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Symplectic structures from Lefschetz pencils
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Abstract A symplectic structure is canonically constructed on any mani-
fold endowed with a topological linear k–system whose fibers carry suitable
symplectic data. As a consequence, the classification theory for Lefschetz
pencils in the context of symplectic topology is analogous to the correspond-
ing theory arising in differential topology.

AMS Classification 57R17

Keywords Linear system, vanishing cycle, monodromy

1 Introduction

There is a classical dichotomy between flexible, topological objects such as
smooth manifolds, and rigid, geometric objects such as complex algebraic vari-
eties. Symplectic manifolds lie somewhere between these two extremes, raising
the question of whether they should be considered as fundamentally topological
or geometric. One approach to this question can be traced back to Lefschetz,
who attempted to bridge the gap between topology and algebraic geometry by
introducing topological (fibrationlike) structures now called Lefschetz pencils
on any algebraic variety. These structures and more general linear systems can
also be defined in the setting of differential topology, where they can be found
on many manifolds that do not admit algebraic structures, and provide deep
information about the topology of the underlying manifolds. It is now becom-
ing apparent that the appropriate context for studying linear systems is not
algebraic geometry, but a larger context that includes all symplectic manifolds.
Every closed symplectic manifold (up to deformation) admits linear 1–systems
(Lefschetz pencils) [4] and 2–systems [3], and it seems reasonable to expect
linear k–systems for all k . Conversely, linear (n− 1)–systems on smooth 2n–
manifolds determine symplectic structures [5]. In this paper, we show that
for any k , a linear k–system, endowed with suitable symplectic data on the
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fibers, determines a symplectic structure on the underlying manifold (Theo-
rem 2.3). We then apply this to the study of Lefschetz pencils, to provide a
framework in which symplectic structures appear much more topological than
algebrogeometric. While Lefschetz pencils in the algebrogeometric world carry
delicate algebraic structure, topological Lefschetz pencils have a classification
theory expressed entirely in terms of embedded spheres and a diffeomorphism
group of the fiber. The main conclusion of this article (Theorem 3.3) is that
symplectic Lefschetz pencils have an analogous classification theory in terms of
Lagrangian spheres and a symplectomorphism group of the fiber. That is, the
subtleties of symplectic geometry do not interfere with a topological approach
to classification.

To construct a prototypical linear k–system on a smooth algebraic variety X ⊂
CPN of complex dimension n, simply choose a linear subspace A ⊂ CPN of
codimension k + 1, with A transverse to X . The base locus B = X ∩ A is a
complex submanifold of X with codimension k + 1. The subspace A ⊂ CPN
lifts to a codimension–(k + 1) linear subspace Ã ⊂ CN+1 , and projection to
CN+1/Ã ∼= Ck+1 descends to a holomorphic map CPN − A → CPk whose
restriction will be denoted f : X − B → CPk . The fibers Fy = f−1(y) ∪ B of
this linear k–system are the intersections of X with the codimension–k linear
subspaces of CPN containing A. The transversality hypothesis guarantees that
B ⊂ X has a tubular neighborhood V with a complex vector bundle structure
π : V → B such that f restricts to projectivization Ck+1 − {0} → CPk (up to
action by GL(k + 1,C)) on each fiber.

To generalize this structure to a smooth 2n–manifold X , we first need to re-
lax the holomorphicity conditions. Recall that an almost-complex structure
J : TX → TX on X is a complex vector bundle structure on the tangent bun-
dle (with each Jx : TxX → TxX representing multiplication by i). This is much
weaker than a holomorphic structure on X . For our purposes, it is sufficient to
assume J is continuous (rather than smooth). We impose such a structure on
X , but rather than requiring f : X−B → CPk to be J –holomorphic (complex
linear on each tangent space), it suffices to impose a weaker condition. Let ωstd

denote the standard (Kähler) symplectic structure on CPk , normalized so that∫
CP1 ωstd = 1. (Recall that a symplectic structure is a closed 2–form that is

nondegenerate as a bilinear form on each tangent space.) We require J on X
to be (ωstd, f)–tame in the following sense:

Definition 1.1 [5] For a C1 map f : X → Y and a 2–form ω on Y , an
almost-complex structure J on X is (ω, f)–tame if f∗ω(v, Jv) > 0 for all
v ∈ TX − ker df .
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In the special case f = idX , this reduces to the standard notion of J being ω–
tame. In that case, imposing the additional condition that ω(Jv, Jw) = ω(v,w)
for all x ∈ X and v,w ∈ TxX gives the notion of ω–compatibility. For example,
the standard complex structure on CPk is ωstd–compatible, so the standard
complex structure on our algebraic prototype X ⊂ CPN is (ωstd, f)–tame for
f : X−B → CPk as above. For f = idX , the ω–tameness condition (unlike ω–
compatibility) is open, ie preserved under small perturbations of ω and J , and a
closed ω taming some J is automatically symplectic (since it is nondegenerate:
every nonzero v ∈ TX pairs nontrivially with something, namely Jv). Such
pairs ω and J determine the same orientation on X . In general, the (ω, f)–
tameness condition is preserved under taking convex combinations of forms ω
(for fixed J, f ). If J is (ω, f)–tame, then each ker dfx ⊂ TxX is a J –complex
subspace (characterized as those v ∈ TxX for which f∗ω(v, Jv) = 0), so away
from critical points each f−1(y) is a J –complex submanifold of X .

We can now define linear systems on smooth manifolds:

Definition 1.2 For k ≥ 1, a linear k–system (f, J) on a smooth, closed 2n–
manifold X is a closed, codimension–2(k + 1) submanifold B ⊂ X , a smooth
f : X − B → CPk , and a continuous almost-complex structure J on X with
J |X−B (ωstd, f)–tame, such that B admits a neighborhood V with a (smooth,
correctly oriented) complex vector bundle structure π : V → B for which f is
projectivization on each fiber.

For each y ∈ CPk , the fiber Fy = f−1(y) ∪ B is a closed subset of X whose
intersection with V is a smooth, codimension–2k submanifold. Fy is a J –
holomorphic submanifold away from the critical points of f , since J is (ωstd, f)–
tame on X−B and continuous at B . The complex orientation of Fy agrees with
the preimage orientation induced from the complex orientations of X and CPk .
The base locus B = Fy ∩ Fy′ (y′ 6= y ∈ CPk ) is J –holomorphic. The complex
orientation of B , which in the transverse case k = 1 is also the intersection
orientation of Fy ∩F ′y , determines the “correct” orientation for the fibers of π .
Later (Lemma 2.1) we will verify that the complex bundle structure on V can
be assumed to come from J on TX|B by the Tubular Neighborhood Theorem.

Our first goal is to construct symplectic structures using linear k–systems. This
was already achieved in [5] for hyperpencils, which are linear (n − 1)–systems
endowed with some additional structure taken from the algebraic prototype. It
was shown that every hyperpencil determines a unique symplectic form up to
isotopy. (Symplectic forms ω0 and ω1 on X are isotopic if there is a diffeomor-
phism ψ : X → X isotopic to idX with ψ∗ω0 = ω1 .) The proof crucially used
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the fact that fibers of linear (n− 1)–systems are oriented surfaces (away from
the critical points) — note that by Moser’s Theorem [9] every closed, connected,
oriented surface admits a unique symplectic form (ie area form) up to isotopy
and scale. For k < n − 1, the fibers will have higher dimension, so symplectic
forms on them need neither exist nor be unique, and we must hypothesize exis-
tence and some compatibility of symplectic structures on the fibers. Similarly,
almost-complex structures exist essentially uniquely on oriented surfaces, so the
required almost-complex structure on a hyperpencil can be essentially uniquely
constructed, given only a local existence hypothesis at the critical points. For
higher dimensional fibers, there seems to be no analogous procedure, requiring
us to include a global almost-complex structure in the defining data of a linear
k–system. (Consider the projection S2×S4 → S2 which can be made holomor-
phic locally, but whose fibers admit no almost-complex structure.) The main
result for constructing symplectic forms on linear k–systems is Theorem 2.3.
The statement is rather technical, but can be informally summed up as follows:

Principle 1.3 For a linear k–system (f, J) on X , suppose that the fibers ad-
mit J –taming symplectic structures (suitably interpreted at the critical points),
and that these can be chosen to fit together suitably along B and in cohomology.
Then (f, J) determines an isotopy class of symplectic forms on X .

