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SOME VECTOR VALUED MULTIPLIER
DIFFERENCE SEQUENCE SPACES DEFINED
BY A SEQUENCE OF ORLICZ FUNCTIONS

H. Dutta

In this article we introduce some new difference sequence spaces with a real 2-normed linear space as
base space and which are defined using a sequence of Orlicz functions, a bounded sequence of positive
real numbers and a sequence of non-zero reals as multiplier sequence. We show that these spaces are
complete paranormed spaces when the base space is a 2-Banach space and investigate these spaces for
solidity, symmetricity, convergence free, monotonicity and sequence algebra. Further we obtain some
relation between these spaces as well as prove some inclusion results.
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1. Introduction

Throughout the paper w, `∞ , c and c0 denote the spaces of all bounded, convergent, and
null sequences x = (xk) with complex terms, respectively. The zero sequence is denoted by
θ = (0, 0, 0, . . . ).

The notion of difference sequence spaces was introduced by Kizmaz [11] who studied the
difference sequence spaces `∞(∆), c(∆) and c0(∆). The notion was further generalized by
Et and Colak [4] by introducing the spaces `∞(∆s), c(∆s) and c0(∆

s). Recently Dutta [2]
introduced and studied the following difference sequence spaces:

Let r, s be non-negative integers, then for Z a given sequence space we have

Z(∆s
(r)) =

{

x = (xk) ∈ w : (∆s
(r)xk) ∈ Z

}

,

where ∆s
(r)x = (∆s

(r)xk) = (∆s−1
(r) xk −∆s−1

(r) xk−r) and ∆0
(r)xk = xk for all k ∈ N and which is

equivalent to the binomial representation ∆s
(r)xk =

∑s
v=0(−1)v

(

s
v

)

xk−rv.

For s = 1, we get the difference operator ∆(r) introduced and studied by Dutta [3] for
sequences of fuzzy numbers. Again r = s = 1, we get spaces `∞(∆), c(∆) and c0(∆).

Let Λ = (λk) be a sequence of non-zero scalars. Then for a sequence space E the multiplier
sequence space E(Λ), associated with the multiplier sequence Λ is defined as

E(Λ) = {(xk) ∈ w : (λkxk) ∈ E}.

The scope for the studies on sequence spaces was extended by using the notion of associ-
ated multiplier sequences. Goes and Goes [8] defined the differentiated sequence space dE and
integrated sequence space

∫

E for a given sequence space E, using the multiplier sequences
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(k−1) and (k) respectively. A multiplier sequence can be used to accelerate the convergence
of the sequences in some spaces. In some sense, it can be viewed as a catalyst, which is used
to accelerate the process of chemical reaction. Sometimes the associated multiplier sequence
delays the rate of convergence of a sequence.

The concept of 2-normed spaces was initially developed by Gähler [6] in the mid of 1960’s.
Since then, Gunawan and Mashadi [10], Dutta [1] and many others have studied this concept
and obtained various results.

Let X be a real linear space of dimension greater than one and let ‖·, ·‖ be a real valued
function on X × X satisfying the following conditions:

(1) ‖x, y‖ = 0 if and only if x and y are linearly dependent vectors,
(2) ‖x, y‖ = ‖y, x‖,
(3) ‖αx, y‖ 6 |α| · ‖x, y‖, for every α ∈ R
(4) ‖x, y + z‖ 6 ‖x, y‖ + ‖x, z‖

then the function ‖·, ·‖ is called a 2-norm on X and the pair (X, ‖·, ·‖) is called a 2-normed
linear space.

An Orlicz function is a function M : [0,∞) → [0,∞) which is continuous, non-decreasing
and convex with M(0) = 0, M(x) > 0 , for x > 0 and M(x) → ∞, as x → ∞.

Lindenstrauss and Tzafriri [14] used the Orlicz function and introduced the sequence
space `M as follows:

`M =

{

(xk) ∈ w :

∞
∑

k=1

M

( |xk|
ρ

)

< ∞, for some ρ > 0

}

.

