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LINEAR OPERATORS ON ABRAMOVICH–WICKSTEAD TYPE SPACE
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In this note, we define and investigate Abramovich–Wickstead type spaces the elements of which are the
sums of continuous functions and discrete functions. We give an analytic representation of regular and
order continuous regular operators on these spaces with values in a Dedekind complete vector lattice.
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CD0-type spaces were firstly introduced by Yu. A. Abramovich and A. W. Wickstead in
[1] and [2] and further investigated by S. Alpay and Z. Ercan in [3]. CD0-type spaces deserve
to be called Abramovich–Wickstead spaces, or briefly AW -space as in [4], since they mainly
stem from the works of Yu. A. Abramovich and A. W. Wickstead. In this note we construct
a new type AW -space and call it CDr

0 for the sake of convenience.
Throughout this note, the symbols Lr and Lrn denote the space of regular and order

continuous regular operators respectively. For unexplained terminology about vector lattice
theory, we refer to [5].

The first section is devoted to some introductory knowledge about vector-valued measures.
This section will be useful in obtaining main results. For more detailed information about
vector-valued measures, we refer to [6]. The second section of this note contains the
definition of CDr

0-spaces. The third section is devoted to description of regular operators
charactreziations about linear operators on CDr

0-space by means of vector measures and
order summation. The fourth section contains two main results of the paper. In this section
we are mainly interested in regular and order continuous regular operators on CDr

0-space with
values in Dedekind complete vector lattices.

1. Vector Measures

Consider a nonempty set K and a σ-algebra A of the subsets of K. Let E be a Dedekind
complete vector lattice. We shall call the mapping µ : A → E a vector measure if µ(∅) = 0
and for every sequence (An) of pairwise disjoint sets An ∈ A the equality holds

µ

(
∞⋃

n=1

An

)
=

∞∑

n=1

µ(An) := o-lim
n

n∑

k=1

µ(Ak).

We say that a measure µ is positive and write µ > 0 if µ(A) > 0 for all A ∈ A . We
denote the set of all order bounded E-valued measures on a σ-algebra A by cab(K,A , E). If
µ, ν ∈ cab(K,A , E) and t ∈ R, then we put by definition
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(1) (µ+ ν)(A) := µ(A) + ν(A) (A ∈ A ),
(2) (tµ)(A) := tµ(A) (A ∈ A ),
(3) µ > ν ⇔ µ− ν > 0.
One can prove that cab(K,A , E) is a Dedekind complete vector lattice. In particular,

every measure µ : A → E has the positive part µ+ := µ ∨ 0 and the negative part µ− :=
(−µ)+ = −µ ∧ 0. It is easy to verify that

µ+(A) = sup{µ(A′) : A′ ∈ A , A′ ⊂ A} (A ∈ A ).

In the sequel, we shall consider special E-valued measures. Suppose that K is a compact
topological space and A is the Borel σ-algebra. A positive measure µ : A → E is said to be
regular if for every A ∈ A we have

µ(A) = inf{µ(U) : A ⊂ U, U ∈ Op(K)}

where Op(K) is the collection of all open subsets of K. If the latter condition is true only for
closed A ∈ A , then µ is called quasiregular. Finally, an arbitrary measure µ : A → E is said
to be regular (quasiregular) if the positive measures µ+ and µ− are regular (quasiregular).
Let rca(K,E) and qca(K,E) be the sets of regular and quasiregular E-valued Borel measures
respectively. It is seen from the definitions that rca(K,E) and qca(K,E) are vector sublattices
in cab(K,A , E). Clearly, the supremum (infimum) of the increasing (decreasing) family of
quasiregular measures bounded in cab(A,A , E) will also be quasiregular. The same holds for
regular measures. Thus qca(K,E) and rca(K,E) are Dedekind complete vector lattices.