The isotopy class of forms can be explicitly characterized (Addenda 2.4 and
2.6).

Our main application concerns Lefschetz pencils on smooth manifolds. These
are structures obtained by generalizing the generic algebraic prototype of linear
1–systems.

Definition 1.4 A Lefschetz pencil on a smooth, closed, oriented 2n–manifold
X is a closed, codimension–4 submanifold B ⊂ X and a smooth f : X −B →
CP1 such that

(1) B admits a neighborhood V with a (smooth, correctly oriented) complex
vector bundle structure π : V → B for which f is projectivization on
each fiber,

(2) for each critical point x of f , there are orientation-preserving coordinate
charts about x and f(x) (into Cn and C, respectively) in which f is
given by f(z1, . . . , zn) =

∑n
i=1 z

2
i , and

(3) f is 1–1 on the critical set K ⊂ X .
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Condition (2) implies K is finite, so (3) can always be achieved by a perturba-
tion of f . A Lefschetz pencil, together with an (ωstd, f)–tame almost-complex
structure J , is a linear 1–system (although the latter can have more compli-
cated critical points). Such a Lefschetz 1–system can be constructed as before
on any smooth algebraic variety by using a suitably generic linear subspace
A ∼= CPN−2 ⊂ CPN . On the other hand, projection S2×S4 → S2 = CP1 gives
a (trivial) Lefschetz pencil admitting no such J .

The topology of Lefschetz pencils is understood at the most basic level, eg [8]
or (in dimension 4) [7]. We first consider the case with B = ∅, or Lefschetz
fibrations f : X2n → S2 . Choose a collection A =

⋃
Aj ⊂ S2 of embedded arcs

with disjoint interiors, connecting the critical values to a fixed regular value
y0 ∈ S2 . Over a sufficiently small disk D ⊂ S2 containing y0 , we see the trivial
bundle D × Fy0 → D . Expanding D to include an arc Aj adds an n–handle
along an (n − 1)–sphere lying in a fiber. Thus, if we expand D to include
A, the result is specified by a cyclically ordered collection of vanishing cycles,
ie embeddings Sn−1 → Fy0 with suitable normal data. However, this ordered
collection depends on our choice of A. Any change in A can be realized by
a sequence of Hurwitz moves, moving some arc Aj past its neighbor Aj±1 .
The effect of a Hurwitz move on the ordered collection of vanishing cycles can
be easily described using the monodromy of the fibration around Aj±1 , which
is an explicitly understood element of π0 of the diffeomorphism group D of
Fy0 . (See Section 3.) Over the remaining disk S2 − int D , we again have a
trivial bundle, so the product of the monodromies of the vanishing cycles must
be trivial, and then the Lefschetz fibrations extending fixed data over D are
classified by π1(D). The correspondence with π1(D) is determined by fixing an
arc from y0 to ∂D (avoiding A) and a trivialization of f over ∂D . Hurwitz
moves involving the new arc will induce additional equivalences. For the case
B 6= ∅, we blow up B to obtain a Lefschetz fibration, then apply the previous
analysis. However, extra care is required to preserve the blown up base locus
and its normal bundle. We must take D to be the group of diffeomorphisms
of F fixing B and its normal bundle, and the product of monodromies will
now be a nontrivial normal twist δ around B . We state the result carefully as
Proposition 3.1. For now, we sum up the discussion as follows:

Principle 1.5 To classify Lefschetz pencils with a fixed fiber and base locus,
first classify, up to Hurwitz moves, cyclically ordered collections of vanishing cy-
cles for which the product of monodromies is δ ∈ π0(D). For any fixed choice of
arcs and vanishing cycles, the resulting Lefschetz pencils are classified by π1(D).
The final classification results from modding out the effects of Hurwitz moves
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on the last fiber. (One may also choose to mod out by self-diffeomorphisms of
the fiber (Fy0 , B).)

Of course, this is an extremely difficult problem in general, but at least we know
where to start.

If X is given a symplectic structure ω that is symplectic on the fibers, then
the above description can be refined. The vanishing cycles will be Lagrangian
spheres (ie ω restricts to 0 on them), and the monodromies will be symplecto-
morphisms (diffeomorphisms preserving ω) [2, 10, 11]. The discussion of arcs
and Hurwitz moves proceeds as before, where D is replaced by a suitable group
DωF of symplectomorphisms of the fiber. However, symplectic forms are a pri-
ori global analytic objects (satisfying the partial differential equation dω = 0),
so for symplectic forms on X compatible with a given Lefschetz pencil, one
might expect both the existence and uniqueness questions to involve delicate
analytic invariants. Our main result (Theorem 3.3) is that no such difficulties
arise, provided that we choose our definitions with suitable care, for example
requiring [ω] ∈ H2

dR(X) to be Poincaré dual to the fibers (as is the case for
Donaldson’s pencils [4]). We obtain:

Principle 1.6 The classification of (suitably defined) symplectic Lefschetz
pencils is purely topological, ie analogous to that of Principle 1.5. More pre-
cisely, for a suitable symplectic manifold pair (F,B), let i∗ denote the π1–
homomorphism induced by inclusion DωF ⊂ D . Then for fixed (suitably sym-
plectic) data over D as preceding Principle 1.5, a given Lefschetz pencil admits
a suitably compatible symplectic structure if and only if it is classified by an
element of Im i∗ . Then such structures are classified up to suitable isotopy
by π2(D/DωF ), and by ker i∗ if symplectomorphisms preserving f and fixing
f−1(D) are also allowed.

This is the same sort of topological classification one obtains for extending
bundle structures over a 2–cell: Given groups H ⊂ G, a space Y ∪2–cell, and a
fixed H –bundle over Y (on which we do not allow automorphisms), G–bundle
and H –bundle extensions (if they exist) are classified by π1(G) ∼= π2(BG) and
π1(H) ∼= π2(BH), respectively. Inclusion i : H → G induces an exact sequence

π2(G/H) ∂∗−−→ π1(H) i∗−−→ π1(G)

with i∗ corresponding to the forgetful map from H –structures to G–structures.
Thus Im i∗ classifies G–extensions admitting H –reductions, and ker i∗ = Im ∂∗
classifies H –reductions of a fixed G–extension as abstract H –extensions. How-
ever, different H –reductions can be abstractly H –isomorphic via a G–bundle
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automorphism supported over the 2–cell, and if we disallow such equivalences,
H –reductions of a fixed G–extension are classified by π2(G/H).

2 Linear systems

In this section, we show how to construct symplectic structures from linear
systems with suitable symplectic data along the fibers (Principle 1.3). Our
construction is modeled on the corresponding method for hyperpencils [5, The-
orem 2.11], but is complicated by the fact that the base locus need no longer
be 0–dimensional. We must first gain more control of the normal data along
B . Given a linear k–system (f, J) on X as in Definition 1.2, let ν → B be any
J –complex subbundle of TX|B complementary to TB . (This exists since B
is a J –holomorphic submanifold of X .) Then the bundle structure π : V → B
guaranteed on a neighborhood of B (by Definition 1.2) can be arranged (after
precomposing π with an isotopy preserving f ) to have its fibers tangent to ν
along B .

Lemma 2.1 For ν and π as above, the complex bundle structure on π (given
by Definition 1.2) restricts to J on ν .

Proof Near B , extend TB to a J –complex subbundle H of TX complemen-
tary to the fibers of π and tangent to the fibers Fy of f . Then J induces
a complex structure near B on TX/H . The latter bundle is canonically R–
isomorphic to the bundle of tangent spaces to the fibers of π ; let J ′ denote the
resulting almost-complex structure on the fibers of π . Clearly, J ′ = J on ν , so
it suffices to show that J ′ agrees with the complex structure of π on ν . This
follows immediately from [5, Lemma 4.4(b)], which is restated below. (Note
that for x /∈ B , Hx lies in ker dfx , so J ′ is (ωstd, f)–tame at x since J is.)