They proved that `M is a Banach space normed by

‖(xk)‖ = inf

{

ρ > 0 :

∞
∑

k=1

M

( |xk|
ρ

)

6 1

}

.

Remark 1. An Orlicz function satisfies the inequality M(λx) < λM(x), for all λ with
0 < λ < 1. The following inequality will be used throughout the article.

Let p = (pk) be a positive sequence of real numbers with 0 < pk 6 sup pk = G, D =
max

(

1, 2G−1
)

. Then for all ak, bk ∈ C for all k ∈ N, we have

|ak + bk|pk 6 D {|ak|pk + |bk|pk}

and for all λ ∈ C, |λ|pk 6 max
(

1, |λ|G
)

.
The studies on paranormed sequence spaces were initiated by Nakano [17] and Simons [20]

at the initial stage. Later on it was further studied by Maddox [15], Nanda [18], Las-
cardies [12], Lascardies and Maddox [13] and many others. Parasar and Choudhary [19],
Mursaleen, Khan and Qamaruddin [16] and many others studied paranormed sequence spaces
using Orlicz functions.

2. Definition and Preliminaries

A sequence space E is said to be: solid (or normal) if (xk) ∈ E implies (αkxk) ∈ E for all
sequences of scalars (αk) with |αk| 6 1 for all k ∈ N; monotone if it contains the canonical
preimages of all its step spaces; symmetric if (xπ(k)) ∈ E whenever (xk) ∈ E, where π is a
permutation on N; convergence free if (yk) ∈ E whenever (xk) ∈ E and yk = 0 whenever
xk = 0; sequence algebra if (xk, yk) ∈ E whenever (xk) ∈ E and (yk) ∈ E.
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A sequence (xk) in a 2-normed space (X, ‖·, ·‖) is said to converge to some L ∈ X in the
2-norm if limk→∞ ‖xk − L, u‖ = 0, for every u ∈ X, and is said to be Cauchy sequence with
respect to the 2-norm if limk,l→∞ ‖xk − xl, u‖ = 0, for every u ∈ X.

If every Cauchy sequence in X converges to some L ∈ X, then X is said to be complete

with respect to the 2-norm. Any complete 2-normed space is said to be 2-Banach space.
Now we give the following two familiar examples of 2-norm which will be used in the next

section to construct examples.

Example 1. Consider the spaces `∞, c and c0 of real sequences. Let us define:

‖x, y‖ = sup
i∈N

sup
j∈N

|xiyj − xjyi|,

where x = (x1, x2, x3, . . . ) and y = (y1, y2, y3, . . . ). Then ‖·, ·‖ is a 2-norm on `∞, c and c0.

Example 2. Let us take X = R2 and Consider the function ‖·, ·‖ on X definded as:

‖x1, x2‖E = abs

(∣

∣

∣

∣

x11 x12

x21 x22

∣

∣

∣

∣

)

, xi = (xi1, xi2) ∈ R2, i = 1, 2.

Then ‖·, ·‖ is a 2-norm on X.
Let p = (pk) be any bounded sequence of positive real numbers and Λ = (λk) be a

sequence of non-zero reals. Let m, n be non-negative integers, then for a real linear 2-normed
space (X, ‖·, ·‖) and for a sequence M = (Mk) of Orlicz functions we define the following
sequence spaces:

c0(M, ‖·, ·‖,∆n
(m) ,Λ, p) =

{

x = (xk) ∈ w(X) :

lim
k→∞

(

Mk

(∥

∥

∥

∥

∆n
(m)λkxk

ρ
, z

∥

∥

∥

∥

))pk

= 0, z ∈ X, for some ρ > 0

}

,

c(M, ‖·, ·‖,∆n
(m) ,Λ, p) =

{

x = (xk) ∈ w(X) :

