an automorphism of
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Theorem 10.13 Let M be a closed 4-manifold with (M) = 0 and such that
= 1(M) is an extension of Z by an almost nitely presentable in nite normal

subgroup N with a nontrivial nite normal subgroup F. Then M is homotopy

equivalent to the mapping torus of a self homeomorphism of RP?  St.

Proof Let M be the universal covering space of M. Since N is in nite and
nitely generated has one end, and so Hi(M:; Z) =0 for i & 0 or 2. Let
= ,(M) = Hy(W;Z). We wish to show that = Z, and that w = w;(M)
maps F isomorphically onto f 1g. Since 52)( ) =0 by Lemma 2.1, there is
an isomorphism of left Z[ ]-modules = H2( ;Z[ ]), by Theorem 3.4. An
LHSSS argument then gives = H(N;Z[N]), which is a free abelian group.

The normal closure of F in is the product of the conjugates of F, which
are nite normal subgroups of N, and so is locally nite. If it is in nite then
N has one end and so HS( ;Z[ ]) = 0 for s 2, by an LHSSS argument.
Since locally nite groups are amenable 52)( ) = 0, by Theorem 2.3, and so
M must be aspherical, by Corollary 3.5.2, contradicting the hypothesis that
has nontrivial torsion. Hence we may assume that F is normal in

Let T be a nontrivial element of F. Since F isnormal in  the centralizer C ()
of f has nite index in , and we may assume without loss of generality that
F is generated by f and is central in . It follows from the spectral sequence
for the projection of N onto FnW that there are isomorphisms Hs+3(F;Z) =
Hs(F; ) forall s 4, since FnW is a 4-dimensional complex. Here F acts
trivially on Z, but we must determine its action on

Now central elements n of N act trivially on HY(N; Z[N]) and hence via w(n)
on . (See Theorem 2.11). Thus if w(f) = 1 the sequence

0¥ Z=jifiz¥ ¥ 10

is exact, where the right hand homomorphism is multiplication by jfj. As
is torsion free this contradicts ¥ & 1. Therefore if ¥ is nontrivial it has order 2
and w(f) = —1. Hence w: F ¥ f 1g is an isomorphism and there is an exact
sequence

(O | 1 1 7=27 1 (;

where the left hand homomorphism is multiplication by 2. Since s a free
abelian group it must be in nite cyclic, and so W > S2. The theorem now
follows from Theorems 10.10 and 10.12. O

The possible orientation characters for the groups with nite abelianization
are restricted by Lemma 3.14, which implies that Ker(w1) must have in nite
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abelianization. For D z D we must have wi(X) = ws(y) =1 and wy(s) = 0.

For D 2 (Z (Z=2Z)) we must have wi(s) = 0 and wy(Xx) = 1; since the

subgroup generated by the commutator subgroup and y is isomorphicto D Z

we must also have w;(y) = 0. Thus the orientation characters are uniquely

determined for these groups. For Z z D we must have w;(X) = 1, but w;(t)

may be either 0 or 1. As there is an automorphism of Z z D determined by
() =xt and (X) =x we may assume that w;(t) = 0 in this case.

In all cases, to each choice of orientation character there corresponds a unique
action of on ,(M), by Lemma 10.3. However the homomorphism from to
Z=27 determining the action may di er from w;(M). (Note also that elements
of order 2 must act nontrivially, by Theorem 10.1).

We shall need the following lemma about plane bundles over RP? in order to
calculate self intersections here and in Chapter 12.

Lemma 10.14 The total space of the R?-bundle p over RP? with wy1(p) =0
and w,(p) & 0 is S2  R2=hgi, where g(s;v) = (—s;—V) for all (s;v) 2 S? R2.

Proof Let [s] and [s;v] be the images of s in RP? and of (s;v) in N =
S? R2?=hgi, respectively, and let p([s;v]) = [s], for s 2 S? and v 2 R2.
Then p: N ¥ RP? is an R?-bundle projection, and wi(N) = p w;(RP?), so
wi(p) = 0. Let ([s]) = [s;t(x;y)], where s = (x;y;z) 2 S? and t 2 R. The
embedding ¢: RP? ¥ N is isotopic to the O-section o, and ((RP?) meets

o(RP?) transversally in one point, if t > 0. Hence w»(p) & 0. O

Lemma 10.15 Let M be the S° E?-manifold with (M) =2Z > D gener-
]
ated by the isometries (—I; g oy ) and (—I; ;—1). Then vp(M) =

U2 and U* =0 in H*(M;F,).

NIR NI

Proof This manifold is bred over RP2 with bre Kb. As isa xed

BRI

point of the involution ( :—1) of R? there is a cross-section given by

NIRN[-

(Ish = [s; % ]: Hence Hy(M;TF,) has a basis represented by embedded

7
copies of Kb and RP?, with self-intersection numbers 0 and 1, respectively.
(See Lemma 10.14). Thus the characteristic element for the intersection pair-
ing is [Kb], and v,(M) is the Poincare dual to [Kb]. The cohomology class
U 2 HY(M;TF>) is induced from the generator of H:(RP?;F,). The projection
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formula gives p (U2\ [RP?]) =1 and p (U2 \[Kb]) = 0. Hence we have
also vo(M) = U? and so U4 =0. O

This lemma is used below to compute some productsin H (Z zD;F,). Ideally,
we would have a purely algebraic argument.

Theorem 10.16 Let M be a closed 4-manifold such that (M) = Z and
1(M)= (M)=0,and let = 1(M). Let U be the cohomology class in
H1( ;F,) corresponding to the action u: ¥ Aut( »(M)). Then

1D if =D zDorD z(Z (Z=22)) then
H (M;F) = Fo[S; T; UJ=(S* + SU; T? + TU; U®);
where S; T and U have degree 1;
(2 if =2z zD then
H (M;F2) = F2[S; U; Vi W=I;

where S;U have degree 1, V has degree 2 and W has degree 3, and
I =(S?%;SU;SV; U3 UV;UW;VW;V2+U?V;V2+SW;W?);
) vo(M)=U? and ky(M) = Y(U?) 2 H3( ;:ZY), in all cases.

Proof We shall consider the three possible fundamental groups in turn.

D D : Since x, y and xs have order 2 in D z D they act nontrivially,
and so K = hs;ti = Z2. Let S;T;U be the basis for H( ;F,) determined
by the equations S(t) = S(X) = T(s) = T(xX) = U(s) = U(t) = 0. It follows
easily from the LHSSS for  as an extension of Z=2Z by K that H?( ;F,) has
dimension 4. We may check that the classes fU?;US;UT;STg are linearly
independent, by restriction to the cyclic subgroups generated by x, xs, xt and
xst. Therefore they form a basis of H?( ;F»). The squares S? and T? must
be linear combinations of the above basis elements. On restricting such linear
combinations to subgroups as before we nd that S? = US and T? = UT.
Now H3( ;FF,) = HS(M;F,) for s 2, by Lemma 10.4. It follows easily from
the nondegeneracy of Poincare duality that U°ST & 0 in H*(M;TF»), while
USS = UST = U* =0, so U3 = 0. Hence the cohomology ring H (M;F,) is
isomorphic to the ring F,[S; T;UJ=(S%2 + SU; T2+ TU; U?%). Moreover vo(M) =
U2, since (US)? =USU?, (UT)>=UTU? and (ST)? = STU?. An element of

has order 2 if and only if it is of the form xs™t" for some (m;n) 2 Z2. It is
easy to check that the only linear combination aU2+bUS+cUT +dST which has
nonzero restriction to all subgroups of order 2 is U2. Hence k(M) = Y(U?).
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D z2(Z (Z=22)) : Since x, y and xs have order 2in D 7z (Z (Z=22))
they act nontrivially, and so K = hs;ti = Z _;Z. Let S;T;U be the basis
for H( ;F») determined by the equations S(t) = S(x) = T(s) = T(X) =
U(s) = U(t) = 0. We again nd that fU%;US;UT;STg forms a basis for
H2( ;F;) = H?(M;F,), and may check that S> = US and T? = UT, by
restriction to the subgroups generated by fx;xsg, fx;xtg and K. As before,
the nondegeneracy of Poincare duality implies that H (M; F,) is isomorphic to
the ring F,[S; T;U]=(S? + SU; T2 + TU; U%), while vo(M) = U?. An element
of  has order 2 if and only if it is of the form xs™t" for some (m;n) 2
Z2, with either m = 0 or n even. Hence U2 and U? + ST are the only
elements of H?( ;F,) with nonzero restriction to all subgroups of order 2.
Now HY( ;ZY)=2Z (Z=2Z) and H!( ;F,) = (Z=2Z)3. Since =K =Z=2Z
acts nontrivially on HY(K;Z) it follows from the LHSSS with coe cients ZY
that H2( ;ZzY) EY? = z=2Z. As the functions f(x2s™t") = (—1)@n and
g(x@s™t") = (1 — (—1)#)=2 de ne crossed homomorphisms from G to ZY (i.e.,
f(wz) = u(w)f(z) +f(w) for all w, z in G) which reduce modulo (2) to T and
U, respectively, H2( :ZY) is generated by Y(S) and has order 2. We may
check that Y(S) = ST, by restriction to the subgroups generated by x; xsg,
fx;xtg and K. Hence k(M) = Y(U?) = YU?2+ST).

Z zD: If =Z D then =%=(zZ=4Z) (Z=2Z) and we may assume
that K =Z _;Z is generated by r and s. Let S; U be the basis for H1( ;F,)
determined by the equations S(x) = U(s) = 0. Note that S is in fact the
mod-2 reduction of the homomorphism S: ¥ Z=4Z given by S(s) =1 and
S(x) = 0. Therefore S? = Sq'S =0. Let f: ¥ F, be the function de ned
by f(k) = f(rsk) = f(xrk) = f(xrsk) = 0 and f(rk) = f(sk) = f(xk) =
f(xsk) =1 for all k 2 K'. Then U(g)S(h) = f(g) + f(h) + f(gh) = f(g;h)
forall g;h 2 ,and so US =0 in H2( ;F2). In the LHSSS all di erentials
ending on the bottom row must be 0, since is a semidirect product of Z=2Z
with the normal subgroup K. Since HP(Z=2Z; HY(K;F;)) = 0 for all p > 0,
it follows that H"( ;FF,) has dimension 2, for all n 1.

In particular, H2(M;F,) = H?( ;F,) has a basis fU?;V g, where Vjk gen-
erates H?(K;F,). Moreover H*(M;F,) is a quotient of H*( :F,). It fol-
lows from Lemma 10.15 that fU%;U2V g is a basis for H*( ;F,) and V? =
U2V + muU% in H*( ;F,), forsome m =0 or 1. Let :Z=2Z §  be the
inclusion of the subgroup hxi, which splits the projection onto =K. Then

(V) = (U? or 0, while U* & 0 in H*( ;F;). Hence m (U%) =

(VZ2+U?V) = 0 and so V2 = U2V in H*( ;F,). Therefore if M is
any closed 4-manifold with (M) = Z z D and (M) = 0 the image
of U4 in H*(M;F,) must be 0, and hence vo(M) = U?, by Poincare du-
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ality. Moreover H (M;Fy) is generated by S;U (in degree 1), V (in de-
gree 2) and an element W in degree 3 such that SW & 0 and UW = 0.
Hence H (M;Fy) is isomorphic to the quotient of F»[S;U;V; W] by the ideal
(S?%;SU; SV; U3 UV;UW;VW;V2+U3V;V2+SW;W?):

Since USU = U3S =0 in H4(M;F,) the image of U% in H3(M;F») must also
be 0, by Poincare duality. Now k{(M) has image 0 in H3(M;F,) and nonzero
restriction to subgroups of order 2. Therefore ky(M) = Y(U?), as reduction
modulo (2) is injective, by Lemma 10.4. ]

The example M = RP? T has vo(M) =0 and ky(M) & 0, and so in general
ki(M) need not equal Y(vo(M)). Is it always Y(U?)?

Corollary 10.16.1 The covering space associated to K = Ker(u) is homeo-
morphicto S2 T if =D zDandto S? Kbif =D 2 (Z (Z=22))
or Z zD.

Proof Since is Z2or Z _;Z these assertions follow from Theorem 6.11, on
computing the Stiefel-Whitney classes of the double cover. Since D z D acts
orientably on the euclidean plane R? we have w;(M) = U, by Lemma 10.3,
and so Wa(M) = vo(M) +w;(M)? = 0. Hence the double cover is S? T. If

=D z(Z (Z=2Z)) or Z zD then wi(M)jk = w1(K), while wo(M)jk =0,
so the double cover is S2 Kb, in both cases. D

The S E?-manifolds with groups D zD and D 2(Z (Z=22Z)) are unique up
toa nedi eomorphism. In each case there is at most one other homotopy type
of closed 4-manifold with this fundamental group and Euler characteristic 0, by
Theorems 10.5 and 10.16 and the remark following Theorem 10.13. Are the two
a ne di eomorphism classes of S [E2-manifolds with = Z 2 D homotopy
equivalent? There are again at most 2 homotopy types. In summary, there
are 22 a ne di eomorphism classes of closed S° [E2-manifolds (representing
at least 21 homotopy types) and between 21 and 24 homotopy types of closed
4-manifolds covered by S R? and with Euler characteristic 0.

10.6 Some remarks on the homeomorphism types

In Chapter 6 we showed that if is Z2 or Z _;Z then M must be homeomor-
phic to the total space of an S?-bundle over the torus or Klein bottle, and we
were able to estimate the size of the structure sets when has Z=2Z as a direct
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factor. The other groups of Theorem 10.11 are not \square-root closed acces-
sible” and we have not been able to compute the surgery obstruction groups
completely. However the Mayer-Vietoris sequences of [Ca73] are exact mod-
ulo 2-torsion, and we may compare the ranks of [SM; G=TOP] and Ls( ;w;y).
Thisis su cient in some cases to show that the structure set is in nite. For in-
stance, the rank of Ls(D Z) is 3 and that of L5(D ~2Z) is 2, while the rank of
Ls(D z(Z (Z=2Z));wy) is2. (Thegroups L ( ) EZ[%] have been computed

for all cocompact planar groups [LS00]). If M isorientableand =D Z or
D Z then [SM;G=TOP]=H3(M;Z) HY(M;F;) = Hi(M;Z) HY(M;F,)
has rank 1. Therefore Stop(M) is in nite. If =D z2(Z (Z=22))

then H;(M;Q) = 0, Hy(M;Q) = Hy( ;Q) = 0 and H4s(M;Q) = 0, since
M is nonorientable. Hence H3(M;Q) = Q, since (M) = 0. Therefore
[SM; G=TOP] again has rank 1 and Stop (M) is in nite. These estimates do
not su ce to decide whether there are in nitely many homeomorphism classes
in the homotopy type of M. To decide this we need to study the action of
the group E(M) on Stop(M). A scheme for analyzing E(M) as a tower of
extensions involving actions of cohomology groups with coe cients determined
by Whitehead’s I -functors is outlined on page 52 of [Ba’].
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Chapter 11
Manifolds covered by S°® R

In this chapter we shall show that a closed 4-manifold M is covered by S® R
if and only if = 1(M) has two ends and (M) = 0. Its homotopy type
is then determined by and the rst k-invariant k;(M). The maximal nite
normal subgroup of is either the group of a S®-manifold or one of the groups
Q(8a;b;c) Z=dz with a;b;c and d odd. (There are examples of the latter
type, and no such M is homotopy equivalent to a S® E!-manifold.) The
possibilities for  are not yet known even when F is a S®-manifold group
and =F = Z. Solving this problem may involve rst determining which k-
invariants are realizable when F is cyclic; this is also not yet known.

Manifolds which bre over RP2 with bre T or Kb and @ & 0 have universal
cover S® R. In x6 we determine the possible fundamental groups, and show
that an orientable 4-manifold M with such a group and with (M) = 0 must
be homotopy equivalent to a S [E!-manifold which bres over RP?.

As groups with two ends are virtually solvable, surgery techniques may be
used to study manifolds covered by S® R. However computing Wh( ) and
L ( ;wjp) is a major task. Simple estimates suggest that there are usually
in nitely many nonhomeomorphic manifolds within a given homotopy type.

11.1 Invariants for the homotopy type

The determination of the closed 4-manifolds with universal covering space ho-
motopy equivalent to S2 is based on the structure of groups with two ends.

Theorem 11.1 Let M be a closed 4-manifold with fundamental group
Then W = S3 if and only if has two ends and (M) = 0. If so

(1) M is nitely covered by S3 S andso M =S3 R = R*nfog;

(2) the maximal nite normal subgroup F of  has cohomological period
dividing 4, acts trivially on 3(M) = Z and the corresponding covering
space Mg has the homotopy type of an orientable nite P Dz-complex;

(3) the homotopy type of M is determined by and the orbit of the rst
nontrivial k-invariant k(M) 2 H*( ;Z"%) under Out( ) f 1g; and
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(4) the restriction of k(M) to H*(F;Z) is a generator.

Proof If M = S3 then HY( ;Z[ ]) = Z and so  has two ends. Hence
is virtually Z. The covering space Ma corresponding to an in nite cyclic

subgroup A is homotopy equivalent to the mapping torus of a self homotopy

equivalence of S3 ~ N, and so (Ma) =0. As [ : Al < 4 it follows that
(M) =0 also.

Suppose conversely that (M) =0 and s virtually Z. Then Hg(mz; 7Z)=Z
and H4(W;Z) = 0. Let Mz be an orientable nite covering space with fun-
damental group Z. Then (Mz) = 0 and so Hz(Mz;Z) = 0. The homology
groups of M = W may be regarded as modules over Z[t;t"1] = Z[Z]. Mul-
tiplication by t — 1 maps HZ(M:; Z) onto itself, by the Wang sequence for the
projection of M onto Mz. Therefore Homyz(H2(W; Z); Z[Z]) = 0 and so

»(M) = ,(Mz) = 0, by Lemma 3.3. Therefore the map from S3 to W
representing a generator of 3(M) is a homotopy equivalence. Since Mgz is
orientable the generator of the group of covering translations Aut(l‘ﬁzMz) =Z
is homotopic to the identity, and so Mz = M S! = S3 Sl Therefore
Mz =S3 S!, by surgery over Z. Hence W =S3 R.

Let F be the maximal nite normal subgroup of . Since F acts freely on N -
S? it has cohomological period dividing 4 and Mg = W=F isa P D3-complex.
In particular, Mg is orientable and F acts trivially on 3(M). The image of the

niteness obstruction for Mg under the \geometrically signi cant injection" of
Ko(Z[F]) into Wh(F  Z) of [Rn86] is the obstruction to Mg S* being a
simple PD-complex. If f: Mg ¥ Mg is a self homotopy equivalence which
induces the identity on 1(Mg) =F and on 3(Mg) = Z then T is homotopic
to the identity, by obstruction theory. (See [P182].) Therefore o(E(Mg)) is

nite and so M has a nite cover which is homotopy equivalent to Mg S?.
Since manifolds are simple P D,-complexes Mg must be nite.