Lemma 2.2 [5] If f : Cn − {0} → CPn−1 denotes projectivization, n ≥
2, and J is a continuous (positively oriented) almost-complex structure on a
neighborhood W of 0 in Cn , with J |W − {0} (ωstd, f)–tame, then J |T0Cn is
the standard complex structure.

The main idea of the proof is that J |T0Cn has the same complex lines as the
standard structure (since the complex lines of Cn are J –complex by (ωstd, f)–
tameness), and a linear complex structure is determined by its complex lines.

We can now state the main theorem of this section. By Lemma 2.1, the canon-
ical identification of the vector bundle π : V → B with the normal bundle ν
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of its 0–section is a J –complex isomorphism. This complex bundle is projec-
tively trivialized by f (in Definition 1.2), so we can reduce the structure group
of ν to U(1) (acting diagonally on Ck+1) by choosing a suitable Hermitian
structure on ν . This Hermitian structure is canonically determined up to a
positive scalar function. Let h denote the hyperplane class in H2

dR(CPk) dual
to [CPk−1], and let cf ∈ H2

dR(X) correspond to f∗h ∈ H2
dR(X −B) under the

obvious isomorphism. (Recall codimB ≥ 4.)

Theorem 2.3 Let (f, J) be a linear k–system on X . Choose a J –complex
subbundle ν ⊂ TX|B complementary to TB , and a Hermitian form on ν as
above. Suppose there is a symplectic form ωB on B taming J |B , with [ωB ] =
cf |B ∈ H2

dR(B). Then ωB extends to a closed 2–form ζ on X representing cf ,
with ν and TB ζ–orthogonal, and ζ agreeing with the given Hermitian form
on each 1–dimensional J –complex subspace of ν . Given such an extension ζ ,
suppose that each Fy , y ∈ CPk , has a neighborhood Wy in X with a closed
2–form ηy on Wy taming J | ker dfx for all x ∈Wy−B , agreeing with ζ on each
TFz|B , z ∈ CPk , and with [ηy−ζ] = 0 ∈ H2

dR(Wy, B). Then (f, J) determines
an isotopy class Ω of symplectic forms on X representing cf ∈ H2

dR(X).

Each ker dfx is J –complex, so we define ηy–tameness on it in the obvious
way. The class [ηy − ζ] ∈ H2

dR(Wy, B) is defined since ηy − ζ vanishes on B by
hypothesis. This class vanishes automatically if [ηy] = cf |Wy and the restriction
map H1

dR(Wy)→ H1
dR(B) is surjective; however surjectivity always fails when

(for example) B is a surface of nonzero genus and a generic (4–dimensional)
fiber has b1 < 2.

For our subsequent application to Lefschetz pencils, we will need an explicit
characterization of Ω and detailed properties of some of its representatives.
The characterization below is complicated by our need to perturb J during the
proof. A simpler version when no perturbation is necessary will be given as
Addendum 2.6 after the required notation is established.

Addendum 2.4 Fix a metric on X and ε > 0. Let Jε be the C0–space of
continuous almost-complex structures J ′ on X that are ε–close to J , agree
with J on TX|B and outside the ε–neighborhood U of B , and make each
Fy ∩ U J ′–complex. Fix a regular value y0 of f . Then Ω contains a form ω
taming an element of Jε and extending ωB , such that J is ω–compatible on
ν , which is ω–orthogonal to B , and ω|Fy0 is isotopic to ηy0 |Fy0 by an isotopy
ψs of the pair (Fy0 , B) that is symplectic on (B,ωB). For ε sufficiently small,
any two forms representing cf and taming elements of Jε are isotopic, so these
latter conditions uniquely determine Ω.
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Theorem 2.3 was designed for compatibility with [5, Theorem 3.1], which was
the main tool for putting symplectic structures on hyperpencils (and domains of
locally holomorphic maps [6]). The proof is based on an idea of Thurston [12].
We state and prove a version of the theorem which has been slightly modified,
primarily to correct for the failure of H1–surjectivity observed following The-
orem 2.3. We will ultimately apply the theorem to a linear system projection
f : X−B → CPk , working relative to a normal disk bundle C of B (intersected
with X −B ).

Theorem 2.5 Let f : X → Y be a smooth map between manifolds, and let
C be a codimension–0 submanifold (with boundary) that is closed in X , with
X − intC compact. Suppose that ωY is a symplectic form on Y , and J is a
continuous, (ωY , f)–tame almost-complex structure on X . Let ζ be a closed
2–form on X taming J on C . Suppose that for each y ∈ Y , f−1(y) ∪ C has
a neighborhood Wy in X , with a closed 2–form ηy on Wy agreeing with ζ on
C , such that [ηy − ζ] = 0 ∈ H2

dR(Wy, C) and such that ηy tames J | ker dfx
for each x ∈ Wy . Then there is a closed 2–form η on X agreeing with ζ on
C , with [η] = [ζ] ∈ H2

dR(X), and such that for all sufficiently small t > 0 the
form ωt = tη+f∗ωY on X tames J (and hence is symplectic). For preassigned
ŷ1, . . . , ŷm ∈ Y , we can assume η agrees with ηŷj near each f−1(ŷj).

Proof For each y ∈ Y , [ηy − ζ] = 0 ∈ H2
dR(Wy, C), so we can write ηy =

ζ + dαy for some 1–form αy on Wy with αy|C = 0. Since each X −Wy is
compact, each y ∈ Y has a neighborhood disjoint from f(X − Wy). Thus,
we can cover Y by open sets Ui , with each f−1(Ui) contained in some Wy ,
and each ŷj lying in only one Ui . Let {ρi} be a subordinate partition of unity
on Y . The corresponding partition of unity {ρi ◦ f} on X can be used to
splice the forms αy ; let η = ζ + d

∑
i(ρi ◦ f)αyi . Clearly, η is closed with

[η] = [ζ] ∈ H2
dR(X), η = ζ on C , and η = ηŷj near f−1(ŷj), so it suffices to

show that ωt tames J (t > 0 small). In preparation, perform the differentiation
to obtain η = ζ +

∑
i(ρi ◦ f)dαyi +

∑
i(dρi ◦ df) ∧ αyi . The last term vanishes

when applied to a pair of vectors in ker dfx , so on each ker dfx we have η =
ζ+
∑

i(ρi ◦f)dαyi =
∑

i(ρi ◦f)ηyi . By hypothesis, this is a convex combination
of taming forms, so we conclude that J | ker dfx is η–tame for each x ∈ X .

It remains to show that there is a t0 > 0 for which ωt(v, Jv) > 0 for every
t ∈ (0, t0) and v in the unit sphere bundle Σ ⊂ TX (for any convenient
metric). But

ωt(v, Jv) = tη(v, Jv) + f∗ωY (v, Jv).

Since J is (ωY , f)–tame, the last term is positive for v /∈ ker df and zero oth-
erwise. Since J | ker df is η–tame, the continuous function η(v, Jv) is positive
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for all v in some neighborhood U of ker df ∩ Σ in Σ. Similarly, for v ∈ Σ|C ,
η(v, Jv) = ζ(v, Jv) > 0. Thus, ωt(v, Jv) > 0 for all t > 0 when v ∈ U ∪ Σ|C .
On the compact set Σ|(X − intC) − U containing the rest of Σ, η(v, Jv) is
bounded and the last displayed term is bounded below by a positive constant,
so ωt(v, Jv) > 0 for 0 < t < t0 sufficiently small, as required.