We now define the integral with respect to an arbitrary measure µ ∈ cab(K,A , E). Let us
denote by St(K,A ) the set of step functions ϕ : K → R of the form ϕ =

∑n
k=1 akχAk

, where
A1, . . . , An ∈ A , a1, . . . , an ∈ R, and χA is the characteristic function of a set A. Construct
the operator Iµ : St(K,A )→ E by putting

Iµ

(
n∑

k=1

akXAk

)
:=

n∑

k=1

akµ(Ak).

As it is seen Iµ is a linear operator. Moreover the following normative inequality holds

|Iµ(f)| 6 ‖f‖∞|µ|(K)
(
f ∈ St(K,A )

)
,

where ‖f‖∞ = supk∈K |f(k)|. The subspace St(K,A ) is dense with respect to the norm in the
space l∞(K,A ) of all bounded A -measurable functions on K. Therefore Iµ admits a unique
linear extension by continuity to l∞(K,A ), with the above-mentioned normative inequality
being preserved. In particular, if K is a compact space and A is the Borel σ-algebra, then
Iµ(f) is defined for every continuous function f ∈ C(K). Note also that Iµ > 0 if and only if
µ > 0.

Finally, we give the following result of J. D. M. Wright [7] about analytical representation
of linear operators which will play an important role to obtain main results of this note.

Theorem 1. Let K be a compact topological space and let E be an arbitrary Dedekind
complete vector lattice. The mapping µ 7→ Iµ implements a linear and lattice isomorphism of
Dedekind complete vector lattices qca(K,E) and Lr(C(K), E).
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2. CDr
0(K,E)-spaces

In this section we introduce a new class of Abramovich–Wickstead type spaces. We start
with the following definition which contains the building blocks of this space.

Definition 2. For a compact space K and a relatively uniformly complete vector lattice
E, we set

(1) C(K,E(e)) the space of all mappings from K into E(e) which are continuous in the
sense of the norm ‖ · ‖e where E(e) denotes the ideal generated by e ∈ E+ and

‖u‖e := inf{λ > 0 : |u| 6 λe} (u ∈ E(e)).

Then, we set
Cr(K,E) :=

⋃{
C(K,E(e)) : e ∈ E+

}

and call the elements of this set r-continuous or uniformly continuous functions on K.
It is clear that Cr(K,E) is contained in l∞(K,E), the space of order bounded functions

from K into E, since in E(e) norm boundedness coincides with order boundedness. Moreover,
Cr(K,E) is a vector sublattice in l∞(K,E).

(2) c0(K,E(e)) the space of all mappings d from K into E(e) such that for all ε > 0 the
set {k ∈ K : ‖d(k)‖e > ε} is finite. Then we set

c0(K,E) :=
⋃{

c0(K,E(e)) : e ∈ E+
}
.

It is clear that c0(K,E) is contained in l∞(K,E). Moreover, c0(K,E) is a vector sublattice
in l∞(K,E).

Now we give the following theorem which will be useful in the sequel.

Theorem 3. Let K be a compact space. For any f ∈ Cr(K,E) and ε > 0 there exist
e ∈ E+ and finite collections ϕ1, . . . , ϕn ∈ C(K) and e1, . . . , en ∈ E such that

sup
α∈K

∣∣∣∣∣f(α)−
n∑

k=1

ϕk(α)ek

∣∣∣∣∣ 6 εe.

C If f ∈ Cr(K,E), then f ∈ C(K,E(e)) for some e ∈ E+. According to the
Kakutani–Krĕın Theorem, E(e) is linearly isometric and lattice isomorphic to C(Q) for some
compact Hausdorff space Q. Therefore one can assume that f ∈ C(K,C(Q)). However,
the spaces C(K,C(Q)) and C(K × Q) are isomorphic as Banach lattices. It remains to
note that, according to the Stone–Weierstrass Theorem, the subspace of the functions

(α, q) 7→
n∑

k=1

ϕk(α)ek(q), where ϕ1, . . . , ϕn ∈ C(K) and e1, . . . , en ∈ C(Q), is dense in

C(K ×Q). B

Definition 4. Let K be a compact Hausdorff space without isolated points and E be
a relatively uniformly complete vector lattice. We denote by CDr

0(K,E) the set of E-valued
functions on K each of which is the sum of two E-valued functions f and d with f ∈ Cr(K,E)
and d ∈ c0(K,E).