lim
k→∞

(

Mk

(∥

∥

∥

∥

∆n
(m)λkxk − L

ρ
, z

∥

∥

∥

∥

))pk

= 0, z ∈ X,L ∈ X, for some ρ > 0

}

,

`∞(M, ‖·, ·‖,∆n
(m) ,Λ, p) =

{

x = (xk) ∈ w(X) :

sup
k>1

(

Mk

(∥

∥

∥

∥

∆n
(m)λkxk

ρ
, z

∥

∥

∥

∥

))pk

< ∞, z ∈ X, for some ρ > 0

}

,

where (∆n
(m)λkxk) = (∆n−1

(m) λkxk −∆n−1
(m) λk−mxk−m) and ∆0

(m)λkxk = λkxk for all k ∈ N and
which is equivalent to the binomial representation

∆n
(m)λkxk =

n
∑

v=0

(−1)v

(

n

v

)

λk−mvxk−mv.

In the above expansion it is important to note that we take xk−mv = 0 and λk−mv = 0, for
non-positive values of k − mv.

It is obvious that

c0(M, ‖·, ·‖,∆n
(m) ,Λ, p) ⊂ c(M, ‖·, ·‖,∆n

(m) ,Λ, p) ⊂ `∞(M, ‖·, ·‖,∆n
(m) ,Λ, p).
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The inclusions are strict as follows from the following examples.

Example 3. Let m = 2, n = 2, Mk(x) = x2 for all k is odd and Mk(x) = x6 for all k is
even, for all x ∈ [0,∞) and pk = 1 for all k > 1. Consider the 2-normed space as defined in
Example 2 and let the sequences Λ = (k4) and x =

(

1
k2 , 1

k2

)

. Then x ∈ c(M, ‖·, ·‖,∆2
(2) ,Λ, p),

but x /∈ c0(M, ‖·, ·‖,∆2
(2) ,Λ, p).

Example 4. Let m = 2, n = 2, Mk(x) = |x|, for all k > 1 and x ∈ [0,∞) and pk = 2 for
all k odd and pk = 3 for all k even. Consider the 2-normed space as defined in Example 1
and let the sequences Λ = (1, 1, 1, . . . ) and x = {1, 3, 2, 4, 5, 7, 6, 8, 9, 11, 10, 12, . . .}. Then
x ∈ `∞(M, ‖·, ·‖,∆2

(2) ,Λ, p), but x /∈ c(M, ‖·, ·‖,∆2
(2) ,Λ, p).

Lemma 1. If a sequence space E is solid, then E is monotone.

3. Main Results

In this section we prove the main results of this article.

Proposition 1. The classes of sequences c0(M, ‖·, ·‖,∆n
(m) ,Λ, p), c(M, ‖·, ·‖,∆n

(m) ,Λ, p)

and `∞(M, ‖·, ·‖,∆n
(m) ,Λ, p) are linear spaces.

Theorem 2. For Z = `∞, c and c0, the spaces Z(M, ‖·, ·‖,∆n
(m) ,Λ, p) are paranormed

sapces, paranormed by

g(x) = inf

{

ρ
pk
H : sup

k>1
Mk

(∥

∥

∥

∥

∆n
(m)λkxk

ρ
, z

∥

∥

∥

∥

)

6 1, z ∈ X

}

,

where H = max(1, supk>1 pk).

C Clearly g(x) = g(−x); x = θ implies g(θ) = 0. Let (xk) and (yk) be any two sequences
of the space c0(M, ‖·, ·‖,∆n

(m) ,Λ, p). Then there exist ρ1, ρ2 > 0 such that for every z in X,

sup
k>1

Mk

(∥

∥

∥

∥

∆n
(m)λkxk

ρ1
, z

∥

∥

∥

∥

)

6 1, sup
k>1

Mk

(∥

∥

∥

∥

∆n
(m)λkyk

ρ2
, z

∥

∥

∥

∥

)

6 1.