Proof of Theorem 2.3 and addenda We begin by producing the desired
symplectic structure near B , via a local model generalizing the case dimB = 0
from [5]. Assume the fibers of π are tangent to ν . Let L0 → B denote the
Hermitian line bundle obtained by restricting π to a fixed Fy , so L0 and ν are
associated to the same principal U(1)–bundle πP : P → B . Then c1(L0) =
cf |B = [ωB] (since a generic section of L0 is obtained by perturbing B ∪
f−1(CPk−1) ⊂ X and intersecting it with Fy ). Let iβ0 on P be a U(1)–
connection form for L0 with Chern form ωB , so − 1

2πdβ0 = π∗PωB . For r > 0,
let Sr ⊂ V denote the sphere bundle of radius r (for the Hermitian metric).
The map (π, f) : V − B → B × CPk exhibits each Sr as a principal U(1)–
bundle. The corresponding line bundle L → B × CPk restricts to L0 over
B and to the tautological bundle Ltaut over CPk . Since H2(B × CPk) ∼=
H2(B)⊕ (H0(B)⊗H2(CPk)) (over Z), we conclude that L ∼= π∗1L0 ⊗ π∗2Ltaut .
Fix this isomorphism, and let iβ be the U(1)–connection form on Sr induced
by iβ0 on L0 and the tautological connection on Ltaut . Then the Chern form
of iβ is given by − 1

2πdβ = π∗ωB − f∗ωstd (pushed down to B × CPk ). Define
a 2–form ωV on V −B by

ωV = (1− r2)π∗ωB + r2f∗ωstd +
1

2π
d(r2) ∧ β.

An easy calculation shows that dωV = 0, and it is routine to verify [5] that
ωV restricts to the given Hermitian form on each fiber of π (up to a constant
factor of π , arising from our choice of normalization of ωstd , which can be
eliminated by a constant rescaling of r). Let H be the smooth distribution
on V consisting of TB on B together with its β–horizontal lifts to each Sr .
Clearly, H is tangent to each Sr and Fy , so it is ωV –orthogonal to the fibers
of π . Since ωV |H = (1−r2)π∗ωB extends smoothly over B , as does ωV on the
π–fibers, ωV extends smoothly to all of V , with ωV |B = ωB . If JV denotes
the almost-complex structure on V obtained by lifting J |B to H and summing
with the complex bundle structure on the fibers of π , then JV is ωV –tame
for r < 1. (Check this separately on the π–fibers and their ωV –orthogonal
complements H .) Note that JV = J on TX|B (Lemma 2.1).

We can now state the remaining addendum:
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Addendum 2.6 If J agrees with JV near B for some choice of π : V → B
and β0 as above, then Ω has the simpler characterization that it contains forms
ω taming J with [ω] = cf . In fact, there is a J –taming form ω ∈ Ω satisfying
all the conclusions of Addendum 2.4 with ν induced by π , and such that the
given forms ψ∗sηy0 on Fy0 between ηy0 and ω all tame J .

To construct the required form ζ , choose a form ζ0 representing cf ∈ H2
dR(X).

Then [ωV − ζ0] = 0 ∈ H2
dR(V ), so there is a 1–form α on V with dα =

ωV − ζ0 . Let ζ = ζ0 + d(ρα), where ρ : X → R has support in V and ρ = 1
near B . Then ζ = ωV near B , so ζ satisfies the required conditions for the
theorem. If ζ0 was already the hypothesized extension of ωB , satisfying these
conditions and suitably compatible with forms ηy , then ζ0 = ωV = ζ on each
TFz|B ∼= TB ⊕ L0 , so ζ still agrees with each ηy as required along B . We
also could have arranged α|B = 0 since H2

dR(V,B) = 0, so that we still have
[ηy − ζ] = 0 ∈ H2

dR(Wy, B). Thus, we can assume the given ζ agrees with ωV
near B .

Since we must perturb J near B , we verify that for sufficiently small ε, every
J ′ ∈ Jε as in Addendum 2.4 is (ωstd, f)–tame on X −B . Choose ε so that the
ε–neighborhood U of B in X (in the given metric) has closure in V , and let
Σ ⊂ TX be the compact subset consisting of unit vectors over cl(U) that are
ωV –orthogonal to fibers Fy . For J ′ ∈ Jε , each ker dfx = TxFf(x) over U −B is
J ′–complex, so it suffices to show that f∗ωstd(v, J ′v) > 0 for v ∈ Σ∩T (U−B).
We replace f∗ωstd by ωV , since these agree on such vectors v (which are tangent
to the π–fibers and Sr) up to the scale factor r2 > 0. But ωV (v, Jv) > 0 for
v ∈ Σ (since J equals JV on TX|B and J is (ωstd, f)–tame elsewhere), so
the corresponding inequality holds for all J ′ ∈ Jε for ε sufficiently small, by
compactness of Σ and openness of the taming condition.

We must also modify the pairs (Wy, ηy) so that for all sufficiently small ε,
every J ′ ∈ Jε is ηy–tame on ker dfx for each y ∈ CPk and x ∈ Wy − B .
Shrink each Wy so that ηy is defined on cl(Wy). Each Wy contains f−1(Uy)
for some neighborhood Uy of y (cf proof of Theorem 2.5). After passing to a
finite subcover of {Uy}, we can assume {Wy} is finite, so the pairs (Wy, ηy) for
all y ∈ CPk are taken from a finite set, and ηy0 |Fy0 is preserved. Now for each
ηy , ηy(v, Jv) > 0 on the compact space of unit tangent vectors to fibers Fy in
cl(Wy ∩ V ). (Note that on TX|B , ζ tames J .) Thus, each J ′ ∈ Jε has the
required ηy–taming for ε sufficiently small.

Next we splice our local model ωV and JV into each ηy and J . For y ∈
CPk , ηy equals ζ on TFy|B , so it tames J there and hence is symplectic
on Fy near B . Thus, Weinstein’s symplectic tubular neighborhood theorem
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[13] on Fy produces an isotopy of Fy fixing B (pointwise) and supported in
a preassigned neighborhood of B , sending ηy|Fy to a form η′y agreeing with
ζ = ωV near B on Fy . To extend η′y to a neighborhood of Fy in X , first
extend it as ωV near B and as ηy farther away, leaving a gap in between
(inside V ). Let r : Wy →Wy be a smooth map agreeing with idWy away from
the gap and on Fy , collapsing Wy onto Fy near the gap. Then r∗η′y is a closed
form near Fy extending η′y (cf [5]). Now recall that the vector field generating
Weinstein’s isotopy vanishes to second order on B . (It is symplectically dual
to the 1–form −

∫ 1
0 π
∗
t (Xt (ηy− ζ)) dt, where πt is fiberwise multiplication by

t, and the radial vector field Xt = d
dtπt vanishes to first order on B , as does

ηy − ζ .) Thus we can assume our isotopy is arbitrarily C1–small (by working
in a sufficiently small neighborhood of B ), so we can replace ηy on Wy by
r∗η′y on a sufficiently small neighborhood of Fy without disturbing our original
hypotheses. In particular, we can assume J is still ηy–tame on each ker dfx
(or similarly for all J ′ in a preassigned compact subset of Jε with ε as in the
previous paragraph). Since we have shrunk the sets Wy , the set {Wy} may
again be infinite, but we can reduce to a finite subcollection as before. Then
there is a single neighborhood W of B in X , contained in

⋂
Wy , on which each

ηy agrees with ωV and ζ . Since ηy0 |Fy0 has only been changed by a C1–small
isotopy fixing B , its use in the addenda is unaffected.

To complete splicing the local model, we perturb J to J ′ agreeing with JV near
B . Under the hypothesis of Addendum 2.6, we simply set J ′ = J . Otherwise,
we invoke [5, Corollary 4.2], which was adapted from [1, page 100].

Lemma 2.7 [5] For any finite dimensional, real vector space V , there is a
canonical retraction j(A) = A(−A2)−1/2 from the open subset of operators in
Aut(V ) without real eigenvalues to the set of linear complex structures on V .
For any linear T : V → W with TA = BT , we have Tj(A) = j(B)T (when
both sides are defined).

