
Владикавказский математический журнал
2009, Том 11, выпуск 3, С. 38–43

UDC 517.98

HOMOGENEOUS FUNCTIONS
OF REGULAR LINEAR AND BILINEAR OPERATORS1

To Yuri G.Reshetnjak on the

occasion of his 80th birthday

A. G. Kusraev

Using envelope representations explicit formulae for computing ϕ̂(T1, . . . , TN ) for any finite sequence of
regular linear or bilinear operators T1, . . . , TN on vector lattices are derived.

Mathematics Subject Classification (2000): 46A40, 47A50, 47A60, 47A63, 47B65.

Key words: regular linear operator, regular bilinear operator, homogeneous functional calculus, envelope
representation.

1. Introduction

This paper is a continuation of [5]. We apply the upper envelope representation
method (or the quasilinearization method) in vector lattices developed in [4, 5] to the
homogeneous functional calculus of linear and bilinear operators. Explicit formulae for
computing ϕ̂(T1, . . . , TN ) for any finite sequence of regular linear or bilinear operators
T1, . . . , TN are derived.

For the theory of vector lattices and positive operators we refer to the books [1] and [3].
All vector lattices in this paper are real and Archimedean.

Consider conic sets C and K with K ⊂ C and K closed. Let H (C;K) denotes the vector
lattice of all positively homogeneous functions ϕ : C → R with continuous restriction to
K. The expression ϕ̂(x1, . . . , xN ) can be correctly defined provided that the compatibility
condition [x1, . . . , xN ] ⊂ K is hold, see [5].

Denote by H∨(R
N ,K) and H∧(R

N ,K) respectively the sets of all lower semicontinuous
sublinear functions ϕ : RN → R ∪ {+∞} and upper semicontinuous superlinear functions
ψ : RN → R∪{−∞} which are finite and continuous on a fixed cone K ⊂ RN . Put H∨(R

N ) :=
H∨(R

N , {0}) and H∧(R
N ) := H∧(R

N , {0}).
Denote by G∨(R

N ,K) and G∧(R
N ,K) respectively the sets of all lower semicontinuous

gauges ϕ : RN → R+ ∪ {+∞} and upper semicontinuous co-gauges ψ : RN → R+ ∪ {−∞}
which are finite and continuous on a fixed cone K ⊂ RN . Put G∨(R

N ) := G∨(R
N , {0}) and

G∧(R
N ) := G∧(R

N , {0}). Observe that G∨(R
N ) ⊂H∨(R

N ) and G∧(R
N ) ⊂H∧(R

N ), see [4, 5].
Everywhere below E, F , and G denote vector lattices, while Lr(E,F ) and BLr(E,F ;G)

stand for the spaces of regular linear operators from E to F and regular bilinear operator
from E × F to G, respectively.
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2. Functions of Bilinear Operators

A partition of x ∈ E+ is any finite sequence (x1, . . . , xn), n ∈ N, of elements of E+ whose
sum equals x. Denote by Prt(x) and DPrt(x) the sets of all partitions of x and all partitions
with pairwise disjoint terms, respectively.

2.1. Lemma. Let E, F , and G be vector lattices, b1, . . . , bN ∈ BLr(E,F ;G), and
b := (b1, . . . , bN ). Let ϕ ∈ H∨(R

N ), ψ ∈ H∧(R
N ), ϕ̂(b1(x0, y0), . . . , bN (x0, y0)) and

ψ̂(b1(x0, y0), . . . , bN (x0, y0)) are well defined in G for all 0 6 x0 6 x and 0 6 y0 6 y.
Denote x := (x1, . . . , xn) ∈ En and y := (y1, . . . , ym) ∈ Fm, m,n ∈ N. Then the sets

ϕ(b;x, y) :=

{ n∑

i=1

m∑

j=1

ϕ̂(b1(xi, yj), . . . , bN (xi, yj)) : n,m ∈ N, x ∈ Prt(x), y ∈ Prt(y)

}
,

ψ(b;x, y) :=

{ n∑

i=1

m∑

j=1

ψ̂(b1(xi, yj), . . . , bN (xi, yj)) : n,m ∈ N, x ∈ Prt(x), y ∈ Prt(y)

}
,

are upward directed and downward directed, respectively.