Let ρ = ρ1 + ρ2. Then by the convexity of Orlicz functions, we have for every z in X

sup
k

Mk

(∥

∥

∥

∥

∆n
(m)λkxk + ∆n

(m)λkyk

ρ
, z

∥

∥

∥

∥

)

6

(

ρ1

ρ1 + ρ2

)

sup
k

Mk

(∥

∥

∥

∥

∆n
(m)λkxk

ρ1
, z

∥

∥

∥

∥

)

+

(

ρ2

ρ1 + ρ2

)

sup
k

Mk

(∥

∥

∥

∥

∆n
(m)λkyk

ρ2
, z

∥

∥

∥

∥

)

.

Hence we have,

g(x + y) = inf

{

ρ
pk
H : sup

k>1
Mk

(∥

∥

∥

∥

∆n
(m)λkxk + ∆n

(m)λkyk

ρ
, z

∥

∥

∥

∥

)

6 1, z ∈ X

}

6 inf

{

ρ1

pk
H : sup

k>1
Mk

(∥

∥

∥

∥

∆n
(m)λkxk

ρ1
, z

∥

∥

∥

∥

)

6 1, z ∈ X

}

+ inf

{

ρ2

pk
H : sup

k>1
Mk

(∥

∥

∥

∥

∆n
(m)λkyk

ρ2
, z

∥

∥

∥

∥

)

6 1, z ∈ X

}

=⇒ g(x + y) 6 g(x) + g(y).
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The continuity of the scalar multiplication follows from the following equality:

g(αx) = inf

{

ρ
pk
H : sup

k>1
Mk

(∥

∥

∥

∥

∆n
(m)αλkxk

ρ
, z

∥

∥

∥

∥

)

6 1, z ∈ X

}

= inf

{

(t|α|)
pk
H : sup

k>1
Mk

(∥

∥

∥

∥

∆n
(m)λkxk

t
, z

∥

∥

∥

∥

)

6 1, z ∈ X

}

,

where t = ρ
|α| Hence the spaces c0(M, ‖·, ·‖,∆n

(m) ,Λ, p) is a paranormed space, paranormed
by g. The rest of the cases will follow similarly. B

Theorem 3. If (X, ‖·, ·‖) is a 2-Banach space, then the spaces Z(M, ‖·, ·‖,∆n
(m),Λ, p),

for Z = `∞, c and c0 are complete paranormed spaces, paranormed by

g(x) = inf

{

ρ
pk
H : sup

k>1
Mk

(∥

∥

∥

∥

∆n
(m)λkxk

ρ
, z

∥

∥

∥

∥

)

6 1, z ∈ X

}

where H = max(1, supk>1 pk).

C We prove the result for the space `∞(M, ‖·, ·‖,∆n
(m) ,Λ, p) and for other spaces it will

follow on applying similar arguments.
Let (xi) be any Cauchy sequence in `∞(M, ‖·, ·‖,∆n

(m) ,Λ, p). Let x0 > 0 be fixed and
t > 0 be such that for 0 < ε < 1, ε

x0t > 0 and x0t > 0. Then there exists a positive integer

n0 such that g(xi − xj) < ε
x0t , for all i, j > n0. Using the definition of paranorm, we get

inf

{

ρ
pk
H : sup

k>1
Mk

(∥

∥

∥

∥

∆n
(m)λk(x

i
k − xj

k)

ρ
, z

∥

∥

∥

∥

)

6 1, z ∈ X

}

<
ε

x0t
(∀ i, j > n0).

Then we get for every z in X

sup
k>1

Mk

(∥

∥

∥

∥

∆n
(m)λk(x

i
k − xj

k)

g(xi − xj)
, z

∥

∥

∥

∥

)

6 1 (∀ i, j > n0).

It follows that for every z ∈ X and k > 1

Mk

(∥

∥

∥

∥

∆n
(m)λk(x

i
k − xj

k)

g(xi − xj)
, z

∥

∥

∥

∥

)

6 1 (∀ i, j > n0).