The rst nonzero k-invariant lies in H*( ;Z%), since »(M) =0 and acts
on 3(M) = Z via the orientation character. As it restricts to the k-invariant
for Mg in H*(F;Z"Y) it generates this group, and (4) follows as in Theorem
2.9. O

The list of nite groups with cohomological period dividing 4 is well known
(see [DM85]). There are the generalized quaternionic groups Q(2"a;b;c) (with
n 3 and a;b;c odd), the extended binary tetrahedral groups T, , the extended
binary octahedral groups O,, the binary icosahedral group I , the dihedral
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groups A(m;e) (with m odd > 1), and the direct products of any one of these
with a cyclic group Z=dZ of relatively prime order. (In particular, a p-group
with periodic cohomology is cyclic if p is odd and cyclic or quaternionic if
p = 2.) We shall give presentations for these groups in x2.

Each such group F is the fundamental group of some P Dj3-complex [Sw60].
Such Swan complexes for F are orientable, and are determined up to homotopy
equivalence by their k-invariants, which are generators of H3(F;Z) = Z=jFjZ,
by Theorem 2.9. Thus they are parametrized up to homotopy by the quotient
of (Z=jFjZ) under the action of Out(F) T 1g. The set of niteness obstruc-
tions for all such complexes forms a coset of the \Swan subgroup™ of Ko(Z[F])
and there is a nite complex of this type if and only if the coset contains O.
(This condition fails if F has a subgroup isomorphic to Q(16;3;1) and hence if
F =0, (Z=dZ) for some k > 1, by Corollary 3.16 of [DM85].) If X is a Swan
complex for F then X S!isa nite PD; -complex with ;(X SY)=F Z
and (X SH =o.

If =F = Z then k(M) is a generator of H*( ; 3(M)) = H*(F;Z) = Z=jFjZ.
If =F =D then =G g H,where [G:F]=[H:F]=2,and H*( ;Z) =
f( ;) 2 (Z5GjZ) (Z=jHjZ) j mod (jFj)g, which is isomorphic to
(Z=2jFjz) (Z=2Z), and the k-invariant restricts to a generator of each of
the groups H*(G;Z) and H*(H;Z). In particular, if = D the k-invariant is
unique, and so any closed 4-manifold M with (M) =D and (M) =0 is
homotopy equivalent to RP*]JRP 4.

Theorem 11.2 Let M be a closed 4-manifold such that = (M) has two
ends and with (M) = 0. Then the group of unbased homotopy classes of self
homotopy equivalences of M is nite.

Proof We may assume that M has a nite cell structure with a single 4-cell.
Suppose that £ : M ¥ M is a self homotopy equivalence which xes a base
point and induces the identity on and on 3(M) = Z. Then there are no
obstructions to constructing a homotopy from f to id;; on the 3-skeleton Mg =
MnintD#, and since 4(M) = 4(S3) = Z=2Z there are just two possibilities
for f. It is easily seen that Out( ) is nite. Since every self map is homotopic
to one which xes a basepoint the group of unbased homotopy classes of self
homotopy equivalences of M is nite. ]

If isasemidirect product F  Z then Aut( ) is nite and the group of based
homotopy classes of based self homotopy equivalences is also nite.
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11.2 The action of =F on F

Let F be a nite group with cohomological period dividing 4. Automorphisms

of F act on H (F;Z) and H (F;Z) through Out(F), since inner automor-

phisms induce the identity on (co)homology. Let J.(F) be the kernel of the

action on Hs(F;Z), and let J(F) be the subgroup of Out(F) which acts by
1.

An outer automorphism class induces a well de ned action on H*(S; Z) for each
Sylow subgroup S of F, since all p-Sylow subgroups are conjugate in F and
the inclusion of such a subgroup induces an isomorphism from the p-torsion of
H4(F;Z) = Z=jFjZ to H*(S;Z) = Z=jSjZ, by Shapiro’s Lemma. Therefore
an outer automorphism class of F induces multiplication by r on H*(F;Z) if
and only if it does so for each Sylow subgroup of F, by the Chinese Remainder
Theorem.

The map sending a self homotopy equivalence h of a Swan complex Xg for F
to the induced outer automorphism class determines a homomorphism from the
group of (unbased) homotopy classes of self homotopy equivalences E(Xg) to
Out(F). The image of this homomorphism is J(F), and it is a monomorphism
if jFj > 2, by Corollary 1.3 of [PI182]. (Note that [PI82] works with based
homotopies.) If F = 1 or Z=2Z the orientation reversing involution of Xg
(7 S3 or RP3, respectively) induces the identity on F.

Lemma 11.3 Let M be a closed 4-manifold with universal cover S® R, and
let F be the maximal nite normal subgroup of = ;(M). The quotient =F
acts on 3(M) and H*(F;Z) through multiplication by 1. It acts trivially if
the order of F is divisible by 4 or by any prime congruent to 3 mod (4).

Proof The group =F must act through 1 on the in nite cyclic groups

3(M) and H3(Mg;Z). By the universal coe cient theorem H*(F;Z) is iso-
morphic to Hs(F;Z), which is the cokernel of the Hurewicz homomorphism
from 3(M) to H3(Mg;Z). This implies the rst assertion.

To prove the second assertion we may pass to the Sylow subgroups of F, by
Shapiro’s Lemma. Since the p-Sylow subgroups of F also have cohomological
period 4 they are cyclic if p is an odd prime and are cyclic or quaternionic
(Q(2M) if p = 2. In all cases an automorphism induces multiplication by a
square on the third homology [Sw60]. But —1 is not a square modulo 4 nor
modulo any prime p = 4n + 3. O
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Thus the groups = F x Z realized by such 4-manifolds correspond to outer
automorphisms in J(F) or J+(F). We shall next determine these subgroups
of Out(F) for F a group of cohomological period dividing 4. If m is an integer
let I(m) be the number of odd prime divisors of m.

Z=dZ =hx jx9 = 1i.
out(Z=dz) = Aut(Z=dZ) = (Z=dZ) .

Hence J(Z=dZ) = fs 2 (Z=dZ) j s® = 1g. J+(Z=dZ) = (Z2=2Z)'@ if
d6 0(4), (Z=22)D*1 ifd 4(8), and (Z=22)'D*+2 ifd 0(8).

Q(8) = hx;y j x? = y2 = (xy)?i.

An automorphism of Q = Q(8) induces the identity on Q=Q' if and only if it
is inner, and every automorphism of Q=Q lifts to one of Q. In fact Aut(Q) is
the semidirect product of Out(Q) = Aut(Q=Q") = SL(2;F,) with the normal
subgroup Inn(Q) = Q=Q" = (Z=2Z)?. Moreover J(Q) = Out(Q), generated
by the images of the automorphisms and , where sends x and y to y and
Xy, respectively, and interchanges x and y.

Q(8K) = hx;y j x* =1; x*¢ =y2; yxy~1 = x71i, where k > 1.

All automorphisms of Q(8k) are of the form [i;s], where (s;2k) =1, [i;s](X) =
x® and [i;s](y) = x'y, and Aut(Q(8Kk)) is the semidirect product of (Z=4kZ)
with the normal subgroup h[1; 1]i = Z=4kZ.

Out(Q(8k)) = (Z=2Z) ((Z=4kZ) =( 1)), generated by the images of the [0; s]
and [1,1]. The automorphism [i; s] induces multiplication by s? on H*(Q(2"):Z)
[SW60]. Hence J(Q(8K)) = (Z=22)'®*L if k is odd and (Z=22)'®)*2 if k is
even.

T, =hQ(@®);zjz* =1; zxz71 =y; zyz~! = xyi, where k 1.

Let be the automorphism which sends x, y and z to y~*, x~* and z? respec-
tively. Let , and be the inner automorphisms determined by conjugation
by x, y and z, respectively (i.e., (g) = xgx~t, and so on). Then Aut(T, ) has
the presentation

h: oo j2:3k—1= 2= 3=( ¥=1y -1 - 2. 1= -1 = j

An induction on k gives 43 = 1+ m3k*1 for some m 1 mod (3). Hence the
image of  generates Aut(T, =T, ") = (z=3“Z) , and so Out(T,) = (Z=3vZ) .
The 3-Sylow subgroup generated by z is preserved by , and it follows that
J(T,) = Z=2Z (generated by the image of 3k71).

Geometry & Topology Monographs, Volume 5 (2002)



222 Chapter 11: Manifolds covered by S® R

O, =hT,;wjw? =x% wxw ! =yx; wzw~! =z71i, where k 1.

(Note that the relations imply wyw™! = y~1) As we may extend to an au-
tomorphism of O, via (w) =w~1z2 the restriction from Aut(O,) to Aut(T,)
is onto. An automorphism in the kernel sends w to wv for some v 2 T, , and
the relations for O, imply that v must be central in T, . Hence the kernel
is generated by the involution  which sends w;x;y;z to w™! = wx?;x;y;z,
respectively. Now ¥ = where s conjugation by wz in O, and so
the image of  generates Out(O,). The subgroup hu;xi generated by u = xw
and x is isomorphic to Q(16), and is a 2-Sylow subgroup. As (u) = u® and

(X) = x it is preserved by , and H*( ju.xi;Z) is multiplication by 25. As
H*( jiyi:Z) is multiplication by 4 it follows that J(O,) =1.

I =hx;yjx%=y3=(xy)°i.

The map sending the generators x;y to (39) and y = (% %), respectively, in-
duces an isomorphism from 1 to SL(2;F5). Conjugation in GL(2; Fs) induces
a monomorphism from P GL(2; Fs) to Aut(l ). The natural map from Aut(l )
to Aut(l = 1) is injective, since | is perfect. Now I = 1 = PSL(2;F5) =
As. The alternating group As is generated by 3-cycles, and has ten 3-Sylow
subgroups, each of order 3. It has ve subgroups isomorphic to A4 generated by
pairs of such 3-Sylow subgroups. The intersection of any two of them has order
3, and is invariant under any automorphism of As which leaves invariant each
of these subgroups. It is not hard to see that such an automorphism must X
the 3-cycles. Thus Aut(As) embeds in the group Ss of permutations of these
subgroups. Since jP GL(2;Fs)j = jSsj = 120 it follows that Aut(l ) = Ss and
Out(l ) = Z=2Z. The outer automorphism class is represented by the matrix
1 =(§9) in GL(2;Fs).

Lemma 11.4 [PI83] J(I )=1.

Proof The element y = x3y = (§1) generates a 5-Sylow subgroup of I .
It is easily seen that 'y!~! = y? and so ! induces multiplication by 2 on
H2(Zz=5Z;7) = H1(Z=5Z;7) = Z=5Z. Since H*(Z=5Z;Z) = Z=5Z is gen-
erated by the square of a generator for H2(Z=5Z;7Z) we see that H*(1;Z) is
multiplication by 4 = —1 on 5-torsion. Hence J(I ) =1. ]

In fact H*(1;Z) is multiplication by 49 [P183].

A(m:e) =hx;y jxM™ =y% =1; yxy~ = x7Li, where e 1and m>1 is odd.
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All automorphisms of A(m;e) are of the form [s; t; u], where (s;m) = (t;2) =1,
[s;t;u]l(x) = x% and [s;t;u](y) = xYyt. Out(A(m;e)) is generated by the
images of [s; 1;0] and [1;t; 0] and is isomorphic to (Z=2%)  ((Z=mZ) =( 1)).
J(A(M;1)) =fs 2 (Zz=mz) js?= 1g=( 1),

J(A(M; 2)) = (Z=2Z)"™ | J(A(m;e)) = (Z=2Z)!M*1 jf e > 2.

Q(2"a;b;c) = hQ(2™);u j ud® = 1; xu® = u®x; xu’x~t = u¢; yu® = u¥y;
yuPy™ = u™Pi, where a, b and ¢ are odd and relatively prime, and either
n =3 and at most one of a, b and c is1 or n> 3 and bc > 1.

An automorphism of G = Q(2"a;b;c) must induce the identity on G=G'.
If it induces the identity on the characteristic subgroup hui = Z=abcZ and
on G=hui = Q(2") it is inner, and so Out(Q(2"a;b;c)) is a subquotient of
Out(Q(2")) (Z=abcZ) . In particular, Out(Q(8a;b;c)) = (Z=abcZ) , and
J(Q(8a; b;c)) = (Z=22)'@%) _ (We need only consider n = 3, by x5 below.)

As Aut(G H) = Aut(G) Aut(H) and Out(G H) =0ut(G) Out(H) if
G and H are nite groups of relatively prime order, we have J+(G Z=dZ) =
J+(G) J+(Z=dZ). In particular, if G is not cyclic or dihedral (G Z=dZ) =
J+(G Z=dZ) = J(G) J+(Z=dZ). In all cases except when F is cyclic or
Q(8) Z=dz the group J(F) has exponent 2 and hence has a subgroup of
index at most 4 which is isomorphic to F  Z.

11.3 Extensions of D

We shall now assume that =F = D. Let u;v 2 D be a pair of involutions
which generate D and let s = uv. Then s™"us" = us?", and any involution in
D is conjugate to u or to v = us. Hence any pair of involutions fu’; vlg which
generates D is conjugate to the pair fu;vg, up to change of order.

Theorem 11.5 Let M be a closed 4-manifold with (M) = 0, and such that
there is an epimorphism p: = 1(M) ¥ D with nite kernel F. Let & and
¢ be a pair of elements of  whose images u = p(@) and v = p(¥) in D are
involutions which together generate D. Then

(1) M is nonorientable and @;¢ each represent orientation reversing loops;

(2) the subgroups G and H generated by F and & and by F and ¢, respec-
tively, each have cohomological period dividing 4, and the unordered pair
fG; Hg of groups is determined up to isomorphisms by  alone;
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(3) conversely, is determined up to isomorphism by the unordered pair
fG; Hg of groups with index 2 subgroups isomorphic to F as the free
product with amalgamation =G g H;

(4)  acts trivially on  3(M).

Proof Let § = 0¢. Suppose that @ is orientation preserving. Then the sub-
group  generated by @ and &2 is orientation preserving so the corresponding
covering space M is orientable. As has nite index in and = 'is nite
this contradicts Lemma 3.14. Similarly, ¢ must be orientation reversing.

By assumption, ® and ¢? are in F, and [G : F]=[H : F] = 2. If F
is not isomorphic to Q Z=dZ then J(F) is abelian and so the (normal)
subgroup generated by F and &2 is isomorphic to F Z. In any case the
subgroup generated by F and €X is normal, and is isomorphic to F  Z if k
is a nonzero multiple of 12. The uniqueness up to isomorphisms of the pair
fG; Hg follows from the uniqueness up to conjugation and order of the pair of
generating involutions for D. Since G and H act freely on N they also have
cohomological period dividing 4. On examining the list above we see that F
must be cyclic or the product of Q(8k), T(v) or A(m;e) with a cyclic group
of relatively prime order, as it is the kernel of a map from G to Z=2Z. It is
easily veri ed that in all such cases every automorphism of F is the restriction
of automorphisms of G and H. Hence s determined up to isomorphism as
the amalgamated free product G g H by the unordered pair fG; Hg of groups
with index 2 subgroups isomorphic to F (i.e., it is unnecessary to specify the
identi cations of F with these subgroups).

The nal assertion follows because each of the spaces Mg = W=G and My =
W=H are PDs -complexes with nite fundamental group and therefore are ori-
entable, and is generated by G and H. ]

Must the spaces Mg and My be homotopy equivalent to nite complexes?

11.4 S® E!l-manifolds

With the exception of O, (with k > 1), A(m;1) and Q(2"a;b;c) (with either
n = 3 and at most one of a, b and c is 1 or n > 3 and bc > 1) and their
products with cyclic groups, all of the groups listed in x2 have xed point free
representations in SO(4) and so act linearly on S2. (Cyclic groups, the binary
dihedral groups D,,, = A(m;2), with m odd, and Dg, = Q(8k;1;1), with
k 1 and the three binary polyhedral groups T,;, O; and | are subgroups

Geometry & Topology Monographs, Volume 5 (2002)



114 S El-manifolds 225

of S2.) We shall call such groups S3-groups. If F is cyclic then every Swan
complex for F is homotopy equivalent to a lens space. If F = Q(2K) or T, for
some k > 1 then S3=F is the unique nite Swan complex for F [Th80]. For
the other noncyclic S®-groups the corresponding S2-manifold is unique, but in
general there may be other nite Swan complexes. (In particular, there are
exotic nite Swan complexes for Ty.)

Let N be a S*-manifold with (N) = F. Then the projection of 1som(N)
onto its group of path components splits, and the inclusion of Isom(N) into
Diff(N) induces an isomorphism on path components. Moreover if jFj > 2
then an isometry which induces the identity outer automorphism is isotopic to
the identity, and so g(Isom(M)) maps injectively to Out(F). (See [Mc02].)

Theorem 11.6 Let M be a closed 4-manifold with (M) = 0 and =

1(M)=F  Z,where F is nite. Then M is homeomorphic to a S* R!-
manifold if and only if M is the mapping torus of a self homeomorphism of a
S3-manifold with fundamental group F, and such manifolds are determined up
to homeomorphism by their homotopy type.

Proof Let p; and p, be the projections of Isom(S® EY) =0(4) E(1) onto
O(4) and E(1) respectively. If is a discrete subgroup of Isom(S® EY) which
acts freely on S® R then p; maps F monomorphically and p1(F) acts freely
on S3, since every isometry of R of nite order has nonempty xed point set.
Moreover po( ) is a discrete subgroup of E(1) which acts cocompactly on R,
and so has no nontrivial nite normal subgroup. Hence F = \(O(4) flg). If

=F =Z andt 2 represents a generator of =F then conjugation by t induces
an isometry  of S3=F, and M = M( ). Conversely any self homeomorphism
of a S-manifold is isotopic to an isometry of nite order, and so the mapping
torus is homeomorphic to a S E!-manifold. The nal assertion follows from
Theorem 3 of [Oh90]. O

If s is an integer such that s 1 modulo (d) then there is an isometry of
the lens space L(d;s) inducing multiplication by s, and the mapping torus has
fundamental group (Z=dZ) sZ. (This group may also be realized by mapping
tori of self homotopy equivalences of other lens spaces.) If d > 2 a closed 4-
manifold with this group and with Euler characteristic 0 is orientable if and
only if s 1(d).

If F is a noncyclic S-group there is a unique linear k-invariant, and so for each
2 Aut(F) there is at most one homeomorphism class of S® E!-manifolds
with fundamental group =F Z. Every class in J(F) is realizable by an
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orientation preserving isometry of S3=F, if F = Q(8), T,, O, I , A(p';e),
Q@) Z=¢iZ or A(p';2) Z=¢#Z, where p and q are odd primes and e > 1.
For the other S3-groups the subgroup of J(F) realizable by homeomorphisms
of S3=F is usually quite small. (See [Mc02].)

Suppose now that G and H are S®-groups with index 2 subgroups isomorphic to
F. If F, G and H are each noncyclic then the corresponding S*-manifolds are
uniquely determined, and we may construct a nonorientable S* E!-manifold
with fundamental group =G ¢ H as follows. Let u and v : S°=F 1 S3=F
be the covering involutions with quotient spaces S®=G and S3=H, respectively,
and let = uv. (Note that u and v are isometries of S3=F .) Then U([x;t]) =
[u(X);1 —t] de nes a xed point free involution on the mapping torus M( )
and the quotient space has fundamental group . A similar construction works
if F is cyclicand G =H or if G is cyclic.