C Assume that (x1, . . . , xn) and (x′1, . . . , x
′
n′) are partitions of x while (y1, . . . , ym) and

(y′1, . . . , y
′
m′) are partitions of y. By The Riesz Decomposition Property of vector lattices there

exist finite double sequences (ui,k)i6n, k6n′ in E+ and (vj,l)j6m, l6m′ in F+ such that

∑n′

k=1
ui,k = xi,

∑n

i=1
ui,k = x′k

(
i := 1, . . . , n, k := 1, . . . , n′

)
;

∑m′

l=1
vj,l = yj ,

∑m

j=1
vj,l = y′l

(
j := 1, . . . ,m, l := 1, . . . ,m′

)
.

In particular, (ui,k)i6n, k6n′ and (vj,l)j6m, l6m′ are partition of x and y, respectively. Taking
subadditivity of ϕ into consideration we obtain

n,m∑

i,j=1

ϕ̂(b1(xi, yj), . . . , bN (xi, yj)) =

n,m∑

i,j=1

ϕ̂

( n′,m′∑

k,l=1

b1(ui,k, vj,l), . . . ,

n′,m′∑

k,l=1

bN (ui,k, vj,l)

)

=

n,m∑

i,j=1

ϕ̂

( n′,m′∑

k,l=1

(
b1(ui,k, vj,l), . . . , bN (ui,k, vj,l)

))
6

n,m∑

i,j=1

n′,m′∑

k,l=1

ϕ̂(b1(ui,k, vj,l), . . . , bN (ui,k, vj,l)).

In a similar way we get

n′,m′∑

k,l=1

ϕ̂
(
b1(x

′
k, y

′
l), . . . , bN (x

′
k, y

′
l)
)

6

n′,m′∑

i,j=1

n,m∑

k,l=1

ϕ̂(b1(ui,k, vj,l), . . . , bN (ui,k, vj,l)),

so that the first set is upward directed. Similarly, the second set is downward directed. B

2.2. Lemma. Let Let E, F , and G be vector lattices with G Dedekind complete and B

be an order bounded set of regular bilinear operators from E×F to G. Then for every x ∈ E+
and y ∈ F+ we have:

(supB)(x, y) = sup

{
n∑

i=1

m∑

j=1

bk(i,j)(xi, yj)

}
,

(inf B)(x, y) = inf

{
n∑

i=1

m∑

j=1

bk(i,j)(xi, yj)

}
,
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where supremum and infimum are taken over all naturals n,m, l ∈ N, functions k : {1, . . . , n}×
{1, . . . ,m} → {1, . . . , l}, partitions (x1, . . . , xn) ∈ Prt(x) and (y1, . . . , ym) ∈ Prt(y), and
arbitrary finite collections b1 . . . , bl ∈ B.

C See [6, Proposition 2.6]. B

2.3. Theorem. Let E, F , and G be vector lattices with G Dedekind complete,
b1, . . . , bN ∈ BLr(E,F ;G), and b := (b1, . . . , bN ). Assume that ϕ ∈ H∨(R

N ), ψ ∈ H∧(R
N ),

ϕ̂(b1(x0, y0), . . . , bN (x0, y0)) and ψ̂(b1(x0, y0), . . . , bN (x0, y0)) are well defined in G for all
0 6 x0 6 x and 0 6 y0 6 y, ϕ(b;x, y) is order bonded above, and ψ(b;x, y) is order bounded
below for all x ∈ E+ and y ∈ F+. Then ϕ̂(b1, . . . , bN ) and ψ̂(b1, . . . , bN ) are well defined in
BLr(E,F ;G) and for every x ∈ E+ and y ∈ F+ the representations

ϕ̂(b1, . . . , bN )(x, y) = supϕ(b;x, y),

ψ̂(b1, . . . , bN )(x, y) = inf ψ(b;x, y)

hold with supremum over upward directed set and infimum over downward directed set. If E
and F have the strong Freudenthal property (or principal projection property) then Prt(x)
and Prt(y) may be replaced by DPrt(x) and DPrt(y), respectively.