Now for t > 0 with Mk

(

tx0
2

)

> 1, for each k > 1

Mk

(∥

∥

∥

∥

∆n
(m)λk(x

i
k − xj

k)

g(xi − xj)
, z

∥

∥

∥

∥

)

6 Mk

(

tx0

2

)

, z ∈ X.

This implies that

∥

∥∆n
(m)λkx

i
k − ∆n

(m)λkx
j
k, z

∥

∥ 6

(

tx0

2

)(

ε

tx0

)

=
ε

2
, z ∈ X.

Hence
(

∆n
(m)λkx

i
k

)

is a Cauchy sequence in 2-Banach space X for all k ∈ N . ⇒
(

∆n
(m)λkx

i
k

)

is convergent in X for all k ∈ N . For simplicity, let limi→∞ ∆n
(m)λkx

i
k = yk for each k ∈ N .

Let k = 1, we have
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lim
i→∞

∆n
(m)λ1x

i
1 = lim

i→∞

n
∑

v=0

(−1)v

(

n

v

)

λ1−mvx
i
1−mv = lim

i→∞
λ1x

i
1 = y1. (1)

Similarly we have

lim
i→∞

∆n
(m)λkx

i
k = yk, k = 1, 2, . . . , nm. (2)

Thus from (1) and (2) we have limi→∞ xi
1+nm exists. Let limi→∞ xi

1+nm = x1+nm. Proceeding
in this way inductively, we have limi→∞ xi

k = xk exists for each k ∈ N. Now we have for all
i, j > n0.

inf

{

ρ
pk
H : sup

k>1
Mk

(∥

∥

∥

∥

∆n
(m)λk(x

i
k − xj

k)

ρ
, z

∥

∥

∥

∥

)

6 1, z ∈ X

}

6 ε

=⇒ lim
j→∞

inf

{

ρ
pk
H : sup

k>1
Mk

(∥

∥

∥

∥

∆n
(m)λkx

i
k − ∆n

(m)λkx
j
k

ρ
, z

∥

∥

∥

∥

)

6 1, z ∈ X

}

6 ε

=⇒ lim
j→∞

inf

{

ρ
pk
H : sup

k>1
Mk

(∥

∥

∥

∥

∆n
(m)λkx

i
k − ∆n

(m)λkxk

ρ
, z

∥

∥

∥

∥

)

6 1, z ∈ X

}

6 ε (∀ i > n0).

It follows that (xi − x) ∈ `∞(M, ‖·, ·‖,∆n
(m) ,Λ, p).

Since (xi) ∈ `∞
(

M, ‖·, ·‖,∆n
(m) ,Λ, p

)

and `∞
(

M, ‖·, ·‖,∆n
(m) ,Λ, p

)

is a linear space, so we

have x = xi − (xi − x) ∈ `∞
(

M, ‖·, ·‖,∆n
(m) ,Λ, p

)

. This completes the proof. B

Theorem 4. If 0 < pk 6 qk < ∞ for each k, then Z
(

M, ‖·, ·‖,∆n
(m) ,Λ, p

)

⊆
Z

(

M, ‖·, ·‖,∆n
(m) ,Λ, q

)

, for Z = c0 and c.

C We prove the result for the case Z = c0 and for the other case it will follow on applying
similar arguments.

Let (xk) ∈ c0(M, ‖·, ·‖,∆n
(m) ,Λ, p). Then there exist some ρ > 0 such that

lim
k→∞

(

Mk

(∥

∥

∥

∥

∆n
(m)λkxk

ρ
, z

∥

∥

∥

∥

))pk

= 0.