11.5 Realization of the groups

Let F be a nite group with cohomological period dividing 4, and let Xg
denote a nite Swan complex for F. If is an automorphism of F which
induces 1 on H3(F;Z) there is a self homotopy equivalence h of Xg which
induces [ ] 2 J(F). The mapping torus M(h) is a nite P D4-complex with

1iM)=F Z and (M(h)) =0. Conversely, every PDj4-complex M with

(M) = 0 and such that (M) is an extension of Z by a nite normal subgroup
F is homotopy equivalent to such a mapping torus. Moreover, if =F Z
and jFj > 2 then h is homotopic to the identity and so M(h) is homotopy
equivalent to Xg  S?.

Since every P Dj-complex may be obtained by attaching an n-cell to a complex
which is homologically of dimension < n, the exotic characteristic class of the
Spivak normal bration of a P D3-complex X in H3(X;F,) is trivial. Hence
every 3-dimensional Swan complex Xg has a TOP reduction, i.e., there are
normal maps (f;b) : N3 ¥ Xg. Such a map has a \proper surgery" obstruction

P(f;b) in LY(F), which is 0 if and only if (f;b) idg: is normally cobordant
to a simple homotopy equivalence. In particular, a surgery semicharacteristic
must be 0. Hence all subgroups of F of order 2p (with p prime) are cyclic,
and Q(2"a;b;c) (with n> 3 and b or ¢ > 1) cannot occur [HM86]. As the 2p
condition excludes groups with subgroups isomorphic to A(m;1) (with m > 1)
the cases remaining to be decided are when F = Q(8a;b;c) Z=dZ, where a;b
and ¢ are odd and at most one of them is 1. The main result of [HM86] is that
insuch a case F Z acts freely and properly \with almost linear k-invariant"
if and only if some arithmetical conditions depending on subgroups of F of
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the form Q(8a;b; 1) hold. (Here \almost linear" means that all covering spaces
corresponding to subgroups isomorphic to A(m;e) Z=dZ or Q(8k) Z=dZ
must be homotopy equivalent to S3-manifolds. The constructive part of the
argument may be extended to the 4-dimensional case by reference to [FQ].)

The following more direct argument for the existence of a free proper action
of F Z on S® R was outlined in [KS88], for the cases when F acts freely

on an homology 3-sphere . Let and its universal covering space € have
equivariant cellular decompositions lifted from a cellular decomposition of =F,
andlet = 41( =F). ThenC ( ) =Z[F] LT (®) isa nitely generated free

Z[F]-complex, and may be realized by a nite Swan complex X. The chain map
(over the epimorphism : ¥ F) from C (&) to C (X) may be realized by a
map h: =F ¥ X, since these spaces are 3-dimensional. As h idg: isasimple
Z[F  Z]-homology equivalence it has surgery obstruction 0 in L3(F Z), and
so is normally cobordant to a simple homotopy equivalence. For example, the
group Q(24;313;1) acts freely on an homology 3-sphere (see x6 of [DM85]). Is
there an explicit action on some Brieskorn homology 3-sphere? Is Q(24;313;1)
a 3-manifold group? (This seems unlikely.)

Although Q(24; 13;1) cannot act freely on any homology 3-sphere [DM85], there
is a closed orientable 4-manifold with fundamental group Q(24;13;1) Z, by the
argument of [HM86]. No such 4-manifold can bre over S, since Q(24;13;1)
is not a 3-manifold group. Thus such a manifold is a counter example to a 4-
dimensional analogue of the Farrell bration theorem (of a di erent kind from
that of [We87]), and is not geometric.

If F =T, Q@k) or A(m;2) then F  Z can only act freely and properly on
R*nf0g with the k-invariant corresponding to the free linear action of F on S3.
(For the group A(m;2), this follows from Corollary C of [HM86’], which also
implies that the restriction of the k-invariant to A(k;r + 1) and hence to the
odd-Sylow subgroup of Q(2"k) is linear. The nonlinear k-invariants for Q(2")
have nonzero niteness obstruction. As the k-invariants of free linear represen-
tations of Q(2"k) are given by elements in H*(Q(2"k); Z) whose restrictions
to Z=kZ are squares and whose restrictions to Q(2") are squares times the
basic generator (see page 120 of [WI78], only the linear k-invariant is realizable
in this case also). However in general it is not known which k-invariants are
realizable. Every group of the form Q(8a;b;c) Z=dZ Z admits an \almost
linear" k-invariant, but there may be other actions. (See [HM86, 86’] for more
on this issue.)

In considering the realization of more general extensions of Z or D by nite
normal subgroups the following question seems central. If M is a closed 4-
manifold with = (M) = (Z=dZ) < Z where s 1 buts6 1(d)

Geometry & Topology Monographs, Volume 5 (2002)



228 Chapter 11: Manifolds covered by S® R

and (M) =0 is M homotopy equivalent to the S* E!-manifold with this
fundamental group? Since M is homotopy equivalent to the mapping torus of
a self homotopy equivalence [s] : L(d;r) ¥ L(d;r) (for some r determined by
k(M)), it would su ce to show that if r& s or s~! the Whitehead torsion
of the duality homomorphism of M ([s]) is nonzero. Proposition 4.1 of [Rn86]
gives a formula for the Whitehead torsion of such mapping tori. Unfortunately
the associated Reidemeister-Franz torsion appears to be 0 in all cases. For other
groups F can one use the fact that a closed 4-manifold is a simple P D4-complex
to bound the realizable subgroup of J(F)?

A positive answer to this question would enhance the interest of the following
subsidiary question. If F is a noncyclic S3-group must an automorphism of
F whose restrictions to (characteristic) cyclic subgroups C < F are realized
by isometries of the corresponding covering spaces of S3=F be realized by an
isometry of S3=F ? (In particular, is this so for F = Q(2%) or A(m;2) with m
composite?.)

If F is cyclic but neither G nor H is cyclic there may be no geometric man-
ifold with fundamental group = G ¢ H. If the double covers of GnS?® and
HnS3 are homotopy equivalent then s realised by the union of two twisted I -
bundles via a homotopy equivalence, which isa nite (but possibly nonsimple?)
P Dg4-complex with = 0. For instance, the spherical space forms correspond-
ingto G =Q(40) and H = Q(8) (Z=52Z) are doubly covered by forms doubly
covered by L(20;1) and L(20;9), respectively, which are homotopy equivalent
but not homeomorphic. The spherical space forms corresponding to G = Q(24)
and H =Q(8) (Z=32) are doubly covered by L(12;1) and L(12;5), respec-
tively, which are not homotopy equivalent.

11.6 T- and Kb-bundles over RP? with @ & 0

Let p: E ¥ RP? be a bundle with bre T or Kb. Then = 4(E) is an
extension of Z=2Z by G=@Z, where G is the fundamental group of the bre and
@ is the connecting homomorphism. If @ & 0 then has two ends, F is cyclic
and central in G=@Z and acts on it by inversion, since  acts nontrivially on
Z = »(RP?).

If the breis T then has a presentation of the form

ht;u;vjuv =vu; u" =1; tut™r = u% vt = wdv; 2 = uPVEi;
where n >0 and = 1. Either

(1) Fiscyclic, =(Z=nz) _1Zand =F =Z;or
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(2 F=hs;ujs>=u™ sus~t=u"lti;or (if =-1)
(3) F iscyclic, =nhs;t,ujs®=1t>=utsus!t = tut™? = uti and
=F =D.

In case (2) F cannot be dihedral. If m is odd F = A(m;2) while if m = 2"k
with r 1 and k odd F = Q(2"*2k). On replacing v by ul®?y, if necessary,
we may arrange that a =0, in whichcase =F Z,or a=1, in which case

=htuvjt? =u™ tut™t =u"t; viv! = tu; uv = vui;
so =F=2Z7.

If the bre is Kb then has a presentation of the form
htuywjuwu™t=w ™k u" =1; tut™ = uL twt™! = vdw ; t? = uPwi;

where n > 0 is even (since Im(@) 1(Kb)) and = 1. On replacing t by
ut, if necessary, we may assume that = 1. Moreover, tw?t™? =w 2 since w?
generates the commutator subgroup of G=0Z, so a iseven and 2a 0 mod (n),
t?u = ut? implies that ¢ = 0, and t:t%:t™! = t? implies that 2b 0 mod (n).
As F is generated by t and u?, and cannot be dihedral, we must have n = 2b.
Moreover b must be even, as w has in nite order and t?w = wt?. Therefore

(4) F =Q(8k), =F =D and
=ht;u;wjuwut =w L tut™! = uTL tw = wdwt; t?2 = u?ki.
In all cases  has a subgroup of index at most 2 which is isomorphic to F  Z.

Each of these groups is the fundamental group of such a bundle space. (This
may be seen by using the description of such bundle spaces given in x5 of
Chapter 5.) Orientable 4-manifolds which bre over RP? with bre T and
@ & 0 are mapping tori of involutions of S3-manifolds, and if F is not cyclic
two such bundle spaces with the same group are di eomorphic [Ue91].

Theorem 11.7 Let M be a closed orientable 4-manifold with fundamental
group . Then M is homotopy equivalent to an S® E!-manifold which bres
over RP? ifand only (M) =0 and is of type (1) or (2) above.

Proof If M is an orientable S* [E!-manifold then (M) =0 and =F =2Z,
by Theorem 11.1 and Lemma 3.14. Moreover  must be of type (1) or (2) if
M bres over RP2, and so the conditions are necessary.

Suppose that they hold. Then N = R*nf0g and the homotopy type of M is
determined by and k(M), by Theorem 11.1. If F = Z=nZ then Mg = W=F
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is homotopy equivalent to some lens space L(n;s). As the involution of Z=nZ
which inverts a generator can be realized by an isometry of L(n;s), M is
homotopy equivalent to an S®  E!-manifold which bres over S*.

If F = Q(2"*?k) or A(m;2) then F  Z can only act freely and properly
on R*nf0g with the \linear" k-invariant [HM86]. Therefore Mg is homotopy
equivalent to a spherical space form S3=F . The class in Out(Q(2"*2k)) repre-
sented by the automorphism which sends the generator t to tu and xes u is
induced by conjugation in Q(2"*3k) and so can be realized by a ( xed point
free) isometry  of S3=Q(2"*2k). Hence M is homotopy equivalent to a bundle
space (S3=Q(2"*2k)) St or (S%=Q(2"*%k)) S if F = Q(2"*%k). A simi-
lar conclusion holds when F = A(m;2) as the corresponding automorphism is
induced by conjugation in Q(23d).

With the results of [Ue91] it follows in all cases that M is homotopy equivalent
to the total space of a torus bundle over RP?. O

Theorem 11.7 makes no assumption that there be a homomorphism u: 1@

Z=2Z such that u (x)*> =0 (as in x5 of Chapter 5). If F is cyclic or A(m;2)

this condition is a purely algebraic consequence of the other hypotheses. For

let C be a cyclic normal subgroup of maximal order in F. (There is an unigque

such subgroup, except when F = Q(8).) The centralizer C (C) has index 2 in
and so there is a homomorphism u: ¥ Z=2Z with kernel C (C).

When F is cyclic u factors through Z and so the induced map on cohomology
factors through H3(Z;Z) = 0.

When F = A(m; 2) the 2-Sylow subgroup is cyclic of order 4, and the inclusion
of Z=4Z into induces isomorphisms on cohomology with 2-local coe cients.
In particular, HY(F;Z) = 0 or Z=2Z according as ¢ is even or odd. It
follows easily that the restriction from H3( ;Z)) to H3(Z=4Z;Z) is an
isomorphism. Let y be the image of u (x) in HY(Z=4Z;Z)) = Z=2Z. Then
y? is an element of order 2 in H3(Z=4Z; Z 5y [Z})) = H?(Z=4Z;Z»)) = Z=4Z,
and so y? = 2z for some z 2 H?(Z=4Z;Z). But then y3 = 2yz = 0 in
H3(Z=4Z;Z ) = Z=2Z, and so u (x)® has image 0 in H3( ;Z¢)) = Z=2Z.
Since x is a 2-torsion class this implies that u (x)® = 0.

Is there a similar argument when F is a generalized quaternionic group?

If M is nonorientable, (M) = 0 and has fundamental group  of type (1)
or (2) then M is homotopy equivalent to the mapping torus of the orientation
reversing self homeomorphism of S® or of RP2, and does not bre over RP?.
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If is of type (3) or (4) then the 2-fold covering space with fundamental group
F  Z is homotopy equivalent to a product L(n;s) S!. However we do not
know which k-invariants give total spaces of bundles over RP 2.

11.7 Some remarks on the homeomorphism types

In this brief section we shall assume that M is orientable and that =F Z.
In contrast to the situation for the other geometries, the Whitehead groups of
fundamental groups of S* E!-manifolds are usually nontrivial. Computation of
Wh( ) isdi cultasthe Nil groups occuring in the Waldhausen exact sequence
relating Wh( ) to the algebraic K-theory of F seem intractable.

We can however compute the relevant surgery obstruction groups modulo 2-
torsion and show that the structure sets are usually in nite. There is a Mayer-
Vietoris sequence L(F) ¥ L3( ) ¥ Ly(F) ¥ L3(F), where the superscript
u signi es that the torsion must lie in a certain subgroup of Wh(F) [CaT73].
The right hand map is (essentially) — 1. Now L2(F) isa nite 2-group and
LY(F) L3(F) ZR modulo 2-torsion, where R is the set of irreducible real
representations of F (see Chapter 13A of [WI]). The latter correspond to the
conjugacy classes of F, up to inversion. (See x12.4 of [Se].) In particular, if

=F Z then L3( ) ZR modulo 2-torsion, and so has rank at least 2 if
F &1l As[ M;G=TOP] = Z modulo 2-torsion and the group of self homotopy
equivalences of such a manifold is nite, by Theorem 11.3, there are in nitely
many distinct topological 4-manifolds simple homotopy equivalent to M. For
instance, as Wh(Z (Z=2Z)) = 0 [Kw86] and Ls(Z (Z=2Z);+) = Z?, by
Theorem 13A.8 of [WI], the set Stop (RP3 S!) isin nite. Although all of the
manifolds in this homotopy type are doubly covered by S S* only RP® S?
is itself geometric. Similar estimates hold for the other manifolds covered by
S® R (if &2).
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Chapter 12

Geometries with compact models

There are three geometries with compact models, namely S*, CP? and 2 S2.
The rst two of these are easily dealt with, as there is only one other geometric
manifold, namely RP#, and for each of the two projective spaces there is one
other (nonsmoothable) manifold of the same homotopy type. With the geom-
etry S> S? we shall consider also the bundle space S?~S?. There are eight
S?  S?-manifolds, seven of which are total spaces of bundles with base and

bre each S? or RP?, and there are two other such bundle spaces covered by
S2~52,

The universal covering space N of a closed 4-manifold M is homeomorphic
to S2 S2ifandonlyif = (M) is nite, (M)j j =4 and w,(W) = 0.
(The condition w,(M) = 0 may be restated entirely in terms of M, but at
somewhat greater length.) If these conditions hold and is cyclic then M
is homotopy equivalent to an S  S?-manifold, except when = Z=2Z and
M is nonorientable, in which case there is one other homotopy type. The
F,-cohomology ring, Stiefel-Whitney classes and k-invariants must agree with
those of bundle spaces when = (Z=2Z)?. However there remains an ambiguity
of order at most 4 in determining the homotopy type. If (M)j j = 4 and
w, (M) & 0 then either = 1, in which case M = S2~S2 or CP2]CP?2, or
M is nonorientable and = Z=2Z; in the latter case M ” RP*]CP?, the
nontrivial RP2-bundle over S2, and M ~ S2~S2,

The number of homeomorphism classes within each homotopy type is at most
two if = Z=2Z and M is orientable, two if = Z=2Z, M is nonorientable
and wo(W) =0, four if = Z=2Z and w,(W) & 0, at most four if = Z=4Z,
and at most eight if = (Z=2Z)?. We do not know whether there are enough
exotic self homotopy equivalences to account for all the normal invariants with
trivial surgery obstruction. However a PL 4-manifold with the same homotopy
type as a geometric manifold or S?2~S? is homeomorphic to it, in (at least)
nine of the 13 cases. (In seven of these cases the homotopy type is determined
by the Euler characteristic, fundamental group and Stiefel-Whitney classes.)

For the full details of some of the arguments in the cases = Z=2Z we refer to
the papers [KKR92], [HKT94] and [Te95].
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12.1 The geometries S* and CP?

The unique element of 1som(S*) = O(5) of order 2 which acts freely on S* is
—1. Therefore S* and RP* are the only S*-manifolds. The manifold S* is
determined up to homeomorphism by the conditions (S*) =2 and 1(S*) =1

[FQI.

Lemma 12.1 A closed 4-manifold M is homotopy equivalent to RP# if and
onlyif (M)=1and (M) =2Z=2Z.

Proof The conditions are clearly necessary. Suppose that they hold. Then
M~ S and w1 (M) = wy(RP#) = w, say, since any orientation preserving self
homeomorphism of M has Lefshetz number 2. Since RP1 = K(Z=2Z;1) may
be obtained from RP# by adjoining cells of dimension at least 5 we may assume
cm = Crpaf, where T : M ¥ RP4. Since crps and cy are each 4-connected
T induces isomorphisms on homology with coe cients Z=2Z. Considering the
exact sequence of homology corresponding to the short exact sequence of coef-
cients
o zW Y zZW ¥ 7=27 1 (;

we see that f has odd degree. By modifying f on a 4-cell D* M we may
arrange that f has degree 1, and the lemma then follows from Theorem 3.2. O

This lemma may also be proven by comparison of the k-invariants of M and
RP#, as in Theorem 4.3 of [WI67].

By Theorems 13.A.1 and 13.B.5 of [WI] the surgery obstruction homomorphism
is determined by an Arf invariant and maps [RP*; G=TOP] onto Z=2Z, and
hence the structure set Stop (RP#) has two elements. (See the discussion of
nonorientable manifolds with fundamental group Z=2Z in Section 6 below for
more details.) As every self homotopy equivalence of RP# is homotopic to the
identity [OI53] there is one fake RP#. The fake RP# is denoted RP# and is
not smoothable [Ru84].

There is a similar characterization of the homotopy type of the complex pro-
jective plane.

Lemma 12.2 A closed 4-manifold M is homotopy equivalent to CP? if and
onlyif (M)=3and (M)=1.
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Proof The conditions are clearly necessary. Suppose that they hold. Then
H2(M;Z) is in nite cyclic and so there isamap fy : M 1 CP1 = K(Z;2)
which induces an isomorphism on H?. Since CP 1 may be obtained from CP?
by adjoining cells of dimension at least 6 we may assume fy; = fcp2g, where
g:M ¥ CP? and fcp2:CP2 ¥ CP? is the natural inclusion. As H*(M; Z)
is generated by H?(M:Z), by Poincare duality, g induces an isomorphism on
cohomology and hence is a homotopy equivalence. O

In this case the surgery obstruction homomorphism is determined by the dif-
ference of signatures and maps [CP?;G=TOP] onto Z. The structure set
Stop(CP?) again has two elements. Since [CP?,CP?] = [CP?;,CP1] =
H2(CP?;Z), by obstruction theory, there are two homotopy classes of self ho-
motopy equivalences, represented by the identity and by complex conjugation.
Thus every self homotopy equivalence of CP? is homotopic to a homeomor-
phism, and so there is one fake CP2. The fake CP? is also known as the
Chern manifold Ch or CP?2, and is not smoothable [FQ]. Neither of these
manifolds admits a nontrivial xed point free action, as any self map of CP?2
or CP?2 has nonzero Lefshetz number, and so CP? is the only CP?-manifold.