For a finite subset S of K and e ∈ E, χS ⊗ e is in CDr
0(K,E). It is easy to see that

CDr
0(K,E) is an ordered vector space under the pointwise order.

Lemma 5. Let K be a compact Hausdorff space without isolated points and E be a
relatively uniformly complete vector lattice. Then, Cr(K,E) ∩ c0(K,E) = {0}.
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C Suppose the contrary; let 0 6= f ∈ Cr(K,E)∩c0(K,E). Assume that f(x) 6= 0. So there
exists e ∈ E+ such that f ∈ C(K,E(e)). Then there exists a neighborhood V of x such that
for y ∈ V we have ‖f(y)‖e > ‖f(x)‖e/2. But since x is not isolated, V is uncountable, which
is a contradiction since f ∈ c0(K,E). B

It now follows that the decomposition of an element of CDr
0(K,E)-space into a sum of an

r-continuous function and one with countable support is unique. So CDr
0(K,E) deserves to

be an Abramovich–Wickstead type space.

Lemma 6. Let K be a compact Hausdorff space without isolated points and E be a
relatively uniformly complete vector lattice. Let p ∈ CDr

0(K,E). Then p+ = sup(p, 0) exists
in CDr

0(K,E).

C Let p ∈ CDr
0(K,E). Let r(k) = f+(k) + [−f−(k) + h(k)] ∨ (−f+(k)) for each k ∈ K

where f and h are continuous and discrete parts of p, respectively. By definitions f and h
take their values in E(e) for some e ∈ E+. Let s(k) = (−f−(k)+h(k))∨ (−f+(k)). Let ε > 0
be given. Then there exists n0 ∈ N such that

{k ∈ K : ε 6 ‖s(k)‖e} ⊂

{
k ∈ K :

1

n0
6 ‖h(k)‖e

}
.

Indeed, if this were not true, then for some sequence (kn) in K, we would have ε 6 ‖s(kn)‖e
while ‖h(kn)‖e < 1

n for all n ∈ N. By compactness of K, we can find a subnet (kα) of kn that
converges to some k0 ∈ K. As ‖h(kα)‖e → 0 in E(e), we have that

ε 6 ‖s(kα)‖e = ‖(−f
−(kα) + h(kα)) ∨ (−f+(kα))‖e → ‖− f−(k0) ∨ (−f+(k0))‖e = 0

which is a contradiction. Hence r ∈ CDr
0(K,E) whenever p ∈ CDr

0(K,E). On the other hand,

r(k) = f+(k) + [−f−(k) + h(k)] ∨ (−f+(k)) = [f+(k)− f−(k) + h(k)] ∨ 0 = (p(k))+

for each k ∈ K. So r is indeed p+. Continuous part of r is f+, where f+(k) = (f(k))+ by
uniqueness of decomposition. B

We summarize what we have from the previous proposition as follows:

Proposition 7. Let K be a compact Hausdorff space without isolated points and E be
a relatively uniforly complete vector lattice. Then CDr

0(K,E) is a vector lattice under the
pointwise ordering: 0 6 p ∈ CDr

0(K,E)⇔ 0 6 p(k) in E for all k ∈ K.

Just like real-valued function space CD0(K) in [2], suprema and infima are easy to identify
in CDr

0(K,E). We shall write hγ ↑ h if the net hγ is increasing and sup(hγ) = h.

Proposition 8. Let K be a compact Hausdorff space without isolated points and E be a
relatively uniformly complete vector lattice. If hγ ↑ h in CDr

0(K,E), then hγ(k) ↑ h(k) in E
for all k ∈ K.