C Denote bλ := λ1b1 + · · ·+ λNbN for λ := (λ1, . . . , λN ) ∈ RN and observe that if the set
{bλ : λ ∈ ∂ϕ} is order bounded in BLr(E,F ;G), then by [5, Theorem 4.4] ϕ̂(b1, . . . , bN ) exists
in BLr(E,F ;G) and the upper envelope representation ϕ̂(b1, . . . , bN ) = sup{bλ : λ ∈ ∂ϕ}
holds. Take arbitrary λr := (λr1, . . . , λ

r
N ) ∈ ∂ϕ (r := 1, . . . , l), k : {1, . . . , n} × {1, . . . ,m} →

{1, . . . , l}, x := (x1, . . . , xn) ∈ Prt(x), and y := (y1, . . . , ym) ∈ Prt(y). Making use of Lemma
2.2 and [5, Theorem 4.4] we deduce:

n,m∑

i,j=1

bλk(i,j)(xi, yj) =

n,m∑

i,j=1

N∑

s=1

λk(i,j)s bs(xi, yj) 6

n,m∑

i,j=1

ϕ̂(b1(xi, yj), . . . , bN (xi, yj)) 6 a,

where a is an upper bound of ϕ(b;x, y). Passing to supremum over all (λ1. . . . , λl), k, x,
and y and taking [5, Theorem 4.4] into account we get that ϕ̂(b1, . . . , bN ) is well defined
and ϕ̂(b1, . . . , bN )(x, y) 6 ϕ(b;x, y). Surely, in above reasoning we could take (x1, . . . , xn) ∈
DPrt(x) provided that E has the principal projection property.

Conversely, let f(x, y) stands for the right-hand side of the first equality. Observe that if
(λ1, . . . , λn) ∈ ∂ϕ and u ∈ E+, v ∈ F+, then by [5, Theorem 4.4] we have

N∑

k=1

λkbk(u, v) =
( N∑

k=1

λkbk

)
(u, v) 6 ϕ̂(b1, . . . , bN )(u, v)

and again ϕ̂(b1(u, v), . . . , bN (u, v)) 6 ϕ̂(b1, . . . , bN )(u, v) by [5, Theorem 4.4]. Now, given
(x1, . . . , xn) in Prt(x) or DPrt(x) and (y1, . . . , yn) in Prt(y) or DPrt(y), we can estimate

n,m∑

i,j=1

ϕ̂(b1(xi, yj), . . . , bN (xi, yj)) 6

n,m∑

i,j=1

ϕ̂(b1, . . . , bN )(xi, yj) 6 ϕ̂(b1, . . . , bN )(x, y)

and thus f(x, y) 6 ϕ̂(b1, . . . , bN )(x, y). Thus the first equality is hold true. By Lemma 2.1 the
supremum on the right-hand side of the required formula is taken over upward directed set.

The second representation is proved in a similar way. B
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2.4. Corollary. Let E, F , G, ϕ, ψ, b1, . . . , bN be the same as in 2.1, b := ϕ̂(b1, . . . , bN )
and b := ψ̂(b1, . . . , bN ). Assume that, in addition, E = F has the strong Freudenthal property
and b1, . . . , bN are orthosymmetric. Then for every x ∈ E the representations

b(x, x) = sup

{ n∑

i=1

ϕ(b1(xi, |x|), . . . , bN (xi, |x|)) : (x1, . . . , xn) ∈ DPrt(|x|)
}
,

b(x, x) = inf

{ n∑

i=1

ψ(b1(xi, |x|), . . . , bN (xi, |x|)) : (x1, . . . , xn) ∈ DPrt(|x|)
}
,

hold with supremum and infimum over upward and downward directed sets, respectively.

C It is sufficient to check the first formula. We can assume x ∈ E+. Denote by g(x) the
right-hand side of the desired equality. From Theorem 2.3 we have g(x) 6 ϕ̂(b1, . . . , bN )(x, x).
To prove the reverse inequality take two disjoint partitions of x, say x′ := (x′1, . . . , x

′
l) and x′′ :=

(x′′1, . . . , x
′′
m), and let (x1, . . . , xn) ∈ DPrt(x) be their common refinement. Since b1, . . . , bN

are orthosymmetric we deduce

l,m∑

r,s=1

ϕ̂(b1(x
′
r, x

′′
s), . . . , bN (x

′
r, x

′′
s))

=
n∑

i=1

ϕ̂(b1(xi, xi), . . . , bN (xi, xi)) =
n∑

i=1

ϕ̂(b1(xi, x), . . . , bN (xi, x)).