This implies that
(

Mk

(∥

∥

∥

∆n
(m)

λkxk

ρ , z
∥

∥

∥

))pk

< ε (0 < ε 6 1) for sufficiently large k. Hence we

get

lim
k→∞

(

Mk

(∥

∥

∥

∥

∆n
(m)λkxk

ρ
, z

∥

∥

∥

∥

))qk

6 lim
k→∞

(

Mk

(∥

∥

∥

∥

∆n
(m)λkxk

ρ
, z

∥

∥

∥

∥

))pk

= 0

=⇒ (xk) ∈ c0

(

M, ‖·, ·‖,∆n
(m) ,Λ, q

)

.

Thus c0

(

M, ‖·, ·‖,∆n
(m) ,Λ, p

)

⊆ c0

(

‖M, ·, ·‖,∆n
(m),Λ, q

)

.

Similarly, c
(

M, ‖·, ·‖,∆n
(m) ,Λ, p

)

⊆ c
(

‖M, ·, ·‖,∆n
(m) ,Λ, q

)

. This completes the proof. B

The following result is a consequence of Theorem 6.

Corollary 5. (a) If 0 < inf pk 6 pk 6 1, for each k, then

Z
(

M, ‖·, ·‖,∆n
(m) ,Λ, p

)

⊆ Z
(

M, ‖·, ·‖,∆n
(m) ,Λ

)

, Z = c0, c.

(b) If 1 6 pk 6 sup pk < ∞, for each k, then

Z
(

M, ‖·, ·‖,∆n
(m) ,Λ

)

⊆ Z
(

M, ‖·, ·‖,∆n
(m) ,Λ, p

)

, Z = c0, c.
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Theorem 6. Z(M, ‖·, ·‖,∆n−1
(m) ,Λ, p) ⊂ Z(M, ‖·, ·‖,∆n

(m) ,Λ, p) (in general for i =

1, 2, . . . , n − 1) Z(M, ‖·, ·‖,∆i
(m) ,Λ, p) ⊂ Z(M, ‖·, ·‖,∆n

(m) ,Λ, p)), for Z = `∞, c and c0.

C Here we prove the result for Z = c0 and for the other cases it will follow on applying
similar arguments.

Let x = (xk) ∈ c0

(

M, ‖·, ·‖,∆n−1
(m) ,Λ, p

)

. Then there exist ρ > 0 such that

lim
k→∞

(

Mk

(∥

∥

∥

∥

∆n−1
(m) λkxk

ρ
, z

∥

∥

∥

∥

))pk

= 0. (3)

On considering 2ρ, by the convexity of Orlicz functions, we have

(

Mk

(∥

∥

∥

∥

∆n
(m)λkxk

2ρ
, z

∥

∥

∥

∥

))

6
1

2

(

Mk

(∥

∥

∥

∥

∆n−1
(m) λkxk

ρ
, z

∥

∥

∥

∥

))

+
1

2

(

Mk

(∥

∥

∥

∥

∆n−1
(m) λk−mxk−m

ρ
, z

∥

∥

∥

∥

))

.

Hence we have
(

Mk

(∥

∥

∥

∥

∆n
(m)λkxk

2ρ
, z

∥

∥

∥

∥

))pk

6 D

{(

1

2

(

Mk

(∥

∥

∥

∥

∆n−1
(m) λkxk

ρ
, z

∥

∥

∥

∥

)))pk

+

(

1

2

(

Mk

(∥

∥

∥

∥

∆n−1
(m) λk−mxk−m

ρ
, z

∥

∥

∥

∥

)))pk
}

.

Then using (3), we get

lim
k→∞

(

Mk

(∥

∥

∥

∥

∆n
(m)λkxk

2ρ
, z

∥

∥

∥

∥

))pk

= 0.

Thus c0

(

M, ‖·, ·‖,∆n−1
(m) ,Λ, p

)

⊂ c0

(

M, ‖·, ·‖,∆n
(m),Λ, p

)

. B

The inclusion is strict as follows from the following example.