12.2 The geometry S? §?

The manifold S2 S? is determined up to homotopy equivalence by the condi-
tions (S? S?) =4, 1(S? S?)=1and wy(S® S?)=0, by Theorem 5.19.
These conditions in fact determine S? S? up to homeomorphism [FQ]. Hence
if M is an S S?-manifold its fundamental group is nite, (M)j j =4

and w, (M) = 0.

The isometry group of S S? is a semidirect product (O(3) 0O(3))~(Z=22).
The Z=2Z subgroup is generated by the involution  which switches the factors
( (xy) =(y;x)), and acts on O(3) OR) by (A;B) = (B;A) for A;B 2
O(3). In particular, ( (A;B))? = id if and only if AB = I, and so such an
involution xes (x; Ax), for any x 2 S?. Thus there are no free Z=2Z -actions
in which the factors are switched. The element (A;B) generates a free Z=2Z -
action if and only if A2 = B? = | and at least one of A; B acts freely, i.e. if A or
B = —1. After conjugation with if necessary we may assume that B = —1,
and so there are four conjugacy classes in 1som(S? S?) of free Z=2Z -actions.
(The conjugacy classes may be distinguished by the multiplicity (0, 1, 2 or 3)
of 1 as an eigenvalue of A.) In each case the projection onto the second factor
gives rise to a bre bundle projection from the orbit space to RP?, with bre
s2.
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If the involutions (A;B) and (C; D) generate a free (Z=2Z)?-action (AC;BD)
is also a free involution. By the above paragraph, one element of each of these

ordered pairs must be —I. It follows easily that (after conjugation with if
necessary) the (Z=2Z)2-actions are generated by pairs (A;—1) and (—I:1),
where A2 = 1. Since A and —A give rise to the same subgroup, there are two

free (Z=2Z)?-actions. The orbit spaces are the total spaces of RP?-bundles
over RP?2,

If ( (A;B))* =id then (BA;AB) isa xed point free involution and so BA =
AB = —1. Since (A;1) (A;—AH(A; 1)t = (I;—1) every free Z=4Z -action
is conjugate to the one generated by (I;—1). The orbit space does not bre
over a surface. (See below.)

In the next section we shall see that these eight geometric manifolds may be
distinguished by their fundamental group and Stiefel-Whitney classes. Note
that if F isa nite group then q(F) 2=jFj >0, while g>¢(F) 2. Thus S*,
RP# and the geometric manifolds with j j = 4 have minimal Euler character-
istic for their fundamental groups (i.e., (M) =q( )), while S S2=(—1I;—1)
has minimal Euler characteristic among P D, -complexes realizing Z=2Z.

12.3 Bundle spaces

There are two S2-bundles over S?, since 1(SO(3)) = Z=2Z. The total space
S2~S2? of the nontrivial S2-bundle over S? is determined up to homotopy
equivalence by the conditions (S?~S?) =4, 1(S2~S?)=1, w»(S2~S?) &0
and (S2~S?) =0, by Theorem 5.19. However there is one fake S?~S?. The
bundle space is homeomorphic to the connected sum CP?] — CP?, while the
fake version is homeomorphic to CP?]— CP? and is not smoothable [FQ]. The
manifolds CP2]JCP2 and CP?] CP?2 also have ; =0 and = 4. However
it is easily seen that any self homotopy equivalence of either of these manifolds
has nonzero Lefshetz number, and so they do not properly cover any other
4-manifold.

Since the Kirby-Siebenmann obstruction of a closed 4-manifold is natural with
respect to covering maps and dies on passage to 2-fold coverings, the nons-
moothable manifold CP?] — CP?2 admits no nontrivial free involution. The
following lemma implies that S2~S? admits no orientation preserving free in-
volution, and hence no free action of Z=4Z or (Z=2Z)3.

Lemma 12.3 Let M be a closed 4-manifold with fundamental group =
Z=2Z and universal covering space M. Then
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€y Wz(lw) =0 if and only if wo(M) = u? for some u 2 HY(M;F,); and
(2) if M is orientable and (M) = 2 then w,(W) =0 and so W =S2 S2.

Proof The Cartan-Leray cohomology spectral sequence (with coe cients IF,)
for the projection p : Y gives an exact sequence

0 ¥ H2( ;Fp) ¥ H3(M;F,) ¥ HY(W;Fy);

in which the right hand map is induced by p and has image in the subgroup

xed under the action of . Hence wo(M) = p wp(M) is 0 if and only if
w,(M) is in the image of H2( ;F,). Since = Z=2Z this is so if and only if
w2 (M) = u? for some u 2 HY(M;Fy).

Suppose that M is orientable and (M) = 2. Then H?( ;Z) = H3(M;Z) =
Z=2Z. Let x generate H2(M; Z) and let x be its image under reduction modulo
(2) in H?(M;F2). Then x [x =0 in H*(M;Fy) since X [x =0 in H*(M;Z).
Moreover as M is orientable wo(M) = v,(M) and so wo,(M) [ x=x [ x=0.
Since the cup product pairing on H?(M;F,) = (Z=2Z)? is nondegenerate it
follows that w,(M) = x or 0. Hence WZ(IW) is the reduction of p x or is
0. The integral analogue of the above exact sequence implies that the natural
map from H?( ;Z) to H2(M;Z) is an isomorphism and so p (H?(M;Z)) = 0.
Hence wo(M) =0 and so W =52 S2, 0

Since 1(BO(3)) = Z=2Z there are two S?-bundles over the Mdbius band Mb
and each restricts to a trivial bundle over @Mb. Moreover a map from @Mb to
0O(3) extends across Mb if and only if it homotopic to a constant map, since

1(0(3)) = Z=2Z, and so there are four S2-bundles over RP2 = Mb [ D?.
(See also Theorem 5.10.)

The orbit space M = (S2 S?)=(A;—1) is orientable if and only if det(A) = —1.
If Ahasa xed point P 2 S? then the image of fPg S? in M is an embedded
projective plane which represents a nonzero class in Hy(M;F,). If A=1 or
is a reflection across a plane the xed point set has dimension > 0 and so this
projective plane has self intersection 0. As the bre S? intersects this projective
plane in one point and has self intersection 0 it follows that vo(M) = 0 and so
w2 (M) = w;(M)? in these two cases. If A is a rotation about an axis then the
projective plane has self intersection 1, by Lemma 10.14. Finally, if A = —I
then the image of the diagonal f(x;X)jx 2 S?g is a projective plane in M with
self intersection 1. Thus in these two cases vo(M) & 0. Therefore, by part
(1) of the lemma, w»(M) is the square of the nonzero element of HX(M;F»)
if A= —1 and is 0 if A is a rotation. Thus these bundle spaces may be
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distinguished by their Stiefel-Whitney classes, and every S2-bundle over RP 2
is geometric.

The group E(RP?) of self homotopy equivalences of RP? is connected and
the natural map from SO(3) to E(RP?) induces an isomorphism on 1, by
Lemma 5.15. Hence there are two RP2-bundles over S2, up to bre homotopy
equivalence. The total space of the nontrivial RP2-bundle over S? is the quo-
tient of S2~S? by the bundle involution which is the antipodal map on each

bre. If we observe that S2~S2 = CP?] — CP? is the union of two copies of
the D?-bundle which is the mapping cone of the Hopf bration and that this
involution interchanges the hemispheres we see that this space is homeomorphic
to RP4]CP?2.

There are two RP?-bundles over RP2. (The total spaces of each of the latter
bundles have fundamental group (Z=2Z)?, since wy : ¥ 1(RP?) = z=2Z
restricts nontrivially to the bre, and so is a splitting homomorphism for the ho-
momorphism induced by the inclusion of the bre.) They may be distinguished
by their orientation double covers, and each is geometric.

12.4 Cohomology and Stiefel-Whitney classes

We shall show that if M is a closed connected 4-manifold with nite funda-
mental group  such that (M)j j =4 then H (M;F,) is isomorphic to the
cohomology ring of one of the above bundle spaces, as a module over the Steen-
rod algebra A,. (In other words, there is an isomorphism which preserves
Stiefel-Whitney classes.) This is an elementary exercise in Poincare duality
and the Wu formulae.

The classifying map induces an isomorphism H1( :F») = HY(M;F,) and a
monomorphism H2( ;F;) ¥ H?(M;F;). If =1 then M is homotopy equiv-
alent to S S?, S?2~S? or CP2]CP?2, and the result is clear.

= Z=2Z In this case (M;F,;) = 2. Let x generate H'(M;F,). Then
x? &0, so H?(M;F,) has a basis fx%;ug. If x* = 0 then x?u & 0, by Poincare
duality, and so H3(M;F,) is generated by xu. Hence x® = 0, for otherwise
x3 = xu and x* = x?u & 0. Therefore vo(M) = 0 or x?, and clearly vi{(M) =0
or x. Since X restricts to 0 in M we must have wo(W) = v,(M) = 0. (The
four possibilities are realized by the four S?-bundles over RP?2.)

If x* & 0 then we may assume that x?u = 0 and that H3(M;F>) is generated
by x3. In this case xu = 0. Since Sql(x®) = x* we have v{(M) = x, and
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vo(M) = u+ x2. In this case wz(IW) & 0, since wo(M) is not a square. (This
possibility is realized by the nontrivial RP2-bundle over S2.)

= (Z=2Z)? In this case »(M;F,) =3 and wi(M) & 0. Fix a basis fx;yg
for HY(M;F2). Then fx?;xy;y?g is a basis for H>(M;F;), since H?( ;)
and H2(M;F,) both have dimension 3.

If x3 = y3 then x* = Sq'(x®) = Sqi(y®) = y*. Hence x* = y* = 0 and
x?y? & 0, by the nondegeneracy of cup product on H?(M;F,). Hence x° =
y3 =0 and so H3(M;TF,) is generated by fx2y;xy2g. Now Sqgl(x?y) = x?y?
and Sql(xy?) = x%y?, so vi(M) = x+y. Also Sg?(x?) = 0 = x?xy, Sq?(y?) =
0 = y?xy and Sg?(xy) = x°y?, so vo(M) = xy. Since the restrictions of x
and y to the orientation cover M™ agree we have wo(M*) = x? & 0. (This
possibility is realized by RP?2 RP?2))

If x3, y3 and (x + y)? are all distinct then we may assume that (say) y° and
(x+y)? generate H3(M;F,). If x3 & 0 then x3 = y3+(x+y)3 = x3+x%y +xy?
and so x?y = xy?. But then we must have x* = y* = 0, by the nondegeneracy
of cup product on H2(M;F5,). Hence Sq(y®) = y* = 0 and Sqi((x +y)3) =
x+y)* = x*+y* =0, and so vi(M) = 0, which is impossible, as M is
nonorientable. Therefore x3 = 0 and so x?y? & 0. After replacing y by x +v,
if necessary, we may assume xy2 = 0 (and hence y* & 0). Poincare duality
and the Wu relations then give vi(M) = x +y, v2(M) = xy + x? and hence
wo(M™*) = 0. (This possibility is realized by the nontrivial RP?-bundle over
RP2)

Note that if = (Z=2Z)? then H (M;F,) is generated by H(M;F,) and so
the image of [M] in Ha( ;) is uniquely determined.

In all cases, a class x 2 H1(M;F,) such that x® = 0 may be realized by a map
from M to K(Z=2Z;1) = RP 1 which factors through P>(RP?). However
there are such 4-manifolds which do not bre over RP?2,

12.5 The action of on ,(M)

Let M be a closed 4-manifold with nite fundamental group  and orienta-
tion character w = wy(M). The intersection form S(M:) on = (M) =

H2(M=; Z) is unimodular and symmetric, and  acts w-isometrically (that is,
S(ga;gh) =w(g)S(a;b) forallg2 anda,b2 ).

The two inclusions of S2 as factors of S2 S? determine the standard basis
for 2(S? S?). Let J = (9}) be the matrix of the intersection form  on

Geometry & Topology Monographs, Volume 5 (2002)



240 Chapter 12: Geometries with compact models

»(S? S?), with respect to this basis. The group Aut( ) of automorphisms of

»(S? S?) which preserve this intersection form up to sign is the dihedrﬂroup
of order eight, and is generated by the diagonal matricesand J or K = ©°/ } .
The subgroup of strict isometries has order four, and is generated by —I and
J. (Note that the isometry J is induced by the involution .)

Let f be a self homeomorphism of S? S? and let f be the induced auto-
morphism of ,(S? S?). The Lefshetz number of f is 2 + trace(f ) if f
is orientation preserving and trace(f ) if f is orientation reversing. As any
self homotopy equivalence which induces the identity on , has nonzero Lef-
shetz number the natural representation of a group  of xed point free self
homeomorphisms of S S? into Aut( ) is faithful.

Suppose rstthat f is a free involution, so 2 = I. If f is orientation preserving
then trace(f ) =—2s = —1I. If f is orientation reversing then trace(f ) =
0,s0 f = JK= 109 . Notethatif f' = f then f® = —F , so after

conjugation by , if necessary, we may assume that f = JK.

If ¥ generates a free Z=4Z-action the induced automorphism must be K.
Note that if f= f then f' = —F , so after conjugation by , if necessary,
we may assume that f = K.

Since the orbit space of a xed point free action of (Z=2Z)? on S? S? has
Euler characteristic 1 it is nonorientable, and so the action is generated by two
commuting involutions, one of which is orientation preserving and one of which
is not. Since the orientation preserving involution must act via —1 and the
orientation reversing involutions must act via JK the action of (Z=2Z)? is
essentially unique.

The standard inclusions of S? = CP! into the summangs,of CP?] — CP? =
S2~S2 determine a basis for ,(S2~S?)=2z2. Let = §2° be the matrix
of the intersection form ~ on »(S?~S?) with respect to this basis. The group
Aut( ~) of automorphisms of »(S2~S?) which preserve this intersection form
up to sign is the dihedral group of order eight, and is also generated by the
diagonal matrices and J = (93). The subgroup of strict isometries has order
four, and consists of the diagonal matrices. A nontrivial group of xed point
free self homeomorphisms of S2~S? must have order 2, since S?~S? admits
no xed point free orientation preserving involution. If f is an orientation
reversing free involution of S2~S? then ¥ = J. Since the involution of
CP?2 given by complex conjugation is orientation preserving it is isotopjeto a
selfhomeomorphism ¢ which xes a 4-disc. Let g = cJidcpz. Theng = 79
and so g Jg~! = —J. Thus after conjugating ¥ by g, if necessary, we may
assume that ¥ =J.
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All self homeomorphisms of CP2]JCP? preserve the sign of the intersection
form, and thus are orientation preserving. With part (2) of Lemma 12.3, this
implies that no manifold in this homotopy type admits a free involution.

12.6 Homotopy type

The quadratic 2-type of M is the quadruple [ ; Z(M);kl(M);S(M:)]. Two

such quadruples[ ; ; ;Sland[ " ' "SIwith a nitegroup, a nitely
generated, Z-torsion free Z[ ]-module, 2 H3( ; ) and S : ¥ 7 a
unimodular symmetric bilinear pairing on which  acts -isometrically are
equivalent if there is an isomorphism T ! and an (anti)isometry

( ;9) ¥ (% )SYH whichis -equivariant (i.e., such that (gm) = (g) (m)
forallg2 and m2 ) and =  Yin H3(; Y. Such a quadratic

2-type determines homomorphisms w: 8 7Z =Z=2Z andv: ¥ Z=2Z by
the equations S(ga; gb) =w(g)S(a;b) and v(a) S(a;a) mod (2), forall g 2
and a, b2 . (These correspond to the orientation character w;(M) and the
Wu class vo (W) = w, (W), of course.)

Let y : A ¥ I'(A) be the universal quadratic functor of Whitehead. Then the
pairing S may be identi ed with an indivisible element of T'(Homz( ;Z)). Via
duality, this corresponds to an element 9 of I( ), and the subgroup generated
by the image of 9 is a Z[ ]-submodule. Hence 3 = I( )=h$i is again a

nitely generated, Z-torsion free Z[ ]-module. Let B be the Postnikov 2-
stage corresponding to the algebraic 2-type [ ; ; ]. A PDg-polarization of
the quadratic 2-type q =[ ; ; ;S] is a 3-connected map f : X ¥ B, where
X is a PDg-complex, wi(X) =w 1(f) and ¥ (8g) =98 in I( ). Let S§P(q)
be the set of equivalence classes of P D,4-polarizations of ¢, where f: X 1 B
g:Y ¥ Bifthereisamap h: X ¥ Y such that ¥ * gh.

Theorem 12.4 [Te] There is an e ective, transitive action of the torsion
subgroup of F( ) Lz} Z% on S{P(q).

Proof (We shall only sketch the proof.) Let f: X ¥ B bea xed PDy-
polarization of ¢. We may assume that X = K [4e*, where K = XB s the
3-skeleton and g 2 3(K) is the attaching map. Given an element in I'( )
whose image in () [z Z" lies in the torsion subgroup, let X = K [+ et
Since 3(B) =0 the map fjk extendstoamap f : X ¥ B, which is again a
P D4-polarization of q. The equivalence class of ¥ depends only on the image
of inT( ) CghZ". Conversely, if g:Y ¥ B is another P D4-polarization
of g then f [X]—g [Y] lies in the image of Tors(I'( ) Lz} ZY) in Hy(B;Z").
See [Te] for the full details. O
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Corollary 12.4.1 If X and Y are PDj4-complexes with the same quadratic
2-type then each may be obtained by adding a single 4-cell to XBl =Y Bl g

If w =0 and the Sylow 2-subgroup of  has cohomological period dividing 4
then Tors(M( ) Lz} Z%) =0 [Ba88]. In particular, if M is orientable and
is nite cyclic then the equivalence class of the quadratic 2-type determines the
homotopy type [HK88]. Thus in all cases considered here the quadratic 2-type
determines the homotopy type of the orientation cover.

The group Aut(B) = Aut([ ; ; ]) acts on SJP(q) and the orbits of this
action correspond to the homotopy types of P D4-complexes X admitting such
polarizations . When q is the quadratic 2-type of RP?2 RP? this action is
nontrivial. (See below in this paragraph. Compare also Theorem 10.5.)

The next lemma shall enable us to determine the possible k-invariants.

Lemma 12.5 Let M be a closed 4-manifold with fundamental group =
Z=2Z and universal covering space S2 S2. Then the rst k-invariant of M
is a nonzero element of H3( ; »(M)).