Since J = JV on TX|B , Jt = j((1 − t)J + tJV ) is well-defined for 0 ≤ t ≤ 1
near B , and each Fy is Jt–complex there (as seen by letting T be inclusion
TxFy → TxX ). For any ε > 0, we can thus define J ′ ∈ Jε to be Jρ , for
ρ : X → I supported sufficiently close to B and with ρ ≡ 1 near B , extended
as J away from supp ρ. Then for ε sufficiently small, the preceding three
paragraphs show that (f, J ′) is a linear k–system satisfying the hypotheses of
Theorem 2.3 with J ′, ζ and each ηy agreeing with the standard model on a
suitably reduced W .

We now construct a symplectic form ω on X as in [5]. First we apply Theo-
rem 2.5 to f : X −B → CPk and J ′ , with C ⊂W a normal disk bundle to B
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(intersected with X−B ). Note that [ηy− ζ] ∈ H2
dR(Wy−B,C) ∼= H2

dR(Wy, B)
vanishes as required. We obtain a closed 2–form η on X−B agreeing with ωV
on C (hence extending over X ), with [η] = cf ∈ H2

dR(X) and η = ηy0 on Fy0 ,
such that ωt = tη + f∗ωstd tames J ′ on X − B for t > 0 chosen sufficiently
small. On C , the symplectic form ωt is given by

ωt(r) = t(1− r2)π∗ωB + (1 + tr2)f∗ωstd +
t

2π
d(r2) ∧ β.

Unfortunately, this is singular at B . (Compare the middle term with that of
ωV 6= 0.) However, we can desingularize by a dilation in the manner of [5]:
The radial change of variables R2 = 1+tr2

1+t shows that ωV (R) = 1
1+tωt(r), so

there is a radial symplectic embedding ϕ : (C, 1
1+tωt) → (V, ωV ) onto a collar

surrounding the bundle R2 ≤ 1
1+t . Let ϕ0 : V → V be a radially symmetric

diffeomorphism covering idB and agreeing with ϕ near ∂C . Let ω be ϕ∗0ωV
on C ∪B and 1

1+tωt elsewhere. These pieces fit together to define a symplectic
form on X , since ϕ is a symplectic embedding. (This construction is equivalent
to blowing up B , applying Theorem 2.5 with C = ∅ to the resulting singular
fibration, and then blowing back down, but it avoids technical difficulties asso-
ciated with taming on the blown up base locus.)

The form ω satisfies the properties required by Theorem 2.3 and its addenda:
To compute the cohomology class [ω] ∈ H2

dR(X), it suffices to work outside
C . Then [ω] = 1

1+t [ωt] = 1
1+t(tcf + f∗[ωstd]) = cf as required, since [ωstd] =

h ∈ H2
dR(CPk). For Addendum 2.4, note that ω obviously extends ωB and is

compatible with J on ν , which is ω–orthogonal to B . Outside C , we already
know that ω = 1

1+tωt tames J ′ ∈ Jε , so taming need only be checked for
J ′ = JV on C ∪ B with ω = ϕ∗0ωV , and this is easy on TX|B = TB ⊕ ν . For
C , consider the ωV –orthogonal, JV –complex splitting T (V −B) = P⊕P⊥⊕H ,
where P and P⊥ are tangent and normal, respectively, to the complex lines
through B in the bundle structure π . The radial map ϕ0 preserves the splitting
but scales each summand by a different positive function. (Although the fibers
of P are scaled differently along their two axes, ϕ∗0 only rescales ωV |P since it is
an area form.) Now JV is ω–tame on C since it is ωV –tame on each summand.
To verify that ω|Fy0 is pairwise isotopic to ηy0 |Fy0 , recall that η|Fy0 = ηy0 |Fy0 ,
so ω|Fy0 = t

1+tηy0 |Fy0 outside C . When t→∞ we have R→ r and ϕ0 → idV ,
so ω → η . Note that η and ω (for all t > 0) are symplectic on Fy0 , although
not necessarily on X (unless t is small). The required isotopy now follows from
Moser’s method [9] applied pairwise to (Fy0 , B): Starting from ω as constructed
above with t sufficiently small, let ω̃s , s = 1

t ∈ [0, a], be the corresponding
family of cohomologous symplectic forms on Fy0 obtained by letting t → ∞
(so ω̃a = ω|Fy0 and ω̃0 = ηy0 |Fy0 ). Moser gives a family αs of 1–forms on Fy0
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with dαs = d
ds ω̃s , then flows by the vector field Ys for which ω̃s(Ys, ·) = −−αs

to obtain an isotopy with ψ∗sηy0 = ω̃s . If we first subtract dgs from αs , where
gs : Fy0 → R is obtained by pushing αs : TFy0 → R from TB⊥ω̃s down to
a tubular neighborhood of B and tapering to 0 away from B , then we can
assume αs|TB⊥ω̃s = 0. Thus Ys is ω̃s–orthogonal to TB⊥ω̃s , so Ys is tangent
to B , and its flow ψs preserves B as required, completing verification of the
conditions of Addendum 2.4. (The isotopy restricts to symplectomorphisms
on B since each ω̃s|B = ωB .) Addendum 2.6 now follows immediately from
the observation that the forms ω̃s = ψ∗sηy0 on Fy0 all tame J = J ′ in this
case. (For the characterization of Ω, note that any two cohomologous forms
taming a fixed J are isotopic by convexity of the taming condition and Moser’s
Theorem.)

To complete the proof of Theorem 2.3 and Addendum 2.4, we show that for
sufficiently small δ , any two forms ωu , u = 0, 1, taming structures Ju ∈ Jδ and
representing cf ∈ H2

dR(X), are isotopic, implying that Ω is canonically defined.
(Note that for 0 < δ < ε we have J ∈ Jδ ⊂ Jε , so Ω is then independent of
sufficiently small ε > 0 and agrees with its usage in Addendum 2.6. Metric
independence follows, since for metrics g, g′ on X and ε > 0 there is a δ > 0
with Jδ(g′) ⊂ Jε(g).) Let Ju = j((1−u)J0 +uJ1), 0 ≤ u ≤ 1. For δ sufficiently
small, this is a well-defined path from J0 to J1 , and each Ju satisfies the defining
conditions for Jδ except possibly for δ–closeness to J . For δ sufficiently small,
there is a compact subset K of the bundle Aut(TX)→ X lying in the domain
of j , containing a δ–neighborhood of the image of the section J . By uniform
continuity of j|K , we can choose δ ∈ (0, ε) such that Ju must be a path in
Jε , with ε small enough to satisfy all of the previous requirements. Now for
fixed J0, J1 ∈ Jδ , we can assume the forms ηy were constructed as above to
agree with ωV on W and tame each Ju| ker dfx , 0 ≤ u ≤ 1. Perturb the entire
family as before to J ′u ∈ Jε , 0 ≤ u ≤ 1, with each J ′u agreeing with JV on
a fixed W . For a small enough perturbation, J ′u will be ωu–tame, u = 0, 1.
For 0 < u < 1, the previous argument produces symplectic forms ωu taming
J ′u . The family ωu , 0 ≤ u ≤ 1, need not be continuous. However, each ωu
tames J ′v for v in a neighborhood of u, so splicing by a partition of unity on
the interval I produces (by convexity of taming) a smooth family ω′u taming
J ′u , 0 ≤ u ≤ 1, with ω′u = ωu for u = 0, 1. Applying Moser’s Theorem to this
family of cohomologous symplectic forms gives the required isotopy.
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3 Lefschetz pencils

We now return to the investigation of Lefschetz pencils (Definition 1.4) and
complete the discussion of their classification theory (Proposition 3.1, cf Princi-
ple 1.5). We then apply the results of the previous section on linear 1–systems,
to show that a similar topological classification theory applies in the symplectic
setting (Theorem 3.3, cf Principle 1.6).