C Let k0 be an arbitrary but fixed point of K. Then h(k0) is an upper bound of {hγ(k0) :
γ ∈ Γ} in E(e) for some e ∈ E+. Let ν be another upper bound for {hγ(k0) : γ ∈ Γ}. If
ν ∧ h(k0) = h(k0), then the proof is obvious. On the other hand, if ν ∧ h(k0) < h(k0), then
we can find some 0 < e1 ∈ E(e) such that ν ∧ h(k0) + e1 6 h(k0). Then h − χk0 ⊗ e1 is an
upper bound in CDr

0(K,E) for the family {hγ : γ ∈ Γ}, contradicting the definition of h. B

From the proposition above, we conclude that order convergence in CDr
0(K,E) is

pointwise, order convergence in E.
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3. Linear operators on Cr(K,E) and c0(K,E)

Throughout this section, unless stated otherwise, E will denote a relatively uniformly
complete vector lattice and for a vector valued function f , χk ⊗ f will denote the function
which takes f(k) at k and 0 otherwise. In this section we give two characterizations about
the regular and order continuous linear operators from CDr

0(K,E) into a Dedekind complete
vector lattice F .

We start with the following lemma which will be used in the sequel.

Lemma 9. Let K be a compact space and F be a Dedekind complete vector lattice. Then
for every regular operator T : Cr(K,E) → F there exists a regular operator T ′ : C(K) →
Lr(E,F ) such that

T (ϕ⊗ e) = T ′(ϕ)e for all ϕ ∈ C(K) and e ∈ E.

The correspondence T → T ′ is linear positive, and one-to-one.

C It is sufficient to consider positive linear operators. Let T : Cr(K,E)→ F be a positive
linear operator. For each ϕ ∈ C(K) and e ∈ E, the function ϕ⊗e defined by ϕ⊗e(k) = ϕ(k)e
belongs to Cr(K,E). We put

T (ϕ⊗ e) = T ′(ϕ)e for all ϕ ∈ C(K) and e ∈ E.

For fixed ϕ ∈ C(K), the mapping T ′(ϕ) : e 7→ T ′(ϕ)e of E into F is evidently linear. Moreover,
if 0 6 e ∈ E and 0 6 ϕ ∈ C(K), then T ′(ϕ)e = T (ϕ ⊗ e) > 0, therefore T ′(ϕ) ∈ L+(E,F ).
Thus, the mapping T ′ : ϕ→ T ′(ϕ) of C(K) into Lr(E,F ) is linear and positive.

It is easy to verify that the mapping T 7→ T ′ is linear and positive. In order to prove that
this mapping is one-to-one, let S : Cr(K,E)→ F be a positive linear operator such that

S(ϕ⊗ e) = T ′(ϕ)e, for ϕ ∈ C(K) and e ∈ E.

Let f ∈ Cr(K,E). Then by Theorem 3, there exists a sequence (fn) of the form
∑
ϕi⊗ei (finite

sum) with ϕi ∈ C(K) and ei ∈ E converging relatively uniformly to f . Then T (fn) = S(fn)
for every n. On the other hand T and S are relatively uniformly continuous on Cr(K,E),
therefore

T (f) = lim
n→∞

T (fn) = lim
n→∞

S(fn) = S(f),

consequently T = S. B

Theorem 10. LetK be a compact topological space and F be a Dedekind complete vector
lattice. Then there exists a lattice isomorphism T ′ ↔ µ between the set of regular operators
T ′ : C(K) → Lr(E,F ) and the set of countably additive quasiregular Borel measures µ :
K → Lr(E,F ) given by the equality

T ′(f) =

∫
fdµ, for every f ∈ C(K).