Proof The rst k-invariant is the primary obstruction to the existence of a
cross-section to the classifying map ¢y : M ¥ K(Z=2Z;1) = RP1 and is the
only obstruction to the existence of such a cross-section for cp,ny. The only
nonzero di erentials in the Cartan-Leray cohomology spectral sequence (with
coe cients Z=2Z) for the projection p: N ¥ M are at the E; level. By the
results of Section 4,  acts trivially on H2(W; F,), since W =S2 S2. There-
fore E3? = EZ? = (Z=2Z)? and E3® = E3® = Z=2Z. Hence E% & 0, so E%’
maps onto H4(M; F,) = Z=2Z and di? : H( ;H2(W;F,)) ¥ H*( ;F2) must
be onto. But in this region the spectral sequence is identical with the corre-
sponding spectral sequence for P,(M). It follows that the image of H*( ;F,) =
Z=2Z in H*(P,(M);F,) is 0, and so Cp,(m) does not admit a cross-section.
Thus ki(M) & 0. O

If = Z=2Z and M is orientable then  acts via —I on Z? and the k-
invariant is a nonzero element of H3(Z=2Z; »(M)) = (Z=2Z)?. The isometry
which transposes the standard generators of Z2 is -linear, and so there are
just two equivalence classes of quadratic 2-types to consider. The k-invariant
which is invariant under transposition is realised by (S? S?)=(—1;—1), while
the other k-invariant is realized by the orientable bundle space with w, = 0.
Thus M must be homotopy equivalent to one of these spaces.
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If =2Z=2Z, M is nonorientable and WZ(M:) =0 then H3( ; 2(M)) =Z=2Z
and there is only one quadratic 2-type to consider. There are four equivalence
classes of P D4-polarizations, as Tors(I'( ) Lz} Z%) = (Z=22)?. The corre-
sponding P D4-complexes are all of the form K [fe*, where K = (S? RP?)—
intD* is the 3-skeleton of S> RP2 and f 2 3(K). (In all cases H(M;Fy)
is generated by an element x such that x3 = 0.) Two choices for f give to-
tal spaces of S2-bundles over RP?, while a third choice gives RP#]s1RP4,
which is the union of two disc bundles over RP2, but is not a bundle space
and is not geometric. There is a fourth homotopy type which has nontriv-
ial Browder-Livesay invariant, and so is not realizable by a closed manifold
[HM78]. The product space S> RP?2 is characterized by the additional condi-
tions that wo(M) = w;(M)? & 0 (i.e., vo(M) = 0) and that there is an element
u 2 H?(M:;Z) which generates an in nite cyclic direct summand and is such
that u [u = 0. (See Theorem 5.19.) The nontrivial nonorientable S2-bundle
over RP? has w,(M) = 0. The manifold RP*]s:RP# also has wo(M) = 0, but
it may be distinguished from the bundle space by the Z=4Z-valued quadratic
function on (M) [L(A=2Z) introduced in [KKR92].

If = z=2Z and w,(W) & 0 then H3( 1; »(M)) = 0, and the quadratic
2-type is unique. (Note that the argument of Lemma 12.5 breaks down here
because E¥ = 0.) There are two equivalence classes of P Dg4-polarizations,
as Tors(l( ) [z} Z") = Z=2Z. They are each of the form K [ e*, where
K = (RP#]CP?) — intD* is the 3-skeleton of RP4]CP2 and f 2 3(K). The
bundle space RP#]CP? is characterized by the additional condition that there
is an element u 2 H2(M; Z) which generates an in nite cyclic direct summand
and such that u [u = 0. (See Theorem 5.19.) In [HKT94] it is shown that any
closed 4-manifold M with =2Zz=2zZ, (M) =2 and WZ(M:) & 0 is homotopy
equivalent to RP4]JCP?2.

If = Z=4Z then H3( ; 2(M)) = Z2=(1 — K)Z2? = Z=2Z, since [Z}fk =

K=1Kk = 0. The k-invariant is nonzero, since it restricts to the k-invariant
of the orientation double cover. In this case Tors(I'( ) [z} Z") =0 and so
M is homotopy equivalent to (S2 S?)= (I;—1).

Finally, let = (Z=2Z)? be the diagonal subgroup of Aut( ) < GL(2;Z), and
let be the automorphism induced by conjugation by J. The standard gen-
erators of (M) = Z? generate complementary -submodules, so that (M)
is the direct sum Z Z of two in nite cyclic modules. The isometry =J
which transposes the factors is -equivariant, and and V = f Ig act non-
trivially on each summand. If is the kernel of the action of on Z then

( ) is the kernel of the actionon Z,and \ ()=1.Letjy:V I Dbe
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the inclusion. As the projection of = V onto V is compatible with the
action, H (jv;Z) is a split epimorphism and so H (V;Z) is a direct sum-
mand of H ( ;Z). This implies in particular that the di erentials in the
LHSSS HP(V;HY( ;Z)) D HP*4( ;Z) which end on the row q = 0 are all 0.
Hence H3( ;Z) = HY(V;F,) H3(V;Z) = (Z=2Z)?. Similarly H3( ; Z)=
(Z=22)?, and so H3( ; 2(M)) = (Z=2Z)*. The k-invariant must restrict to
the k-invariant of each double cover, which must be nonzero, by Lemma 12.5.
Let Ky, K and K O) be the kernels of the restriction homomorphisms from
H3( 5 2(M)) to H3(V; 2(M)), H3(; 2(M)) and H3( (); 2(M)), respec-
tively. Now H3( :Z) = H3( (); Z) =0, H3(; Z)=H3( ();2) =
Z=2Z and H3(V;Z) = H3(V; Z)=Z=2Z. Since the restrictions are epimor-
phisms jKyj =4 and jK j=jK (,j = 8. Itis easily seen that JK \K (,j=
4. Moreover Ker(H3(jv;Z)) = HY(V;H?( ;2)) = HY(V;H?( ;Fy)) restricts
nontrivially to H3( ( );Z) = H3( ( );F»), as can be seen by reduction mod-
ulo (2), and similarly Ker(H3(jy; Z)) restricts nontrivially to H3( ; Z).
Hence JKy N Kj = jKy \Kj =2 and Ky \K \ K (y = 0. Thus
Ky [K [Ky=8+8+4—-4-2-2+1 = 13 and so there are at
most three possible k-invariants. Moreover the automorphism  and the isom-
etry = J act on the k-invariants by transposing the factors. The k-invariant
of RP? RP? is invariant under this transposition, while that of the nontrivial
RP2 bundle over RP? is not, for the k-invariant of its orientation cover is not
invariant. Thus there are two equivalence classes of quadratic 2-types to be
considered. Since Tors(l( ) Lz} Z") = (Z=22)? there are four equivalence
classes of P Dg4-polarizations of each of these quadratic 2-types. In each case
the quadratic 2-type determines the cohomology ring, since it determines the
orientation cover (see x4). The canonical involution of the direct product in-
terchanges two of these polarizations in the RP? RP? case, and so there are
seven homotopy types of P D4-complexes X with = (Z=2Z)? and (X) =1.
Can the Browder-Livesay arguments of [HM78] be adapted to show that the
two bundle spaces are the only such 4-manifolds?

12.7 Surgery

We may assume that M is a proper quotient of S> S2 or of S2~S?, so
jj (M)=4and & 1. In the present context every homotopy equivalence is
simple since Wh( ) =0 for all groups of order 4 [Hg40].

Suppose rst that = Z=2Z. Then HY(M;F,) = Z=2Z and (M) = 2,
so H?(M;F,) = (Z=2Z)?. The F,-Hurewicz homomorphism from >(M) to
H,(M; F,) has cokernel Hy( ;F») = Z=2Z. Hence thereisamap :S? I M

Geometry & Topology Monographs, Volume 5 (2002)



12.7 Surgery 245

such that  [S2] & 0 in Ho(M;F2). If moreover wo(W) =0 then  wp(M) =
0, since  factors through M. Then there is a self homotopy equivalence f of
M with nontrivial normal invariant in [M; G=T OP], by Lemma 6.5. Note also
that M is homotopy equivalent to a PL 4-manifold (See x6 above).

If M is orientable [M;G=TOP] = Z (Z=2Z)?. The surgery obstruction groups
are Ls(Z=2Z;+) = 0 and L4(Z=2Z;+) = Z?, where the surgery obstructions
are determined by the signature and the signature of the double cover, by
Theorem 13.A.1 of [WI]. Hence it follows from the surgery exact sequence
that Stop(M) = (Z=2Z)2. Since WZ(M:) = 0 (by Lemma 12.3) there is a
self homotopy equivalence ¥ of M with nontrivial normal invariant and so
there are at most two homeomorphism classes within the homotopy type of M.
Any 2 H?(M;TF,) is the codimension-2 Kervaire invariant of some homotopy
equivalence f : N ¥ M. We then have KS(N) = f (KS(M)+ ?2), by Lemma
15.5 of [Si71]. We may assume that M is PL. If wo,(M) = 0 then KS(N) =
f (KS(M)) =0, and so N is homeomorphic to M [Te97]. On the other hand if
wy(M) & 0 thereisan 2 H?(M;F,) such that 2 & 0 and then KS(N) & 0.
Thus there are three homeomorphism classes of orientable closed 4-manifolds
with = Z=2Z and = 2. One of these is a fake (S> S?)=(—1;—1) and is
not smoothable.

Nonorientable closed 4-manifolds with fundamental group Z=2Z have been clas-
si ed in [HKT94]. If M is nonorientable then [M;G=TOP] = (Z=22)3, the
surgery obstruction groups are L5(Z=2Z;—) = 0 and L4(Z=2Z;-) = Z=2Z,
and 4(8) = c(¢) for any normal map ¢ : M ¥ G=TOP, by Theorem 13.A.1
of [WI]. Therefore 4(¢) = (Wi(M)? [ ¢ (k2))[M], by Theorem 13.B.5 of [WI].
(See also x2 of Chapter 6 above.) As wi(M) is not the reduction of a class
in H1(M;Z=47) its square is nonzero and so there is an element ¢ (k) in
H2(M;F,) such that this cup product is nonzero. Hence Stop (M) = (Z=22)2.
There are two homeomorphism types within each homotopy type if wz(IW) =0;
if wo(W) & 0 (i.e., if M = RP#]CP?2) there are four corresponding homeo-
morphism types [HKT94]. Thus there are eight homeomorphism classes of
nonorientable closed 4-manifolds with =2Z=2Z and =2.

The image of [M;G=PL] in [M;G=TOP] is a subgroup of index 2 (see Section
15 of [Si71]). It follows that if M is the total space of an S?-bundle over RP?2
any homotopy equivalence f : N ¥ M where N is also PL is homotopic to a
homeomorphism. (For then Stop (M) has order 4, and the nontrivial element
of the image of Sp (M) is represented by an exotic self homotopy equivalence of
M. Thecase M = S? RP? was treated in [Ma79]. See also [Te97] for the cases
with = Z=2Z and w;(M) = 0.) This is also true if M = S*, RP*, CP?,
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S? S? or S?~S?. The exotic homeomorphism types within the homotopy type
of RP4]JCP? (the nontrivial RP2-bundle over S?) are RP4] CP2, RP*]CP2?,
which have nontrivial Kirby-Siebenmann invariant, and ( RP#)] CP?2, which is
smoothable [RS97]. Moreover ( RP*] CP?)](S? S?) = (RP*]CP?)](S? S?)
[HKT94].

When = Z=4Z or (Z=2Z)? the manifold M is nonorientable, since (M) = 1.
As the F,-Hurewicz homomorphism is 0 in these cases Lemma 6.5 does not
apply to give any exotic self homotopy equivalences.

If = Z=4Z then [M;G=TOP] = (Z=2Z)? and the surgery obstruction groups
L4(Z=4Z;—) and Ls(Z=4Z;—) are both 0, by Theorem 3.4.5 of [WI76]. Hence
Stop(M) = (Z=2Z)2. Since wy(M) & 0 there is a homotopy equivalence
f:N ¥ M where KS(N) & KS(M). Anargument of Fang using [Da95] shows
that there is such a manifold N with KS(N) = 0 which is not homeomorphic
to the geometric example. Thus there are either three or four homeomorphism

classes of closed 4-manifolds with = Z=4Z and = 1. In all cases the
orientable double covering space has trivial Kirby-Siebenmann invariant and so
is homeomorphic to (S2  S?)=(—1I;—1).

If = (Z=2Z)? then [M;G=TOP] = (Z=2Z)* and the surgery obstruction

groups are Ls((Z=2Z)%:—) = 0 and L4((Z=2Z)?;—) = Z=2Z, by Theorem
3.5.1 of [WI76]. Since w1(M) is a split epimorphism L4(w1(M)) is an isomor-
phism, so the surgery obstruction is detected by the Kervaire-Arf invariant. As
wi(M)? & 0 we nd that Stop(M) = (Z=2Z)3. Thus there are at most 56
homeomorphism classes of closed 4-manifolds with = (Z=2Z)? and =1.
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Chapter 13

Geometric decompositions of bundle
spaces

We begin by considering which closed 4-manifolds with geometries of euclidean
factor type are mapping tori of homeomorphisms of 3-manifolds. We also show
that (as an easy consequence of the Kodaira classi cation of surfaces) a complex
surface is di eomorphic to a mapping torus if and only if its Euler characteristic
is 0 and its fundamental group maps onto Z with nitely generated kernel, and
we determine the relevant 3-manifolds and di eomorphisms. In x2 we consider
when an aspherical 4-manifold which is the total space of a surface bundle
is geometric or admits a geometric decomposition. If the base and bre are
hyperbolic the only known examples are virtually products. In x3 we shall give
some examples of torus bundles over closed surfaces which are not geometric,
some of which admit geometric decompositions of type F* and some of which
do not. In x4 we apply some of our earlier results to the characterization of
certain complex surfaces. In particular, we show that a complex surfaces bres
smoothly over an aspherical orientable 2-manifold if and only if it is homotopy
equivalent to the total space of a surface bundle. In the nal two sections we
consider rst St-bundles over geometric 3-manifolds and then the existence of
symplectic structures on geometric 4-manifolds.

13.1 Mapping tori

In x3-5 of Chapter 8 and x3 of Chapter 9 we used 3-manifold theory to char-
acterize mapping tori of homeomorphisms of geometric 3-manifolds which have
product geometries. Here we shall consider instead which 4-manifolds with
product geometries or complex structures are mapping tori.

Theorem 13.1 Let M be a closed geometric 4-manifold with (M) = 0

and such that = (M) is an extension of Z by a nitely generated normal
subgroup K. Then K is the fundamental group of a geometric 3-manifold.

Proof Since (M) = 0 the geometry must be either an infrasolvmanifold
geometry or a product geometry X2 E!, where X3 is one of the 3-dimensional
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geometries S3, S2  E!, H3, H2 E! or L. If M is an infrasolvmanifold then
is torsion free and virtually poly-Z of Hirsch length 4, so K is torsion free
and virtually poly-Z of Hirsch length 3, and the result is clear.

If X3 = S° then is a discrete cocompact subgroup of O(4) E(1). Since

maps onto Z it must in fact be a subgroup of O(4) R, and K isa nite
subgroup of O(4). Since acts freely on S® R the subgroup K acts freely
on S3, and so K is the fundamental group of an S*-manifold. If X3 =82 [!
it follows from Corollary 4.5.3 that K =2, Z (Z=2Z) or D, and so K is the
fundamental group of an S?> E!-manifold.

In the remaining cases X3 is of aspherical type. The key point here is that
a discrete cocompact subgroup of the Lie group Isom(X® E!) must meet
the radical of this group in a lattice subgroup. Suppose rst that X3 = HS3.
After passing to a subgroup of nite index if necessary, we may assume that

=H Z <PSL(2;C) R, where H is a discrete cocompact subgroup of
PSL(2;C). If K\ (flg R) =1 then K is commensurate with H, and hence
is the fundamental group of an X -manifold. Otherwise the subgroup generated
by KNH = K\PSL(2;C) and K\ (flg R) has nite index in K and is
isomorphic to (K \H) Z. Since K is nitely generated so is K\ H, and
hence it is nitely presentable, since H is a 3-manifold group. Therefore K\ H
is a PDy-group and so K is the fundamental group of a H? [E!-manifold.

If X3 =H? E! then we may assume that =H Z2 <PSL(2;R) R?,
where H is a discrete cocompact subgroup of PSL(2;R). Since such groups
do not admit nontrivial maps to Z with nitely generated kernel K\ H must
be commensurate with H, and we again see that K is the fundamental group
of an H?> E!-manifold.

A similar argument applies if X% = . we may assume that =H Z
where H is a discrete cocompact subgroup of Isom(@). Since such groups H
do not admit nontrivial maps to Z with nitely generated kernel K must be
commensurate with H and so is the fundamental group of a SL-manifold. O

Corollary 13.1.1 Suppose that M has a product geometry X E!. If X3 =
E3, s3, 82 E!, ¥ or H2 E! then M is the mapping torus of an isometry of
an X3-manifold with fundamental group K. (In the latter case we must assume
that M is orientable.) If X2 = Nil® or Sol® then K is the fundamental group
of an X3-manifold or of a E3-manifold. If X3 = H® then K is the fundamental
group of a H3- or H?> [E!-manifold.

Proof Inall cases isasemidirect product K Z and may be realised by the
mapping torus of a self homeomorphism of a closed 3-manifold with fundamental
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group K. If this manifold is an X3-manifold then the outer automorphism class
of is nite (see Chapter 8) and may then be realized by an isometry of an
X3-manifold. Infrasolvmanifolds are determined up to di eomorphism by their
fundamental groups. This is also true of S E2-and S® E!-manifolds [Oh90],
provided K is not nite cyclic, and L E!- and orientable H2 E2-manifolds
[Ue90, 91]. (Note that L -manifolds are orientable and self homeomorphisms
of such manifolds are orientation preserving [NR78].) When K is nite cyclic it
is still true that every such S2 E!-manifold is a mapping torus of an isometry
of a suitable lens space [Oh90]. Thus if M is an X3 [E!-manifold and K is the
fundamental group of an X3-manifold M is the mapping torus of an isometry
of an X3-manifold with fundamental group K. O

Does the Corollary remain true for nonorientable H? [E?-manifolds?

There are (orientable) Nil®> [E!-and Sol® E!-manifolds which are mapping
tori of self homeomorphisms of flat 3-manifolds, but which are not mapping tori
of self homeomorphisms of Nil®- or Sol®-manifolds. (See Chapter 8.) There
are analogous examples when X3 = H2. (See x4 of Chapter 9.)

We may now improve upon the characterization of mapping tori up to homotopy
equivalence from Chapter 4.

Theorem 13.2 Let M be a closed 4-manifold with fundamental group
Then M is homotopy equivalent to the mapping torus M( ) of a self home-
omorphism of a closed 3-manifold with one of the geometries E3, Nil3, Sol?,
H2 E! L or S2 E! if and only if

1 M)=0;
2) is an extension of Z by an FP, normal subgroup K; and
(3) K has a nontrivial torsion free abelian normal subgroup A.

If s torsion free M is s-cobordant to M ( ), while if moreover s solvable
M is homeomorphic to M( ).

Proof The conditions are clearly necessary. Since K has an in nite abelian
normal subgroup it has one or two ends. If K has one end then M is aspherical
and so K is a PD3-group by Theorem 4.1. Condition (3) then implies that
M? is homotopy equivalent to a closed 3-manifold with one of the rst ve of
the geometries listed above, by Theorem 2.14. If K has two ends then M? is
homotopy equivalent to S S!, S2~S!, RP? S! or RP3]RP?3, by Corollary
4.5.3.
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In all cases K is isomorphic to the fundamental group of a closed 3-manifold N
which is either Seifert bred or a Sol®-manifold, and the outer automorphism
class [ ] determined by the extension may be realised by a self homeomorphism

of N. The manifold M is homotopy equivalent to the mapping torus M( ).
Since Wh( ) =0, by Theorems 6.1 and 6.3, any such homotopy equivalence is
simple.