Example 5. Let m = 3, n = 2, Mk(x) = x10, for all k > 1 and x ∈ [0,∞) and pk = 2 for
all k odd and pk = 3 for all k even. Consider the 2-normed space as defined in Example 2
and let the sequences Λ =

(

1
k

)

and x = (xk) = (k2, k2). Then ∆2
(3)λkxk = 0, for all k ∈ N .

Then x ∈ c0

(

M, ‖·, ·‖,∆2
(3) ,Λ, p

)

. Again we have ∆1
(3)λkxk = −3, for all k ∈ N . Hence

x /∈ c0

(

M, ‖·, ·‖,∆1
(3),Λ, p

)

. Thus the inclusion is strict.

Theorem 7. The following spaces c0

(

M, ‖·, ·‖,∆n
(m) ,Λ, p

)

, c
(

M, ‖·, ·‖,∆n
(m) ,Λ, p

)

and

`∞
(

M, ‖·, ·‖,∆n
(m) ,Λ, p

)

are not monotone and as such are not solid in general.

C The proof follows from the following example. B

Example 6. Let n = 2, m = 3, pk = 1 for all k odd and pk = 2 for all k even
and Mk(x) = x2, for all k > 1 and for all x ∈ [0,∞). consider the 2-normed space as
defined in Example 1. Then ∆2

(3)λkxk = λkxk − 2λk−3xk−3 + λk−6xk−6, for all k ∈ N .

Consider the J th step space of a sequence space E defined as, for (xk), (yk) ∈ EJ implies
that yk = xk for k odd and yk = 0 for k even. Consider the sequences Λ = (k3) and
x =

(

1
k2

)

. Then x ∈ Z
(

M, ‖·, ·‖,∆2
(3) ,Λ, p

)

for Z = `∞, c and co, but its J th canonical

pre-image does not belong to Z
(

‖M, ·, ·‖,∆2
(3) ,Λ, p

)

for Z = `∞, c and co. Hence the spaces

Z
(

M, ‖·, ·‖,∆n
(m) ,Λ, p

)

for Z = `∞, c and co are not monotone and as such are not solid in
general.

Theorem 8. The following spaces are not symmetric in general: c0

(

M, ‖·, ·‖,∆n
(m) ,Λ, p

)

,

c
(

M, ‖·, ·‖,∆n
(m) ,Λ, p

)

, `∞
(

M, ‖·, ·‖,∆n
(m) ,Λ, p

)

.

C The proof follows from the following example. B
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Example 7. Let n = 2, m = 2, pk = 2 for all k odd and pk = 3 for all k even
and Mk(x) = x2, for all x ∈ [0,∞) and for all k > 1. Consider the 2-normed space as
defined in Example 1. Then ∆2

(2)λkxk = λkxk − 2λk−2xk−2 + λk−4xk−4, for all k ∈ N .

Consider the sequences Λ = (1, 1, 1, . . .) and x = (xk) defined as xk = k for k odd and
xk = 0 for k even. Then ∆2

(2)λkxk = 0, for all k ∈ N . Hence (xk) ∈ Z
(

M, ‖·, ·‖,∆2
(2) ,Λ, p

)

,

for Z = `∞, c and co. Consider the rearranged sequence, (yk) of (xk) defined as (yk) =
(x1, x3, x2, x4, x5, x7, x6, x8, x9, x11, x10, x12, . . .). Then (yk) /∈ Z(M, ‖·, ·‖,∆2

(2) ,Λ, p), for Z =

`∞, c and co. Hence the spaces Z
(

M, ‖·, ·‖,∆n
(m) ,Λ, p

)

, for Z = `∞, c and co are not symmetric
in general.

Theorem 9. The following spaces are not convergence free in general:

c0

(

M, ‖·, ·‖,∆n
(m) ,Λ, p

)

, c
(

M, ‖·, ·‖,∆n
(m) ,Λ, p

)

, `∞
(

M, ‖·, ·‖,∆n
(m) ,Λ, p

)

.