C Proof directly follows from Theorem 1, since Lr(E,F ) is a Dedekind complete vector
lattice. B

Let F be another Dedekind complete vector lattice and µ ∈ qca(K,Lr(E,F )). Then the
integral Iµ : C(K) → E can be extended to Cr(K,E). We can view the algebraic tensor
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product C(K)⊗E as the subspace in Cr(K,E), consisting of the mappings k 7→
∑n

i=1 ϕi(k)ei
(k ∈ K) where ei ∈ E and ϕi ∈ C(K). Define Iµ on C(K)⊗ E by the formula

Iµ

(
n∑

i=1

ϕi ⊗ ei

)
:=

n∑

i=1

ei

∫

K

ϕi dµ.

If f ∈ Cr(K,E), then by Theorem 3 there exist e ∈ E+ and a sequence (fn) ⊂ C(K) ⊗ E
such that

sup
k∈K

|f(k)− fn(k)| 6
1

n
e.

Put by definition ∫

K

f dµ := Iµ(f) := o-lim Iµ(fn).

It can be easily seen that this definition is correct even for an arbitrary order bounded finitely
additive vector measure µ.

Theorem 11. For any linear operator T ∈ Lr(Cr(K,E), F ) there exists a unique vector
measure µ := µT ∈ qca(K,Lr(E,F )) such that

Tf =

∫

K

f(k) dµ(k) (f ∈ Cr(K,E)).

The correspondence T 7→ µT is a lattice isomorphism of Lr(Cr(K,E), F ) onto
qca(K,Lr(E,F )).

C See [6, Theorem 2.1.14 (5)]. B

Theorem 12. There exists a lattice isomorphism T ↔ T ′ between the space of regular
operators T : Cr(K,E)→ F and the space of regular operators T ′ : C(K)→ Lr(E,F ) given
by the equality

T (ϕ⊗ e) = T ′(ϕ)e, for ϕ ∈ C(K) and e ∈ E.

If T and T ′ are in correspondence, then there exists a unique common countably additive
quasiregular Borel measure µ := µT : K → Lr(E,F ) such that

T (f) =

∫
f dµ, for f ∈ Cr(K,E),

and

T ′(ϕ) =

∫
ϕdµ, for ϕ ∈ C(K).

In particulal, the correspondence T 7→ µT is a lattice isomorphism of Lr(Cr(K,E), F ) onto
qca(K,Lr(E,F )).

C Let first T : Cr(K,E) → F be a regular operator. Let T ′ : C(K) → Lr(E,F ) be the
regular operator corresponding to T (Lemma 9) by the equality

T (ϕ⊗ x) = T ′(ϕ)x, for ϕ ∈ C(K) and x ∈ E.

We know that the correspondence T 7→ T ′ is linear, positive, and one-to-one. We have

T (ϕ⊗ x) = T ′(ϕ)x =

(∫
ϕdµ

)
x
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for every x ∈ E, therefore

T (ϕ⊗ x) =

∫
ϕ⊗ x dµ, for every ϕ ∈ C(K) and x ∈ E.

Conversely, let T ′ : C(K) → Lr(E,F ) be a regular operator, and let µ : K → Lr(E,F ) be
the countably additive quasiregular measure corresponding to T ′ by Theorem 10. If we put

T (f) =

∫
f dµ, f ∈ Cr(K,E),

then T : Cr(K,E)→ F is a regular operator and we have

T (ϕ⊗ x) = T ′(ϕ)x, for ϕ ∈ C(K) and x ∈ E.

It remains to apply Theorem 11. B

Now we give the following definition which will be useful in the sequel.

Definition 13. Let K be a non-empty set and F be a Dedekind complete vector lattice.
Then we define

(1) cr0(N, E) = {(en) ⊂ E : ∃e ∈ E+ such that en ∈ E(e)∀n and ‖en‖e → 0},

(2) l1[K,Lr(E,F )] is the space of maps α : K → Lr(E,F ) such that
∞∑
n=1

|α(kn)|(|en|)

exists in F for all sequences (kn) ∈ K and (en) ∈ c
r
0(N, E).