If K is torsion free and solvable then is virtually poly-Z, and so M is
homeomorphic to M( ), by Theorem 6.11. Otherwise N is a closed H? E?*-
or I -manifold. As H?> [E! has a metric of nonpositive sectional curvature,
the surgery obstruction homomorphisms N are isomorphisms for i large in
this case, by [FJ93’]. This holds also for any irreducible, orientable 3-manifold
N such that ;(N) = 0 [Ro00], and therefore also for all S -manifolds, by
the Dress induction argument of [NS85]. Comparison of the Mayer-Vietoris
sequences for Lg-homology and L-theory (as in Proposition 2.6 of [St84]) shows
that M and :V' ' are also isomorphisms for i large, and so Stop(M( ) S?)
has just one element. Therefore M is s-cobordant to M( ). O

Mapping tori of self homeomorphisms of H23- and S®-manifolds satisfy condi-
tions (1) and (2). In the hyperbolic case there is the additional condition

(3-H) K has one end and no noncyclic abelian subgroup.

If every P D3-group is a 3-manifold group and the geometrization conjecture for
atoroidal 3-manifolds is true then the fundamental groups of closed hyperbolic
3-manifolds may be characterized as P D3-groups having no noncyclic abelian
subgroup. Assuming this, and assuming also that group rings of such hyperbolic
groups are regular coherent, Theorem 13.2 could be extended to show that a
closed 4-manifold M with fundamental group is s-cobordant to the mapping
torus of a self homeomorphism of a hyperbolic 3-manifold if and only these
three conditions hold.

In the spherical case the appropriate additional conditions are

(3-S) K isa xed point free nite subgroup of SO(4) and (if K is not cyclic)
the characteristic automorphism of K determining is realized by an isometry
of S3=K: and

(4-S) the rst nontrivial k-invariant of M is \linear".
The list of xed point free nite subgroups of SO(4) is well known. (See
Chapter 11.) If K is cyclic or Q Z=p!Z for some odd prime p or T, then
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the second part of (3-S) and (4-S) are redundant, but the general picture is not
yet clear [HM86].

The classi cation of complex surfaces leads easily to a complete characterization
of the 3-manifolds and di eomorphisms such that the corresponding mapping
tori admit complex structures. (Since (M) =0 for any mapping torus M we
do not need to enter the imperfectly charted realm of surfaces of general type.)

Theorem 13.3 Let N be a closed orientable 3-manifold with 1(N) =
and let : N ¥ N be an orientation preserving self di eomorphism. Then
the mapping torus M ( ) admits a complex structure if and only if one of the
following holds:

(1) N =S3=G where G isa xed point free nite subgroup of U(2) and the
monodromy is as described in [Kt75];

(2) N =S? s (with no restriction on );

(3 N =5s! s! sl andtheimageof in SL(3;Z) either has nite order
or satis es the equation ( 2 —1)? = 0;

(4) N is the flat 3-manifold with holonomy of order 2, induces the identity
on = " and the absolute value of the trace of the induced automorphism
of '=Z?is at most 2;

(5) N is one of the flat 3-manifolds with holonomy cyclic of order 3, 4 or 6
and induces the identity on Hi(N;Q);

(6) N is a Nil®-manifold and either the image of in Out( ) has nite order
or M( ) is a Sol{-manifold;

(7) NisaH?2 E!-or S -manifold and the image of in Out( ) has nite
order.

Proof The mapping tori of these di eomorphisms admit 4-dimensional geome-
tries, and it is easy to read o which admit complex structures from [WI86]. In
cases (3), (4) and (5) note that a complex surface is Kahler if and only if its

rst Betti number is even, and so the parity of this Betti number is invariant
under passage to nite covers. (See Proposition 4.4 of [WI86].)

The necessity of these conditions follows from examining the list of complex
surfaces X with (X) = 0 on page 188 of [BPV], in conjunction with Bogo-
molov’s theorem on surfaces of class V I1p. (See [T194] for a clear account of
the latter result.) O
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In particular, N must be Seifert bred and most orientable Seifert bred 3-
manifolds (excepting only RP3]RP 2 and the Hantzsche-Wendt flat 3-manifold)
occur. Moreover, in most cases (with exceptions as in (3), (4) and (6)) the
image of in Out( ) must have nite order. Some of the resulting 4-manifolds
arise as mapping tori in several distinct ways. The corresponding result for
complex surfaces of the form N S* for which the obvious smooth S*-action is
holomorphic was given in [GG95]. In [EO94] it is shown that if N is a rational
homology 3-sphere then N S admits a complex structure if and only if
N is Seifert bred, and the possible complex structures on such products are
determined.

Conversely, the following result is very satisfactory from the 4-dimensional point
of view.

Theorem 13.4 Let X be a complex surface. Then X is di eomorphic to the
mapping torus of a self di eomorphism of a closed 3-manifold if and only if

(X)=0and = 1(X) is an extension of Z by a nitely generated normal
subgroup.

Proof The conditions are clearly necessary. Su ciency of these conditions
again follows from the classi cation of complex surfaces, as in Theorem 13.3. O

13.2 Surface bundles and geometries

Let p: E ¥ B be a bundle with base B and bre F aspherical closed surfaces.
Then p is determined up to bundle isomorphism by the group = 1(E). If

(B) = (F) =0 then E has geometry E*, Nil®* E!, Nil* or Sol®* E!, by
Ue’s Theorem. When the bre is Kb the geometgy must be E* or NiIE) El,
for then  has a normal chain 1(Kb) = Z < 1(Kb) = 22,50 ~  has
rank at least 2. Hence a Sol® [E!- or Nil*-manifold M is the total space of a
T-bundle over T ifand only if 1( )=2. If (F)=0but (B)<O0 then E
need not be geometric. (See Chapter 7 and x3 below.)

We shall assume henceforth that F is hyperbolic, i.e. that (F) < 0. Then
1(F) = 1 and so the characteristic homomorphism : 1(B) ¥ Out( 1(F))
determines  up to isomorphism, by Theorem 5.2.

Theorem 13.5 Let B and F be closed surfaces with (B) =0and (F) <O0.
Let E be the total space of the F -bundle over B corresponding to a homomor-
phism : 3(B) ¥ Out( 1(F)). Then E virtually has a geometric decomposi-
tion if and only if Ker( ) & 1. Moreover
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(1) E admits the geometry H? [E? if and only if has nite image;

(2) E admits the geometry H® E! if and only if Ker( ) = Z and Im( )
contains the class of a pseudo-Anasov homeomorphism of F;

(3) otherwise E is not geometric.

Proof Let = j(E). Since E is aspherical, (E) =0 and is not solvable
the only possible geometries are H2 E2, H3 E! and & E!. If E has a
proper geometric decomposition the pieces must all have = 0, and the only

other geometry that may arise is F4. In all cases the fundamental group of each
piece has a nontrivial abelian normal subgroup.

If Ker( ) & 1 then E is virtually a cartesian product N S, where N is
the mapping torus of a self di eomorphism of F whose isotopy class in

o(DIff(F)) = Out( 1(F)) generates a subgroup of nite index in Im( ).
Since N is a Haken 3-manifold it has a geometric decomposition and hence so
does E. The mapping torus N is an H2-manifold if and only if  is pseudo-
Anasov. In that case the action of (N) = 1(F) Z on H36xtends to
an embedding p: = ¥ Isom(H?), by Mostow rigidity. Since = _ 6 1 we
may also nd a homomorphism : ¥ D < Isom(E?!) such that ( )=2Z.
Then Ker( ) is an extension of Z by F and is commensurate with 1(N),
so is the fundamental group of a Haken H?2-manifold, \ say. Together these
homomorphisms determine a free cocompact actionof on H® E'. If ()=
Z then M = n(H® E?) is the mapping torus of a self homeomorphism of
I‘Q; otherwise it is the union of two twisted I-bundles over M. In either case
it follows from standard 3-manifold theory that since E has a similar structure
E and M are di eomorphic.

If has nite image then =C ( 1(F)) is a nite extension of ;(F) and so
acts properly and cocompactly on H?. We may therefore construct an H? E?2-
manifold with group  and which bres over B as in Theorems 7.3 and 9.8.
Since such bundles are determined up to di eomorphism by their fundamental
groups E admits this geometry.

Conversely, if a nite cover of E has a geometric decomposition then we may
assume that the cover is itself the total space of a surface bundle over the
torus, and so we may assume that E has a geometric decomposition and that
B=S!' S' Let = (F). Suppose rst that E has a proper geometric
decomposition. Then = 1(E)=A ¢ B or A ¢, where C is solvable and of
Hirsch length ?pgnd where A is the fundamental group of one of the pieces of
E. Notethat A& 1. Let A=A=A\ ,B=B=B\ and C =C=C\

Then = = = Z? has a similar decomposition as A - B or A .. Now
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C\ =1orZ,since (F) < 0, Hence Cp= Z% and sg;A = C = B. In
particular, Im( ) = (A). Butas A =land A and A\ are
normal subgroups obé it follows that ~ A and A\ commute. Hence (A)
is a quotient of A= A:(A\ ), which is abelian of rank at most 1, and so

Ker( )& 1.

If E admits the geometry H? E? then P-— \ Rad(Isom(H? [E?)) =
\ (flg R?) = ZZ2, by Proposition 8.27 of [Rg]. Hence has nite image.
If E admits the geometry H® E! then P—_ \(flg R)=Z, by Proposition

8.27 of [Rg]. Hence Ker( ) = Z and E is nitely covered a cartesian product
N S, where N is a hyperbolic 3-manifold which is also an F -bundle over
S1. The geometric monodromy of the latter bundle is a pseudo-Anasov di eo-
morphism of F whose isotopy class is in Im( ).

If s the group of a L E!-manifold then P-— 72 3nd P-\K'& 1 for all
subgroups K of nite index, and so E cannot admit this geometry. ]

In particular, if (B) =0 and is injective E admits no geometric decompo-
sition.

We shall assume henceforth that B is also hyperbolic. Then (E) > 0 and

1(E) has no solvable subgroups of Hirsch length 3. Hence the only possible
geometries on E are H?> H?, H* and H?(C). (These are the least well under-
stood geometries, and little is known about the possible fundamental groups of
the corresponding 4-manifolds.)

Theorem 13.6 Let B and F be closed hyperbolic surfaces, and let E be
the total space of the F -bundle over B corresponding to a homomorphism
1(B) ¥ Out( 1(F)). Then the following are equivalent:

(1) E admits the geometry H? H?;
(2) E is nitely covered by a cartesian product of surfaces;
3) has nite image.
If Ker( ) & 1 then E does not admit either of the geometries H* or H?(C).

Proof Let = 1(E)and = 1(F). If E admits the geometry H? H? it
is virtually a cartesian product, by Corollary 9.8.1, and so (1) implies (2).

If is virtually a direct product of PD,-groups then [ : C ()] < A, by
Theorem 5.4. Therefore the image of is nite and so (2) implies (3).

Geometry & Topology Monographs, Volume 5 (2002)



13.2 Surface bundles and geometries 255

If has nite image then Ker( ) & 1 and =C () isa nite extension of
Hence there is a homomorphism p : ! Isom(H?) with kernel C ( ) and
with image a discrete cocompact subgroup. Let q: ¥ ((B) < Isom(H?).
Then (p;q) embeds as a discrete cocompact subgroup of Isom(H? H?),
and the closed 4-manifold M = n(H? H?) clearly bres over B. Such
bundles are determined up to di eomorphism by the corresponding extensions
of fundamental groups, by Theorem 5.2. Therefore E admits the geometry
H? H? and so (3) implies (1).

If is not injective Z? < and so E cannot admit either of the geometries H*
or H?(C), by Theorem 9 of [Pr43]. O

The mapping class group of a closed orientable surface has only nitely many
conjugacy classes of nite groups [Ha71]. With the niteness result for H*-
and H?(C)-manifolds of [Wa72], this implies that only nitely many orientable
bundle spaces with given Euler characteristic are geometric. In Corollary 13.7.2
we shall show that no such bundle space is homotopy equivalent to a H?(C)-
manifold. Is there one which admits the geometry H*? If Im( ) contains the
outer automorphism class determined by a Dehn twist on F then E admits no
metric of nonpositive sectional curvature [KL96].

If E has a proper geometric decomposition the pieces are reducible H? H?-
manifolds and the inclusions of the cusps induce monomorphisms on ;. Must
E bea H? H?-manifold?

Every closed orientable H? H?-manifold has a 2-fold cover which is a complex
surface, and has signature 0. Conversely, if E is a complex surface and p is a
holomorphic submersion then (E) = 0 implies that the bres are isomorphic,
and so E is an H? H2-manifold [Ko99]. This is also so if p is a holomorphic

bre bundle (see xV.6 of [BPV]). Any holomorphic submersion with base of
genus at most 1 or bre of genus at most 2 is a holomorphic bre bundle [Ks68].
There are such holomorphic submersions in which (E) & 0 and so which are
not virtually products. (See xV.14 of [BPV].) The image of must contain the
outer automorphism class determined by a pseudo-Anasov homeomorphism and
not be virtually abelian [Sh97].

Orientable H*-manifolds also have signature 0, but no closed H*-manifold ad-
mits a complex structure.

If B and E are orientable (E) =—  \[B], where 2 H?(Out( 1(F)):Z) is
induced from a universal class in H2(Spyq(Z); Z) via the natural representation
of Out( 1(F)) as symplectic isometries of the intersection form on Hy(F;Z) =
Z29 [Me73]. In particular, if g =2 then (E) = 0. Does the genus 2 mapping
class group contain any subgroups which are hyperbolic P D,-groups?
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13.3 Geometric decompositions of torus bundles

In this section we shall give some examples of torus bundles over closed surfaces
which are not geometric, some of which admit geometric decompositions of type
4 and some of which do not. If M is a compact manifold with boundary whose
interior is an F4-manifold of nite volume then (M) is a semidirect product

z? F where : F ¥ GL(2;Z) is a monomorphism with image of nite
index. The doubB DM =M [@M is FS)red over a hyperbolic base but is not
geometric, since ©  =Z2 but[ :C (' )] isin nite. The orientable surface

of genus 2 can be represented as a double in two distinct ways; we shall give
corresponding examples of nongeometric torus bundles which admit geometric
decompositions of type F*4. (Note that F*-manifolds are Seifert bred with base
a punctured hyperbolic orbifold.)

1. Let F(2) be the free group of rank two and let v : F(2) ¥ SL(2;7Z)
have image the commutator subgroup SL(2;Z)’, which is freely generated
by (21) and (13). The natural surjection from SL(2;Z) to PSL(2;Z) in-
duces an isomorphism of commutator subgroups. (See x2 of Chapteré,) The
parabolic subgroup P SL(2; Z)"\ Stab(0) is generated by the image of :(15 _01 :
Hence [Stab(0) : PSL(2;Z)" \ Stab(0)] = 6 = [PSL(2;Z) : PSL(2;Z)"], and
so PSL(2;Z)" has a single cusp at 0. The quotient space PSL(2;Z)’nH? is
the once-punctured torus. Let N PSL(2;Z)'nH? be the complement of an
open horocyclic neighbourhood of the cusp. The double DN is the closed ori-
entable surface of genus 2. The semidirect product I = Z? y F(2) is a lattice
in 1som(F4), and the double of the bounded manifold with interior FnF# is a
torus bundle over DN .

2. Let : F(2) ¥ SL(2;Z) have image the subgroup which is freely gen-
erated by U = (39) and V = (}%). Let : F(2 ¥ PSL(2;Z) be the
composed map. Then s injective and [PSL(2;7Z) : (F(2))] = 6. (Note that
(F(2)) and —1 together generate the level 2 congruence subgroup.) Moreover
[Stab(0) : (F(2)) \ Stab(0)] = 2. Hence (F(2)) has three cusps, at 0, 1 and
1,and (F(2))nH?2 is the thrice-punctured sphere. The corresponding parabolic
subgroups are generated by U, V and VU™, respectively. Doubling the com-
plement N of disjoint horocyclic neighbourhoods of the cusps in  (F (2))nH?
again gives a closed orientable surface of genus 2. The presentation for (DN)
derived from this construction is

hU;V;Ug; Vass;tjs tUs = Ut v = vy VU™t = viUu i

which simpli es to the usual presentation hU;V;s;tjs Vv ~isv =t~ U tUi.
The semidirect product = Z?  F(2) is a lattice in Isom(F*4), and the
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double of the bounded manifold with interior nF# is again a torus bundle
over DN.

3. If G is an orientable P D,-group which is not virtually Z> and :G 1
SL(2;Z) is a homomorphism whose image is in nite cyclicthen =272 G is
the fundamental group of a closed orientable 4-manifold which is bred over an
orientable hyperbolic surface but which has no geometric decomposition at all.
(The only possible geometries are F4, H2 E2 and $L E!. We may exclude
pieces of type F* as Im( ) has in nite index in SL(2;Z), and we may exclude
pieces of type H2 E2 or I E! as Im( ) = Z is not generated by nite
subgroups.)

13.4 Complex surfaces and brations

It is an easy consequence of the classi cation of surfaces that a minimal compact
complex surface S is ruled over a curve C of genus 2 if and only if 1(S) =

1(C) and (S) =2 (C). (See Chapter VI of [BPV].) We shall give a similar
characterization of the complex surfaces which admit holomorphic submersions
to complex curves of genus 2, and more generally of quotients of such surfaces
by free actions of nite groups. However we shall use the classi cation only to
handle the cases of non-Kdhler surfaces.

Theorem 13.7 Let S be a complex surface. Then S has a nite covering

space which admits a holomorphic submersion onto a complex curve, with base

and breof genus 2, ifand only if = 1(S) has normal subgroups K <~

such that K and ~=K are PDy-groups, [ : "] < L and [ : 7] (S) =
(K) (*=K)=>0.

Proof The conditions are clearly necessary. Suppose that they hold. Then S
is aspherical, by Theorem 5.2. In particular, is torsion free and ,(S) =0,
so S is minimal. After enlarging K if necessary we may assume that =K has
no nontrivial nite normal subgroup. Let 8 be the nite covering space corre-
sponding to ~. Then 1(8) 4. If 1(9) were odd then § would be minimal
properly elliptic, by the classi cation of surfaces. But then either (S) =20 or
9 would have a singular bre and the projection of $§ to the base curve would
induce an isomorphism on fundamental groups [CZ79]. Hence 1(@) is even
and so § and S are Kahler (see Theorem 4.3 of [WI86]). Since =K is not
virtually Z?2 it is isomorphic to a discrete group of isometries of the upper half
plane H? and f)( =K) & 0. Hence there is a properly discontinuous holo-
morphic action of =K on H? and a =K -equivariant holomorphic map from
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the covering space Sk to H?, with connected bres, by Theorems 4.1 and 4.2
of [ABR92]. Let B and B be the complex curves H2=( =K) and H?=("=K),
respectively, and let h : S ¥ B and fi : 8§ ¥ B be the induced maps. The
quotient map from H2 to B is a covering projection, since ~=K is torsion free,
and so 1(A) is an epimorphism with kernel K.

The map h is a submersion away from the preimage of a nite subset D B.
Let F be the general bre and Fy4 the bre over d 2 D. Fix small disjoint discs
¢ B abouteach pointof D,andlet B =B—[g2p 4, S =h™1(B ) and
Sq¢ =h71( g). Since hjs isasubmersion 1(S ) is an extension of (B ) by
1(F). The inclusion of @Sy into Sq— F4 is a homotopy equivalence. Since Fgy
has real codimension 2 in Sy the inclusion of Sy — F4 into Sq is 2-connected.
Hence 1(@Sq) maps onto 1(Sq).