C The proof follows from the following example. B

Example 8. Let m = 3, n = 1, pk = 6 for all k and Mk(x) = x5, for k is even and
Mk(x) = |x|, for k is odd, for all x ∈ [0,∞). Then ∆1

(3)λkxk = λkxk − λk−3xk−3, for all

k ∈ N. Consider the 2-normed space as defined in Example 2. Let Λ =
(

5
k

)

and consider the
sequences (xk) and (yk) defined as xk =

(

4
5k, 4

5k
)

for all k ∈ N and yk =
(

1
5k3, 1

5k3
)

for all
k ∈ N. Then (xk) ∈ Z

(

M, ‖·, ·‖,∆1
(3),Λ, p

)

, but (yk) /∈ Z
(

M, ‖·, ·‖,∆1
(3) ,Λ, p

)

, for Z = `∞, c

and co. Hence the spaces Z
(

M, ‖·, ·‖,∆n
(m) ,Λ, p

)

, for Z = `∞, c and co are not convergence
free in general.

Theorem 10. The following spaces are not sequence algebra in general:

c0

(

M, ‖·, ·‖,∆n
(m) ,Λ, p

)

, c
(

M, ‖·, ·‖,∆n
(m) ,Λ, p

)

, `∞
(

M, ‖·, ·‖,∆n
(m) ,Λ, p

)

.

C The proof follows from the following example. B

Example 9. Let n = 2, m = 1, pk = 1 for all k and Mk(x) = x2, for each k ∈ N and
x ∈ [0,∞). Then ∆2

(1)λkxk = λkxk − 2λk−1xk−1 + λk−2xk−2, for all k ∈ N. Consider the

2-normed space as defined in Example 2. Consider Λ =
(

1
k4

)

and let x = (k5, k5) and y =
(k6, k6). Then x, y ∈ Z

(

M, ‖·, ·‖,∆2
(1) ,Λ, p

)

, Z = `∞ and c, but x, y /∈ Z
(

M, ‖·, ·‖,∆2
(1) ,Λ, p

)

,

for Z = co Hence the spaces c
(

M, ‖·, ·‖,∆n
(m) ,Λ, p

)

, `∞
(

M, ‖·, ·‖,∆n
(m) ,Λ, p

)

are not sequence
algebra in general.

Example 10. Let n = 2, m = 1, pk = 3 for all k and Mk(x) = x7, for each k ∈ N and
x ∈ [0,∞). Then ∆2

(1)λkxk = λkxk − 2λk−1xk−1 + λk−2xk−2, for all k ∈ N. Consider the

2-normed space as defined in Example 1. Consider Λ =
(

1
k6

)

and let x = (k7) and y = (k7).
Then x, y ∈ c0

(

M, ‖·, ·‖,∆2
(1) ,Λ, p

)

, but x, y /∈ Z
(

M, ‖·, ·‖,∆2
(1) ,Λ, p

)

, for Z = `∞, c. Hence

the space c0

(

M, ‖·, ·‖,∆2
(1) ,Λ, p

)

is not sequence algebra in general.
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ВЕСОВЫЕ ПРОСТРАНСТВА ВЕКТОРНОЗНАЧНЫХ РАЗНОСТНЫХ
ПОСЛЕДОВАТЕЛЬНОСТЕЙ, ОПРЕДЕЛЯЕМЫЕ

ПОСЛЕДОВАТЕЛЬНОСТЬЮ ФУНКЦИЙ ОРЛИЧА

Дутта Х.

Вводятся новые классы разностных последовательностей со значениями в 2-нормированном вектор-
ном пространстве с помощью последовательности функций Орлича, ограниченной последователь-
ности положительных чисел и весовой последовательности ненулевых вещественных чисел. Уста-
навливается, что эти классы являются полными паранормированными пространствами и изучаются
некоторые их свойства.

Ключевые слова: разностная последовательность, 2-норма, паранорма, функция Орлича, полнота,
солидность, симметричность, монотонность.