As usual,
∞∑
n=1

|α(kn)|(|en|) is the supremum of the sums
m∑
n=1

|α(kn)|(|en|). Clearly,

l1[K,L
r(E,F )] is a vector lattice under the pointwise operations and ordering.

Theorem 14. Let K and F be as above. Then Lr(c0(K,E), F ) is lattice isomorphic to
l1[K,L

r(E,F )].

C Let φ : Lr(c0(K,E), F ) → l1[K,L(E,F )] be defined by φ(G)(k)(e) = G(χk ⊗ e) for
each G ∈ Lr(c0(K,E), F ), k ∈ K and e ∈ E. Then φ(G)(k) is a regular operator from E into
F as φ(G+)(k) and φ(G−)(k) are positive for each regular operator G. Thus φ(G) is a map
from K into Lr(E,F ) and φ(G)(k)(e) > 0 whenever e > 0 and G > 0, i. e. φ(G)(k) is positive
for all G > 0.

Let us recall that φ(G) should also satisfy
∞∑
n=1

|φ(G)(kn)|(|en|) ∈ F for all sequences

(kn) ∈ K and (en) ∈ c
r
0(N, E). Let G ∈ Lr(c0(K,E), F ). Then we have

m∑

n=1

|φ(G)(kn)|(|en|) =
m∑

n=1

|G|(χkn⊗|en|) = |G|

(
m∑

n=1

χkn ⊗ |en|

)
6 |G|

(
∞∑

n=1

χkn ⊗ |en|

)
∈ F,

therefore
∞∑

n=1

|φ(G)(kn)|(|en|) = sup
m

m∑

n=1

|G|(χkn ⊗ |en|) ∈ F.

Thus the map φ(G) we have defined belongs to l1[K,L(E,F )].
It is easy to verify that φ is a linear mapping. We now show that it is bipositive. Suppose

that φ(G) > 0 for some G ∈ Lr(c0(K,E), F ), and take 0 6 f ∈ c0(K,E). As
∑
k∈S

χk ⊗ f ↑S f

in c0(K,E), we have
∑
k∈S

G(χk ⊗ f) → G(f). By definition G(χk ⊗ f) = φ(G)(k)(f(k)) > 0

and thus G(f) > 0 for each 0 6 f ∈ c0(K,E), i. e. G > 0.
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Let now φ(G) = 0 for some G ∈ Lr(c0(K,E), F ). Then G(χk⊗ f) = 0 for each k ∈ K and
and 0 6 f ∈ c0(K,E). As

∑
k∈S

χk ⊗ f ↑S f in c0(K,E), we have 0 =
∑
k∈S

G(χk ⊗ f)→ G(f) or

G(f) = 0. The fact that c0(K,E) is vector lattice leads to G = 0.
To show that φ is surjective, let 0 6 α ∈ l1[K,L

r(E,F )]. Let f ∈ c0(K,E). Then there
exists an at most countable subset (kn) of K such that f(k) = 0 for all k 6= kn and there
exists some e ∈ E+ such that f(kn) ∈ E(e) for each n and ‖f(kn)‖e → 0. Hence we can define

G(f) =
∑

n∈N

α(kn)(f(kn)),

which certainly belongs to F as f(kn) ∈ cr0(N, E). We now verify that φ(G) = α. Let 0 6 e ∈
E, then

φ(G)(k0)(e) = G(χk0 ⊗ e) =
∑

n∈N

α(k0)(χk0 ⊗ e) = α(k0)(e).

Since e ∈ E is arbitrary, we conclude that φ(G)(k0) = α(k0) and k0 is arbitrary, we have
φ(G) = α. Since l1[K,L

r(E,F )] is a vector lattice, the proof of surjectivity of φ is now
complete. B

4. Main resalts

Now we are in a position to give one of the first main result of this note as follows:

Theorem 15. Let K be a compact Hausdorff space without isolated points and F
be a Dedekind complete vector lattice. Then Lr(CDr

0(K,E), F ) is lattice isomorphic to
qca(K,Lr(E,F )⊕ l1[K,L

r(E,F )] with the dual order on this direct sum defined by

〈µ, α〉 > 0 ⇔ µ > 0 and α > 0 and µ({k}) > α(k)

for all k ∈ K, which if we identify α with a discrete measure on K, is precisely requiring that
µ > α > 0.