Let mg = [ 1(Fq)] : Im( 1(F))]. After blowing up S at singular points of
Fq we may assume that it has only normal crossings. We may then pull hjs,
back over a suitable branched covering of 4 to obtain a singular bre Ey with
no multiple components and only normal crossing singularities. In that case
¥y is obtained from F by shrinking vanishing cycles, and so 1(F) maps onto
1(Fy). Since blowing up a point on a curve does not change the fundamental
group it follows from x9 of Chapter 111 of [BPV] that in general mq is nite.

We may regard B as an orbifold with cone singularities of order my at d 2 D.
By the Van Kampen theorem (applied to the space S and the orbifold B) the
image of 1(F) in is a normal subgroup and h induces an isomorphism from
= 1(F) to ¢™(B). Therefore the kernel of the canonical map from $7°(B) to
1(B) is isomorphic to K=Im( 1(F)). But this is a nitely generated normal
subgroup of in nite index in ¢™(B), and so must be trivial. Hence 1(F)
maps onto K, and so (F) (K).

Let B be the preimage of D in B. The general bre of fi is again F. Let B,
denote the breover d2B. Then (§) = (F) (B)+ 4p5( (By)— (F)) and

(By) (F), by Proposition 111.11.4 of [BPV]. Moreover (B3) > (F) unless
(B)) = (F) =0, by Remark 111.11.5 of [BPV]. Since (B) = (*=K) < 0,
(= (K) (*=K) and (F) (K) it follows that (F) = (K) <0 and
(By) = (F) forall d 2 B. Therefore By = F for all d 2 B and so fi is a
holomorphic submersion. O

Similar results have been found independently by Kapovich and Kotschick
[Ka98, K099]. Kapovich assumes instead that K is FP, and S is aspheri-
cal. As these hypotheses imply that K is a P D,-group, by Theorem 1.19, the
above theorem applies.
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We may construct examples of such surfaces as follows. Let n > 1 and C; and
C, be two curves such that Z=nZ acts freely on C; and with isolated xed
points on C,. Then the quotient S of C; C, under the induced action is a
complex surface and the projection from C; C, to C, induces a surjective
holomorphic mappping from S to C,=(Z=nZ) with critical values corresponding
to the xed points.

Corollary 13.7.1 The surface S admits such a holomorphic submersion onto
a complex curve if and only if =K is a P D3 -group. O

Corollary 13.7.2 No bundle space E is homotopy equivalent to a closed
H?(C)-manifold.

Proof Since H?(C)-manifolds have 2-fold coverings which are complex sur-
faces, we may assume that E is homotopy equivalent to a complex surface S.
By the theorem, S admits a holomorphic submersion onto a complex curve.
But then (S) >3 (S) [Li9%], and so S cannot be a H?(C)-manifold. O

The relevance of Liu’s work was observed by Kapovich, who has also found a
cocompact H?(C)-lattice which is an extension of a PD; -group by a nitely
generated normal subgroup, but which is not almost coherent [Ka98].

Similar arguments may be used to show that a Kahler surface S is a minimal
properly elliptic surface with no singular bres if and only if (S) = 0 and

= 1(S) has a normal subgroup A = Z? such that =A is virtually torsion
free and indicable, but is not virtually abelian. (This holds also in the non-
Kahler case as a consequence of the classi cation of surfaces.) Moreover, if S is
not a ruled surface then it is a complex torus, a hyperelliptic surface, an Inoue
surface, a Kodaira surface or a minimal elliptic surface if and only if (S) =0
and 1(S) has a normal subgroup A which is poly-Z and not cyclic, and such
that =A is in nite and virtually torsion free indicable. (See Theorem X.5 of
[H2].)

We may combine Theorem 13.7 with some observations deriving from the clas-
si cation of surfaces for our second result.

Theorem 13.8 Let S be a complex surface such that = 1(S)& 1. If Sis
homotopy equivalent to the total space E of a bundle over a closed orientable
2-manifold then S is di eomorphic to E.
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Proof Let B and F be the base and bre of the bundle, respectively. Sup-
pose rstthat (F)=2. Then (B) 0, for otherwise S would be simply-
connected. Hence »(S) is generated by an embedded S? with self-intersection
0, and so S is minimal. Therefore S is ruled over a curve di eomorphic to B,
by the classi cation of surfaces.

Suppose next that (B) = 2. If (F) =0and & Z? then = 2Z
(Z=nz) for some n > 0. Then S is a Hopf surface and so is determined up to
di eomorphism by its homotopy type, by Theorem 12 of [Kt75]. If (F) =0
and = ZZ orif (F) < 0 then S is homotopy equivalent to S2 F, so

(S) <0, w1(S) =w,(S) =0 and S is ruled over a curve di eomorphic to F.
Hence E and S are di eomorphic to S? F.

In the remaining cases E and F are both aspherical. If (F) =0and (B)

0 then (S) = 0 and has one end. Therefore S is a complex torus, a
hyperelliptic surface, an Inoue surface, a Kodaira surface or a minimal properly
elliptic surface. (This uses Bogomolov’s theorem on class V I 1y surfaces [Te94].)
The Inoue surfaces are mapping tori of self-di eomorphisms of St St S,
and their fundamental groups are not extensions of Z? by Z2, so S cannot be
an Inoue surface. As the other surfaces are Seifert bred 4-manifolds E and S
are di eomorphic, by [Ue91].

If (F)<O0Oand (B) =0 then S is a minimal properly elliptic surface. Let
A be the normal subgroup of the general bre in an elliptic bration. Then
AN\ 1(F) =1 (since 1(F) has no nontrivial abelian normal subgroup) and
so[ :A: 1(F)] < . Therefore E is nitely covered by a cartesian product
T F,andsois Seifert bred. Hence E and S are di eomorphic, by [Ue].

The remaining case ( (B) <0 and (F) <0) is an immediate consequence of
Theorem 13.7, since such bundles are determined by the corresponding exten-
sions of fundamental groups (see Theorem 5.2). O

A simply-connected smooth 4-manifold which bres over a 2-manifold must
be homeomorphic to CP1 CP! or CP2]JCP2. (See Chapter 12.) Is there
such a surface of general type? (No surface of general type is di eomorphic to
CP! CP!or CP?]CP? [Qi93].)

Corollary 13.8.1 If moreover the base has genus 0 or 1 or the bre has genus
2 then S is nitely covered by a cartesian product.

Proof A holomorphic submersion with bre of genus 2 is the projection of a
holomorphic bre bundle and hence S is virtually a product, by [Ks68]. O
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Up to deformation there are only nitely many algebraic surfaces with given
Euler characteristic > 0 which admit holomorphic submersions onto curves
[Pa68]. By the argument of the rst part of Theorem 13.1 this remains true
without the hypothesis of algebraicity, for any such complex surface must be
Kdhler, and Kahler surfaces are deformations of algebraic surfaces (see Theorem
4.3 of [WI86]). Thus the class of bundles realized by complex surfaces is very
restricted. Which extensions of P D, -groups by P D, -groups are realized by
complex surfaces (i.e., not necessarily aspherical)?

The equivalence of the conditions \S is ruled over a complex curve of genus
2"\ = 4(S)isaPDy-groupand (S)=2 ()<0"and\ 2(S)=2Z,
acts trivially on ,(S) and (S) < 0" also follows by an argument similar to

that used in Theorems 13.7 and 13.8. (See Theorem X.6 of [H2].)

If 2(S)=2Z and (S) =0 then s virtually Z2. The nite covering space
with fundamental group Z? is Kahler, and therefore so is S. Since 1(S) >0
and is even, we must have = Z2, and so S is either ruled over an elliptic
curve or is a minimal properly elliptic surface, by the classi cation of complex
surfaces. In the latter case the base of the elliptic bration is CP1, there
are no singular bres and there are at most 3 multiple bres. (See [Ue91].)
Thus S may be obtained from a cartesian product CP! E by logarithmic
transformations. (See xV.13 of [BPV].) Must S in fact be ruled?

If »(S)=2Z and (S) >0 then =1, by Theorem 10.1. Hence S ~ CP?
and so S is analytically isomorphic to CP?, by a result of Yau (see Theorem
1.1 of [BPV)).

13.5 S!-Actions and foliations by circles

For each of the geometries X4 =S3 E!, H® E!, L E!, Nil® E!, Sol® E!,
Nil* and Solf the real line R is a characteristic subgroup of the radical of
Isom(X*). (However the translation subgroup of the euclidean factor is not
characteristic if X* = L E! or Nil® E!.) The corresponding closed geometric
4-manifolds are foliated by circles, and the leaf space is a geometric 3-orbifold,
with geometry S°, H3, H? E!, E3, Sol®, Nil® and Sol®, respectively. In each
case it may be veri ed that if is a lattice in 1som(X*) then \R=2Z. As
this characteristic subgroup is central in the identity component of the isometry
group such manifolds have double coverings which admit S*-actions without

xed points. These actions lift to principal S!-actions (without exceptional
orbits) on suitable nite covering spaces. (This does not hold for all S*-actions.
For instance, S® admits non-principal S!-actions without xed points.)
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Closed E*-, S E2-or H?> E2-manifolds all have nite covering spaces which
are cartesian products with S*, and thus admit principal S!-actions. However
these actions are not canonical. (There are also non-canonical S*-actions on
many L E!- and Nil® E!-manifolds.) No other closed geometric 4-manifold
is nitely covered by the total space of an S'-bundle. For if a closed manifold
M is foliated by circles then (M) = 0. This excludes all other geometries
except Sol},., and Sol§. If moreover M is the total space of an S*-bundle and
is aspherical then (M) has an in nite cyclic normal subgroup. As lattices in
Isom(SoI;‘n;n) or Isom(Sol}) do not have such subgroups these geometries are
excluded also. Does every geometric 4-manifold M with (M) = 0 nevertheless
admit a foliation by circles?

In particular, a complex surface has a foliation by circles if and only if it admits
one of the above geometries. Thus it must be Hopf, hyperelliptic, Inoue of
type Sy..., Kodaira, minimal properly elliptic, ruled over an elliptic curve or a
torus. With the exception of some algebraic minimal properly elliptic surfaces
and the ruled surfaces over elliptic curves with w, & 0 all such surfaces admit
Sl-actions without xed points.

Conversely, the total space E of an S!-orbifold bundle over a geometric 3-
orbifold is geometric, except when the base B has geometry H2 or € and the
characteristic class c( ) has in nite order. More generally, E has a (proper)
geometric decomposition if and only if B is a S -orbifold and c¢( ) has nite
order or B has a (proper) geometric decomposition and the restrictions of c( )
to the hyperbolic pieces of B each have nite order.

Total spaces of circle bundles over aspherical Seifert bred 3-manifolds and
Sol®-manifolds have a characterization parallel to that of Theorem 13.2.

Theorem 13.9 Let M be a closed 4-manifold with fundamental group
Then:

(1) M is simple homotopy equivalent to the total space E of an S*-bundle
over an aspherical closed Seifert bred 3-manifold or a Sol®-manifold if
and only if (M) = 0 and has normal subgroups A < B such that
A=2Z, =A is torsion free and B=A is abelian.

If B=A =Z and is central in =A then M is s-cobordant to E. If B=A
has rank at least 2 then M is homeomorphic to E.

(2) M is s-cobordant to the total space E of an S*-bundle over the mapping

torus of a self homeomorphism of an aspherical surface if and only if

(M) =0 and has normal subgroups A <B suchthat A=2Z, =Ais
torsion free, B is FP, and =B =Z.
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Proof (1) The conditions are clearly necessaryplf they hold tBen h(p_)
h(B=A) +1 2, and so M is aspherical. If h("_ ) = 2 then = = Z?, by
Theorem 9.2. Hence B=A = Z and H?( =B;Z[ =B]) = Z, so =B is virtually
a PD,-group, by Bowditch’s Theorem. Since =A is torsion free it is a PD3-
group, and so is the fundamental group of a closed Seifert bred 3-manifold, N
say, by Theorem 2.14. As Wh( ) = 0, by Theorem 6.4, M is simple homotopy
equivalent to the total space E of an S*-bundle over N. If moreover B=A is
central in =A then N admits an e ective St-action,and E S!isan S! S!-
bundle over N. Hence M S?! is homeomorphic to E  S* (see Remark 3.4 of
[NS85]), and so M is s-cobordant to E.

If B=A has rank at least 2 then h(p_) > 2 and so s virtually poly-Z.
Hence =A is the fundamental group of a E3-, Nil3- or Sol®-manifold and M
is homeomorphic to such a bundle space E, by Theorem 6.11.

(2) The conditions are again necessary. If they hold then B=A is in nite, so B
has one end and hence is a P D3-group, by Theorem 4.1. Since B=A is torsion
free it is a P D,-group, by Bowditch’s Theorem, and so =A is the fundamental
group of a mapping torus, N say. As Wh( ) =0, by Theorem 6.4, M is simple
homotopy equivalent to the total space E of an S*-bundle over N . Since z
is square root closed accessible M S is homeomorphic to E S [Ca73], and
so M is s-cobordant to E. O

If BEA=Z and =B acts nontrivially on B=A is M s-cobordant to E?

Simple homotopy equivalence implies s-cobordism for such bundles over other
Haken bases (with square root closed accessible fundamental group or with

1 > 0 and orientable) using [Ca73] or [Ro00]. However we do not yet have
good intrinsic characterizations of the fundamental groups of such 3-manifolds.

If M bres over a hyperbolic 3-manifold N then (M) =0, P-_ Z and P
has one end, nite cohomological dimension and no non%clic abelian subgroups.
Conversely if  satis es these conditions then = =" is a PDgs-group, by
Theorem 4.12, and P-_ 1. It may be conjectured that every such P D3-group
(with no nocyclic abelian subgroups and trivial Hirsch-Plotkin radical) is the
fundamental group of a closed hyperbolic 3-manifold. If so, Theorem 13.9 may
be extended to a characterization of such 4-manifolds up to s-cobordism, using
Theorem 10.7 of [FJ89] instead of [NS85].

13.6 Symplectic structures

If M is a closed orientable 4-manifold which bres over an orientable surface
and the image of the bre in H>(M;R) is nonzero then M has a symplectic
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structure [Th76]. The homological condition is automatic unless the bre is
a torus; some such condition is needed, as S® S! is the total space of a T-
bundle over S? but H2(S® S%;R) =0, so it has no symplectic structure. If
the base is also a torus then M admits a symplectic structure [Ge92]. Closed
Kahler manifolds have natural symplectic structures. Using these facts, it is
easy to show for most geometries that either every closed geometric manifold is

nitely covered by one admitting a symplectic structure or no closed geometric
manifold admits any symplectic structure.

If M is orientable and admits one of the geometries CP?, S2 S2, §2 EZ2,
S? H?, H? E?, H?> H? or H?(C) then it has a 2-fold cover which is Kahler,
and therefore symplectic. If it admits E4, Nil*, Nil®> E! or Sol®* E! then it
has a nite cover which bres over the torus, and therefore is symplectic. If all
H3-manifolds are virtually mapping tori then H3® E!-manifolds would also be
virtually symplectic. However, the question is not settled for this geometry.

As any closed orientable manifold with one of the geometries S*, S* E?!, Sol3,.,
(with m & n), Sol§ or Solf has , = 0 no such manifold can be symplectic.
Nor are closed SL  El-manifolds [Et01]. The question appears open for the
geometry H*, as is the related question about bundles. (Note that symplectic
4-manifolds with index 0 have Euler characteristic divisible by 4, by Corollary
10.1.10 of [GS]. Hence covering spaces of odd degree of the Davis 120-cell space
provide many examples of nonsymplectic H*-manifolds.)

If N is a 3-manifold which is a mapping torus then S N bres over T, and
so admits a symplectic structure. Taubes has asked whether the converse is
true; if S N admits a symplectic structure must N bre over S1? More
generally, one might ask which 4-dimensional mapping tori and S*-bundles are
symplectic?

Which manifolds with geometric decompositions are symplectic?
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Chapter 14

Knots and links

In this chapter we introduce the basic notions and constructions of knot theory.
Many of these apply equally well in all dimensions, and for the most part we
have framed our de nitions in such generality, although our main concern is with
2-knots (embeddings of S2 in S#). In particular, we show how the classi cation
of higher dimensional knots may be reduced (essentially) to the classi cation
of certain closed manifolds, and we give Kervaire’s characterization of high
dimensional knot groups.

In the nal sections we comment briefly on links and link groups.

14.1 Knots

The standard orientation of R" induces an orientation on the unit n-disc D" =
f(x1;:::xp) 2R™j x?  1g and hence on its boundary S"~! = @D", by the
convention \outward normal rst”. We shall assume that standard discs and
spheres have such orientations. Quali cations shall usually be omitted when
there is no risk of amiguity. In particular, we shall often abbreviate X(K),

M(K) and K (de ned below) as X, M and , respectively.

An n-knot is a locally flat embedding K : S" ¥ S"*2_ (We shall also use the
terms \classical knot" when n = 1, \higher dimensional knot” when n 2 and
\high dimensional knot"” when n  3.) Itis determined up to (ambient) isotopy
by its image K(S"), considered as an oriented codimension 2 submanifold of
S"*2 "and so we may let K also denote this submanifold. Let r,, be an orienta-
tion reversing self homeomorphism of S". Then K is invertible, +amphicheiral
or -amphicheiral if it is isotopic to rK = rp+2K, K = Kr, or =K =rK ,
respectively. An n-knot is trivial if it is isotopic to the composite of equatorial
inclusions S" SN+l gn+2

Every knot has a product neighbourhood: there is an embedding j : S" D?
onto a closed neighbourhood N of K, such that j(S" f0g) = K and @N is
bicollared in S"*2 [KS75,FQ]. We may assume that j is orientation preserving,
and it is then unique up to isotopy rel S™ f0g. The exterior of K is the
compact (n + 2)-manifold X(K) = S"*2 — intN with boundary @X(K) =
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S" St and is well de ned up to homeomorphism. It inherits an orientation
from S"*2. An n-knot K is trivial if and only if X(K) > S?; this follows from
Dehn’s Lemma if n = 1, is due to Freedman if n = 2 ([FQ] - see Corollary
17.1.1 below) and is an easy consequence of the s-cobordism theorem if n 3.

The knot group is K = 1(X(K)). An oriented simple closed curve isotopic

to the oriented boundary of a transverse disc fjg S? is called a meridian for

K, and we shall also use this term to denote the corresponding elements of

If is a meridian for K, represented by a simple closed curve on @X then

X [ D? is a deformation retract of S"*2 — f g and so is contractible. Hence
is generated by the conjugacy class of its meridians.