Passing to supremum over all x′ and x′′ we get the desired inequality. B

3. Functions of Linear Operators

The above machinery is applicable to the calculus of order bounded operators.

3.1. Theorem. Let E and F be vector lattices with F Dedekind complete, T1, . . . , TN ∈
Lr(E,F ), and T := (T1, . . . , TN ). Let ϕ ∈ H∨(R

N ), ψ ∈ H∧(R
N ), ϕ̂(T1x0, . . . , TNx0) and

ψ̂(T1x0, . . . , TNx0) are well defined in F for all 0 6 x0 6 x. If for every x ∈ E+ the sets

ϕ(T;x) =

{ n∑

k=1

ϕ̂(T1xk, . . . , TNxk) : (x1, . . . , xn) ∈ Prt(x)

}
,

ψ(T;x) =

{ n∑

k=1

ψ̂(T1xk, . . . , TNxk) : (x1, . . . , xn) ∈ Prt(x)

}

are order bounded from above and from below respectively, then ϕ̂(T1, . . . , TN ) and
ψ̂(T1, . . . , TN ) exist in Lr(E,F ), and the representations

ϕ̂(T1, . . . , TN )x = supϕ(T;x),

ψ̂(T1, . . . , TN )x = inf ψ(T; y)

hold with supremum over upward directed set and infimum over downward directed set. If E
has the principal projection property then Prt(x) may be replaced by DPrt(x).

C Follows immediately from 2.3. B

3.2. Remark. (1) Assume that E, F , T1, . . . , TN , ϕ, and ψ are the same as in [4, Theorem
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5.2]. Then ϕ̂(T1, . . . , TN )x > ϕ̂(T1x, . . . , TNx) and ψ̂(T1, . . . , TN )x 6 ψ̂(T1x, . . . , TNx) for all
x ∈ E+. In particular, if RN

+ ⊂ dom(ϕ) ∩ dom(ψ) and ϕ̂(T1x, . . . , TNx) > ψ̂(T1x, . . . , TNx)

for all x ∈ E+, then ϕ̂(T1, . . . , TN ) > ψ̂(T1, . . . , TN ).

(2) Assume that ϕ ∈ H (C; [ x ]) and ϕ(0, t2, . . . , tN ) = 0 for all (t1, . . . , tN ) ∈ dom(ϕ).
Then evidently ϕ̂(x1, . . . , xN ) ∈ {x1}⊥⊥ provided that [ x ] ⊂ dom(ϕ). This simple observation
together with [4, Theorem 5.2] enables one to attack the nonlinear majorization problem for
wider variety of majorants ϕ̂(T1, . . . , TN ), cp. [2].

3.3. Let E and F be vector lattices with E relatively uniformly complete and F Dedekind
complete. Then for T1, . . . , TN ∈ Lr+(E,F ), x1, . . . , xN ∈ E+, and α1, . . . , αN ∈ R+ with
α1 + · · ·+ αN = 1 we have

(Tα1
1 . . . TαNN )(xα1

1 . . . xαNN ) 6 (T1x1)
α1 . . . (TNxN )

αN .

The reverse inequality holds provided that α1+· · ·+αN = 1, (−1)k(1−α1−· · ·−αk)α1·. . .·αk >

0 (k := 1, . . . , N − 1), and xi À 0, f(xi)À 0 for all i with αi < 0.

C Apply [4, Corollary 6.7] with K = RN
+ , C = 1, ϕ0(t) = ϕ1(t) = ϕ2(t) = tα1

1 . . . tαNN . B

3.4. Theorem. Let E and F be vector lattices with F Dedekind complete and
T1, . . . , TN ∈ Lr+(E,F ). Suppose that ϕ ∈ G∨(R

N ,RN
+ ) and ψ ∈ G∧(R

N ,RN
+ ) are increasing

and [T1, . . . , TN ] ⊂ dom(ϕ) ∩ dom(ψ). Then for every x ∈ E+ the representations hold

ϕ̂(T1, . . . , TN )x = sup

{ N∑

k=1

Tkxk : x1, . . . , xN ∈ E+, ϕ̂◦(x1, . . . , xN ) 6 x

}
,

ψ̂(T1, . . . , TN )x = inf

{ N∑

k=1

Tkxk : x1, . . . , xN ∈ E+, ψ̂◦(x1, . . . , xN ) > x

}
,

with supremum over upward directed set and infimum over downward directed set.