C Let T ∈ Lr(CDr
0(K,E), F ). Then certainly T splits into two regular operators T1 and

T2, where T1 : Cr(K,E)→ F and T2 : c0(K,E)→ F . By Theorem 12 there exists a measure
µ ∈ qca(K,Lr(E,F ) such that T1 can be identified with µ. On the other hand, by Theorem 14
there exists a map α ∈ l1[K,Lr(E,F )] such that T2 can be identified with α. We thus have a
map from Lr(CDr

0(K,E), F ) into qca(K,Lr(E,F )⊕ l1[K,L
r(E,F )].

Now suppose that µ ∈ qca(K,Lr(E,F )) and α ∈ l1[K,Lr(E,F )]. We can certainly define
an operator ϕ by

ϕ(f) =

∫
f1 dµ+

∑

n∈N

α(kn)(f2(kn)),

for f = f1 + f2 ∈ Cr(K,E) ⊕ c0(K,E). The map we have defined from qca(K,Lr(E,F )) ⊕
l1[K,L

r(E,F )] into Lr(CDr
0(K,E), F ) is easily seen to be lattice isomorphism by Theorem 12

and Theorem 14. B

Now we give the following definition which will be used in our final result.

Definition 16. Let K be a compact space and F be a Dedekind complete vector lattice.
Then we set l1(K,Lrn(E,F )) the set of all maps β from K into Lrn(E,F ) satisfying

(1) sup
‖f‖e61

∑
k∈K

|β(k)|(|(f(k)|) exist in F for all e ∈ E+ and f ∈ C(K,E(e))⊕ c0(K,E(e)),

(2)
∑
k∈K

|β(k)|(fα(k)) ↓α 0 whenever fα ↓ 0.
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As usual,
∑
k∈K

|β(k)|(|(f(k)|) is the supremum of the sums
∑
k∈S

|β(k)|(|f(k)|) where S is a

finite subset of K. Evidently, l1(K,Lrn(E,F )) is a vector lattice under pointwise operations.
We close this section with a result of this note about order continuous operators on

CDr
0(K,E)-spaces.

Theorem 17. Let K be a compact Hausdorff space without isolated points and F
be a Dedekind complete vector lattice. Then Lrn(CD

r
0(K,E), F ) is lattice isomorphic to

l1(K,Lrn(E,F )).

C Define φ : Lrn(CD
r
0(K,E), F ) → l1(K,Lrn(E,F )) via φ(G)(k)(e) = G(χk ⊗ e) for each

G ∈ Lrn(CD
r
0(K,E), F ), k ∈ K and e ∈ E. Then φ(G)(k) is order bounded, since φ(G+)(k)

and φ(G−)(k) are order bounded F -valued operators for each G on CDr
0(K,E). If eα ↓ 0 in

E, then χk ⊗ eα ↓ 0 in CDr
0(K,E) for each k ∈ K. This gives that φ(G)(k)(eα) = G(χk ⊗ eα)

is order convergent to 0 so that φ(G)(k) ∈ Lrn(E,F ) for each G ∈ Lrn(CD
r
0(K,E), F ). Thus

φ(G) is a map from K into Lrn(E,F ) and φ(G)(k)(e) > 0 whenever e > 0 and G > 0, i. e.,
φ(G)(k) is positive for all G > 0.