To analyze the topology of a Lefschetz critical point (eg [8]), recall the local
model f : Cn → C, f(z) =

∑n
i=1 z

2
i , given in Definition 1.4(2). To see that a

regular neighborhood of the singular fiber is obtained from that of a regular
fiber by adding an n–handle, note that the core of the n–handle appears in the
local model as the ε–disk Dε in Rn ⊂ Cn . Thus, the handle is attached to the
fiber Fε2 along an embedding Sn−1 ↪→ Fε2 −B whose normal bundle νSn−1 =
−iTSn−1 in the complex bundle TF is identified with T ∗Sn−1 (by contraction
with ωCn ). We will call such an embedding, together with its isomorphism
νSn−1 ∼= T ∗Sn−1 , a vanishing cycle. Regular fibers intersect the local model
in manifolds diffeomorphic to T ∗Sn−1 , and the singular fiber is obtained by
collapsing the 0–section (vanishing cycle) to a point. (The latter assertion
can be seen explicitly by writing the real and imaginary parts of the equation∑
z2
i = 0 as ‖x‖ = ‖y‖, x · y = 0.) The monodromy around the singular fiber

is obtained from the geodesic flow on T ∗Sn−1 ∼= TSn−1 , renormalized to be
2π–periodic near the 0–section (on which the flow is undefined), and tapered
to have compact support [2, 11]. At time π , the resulting diffeomorphism
extends over the 0–section as the antipodal map, defining the monodromy,
which is called a (positive) Dehn twist. (To verify this description, note that
multiplication by eiθ acts as the 2π–periodic geodesic flow on the singular fiber,
and makes f equivariant with respect to e2iθ on the base. Thus the sphere ∂Dε

is transported around the singular fiber by eiθ , returning to its original position
when θ = π , with antipodal monodromy. Away from ∂Dε , the monodromy is
obtained via projection to the singular fiber, where it can be tapered from the
geodesic flow near 0 to the identity outside a compact set by an isotopy.) Given
arcs A =

⋃
Aj in CP1 as in the introduction, connecting each critical value

of a Lefschetz pencil to a fixed regular value, say [1:0], we may interpret all
vanishing cycles and monodromies as occurring on the single fiber F[1:0] . The
disk Dε at each critical point extends to a disk Dj with f(Dj) = Aj and ∂Dj

the vanishing cycle in F[1:0] . Following Lefschetz, we will call such a disk a
thimble, but we also require that each f |Dj : Dj → Aj has a nondegenerate,
unique critical point, and that there is a local trivialization of f near F[1:0] in
which each Dj is horizontal.
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All of the above structure on the local model of a critical point is compati-
ble with suitable symplectic forms. (See [11].) For the standard Kähler form
ωCn , the sphere ∂Dε in Cn is Lagrangian in the symplectic submanifold Fε2 ,
so by Weinstein’s theorem [13] it has a neighborhood symplectomorphic to a
neighborhood of the 0–section in T ∗Sn−1 . This allows Dehn twists to be defined
symplectically by a Hamiltonian flow in T ∗Sn−1−(0–section) [2, 11], determin-
ing the monodromy around the singular fiber up to symplectic (Hamiltonian)
isotopy. The Lagrangian embedding Sn−1 ↪→ Fε2 − B determines a vanishing
cycle, and will be called the Lagrangian vanishing cycle for the critical point. If
ω is an arbitrary Kähler form near 0 on Cn , any small arc Aj from 0 ∈ C (such
as [0, ε2] above) still determines a smooth Lagrangian thimble and vanishing
cycle, by a trick of Donaldson [11, Lemma 1.13]. The disk consists of the trajec-
tories under symplectic parallel transport (ie the flow over Aj ω–normal to the
fibers) that limit to the critical point. If ω is only given to be compatible with
i at 0, this structure still exists. (In fact, ω agrees at 0 with some Kähler form;
after rescaling the coordinates, we may assume the two forms are arbitrarily
close, as are the resulting disks and vanishing cycles. The case of an arbitrary
taming ω is less clear.) For a given Lefschetz pencil f : X − B → CP1 , arcs
A ⊂ CP1 , and symplectic form ω on X that is symplectic on each Fy − K
(where K ⊂ X −B is the critical set as in Definition 1.4(3)), any such disk at
x ∈ K is uniquely determined and uniquely extends to a Lagrangian thimble,
by symplectic parallel transport.

For a closed, oriented manifold pair B ⊂ F of dimensions 2n − 4 and 2n − 2,
respectively, let D = D(F,B) denote the group of orientation-preserving self-
diffeomorphisms of F fixing (pointwise) B and TF |B . If ωF is a symplectic
form on F whose restriction to B is symplectic, let DωF = DωF (F,B) ⊂ D be
the subgroup of symplectomorphisms of F fixing B and TF |B . Let δ ∈ π0(D)
be the element obtained by a 2π counterclockwise rotation of the normal fibers
of B , extended in the obvious way (by tapering to idF ) to a diffeomorphism
of F . In the symplectic case, δ canonically pulls back to δωF ∈ π0(DωF ),
determined by the Hamiltonian flow of a suitable radial function on a tubular
neighborhood of B . Any vanishing cycle in F − B determines a Dehn twist
in π0(D) as described above. In the symplectic case, a Lagrangian embedding
Sn−1 ↪→ F−B determines a symplectic Dehn twist in π0(DωF ), whose image in
π0(D) is generated by the corresponding vanishing cycle. If ω′ is obtained from
ωF by a pairwise diffeomorphism of (F,B), there is an induced isomorphism
Dω′ ∼= DωF sending δω′ to δωF and inducing an obvious correspondence of
symplectic Dehn twists.

Proposition 3.1 Let w = (t1, . . . , tm) be a word in positive Dehn twists
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tj ∈ π0(D), whose product
∏m
j=1 tj equals δ . Then there is a manifold X with

a Lefschetz pencil f whose fiber over [1:0] ∈ CP1 is F ⊂ X , whose base locus
is B , and whose monodromy around the singular fibers (with respect to fixed
arcs A ⊂ CP1 ) is given by w . For a fixed choice of A and vanishing cycles
determining the Dehn twists, such Lefschetz pencils are classified by π1(D).

Proof Choose 0 < θ1 < · · · < θm < 2π . For each j , attach an n–handle
to D2 × F using the given vanishing cycle for tj in {eiθj} × F . We obtain
a singular fibration over D2 , with m singularities as described above, and
monodromy given by w . Since

∏m
j=1 tj = δ is isotopic to idF fixing B (but

rotating its normal bundle clockwise), the fibration over ∂D2 can be identified
with ∂D2×(F,B), and the freedom to choose this identification (without losing
control of TF |B ) is given by π1(D). For any such identification, we can glue on
a copy of D2×F to obtain a Lefschetz fibration f̃ : X̃ → CP1 . This X̃ contains
a canonical copy of CP1 × B , on which f̃ restricts to the obvious projection.
The twist defining δ forces the normal bundle of CP1 × B to restrict to the
tautological bundle on each CP1 × {b}, so we can blow down the submanifold
to obtain the required Lefschetz pencil.

To completely determine the above correspondence between Lefschetz pencils
and π1(D), we must make a choice determining which pencil corresponds to
0 ∈ π1(D). For a fixed Lefschetz pencil, arcs A and vanishing cycles, assume
the disk D ⊂ CP1 containing A is embedded so that 1 ∈ ∂D maps to the central
vertex [1: 0] of A. The monodromy around ∂D is given to us as a product of
Dehn twists, each of which is well-defined up to isotopies supported near its
vanishing cycle. We choose an arc γ in D from this product to the rotation
determining δ . (We are given that such arcs exist.) Since the rotation untwists
to idF by a canonical isotopy of F fixing B , we have now fixed an identification
of the fibration over ∂D with ∂D×(F,B), determining the correspondence with
π1(D). Note that the freedom to change γ is essentially π1(D), so unless we
fix γ , the correspondence is only determined up to translations in π1(D). In
the symplectic setting, we choose γ in DωF similarly, to fix a correspondence
with π1(DωF ). In this case, passing back to the smooth setting results in a
correspondence between pencils and π1(D) that changes with our choice of γ in
DωF only through translation by elements of Im i∗ , where i∗ : π1(DωF )→ π1(D)
is induced by inclusion. In particular, ωF picks out a subcollection of pencils
corresponding to Im i∗ that is independent of our choice of γ in DωF . We will
see that these are precisely the pencils admitting symplectic structures suitably
compatible with ωF . For our symplectic classification, we wish to allow some
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flexibility in the form over the model fiber F = F[1:0] , so we only require it to be
suitably isotopic to ωF . However, the subtlety in specifying the correspondence
with π1(DωF ) forces us to keep track of a preassigned isotopy on F . Thus, we
classify pairs consisting of a suitable symplectic form ω on X and a suitable
isotopy from ω|F[1:0] to ωF , up to deformations of such pairs.