C Suppose that ϕ̂(T1, . . . , TN ) exists and x ∈ E+. If x1, . . . , xN ∈ E+ and
ϕ̂◦(x1, . . . , xN ) 6 x, then making use of the Bipolar Theorem, positivity of ϕ̂(T1, . . . , TN ),
and [4, Corollary 6.8] we deduce

N∑

k=1

Tkxk 6 ϕ̂(T1, . . . , TN )(ϕ̂◦(x1, . . . , xN )) 6 ϕ̂(T1, . . . , TN )x.

To prove the reverse inequality take (x1, . . . , xn) ∈ Prt(x), λk = (λk1, . . . , λ
k
N ) ∈ ∂ϕ =

{ϕ◦ 6 1} (k := 1, . . . , n), and put ui :=
∑n

k=1 λ
k
i xk. If α := (α1, . . . , αN ) ∈ ∂ϕ◦ = {ϕ 6 1},

then 〈α, λk〉 6 ϕ(α)ϕ◦(λk) 6 1 and thus

N∑

i=1

αiui =
N∑

i=1

αi

n∑

k=1

λki xk =
n∑

k=1

〈α, λk〉xk 6 x.

It follows from [5, Theorem 5.4] that ϕ̂◦(u1, . . . , uN ) 6 x.
Denote S(λ) := λ1T1+ · · ·+ λNTN with λ := (λ1, . . . , λN ). Let f(x) is the right-hand side

of the first equality. Then

n∑

k=1

S(λk)(xk) =
N∑

i=1

Tiui 6 f(x).

It remains to observe that ϕ(T1, . . . , TN ) = sup{S(λ) : λ ∈ ∂ϕ} by [5, Theorem 4.4]. B
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3.5. Proposition. Let E, F , and G be vector lattices with F Dedekind complete,
R : E → G an order interval preserving operator, T : G → F an order continuous lattice
homomorphism, and ϕ ∈ H (C,K). Assume that S1, . . . , SN ∈ Lr(E,F ) and [S1, . . . , SN ] ⊂
K. Then [S1 ◦R, . . . , SN ◦R] ⊂ K and

ϕ̂(S1, . . . , SN ) ◦R = ϕ̂(S1 ◦R, . . . , SN ◦R).

If, in addition, G is Dedekind complete, then [T ◦ S1, . . . , T ◦ SN ] ⊂ K and

T ◦ ϕ̂(S1, . . . , SN ) = ϕ̂(T ◦ S1, . . . , T ◦ SN ).

C Under the indicated hypotheses the operators S 7→ S ◦ R from Lr(G,F ) to Lr(E,F )
and S 7→ T ◦ S from Lr(E,G) to Lr(E,F ) are lattice homomorphisms, see [1, Theorem 7.4
and 7.5]. Therefore, it is sufficient to apply [5, Proposition 2.6]. B

3.6. Proposition. Let E and F be vector lattices with F Dedekind complete. Assume that
ϕ ∈H (C,K), S1, . . . , SN ∈ Lr(E,F ), and [S1, . . . , SN ] ⊂ K. If S∗ denotes the restriction of
the order dual S ′ to F∼n , the order continuous dual of F , then [S∗1 , . . . , S

∗
N ] ⊂ K and

ϕ̂(S1, . . . , SN )
∗ = ϕ̂(S∗1 , . . . , S

∗
N ).

C By Krengel–Synnatschke Theorem [1, Theorem 5.11] the map S 7→ S∗ is a lattice
homomorphism from Lr(E,F ) into Lr(F∼n , E

∼), see [1, Theorem 7.6]. Thus, we need only to
apply [5, Proposition 2.6]. B

3.7. Proposition. The second formula in Theorem 3.4 and Proposition 3.6 were obtained
by A. V. Bukhvalov [2] under some additional restrictions.
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