Now we will show that φ(G) is an element of l1(K,Lrn(E,F )). Let S be a finite subset of
K and G ∈ Lrn(CD

r
0(K,E), F ). Then

∑

k∈S

|φ(G)(k)|(|f(k)|) =
∑

k∈S

|φ(G+ −G−)(k)|(|f(k)|)

6
∑

k∈S

φ(G+)(k)(|f(k)|) +
∑

k∈S

φ(G−)(k)(|f(k)|)

=
∑

k∈S

G+(χk ⊗ |f |) +
∑

k∈S

G−(χk ⊗ |f |) = G+

(
∑

k∈S

χk ⊗ |f |

)
+G−

(
∑

k∈S

χk ⊗ |f |

)

for each f ∈ CDr
0(K,E). Hence we get

∑

k∈S

|φ(G)(k)|(|f(k)|) 6 G+(|f |) +G−(|f |) = |G|(|f |)

as
∑
k∈S

χk ⊗ |f | ↑S |f |, G+ and G− are order continuous.

Let e be an arbitrary but fixed element of E+. Then

sup
‖f‖e61

∑

k

|φ(G)(k)|(|f(k)|) 6 sup
‖f‖e61

|G|(|f |) 6 |G|(e) ∈ F,

as |f | 6 ‖f‖ee.
So far we have shown that φ(G) satisfies the first condition of Definition 16. Also we have

to show that ∑

k

|φ(G)(k)|(fα(k)) ↓α 0

for each fα ∈ CDr
0(K,E) such that fα ↓ 0. It is sufficient to verity the claim for a positive

G ∈ Lrn(CD
r
0(K,E), F ). Let 0 6 G ∈ Lrn(CD

r
0(K,E), F ) and fα ↓ 0 in CDr

0(K,E). For a
fixed α, we have

∑
k∈S

χk ⊗ fα ↑S fα. Since G is order continuous and positive, we have

G

(
∑

k∈S

χk ⊗ fα

)
=
∑

k∈S

G(χk ⊗ fα) ↑ G(fα).
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Thus
∑

k∈K

|φ(G)(k)|(fα(k)) =
∑

k∈K

φ(G)(k)(fα(k)) =
∑

k∈K

G(χk ⊗ fα) = G(fα) ↓ 0.

Hence the map φ(G) we have defined belongs to l1(K,Lrn(E,F )).
It is easy to see that φ is linear. We now show that it is bipositive. Certainly φ(G) > 0

whenever G > 0. Now assume that φ(G) > 0 for some G ∈ Lrn(CD
r
0(K,E), F ) and take

0 6 f ∈ CDr
0(K,E). As

∑
k∈S

χk ⊗ f ↑S f in CDr
0(K,E), we have

∑
k∈S

G(χk ⊗ f) → G(f). By

definition, G(χk⊗f) = φ(G)(k)(f) > 0 and thus G(f) > 0 for each 0 6 f ∈ CDr
0(K,E), i. e.,

G > 0. We now show that φ is one-to-one. Let φ(G) = 0 for some G ∈ Lrn(CD
r
0(K,E), F ).

Then G(χk ⊗ f) = 0 for each k ∈ K and 0 6 f ∈ CDr
0(K,E). As G is order continuous and∑

k∈S

χk ⊗ f ↑S f , this gives that 0 =
∑
k∈S

G(χk ⊗ f) → G(f) or G(f) = 0. As CDr
0(K,E) is a

vector lattice, we get G = 0.
To show that φ is surjective, take an arbitrary 0 6 α ∈ l1(K,Lrn(E,F )) and define

G : CDr
0(K,E)+ → F by G(f) =

∑
k∈K

α(k)(f(k)). Then G is additive on CDr
0(K,E) and

G(f) = G(f+)−G(f−) extends G to CDr
0(K,E). We now verify that φ(G) = α. If 0 6 e ∈ E,

then
φ(G)(k0)(e) = G(χk0 ⊗ e) =

∑

k∈K

α(k)(χk0 ⊗ e)(k) = α(k0)e.

Since e ∈ E is arbitrary, we conclude that φ(G)(k0) = α(k0) and k0 is arbitrary, we have
φ(G) = α. B
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