To state the theorem we need one further fact. It is natural to study symplectic
forms on X that are symplectic on the fibers of f , but this condition makes
no sense on the critical set K . For that we show that f determines a complex
structure J∗ on TX|K , and require our forms to be compatible with J∗ . We
also require similar compatibility normal to B .

Lemma 3.2 A Lefschetz pencil canonically determines a complex structure
J∗ on TX|K (for n 6= 1) and on any subbundle ν of TX|B complementary
to TB . J∗ is obtained by restricting any local (ωstd, f)–tame almost-complex
structure J defined near a point of K or B , provided ν is J –complex in the
latter case.

Proof First check that in a standard chart at x ∈ K , each hyperplane through
0 is a limit of tangent spaces to regular fibers, so it is J –complex for any
(ωstd, f)–tame local J . Any 1–dimensional complex subspace at x is an inter-
section of such hyperplanes, so it is also J –complex for any such J . But Jx
is uniquely determined by its complex lines for n 6= 1 ([5, Lemma 4.4(a)], cf
also Lemma 2.2). For x ∈ B , we obtain a suitable J from the complex bundle
structure π of Definition 1.4(1), by perturbing the latter to have fibers tangent
to ν as preceding Lemma 2.1. That lemma (which only requires J locally) then
gives uniqueness on ν .

Theorem 3.3 Let ωF be a symplectic form on (F,B) as preceding Propo-
sition 3.1, with [ωF ] ∈ H2

dR(F ) Poincaré dual to B . Let S1, . . . , Sm be La-
grangian embeddings Sn−1 ↪→ F − B determining a word w = (t1, . . . , tm) in
positive symplectic Dehn twists with

∏m
j=1 tj = δωF ∈ π0(DωF ). If n = 2,

assume each component of each F − Sj intersects B . Then the corresponding
symplectic Lefschetz pencils are classified by π1(DωF ). More precisely, a Lef-
schetz pencil f : X−B → CP1 obtained from S1, . . . , Sm as in Proposition 3.1,
with a fixed choice of thimbles Dj bounded by Sj and covering the given arcs
A, corresponds to an element of Im i∗ if and only if X admits a symplectic
structure ω that

(1) on (F[1:0], B) comes with a pairwise isotopy to ωF , defining a deformation
of forms that is fixed on B and S1, . . . , Sm ,
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(2) is symplectic on each Fy −K and (for n 6= 2) Lagrangian on each Dj ,

(3) is compatible with J∗ on TX|K (for n ≥ 2) and on the ω–normal bundle
ν of B , and

(4) satisfies [ω] = cf ∈ H2
dR(X).

For fixed f and D1, . . . ,Dm , such forms are classified up to deformation through
such forms by π2(D/DωF ), and classified by ker i∗ if symplectomorphisms pre-
serving f and fixing f−1(A) are also allowed.

Note that in this classification, a single ω with different isotopies as in (1)
could represent distinct equivalence classes. Since a deformation with [ω] fixed
determines an isotopy, the isotopy classes of forms on X as above (for fixed f )
are classified by the quotient of π2(D/DωF ) by some equivalence relation. In our
case, [ω] = cf is Poincaré dual to the fiber class [F[1:0]], the same condition that
arises in Donaldson’s construction of Lefschetz pencils on symplectic manifolds
[4].

Proof First we assume n ≥ 3 and prepare to apply Theorem 2.3 by construct-
ing a smooth family σ of symplectic structures on the fibers of a fixed f . As in
that proof, the cohomology class of ωB = ωF |B equals the normal Chern class
of B in F , so we can define the model symplectic form ωV and almost-complex
structure JV on V ⊂ X as before (starting from any fixed choice of π : V → B
as in Definition 1.4(1) and any ωB–tame JB on B ). By Weinstein’s theorem,
we can assume ωV agrees with ωF near B on F = F[1:0] . At each critical point
xj , choose a standard chart for f (necessarily inducing J∗ on TxjX ). Then
Dj is not tangent to any complex curve at xj (since f |Dj is nondegenerate
and f is constant or locally surjective on any complex curve). Thus there is
a complex isomorphism (TxjX,TxjDj) ∼= (Cn,Rn), and ωCn pushes down to
a symplectic form ωj near xj , compatible with J∗ at xj , and Lagrangian on
a disk ∆j ⊂ Dj containing xj . Since Dj is a thimble for f , we can identify
the fibers over intAj with F by an isotopy in X fixing B and preserving Dj ,
so that Sj matches with ∂∆j (with the correct normal correspondence) and
their tubular neighborhoods in the fiber correspond symplectically (by Wein-
stein) relative to ωF and ωj , respectively. We can assume (by U(2)–invariance
of ωV ) that the isotopy is ωV –symplectic near B , and that it agrees near K
with symplectic parallel transport in the local model. Thus it maps the tubular
neighborhood of ∂∆j in its fiber to a neighborhood of the singularity in the
singular fiber, by a map that is a symplectomorphism except on ∂∆j , which
collapses to the singular point (cf [11]). Pulling ωF back by the isotopy now
gives a family σ of symplectic structures on the fibers over A, agreeing with
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the local models ωV and ωj near B and K . Extend σ over a disk D ⊂ CP1

whose interior contains A−[1:0]. Since
∏m
j=1 tj = δωF is symplectically isotopic

to idF fixing B (rotating its normal bundle), we can fix a path γ in DωF as
above and identify all fibers over ∂D with (F,B) so that σ is constant. The
set of all such choices of identification (agreeing with the given one on F[1:0]

and TF |B , up to fiberwise symplectic isotopy fixing TF |B ) is then given by
π1(DωF ). Passing to π1(D) classifies Lefschetz pencils f as in Proposition 3.1,
and σ has a constant extension over the remaining fibers of any f coming from
Im i∗ ⊂ π1(D) (for any choice of element in the corresponding coset of ker i∗ ).

Next we apply Theorem 2.3. By contractibility of the space of σ–tame com-
plex structures on each TxFf(x) , we obtain a σ–tame family of almost-complex
structures on the fibers. After declaring a suitable horizontal distribution to
be complex, we obtain a fiberwise σ–tame complex structure J on X , which
we may assume agrees with JV near B and with the structures on the chosen
standard charts near the critical points. Now (f, J) is a linear 1–system as
required. Set ν = (ker dπ)|B . For each Fy , define ηy on a neighborhood Wy

by pulling back σ|Fy by a map r : Wy → Wy collapsing Wy onto Fy away from
B ∪ K (cf proof of Theorem 2.3). Then each ηy agrees with ωV on a fixed
neighborhood of B , and with ωj on a neighborhood of the critical point if Fy
is singular. We can assume each ηy|Dj ∩Wy = 0. Let ζ be any form on X
representing cf , agreeing with η[1:0] near F[1:0] , and vanishing on each thimble.
(Note cf |F[1:0] = [ωF ] = [η[1:0]]|F[1:0] as required, and the thimbles add no 2–
homology to W[1:0] since n ≥ 3.) The condition [ηy − ζ] = 0 ∈ H2

dR(Wy, B) is
trivially true for y =[1:0]. The case of any regular value y then follows since Fy
comes with an isotopy relB in X to F[1:0] , sending ηy|Fy to ωF . For a critical
value, we can assume Wy is obtained from a tubular neighborhood of a regular
fiber by adding an n–handle. Since n ≥ 3, the handle adds no 2–homology, so
the condition holds for all y . Now Theorem 2.3 and Addendum 2.6 provide a
unique isotopy class of symplectic forms ω on X taming J , with [ω] = cf and
ω|F[1:0] pairwise isotopic to ωF . This ω can be assumed to satisfy the required
conditions for Theorem 3.3: Compatibility of ω with J∗ = J is given on ν . It
follows on K since ω is made from ωt = tη+ f∗ωstd ; the second term vanishes
on K , and the first agrees with each tωj if we set {ŷ1, . . . , ŷm} = f(K)∪{[1:0]}
when applying Theorem 2.5. Similarly, the thimbles Dj are Lagrangian, since
f∗ωstd vanishes on them, as does η if the forms αy arising from Theorem 2.5
are chosen to vanish there. (This can be arranged since H1

dR(Sn−1) = 0 for
n ≥ 3, and α[1:0] = 0.) The forms ω̃s = ψ∗sηy0 in the deformation constructed
for (1) also restrict to scalar multiples of η = 0 on each Sj as required.