Assume for the remainder of this section that n 2. The group of pseu-
doisotopy classes of self homeomorphisms of S" St is (Z=27)3, generated by
reflections in either factor and by the map given by (X;y) = ( (y)(X);y) for
all x in S" andy in S, where :S! ¥ SO(n+ 1) is an essential map [GI62,
Br67, Kt69]. As any self homeomorphism of S" S extends across D"*! St
the knot manifold M (K) = X(K)[(D"*! S?) obtained from S"*2 by surgery
on K is well de ned, and it inherits an orientation from S"*2 via X. Moreover

1(IM(K)) = K and (M(K)) = 0. Conversely, suppose that M is a closed
orientable 4-manifold with (M) =0 and (M) is generated by the conjugacy
class of a single element. (Note that each conjugacy class in  corresponds to
an unique isotopy class of oriented simple closed curves in M.) Surgery on a
loop in M representing such an element gives a 1-connected 4-manifold  with

( ) = 2 which is thus homeomorphic to S* and which contains an embedded
2-sphere as the cocore of the surgery. We shall in fact study 2-knots through
such 4-manifolds, as it is simpler to consider closed manifolds rather than pairs.

There is however an ambiguity when we attempt to recover K from M =
M(K). The cocore y = fog S D" S! M of the original surgery is
well de ned up to isotopy by the conjugacy class of a meridianin K = ;(M).
(In fact the orientation of vy is irrelevant for what follows.) Its normal bundle
is trivial, so y has a product neighbourhood, P say, and we may assume that
M —intP = X(K). But there are two essentially distinct ways of identifying
@X with S S =@(S" D?), modulo self homeomorphisms of S" S! that
extend across S” D?2. If we reverse the original construction of M we recover
(S"2%K) = (X [[S" D?%S" f0g). If however we identify S St with
@X by means of J we obtain a new pair

(;K)=(X[ s" D?*s" fog):
It is easily seen that ” S"*2, and hence = S"*2. We may assume that
the homeomorphism is orientation preserving. Thus we obtain a new n-knot
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K , which we shall call the Gluck reconstruction of K. The knot K is reflexive
if it is determined as an unoriented submanifold by its exterior, i.e., if K is
isotopic to K, rK, K or —K.

If there is an orientation preserving homeomorphism from X(K3) to X(K) then
K1 is isotopic to K, K , K or K . If the homeomorphism also preserves
the homology class of the meridians then K; is isotopic to K or to K . Thus
K is determined up to an ambiguity of order at most 2 by M (K) together with
the conjugacy class of a meridian.

A Seifert hypersurface for K is a locally flat, oriented codimension 1 subman-
ifold V of S"*2 with (oriented) boundary K. By a standard argument these
always exist. (Using obstruction theory it may be shown that the projection
proj~t : @X ¥ S" S! ¥ Sl extends to amap p: X ¥ S! [Ke65]. By
topological transversality we may assume that p~1(1) is a bicollared, proper
codimension 1 submanifold of X. The union p~1(1) [ j(S" [0;1]) is then
a Seifert hypersurface for K.) We shall say that V is minimal if the natural
homomorphism from 1(V) to K is a monomorphism.

In general there is no canonical choice of Seifert surface. However there is one
important special case. An n-knot K is bred if there issuchamap p: X ¥ St
which is the projection of a bre bundle. (Clearly K is then bred also.) The
exterior is then the mapping torus of a self homeomorphism of the bre F of
p. The isotopy class of is called the (geometric) monodromy of the bundle.
Such a map p extends to a bre bundle projection q: M(K) ¥ St with bre
P=F [ D"*1, called the closed bre of K. Conversely, if M(K) bres over
St then the cocore y is homotopic (and thus isotopic) to a cross-section of the
bundle projection, and so K is bred. If the monodromy has nite order (and
is nontrivial) then it has precisely two xed points on @F, and we may assume
that the closed monodromy also has nite order. However the converse is false;
the closed monodromy may have nite order but not be isotopic to a map of
nite order with nonempty xed point set.

14.2 Covering spaces

Let K be an n-knot. Then Hi(X(K);Z) = Z and H;ij(X(K);Z) = 0 if
i > 1, by Alexander duality. The meridians are all homologous and generate

= Y= Hy(X;Z), and so determine a canonical isomorphism with Z. Moreover
H>( ;7Z) =0, since it is a quotient of H,(X;Z) = 0.

We shall let X(K) and MY(K) denote the covering spaces corresponding to
the commutator subgroup. (The cover X’=X is also known as the in nite
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cyclic cover of the knot.) Since = ! = Z the (co)homology groups of X' are
modules over the group ring Z[Z], which may be identi ed with the ring of
integral Laurent polynomials = Z[t;t™!]. If Aisa -module, let zA be the
Z-torsion submodule, and let e'A = Ext' (A; ).

Since  is noetherian the (co)homology of a nitely generated free -chain
complex is nitely generated. The Wang sequence for the projection of X° onto
X may be identi ed with the long exact sequence of homology corresponding
to the exact sequence of coe cients

or ¢ ¥Z71Q

Since X has the homology of a circle it follows easily that multiplication by
t — 1 induces automorphisms of the modules H;(X; ) for i > 0. Hence these
homology modules are all nitely generated torsion -modules. It follows that
Hom (H;(X; ); ) is 0 for all i, and the UCSS collapses to a collection of
short exact sequences

0¥ e?Hij_, T HI(X; ) ¥ e'Hj_y ¥ O

The in nite cyclic covering spaces X’ and M? behave homologically much like
(n+1)-manifolds, at least if we use eld coe cients [Mi68, Ba80]. If Hj(X; )=
0forl i (n+1)=2then X' isacyclic; thusifalso = Z then X ? S! and
so K is trivial. All the classi cations of high dimensional knots to date assume
that = Z and that X' is highly connected.

When n = 1 or 2 knots with = Z are trivial, and it is more pro table to
work with the universal cover X (or ). In the classical case X is contractible
[Pa57]. In higher dimensions X is aspherical only when the knot is trivial
[DV73]. Nevertheless the closed 4-manifolds M (K) obtained by surgery on 2-
knots are often aspherical. (This asphericity is an additional reason for choosing
to work with M (K) rather than X(K).)

14.3 Sums, factorization and satellites

The sum of two knots K; and K, may be de ned (up to isotopy) as the n-knot
K1]K; obtained as follows. Let D"( ) denote the upper and lower hemispheres
of S". We may isotope K; and K; so that each K;(D"( )) contained in
D"*2( ), Ki(D"(+)) is a trivial n-disc in D"*?(+), Ky(D"(-)) is a trivial
n-disc in D"*2(=) and Kijsn-1 = Kjjgn—1 (as the oriented boundaries of
the images of D"(—)). Then we let K;]JK; = Kijpn—y [ K2jpn(+y. By van
Kampen’s theorem (K;]K;) = K; z K3 where the amalgamating subgroup
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is generated by a meridian in each knot group. It is not hard to see that
XU(K1JK2) * XU(Kp) _ X'(K) and so in particular (K;]K>) = Y(Kj)
"(K2).

The knot K is irreducible if it is not the sum of two nontrivial knots. Every
knot has a nite factorization into irreducible knots [DF87]. (For 1- and 2-
knots whose groups have nitely generated commutator subgroups this follows
easily from the Grushko-Neumann theorem on factorizations of groups as free
products.) In the classical case the factorization is essentially unique, but for
each n 3 there are n-knots with several distinct such factorizations [BHK8L1].
Essentially nothing is known about uniqueness (or otherwise) of factorization
when n = 2.

If Ky and K5 are bred then so is their sum, and the closed bre of K1]Kj5 is the
connected sum of the closed bres of K; and K,. However in the absence of an
adequate criterion for a 2-knot to bre, we do not know whether every summand
of a bred 2-knot is bred. In view of the unique factorization theorem for
oriented 3-manifolds we might hope that there would be a similar theorem for
bred 2-knots. However the closed bre of an irreducible 2-knot need not be
an irreducible 3-manifold. (For instance, the Artin spin of a trefoil knot is an
irreducible bred 2-knot, but its closed breis (S2 S1)](S?2 SY)).

A more general method of combining two knots is the process of forming satel-
lites. Although this process arose in the classical case, where it is intimately
connected with the notion of torus decomposition, we shall describe only the
higher-dimensional version of [Kn83]. Let K; and K, be n-knots (with n  2)
and let y be a simple closed curve in X(K31), with a product neighbourhood
U. Then there is a homeomomorphism h which carries S"*2—intU = S" D?
onto a product neighbourhood of K,. The knot (K3;Kj;y) is called the
satellite of K1 about K, relative to y. We also call K, a companion of hKj.
If either y = 1 or K5 is trivial then (K3, Ki;y) = Kjp. If y is a merid-
ian for K; then (Kj;Kz;y) = Ki]Ky. If y has nite order in Ky let g
be that order; otherwise let ¢ = 0. Let w be a meridian in K;. Then

= K =( Kz=hhwlii) z-z Kz, where w is identi ed with y in K, by
Van Kampen’s theorem.

14.4 Spinning and twist spinning
The rst nontrivial examples of higher dimensional knots were given by Artin

[Ar25]. We may paraphrase his original idea as follows. As the half space
R3S = f(w;x;y;z) 2R*jw =0;z 0g is spun about the axis A = f(0; x;y;0)g
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it sweeps out the whole of R*, and any arc in R3 with endpoints on A sweeps
out a 2-sphere.

Fox incorporated a twist into Artin’s construction [Fo66]. Let r be an integer
and choose a small (n+2)-disc B"*2 which meets K in an n-disc B" such that
(B"*2: BM) is homeomorphic to the standard pair. Then S"*2 — intB"*2 =
D" D2, and we may choose the homeomorphism so that @(K — intB") lies
in @D" f0g. Let be the self homeomorphism of D" D? that rotates
the D? factor through radians. Then [ < ( r (K—intB™) fg)isa
submanifold of (S"*? — intB"*?) S! homeomorphic to D" S?! and which
is standard on the boundary. The r-twist spin of K is the (n + 1)-knot (K
with image

(K=[ < (r(K=intB") Fg)[E"" D?
in SM*3 = ((S"*2 —intB"*2) SH[(S"*! D?).

The O-twist spin is the Artin spin K = gK,and K = K. The group of

K is obtained from K by adjoining the relation making the rt" power
of (any) meridian central. Zeeman discovered the remarkable fact that if
r & 0 then K is bred, with geometric monodromy of order dividing r,
and the closed bre is the r-fold cyclic branched cover of S"*2, branched over
K [Ze65]. Hence 1K is always trivial. Twist spins of -amphicheiral knots
are -amphicheiral, while twist spinning interchanges invertibility and +am-
phicheirality [Li85].

If K is a classical knot the factors of the closed bre of (K are the cyclic
branched covers of the prime factors of K, and are Haken, hyperbolic or Seifert

bred. With some exceptions for small values of r, the factors are aspherical,
and S2 St is never a factor [PI84]. If r > 1 and K is nontrivial then K is
nontrivial, by the Smith Conjecture.

For other formulations and extensions of twist spinning see [GK78], [Li79],
[M083,84] and [PI84].

14.5 Ribbon and slice knots

An n-knot K is a slice knot if it is concordant to the unknot; equivalently, if
it bounds a properly embedded (n + 1)-disc  in D"*3. Such a disc is called
a slice disc for K. Doubling the pair (D"*3; ) gives an (n + 1)-knot which
meets the equatorial S"*2 of S"*3 transversally in K; if the (n + 1)-knot can
be chosen to be trivial then K is doubly slice. All even-dimensional knots are
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slice [Ke65], but not all slice knots are doubly slice, and no adequate criterion
is yet known. The sum K] — K is a slice of ;K and so is doubly slice [Su71].

An n-knot K is a ribbon knot if it is the boundary of an immersed (n+ 1)-disc

in S"*2 whose only singularities are transverse double points, the double
point sets being a disjoint union of discs. Given such a \ribbon™ (n + 1)-disc

in S"*2 the cartesian product DP SN*2 DP  SN*2+P determines a
ribbon (n + 1 + p)-disc in S"*2*P_ All higher dimensional ribbon knots derive
from ribbon 1-knots by this process [Yn77]. As the p-disc has an orientation
reversing involution this easily imples that all ribbon n-knots with n 2 are
-amphicheiral. The Artin spin of a 1-knot is a ribbon 2-knot. Each ribbon
2-knot has a Seifert hypersurface which is a once-punctured connected sum of
copies of ST S2 [Yn69]. Hence such knots are reflexive. (See [Su76] for more
on geometric properties of such knots.)

An n-knot K is a homotopy ribbon knot if it has a slice disc whose exterior W
has a handlebody decomposition consisting of 0-, 1- and 2-handles. The dual
decomposition of W relative to @W = M(K) has only (n + 1)- and (n + 2)-
handles, and so the inclusion of M into W is n-connected. (The de nition
of \homotopically ribbon" for 1-knots given in Problem 4.22 of [GK] requires
only that this latter condition be satis ed.) Every ribbon knot is homotopy
ribbon and hence slice [Hi79]. It is an open question whether every classical
slice knot is ribbon. However in higher dimensions \slice” does not even imply
\homotopy ribbon". (The simplest example is 231 - see below.)

More generally, we shall say that K is 1-slice if the inclusion of M(K) into
the exterior of some slice disc induces an isomorphism on fundamental groups.
Nontrivial classical knots are never 1-slice, since Hyo( 1(M(K));Z) = Z is
nonzero while Hy( 1(D* — );Z) = 0. On the other hand higher-dimensional
homotopy ribbon knots are 1-slice.

Two 2-knots Kg and K; are s-concordant if there is a concordance K : S?2
[0;1] ¥ S* [0;1] whose exterior is an s-cobordism (rel @) from X(Kj) to
X(K1). (In higher dimensions the analogous notion is equivalent to ambient
isotopy, by the s-cobordism theorem.)

14.6 The Kervaire conditions

A group G has weight 1 if it has an element whose conjugates generate G. Such
an element is called a weight element for G, and its conjugacy class is called a
weight class for G. If G is solvable then it has weight 1 if and only if G=G' is
cyclic, for a solvable group with trivial abelianization must be trivial.
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If is the group of an n-knot K then

D) is nitely presentable;
2 is of weight 1;

(3 Hi(:;z)= ='=2Z;and
(4) Hz( ;Z)=0.

Kervaire showed that any group satisfying these conditions is an n-knot group,
for every n 3 [Ke65]. These conditions are also necessary when n = 1 or
2, but are then no longer su cient, and there are as yet no corresponding
characterizations for 1- and 2-knot groups. If (4) is replaced by the stronger
condition that def( ) =1 then is a 2-knot group, but this condition is not
necessary [Ke65]. (See x9 of this chapter, x4 of Chapter 15 and x4 of Chapter 16
for examples with de ciency 0.) Gonzalez-Acuna has given a characterization
of 2-knot groups as groups admitting certain presentations [GA94]. (Note also
that if is a high dimensional knot group then q( ) 0, and gq( ) =0 if and
only if is a 2-knot group.)

If K is a nontrivial classical knot then K has one end [Pa57], so X(K) is
aspherical, and X (K) collapses to a nite 2-complex, so g:d: 2. Moreover
has a Wirtinger presentation of de ciency 1, i.e., a presentation of the form

hxi;0 i njxj=wjxow; 51 j ni

A group has such a presentation if and only if it has weight 1 and has a de -
ciency 1 presentation P such that the presentation of the trivial group obtained
by adjoining the relation killing a weight element is AC-equivalent to the empty
presentation [Y082’]. (See [Si80] for connections between Wirtinger presenta-
tions and the condition that Hy( ;Z) = 0.) If G is an n-knot group then
g:d:G =2 if and only if ¢:d:G = 2 and def(G) = 1, by Theorem 2.8.

Since the group of a homotopy ribbon n-knot (with n  2) is the fundamental
group of a (n + 3)-manifold W with (W) = 0 and which can be built with
0-, 1- and 2-handles only, such groups also have de ciency 1. Conversely, if a

nitely presentable group G has weight 1 and and de ciency 1 then we use such
a presentation to construct a 5-dimensional handlebody W = D [ fhig [ fhZg
with (W) = (W) = G and (W) = 0. Adjoining another 2-handle h
along a loop representing a weight class for 1(@W) gives a homotopy 5-ball B
with 1-connected boundary. Thus @B = S*#, and the boundary of the cocore of
the 2-handle h is clearly a homotopy ribbon 2-knot with group G. (In fact any
group of weight 1 with a Wirtinger presentation of de ciency 1 is the group of
a ribbon n-knot, for each n 2 [Y]j69] - see [H3].)
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The de ciency may be estimated in terms of the minimum number of generators
of the -module e?( °= ©). Using this observation, it may be shown that if
K is the sum of m + 1 copies of ,3; then def( K) = —m [Le78]. Moreover
there are irreducible 2-knots whose groups have de ciency —m, foreach m 0
[Kn83].

A knot group  has two ends if and only if 'is nite. We shall determine all
such 2-knots in x4 of Chapter 15. Nontrivial torsion free knot groups have one
end [KI93]. There are also many 2-knot groups with in nitely many ends. The
simplest is perhaps the group with presentation

ha;b;tja® =b’ =1; ab = b?a; ta = a°ti:
It is evidently an HNN extension of the metacyclic group generated by fa;hg,

but is also the free product of such a metacyclic group with  ,3;, amalgamated
over a subgroup of order 3 [GM78].

14.7 Weight elements, classes and orbits

Two 2-knots K and K; have homeomorphic exteriors if and only if there is
a homeomorphism from M (K;) to M (K) which carries the conjugacy class of
a meridian of K; to that of K (up to inversion). In fact if M is any closed
orientable 4-manifold with (M) = 0 and with = (M) of weight 1 then
surgery on a weight class gives a 2-knot with group . Moreover, if t and u
are two weight elements and f is a self homeomorphism of M such that u is
conjugate to f (t 1) then surgeries on t and u lead to knots whose exteriors
are homeomorphic (via the restriction of a self homeomorphism of M isotopic
to f). Thus the natural invariant to distinguish between knots with isomorphic
groups is not the weight class, but rather the orbit of the weight class under
the action of self homeomorphisms of M. In particular, the orbit of a weight
element under Aut( ) is a well de ned invariant, which we shall call the weight
orbit. If every automorphism of is realized by a self homeomorphism of
M then the homeomorphism class of M and the weight orbit together form
a complete invariant for the (unoriented) knot. (This is the case if M is an
infrasolvmanifold.)

For oriented knots we need a re nement of this notion. If w is a weight element
for then weshall call theset f (w)j 2 Aut( ); (w) wmod ‘g astrict
weight orbit for . A strict weight orbit determines a transverse orientation for
the corresponding knot (and its Gluck reconstruction). An orientation for the
ambient sphere is determined by an orientation for M (K). If K is invertible or
+amphicheiral then there is a self homeomorphism of M which is orientation
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preserving or reversing (respectively) and which reverses the transverse orien-
tation of the knot, i.e., carries the strict weight orbit to its inverse. Similarly,
if K is -amphicheiral there is an orientation reversing self homeomorphism of
M which preserves the strict weight orbit.

Theorem 14.1 Let G be a group of weight 1 and with G=G' = Z. Let t be
an element of G whose image generates G=G' and let ¢; be the automorphism
of G' induced by conjugation by t. Then

(1) tis aweight element if and only if c; is meridianal,

(2) two weight elements t, u are in the same weight class if and only if there
is an inner automorphism ¢y of G' such that ¢, = cqcicy?;

(3) two weight elements t, u are in the same strict weight orbit if and only if
there is an automorphism d of G' such that ¢, = dcd™* and dcid™2c;?

is an inner automorphism;

(4) if t and u are weight elements then u is conjugate to (g“t) ' for some
min @0
g’ in G”.

Proof The veri cation of (1-3) is routine. If t and u are weight elements then,
up to inversion, u must equal gt for