For fixed X and f , we wish to compare two arbitrary symplectic structures
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ωu , u = 0, 1, satisfying the conclusions of the theorem. We adapt the previous
procedure to 1–parameter families, beginning with the construction of σ . For
u = 0, 1, choose πu : Vu → B with fibers tangent to the ωu–normal bundle
νu → B , and construct structures ωV,u and JV,u as before, using the Hermitian
form ωu|νu . By Weinstein (cf proof of Theorem 2.3), we can assume ωu = ωV,u
near B after an arbitrarily C1–small isotopy. (First isotope πu to get equality
on F[1:0] , preserving the fibers of f , then isotope ω fixing F[1:0] .) Let σu be the
family obtained by restricting ωu to the fibers. Symplectic parallel transport
gives a fiber-preserving map ϕu : A × F[1:0] → X for which ϕ∗uσu is constant,
and the Lagrangian thimbles Dj are horizontal. Now smoothly extend πu , ωV,u ,
JV,u and ϕu for 0 ≤ u ≤ 1. Also extend ωu near K by linear interpolation,
so that it is J∗–compatible on K and has Lagrangian disks ∆j , 0 ≤ u ≤ 1.
Condition (1) gives a pairwise isotopy from ω0 through ωF to ω1 on (F[1:0], B).
Use this to extend σu for 0 ≤ u ≤ 1 to F[1:0] with σ1/2 = ωF , and then extend
as before to the fibers over A and D , agreeing with ωV,u near B and ωu near
K , and with ϕ∗uσu constant for each u.

To complete the construction of σu , u ∈ I = [0, 1], over the fibers of idI ×f
on I × X , we attempt to fill the hole over (0, 1) × (CP1 − D), encountering
obstructions. As before, we can smoothly identify all fibers over I × ∂D with
F[1:0] so that the family σu is constant for each u. To fix this identification
τu for each u, pull the preassigned path γ back from DωF to Dσu|F[1:0]

by
the given isotopy. This moves the spheres Sj , but the same isotopy shows
how to restore them to their original position through families of Lagrangian
spheres (by the last part of (1)), yielding a canonically induced path γu from
the required representative of

∏
tj to δσu in Dσu|F[1:0]

, which determines τu .
Now let τ̃0 be the identification of all fibers over {0}× (CP1− intD) with F[1:0]

by ω0–symplectic parallel transport along straight lines to [1:0] in CP1− intD .
Comparing τ̃0|∂D with τ0 , we obtain the element of π1(D) classifying f , and see
that this must lie in Im i∗ (being explicitly represented by a loop in Dσ0|F[1:0]

'
DωF ). The corresponding construction of τ̃1 from ω1 also gives f , so τ̃0|∂D and
τ̃1|∂D differ by an element β of ker i∗ (after we extend each τ̃u over I × ∂D to
u = 1/2 so that we can work with the fixed symplectic form ωF ). Similarly, a
direct comparison of τ̃0 and τ̃1 yields an element α ∈ π2(D,DωF ) ∼= π2(D/DωF )
with ∂∗α = β . If α = 0, we can extend σu over X for 0 ≤ u ≤ 1. If
only β = 0, then we can perturb τ̃1 so that α ∈ π2(D), and α provides
a self-diffeomorphism of X preserving f and fixing f−1(D), after which σu
extends. These vanishing conditions are also necessary for the deformation and
symplectomorphism, respectively, specified by the theorem, since any allowable
deformation ωu , 0 ≤ u ≤ 1, determines a family τ̃u as above interpolating
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between τ̃0 and τ̃1 , showing that α = 0. (Note that the family ωu comes
with a smooth family of isotopies from ωu|F[1:0] to ωF as in (1), allowing us
to continuously pull back γ to each Dσu|F[1:0]

as before, to define the required
interpolation τu between τ0 and τ1 in the absence of the condition σ1/2|F[1:0] =
ωF .)

To complete the proof for n ≥ 3, it suffices to construct the required defor-
mation between ω0 and ω1 from the completed family σu on I × X . First
find a continuous family Ju of fiberwise σu–tame almost-complex structures
on X as before, using a horizontal distribution that is ωu–orthogonal to the
fibers when u = 0, 1. Then Ju is ωu–tame, u = 0, 1. For 0 < u < 1, the
previous argument now produces suitable symplectic structures ωu on X , with
σu replacing ωF in (1). The family ωu , 0 ≤ u ≤ 1, need not be continuous
(particularly at 0,1), but we can smooth it as for Theorem 2.3, with a partition
of unity on I , obtaining the required deformation ω′u : First pull each ωu back
to a neighborhood Iu of u ∈ I , by a map preserving the bundles νu , forms
ωB and disks Dj . For Iu sufficiently small, the required conditions (1–4) are
preserved, where the isotopy in (1) from ωu to σu on F[1:0] at each v ∈ Iu
is through Jv –taming forms (by Addendum 2.6) and is defined to be constant
for u = 0, 1. Splicing by a partition of unity on I preserves (2–4), producing
the required family ω′u and a 2–parameter family of symplectic structures on
F[1:0] , interpolating between ω′u and a convex combination σ′u of nearby forms
σv for each u. If the intervals Iu were sufficiently small, we can extend by
(1 − s)σ′u + sσu to obtain a 2–parameter family of symplectic structures from
ω′u to σu , all agreeing with ωF on B and each Sj , and constant for u = 0, 1.
Moser’s technique, parametrized by u, now produces a 2–parameter family of
diffeomorphisms of (F,B), which can be reinterpreted as a smooth family of
isotopies as in (1) from ω′u|F[1:0] to ωF = σ1/2|F[1:0] , interpolating between the
given ones for ω0, ω1 .

For the remaining case n ≤ 2, inclusion DωF ⊂ D is a homotopy equivalence,
so we must show each f has a unique deformation class of structures ω as
specified. The case n = 1 (f : X → CP1 a simple branched covering) is
trivial, so we assume n = 2. Then f is a hyperpencil, so [5, Theorem 2.11(b)]
gives the required form ω , provided we arrange J∗–compatibility as before.
Uniqueness of the deformation class follows the method of proof of [6, Theorem
1.4] with m = 0 and K replaced by K ∪ B : Given two forms ωu , u = 0, 1,
as specified in Theorem 3.3, we can find an (ωstd, f)–tame, ωu–tame almost-
complex structure Ju for each u (cf also [5, Lemma 2.10]). We interpolate to
a family Ju , 0 ≤ u ≤ 1 (eg by contractibility in [5, Theorem 2.11(a)]), and
construct the required deformation ωu , 0 ≤ u ≤ 1, using a partition of unity

Geometry & Topology Monographs, Volume 7 (2004)



Symplectic structures from Lefschetz pencils in high dimensions 289

on I as before. Conditions (1–4) for each ωu are easily verified, with only (1)
requiring comment: We are given isotopies relB from ωu|F[1:0] to ωF , u = 0, 1.
Moser provides an isotopy relB from ω0 to ω1 on F[1:0] . Combining these three
isotopies gives a path representing an element of π1(D′,D′ωF ), where the prime
indicates rotations of TF |B are allowed. This group vanishes, allowing us to
extend our path into the required 2–parameter family of diffeomorphisms.
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