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SOME VECTOR VALUED MULTIPLIER
DIFFERENCE SEQUENCE SPACES DEFINED
BY A SEQUENCE OF ORLICZ FUNCTIONS

H. Dutta

In this article we introduce some new difference sequence spaces with a real 2-normed linear space as
base space and which are defined using a sequence of Orlicz functions, a bounded sequence of positive
real numbers and a sequence of non-zero reals as multiplier sequence. We show that these spaces are
complete paranormed spaces when the base space is a 2-Banach space and investigate these spaces for
solidity, symmetricity, convergence free, monotonicity and sequence algebra. Further we obtain some
relation between these spaces as well as prove some inclusion results.
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1. Introduction

Throughout the paper w, £ , ¢ and ¢y denote the spaces of all bounded, convergent, and
null sequences x = (x}) with complex terms, respectively. The zero sequence is denoted by
0 =1(0,0,0,...).

The notion of difference sequence spaces was introduced by Kizmaz [11] who studied the
difference sequence spaces (o (A), c(A) and cg(A). The notion was further generalized by
Et and Colak [4] by introducing the spaces £ (A?®), ¢(A®) and c¢o(A?®). Recently Dutta [2]
introduced and studied the following difference sequence spaces:

Let 7, s be non-negative integers, then for Z a given sequence space we have

Z(8j) = {z= (@) ew: (Af)m) € 2},

where A?T)x = (A?T)xk) = (A‘(ST_)lxk — Aff)lxk,r) and A?r)xk = x}, for all K € N and which is
equivalent to the binomial representation A‘(*r)xk =3 o(=1) (i) Thro-

For s = 1, we get the difference operator A(,y introduced and studied by Dutta [3] for
sequences of fuzzy numbers. Again r = s = 1, we get spaces {(A), ¢(A) and ¢o(A).

Let A = (\) be a sequence of non-zero scalars. Then for a sequence space E the multiplier
sequence space F(A), associated with the multiplier sequence A is defined as

E(A) = {(:L’k) cw: (/\kxk.) € E}

The scope for the studies on sequence spaces was extended by using the notion of associ-
ated multiplier sequences. Goes and Goes [8] defined the differentiated sequence space dE and
integrated sequence space [ E for a given sequence space E, using the multiplier sequences
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(k=1) and (k) respectively. A multiplier sequence can be used to accelerate the convergence
of the sequences in some spaces. In some sense, it can be viewed as a catalyst, which is used
to accelerate the process of chemical reaction. Sometimes the associated multiplier sequence
delays the rate of convergence of a sequence.

The concept of 2-normed spaces was initially developed by Géhler [6] in the mid of 1960’s.
Since then, Gunawan and Mashadi [10], Dutta [1] and many others have studied this concept
and obtained various results.

Let X be a real linear space of dimension greater than one and let ||-,-|| be a real valued
function on X x X satisfying the following conditions:

(1) ||z, y|| = 0 if and only if x and y are linearly dependent vectors,

2) llz,yll = lly, |,

(3) ||ax,y|| < |af ||z, y||, for every a € R

(@) llz,y + 2| < llz, gyl + |l 2|
then the function ||-,-|| is called a 2-norm on X and the pair (X, ||-,||) is called a 2-normed
linear space.

An Orlicz function is a function M : [0,00) — [0,00) which is continuous, non-decreasing
and convex with M(0) =0, M(z) >0, for x > 0 and M(z) — oo, as x — 0.

Lindenstrauss and Tzafriri [14] used the Orlicz function and introduced the sequence
space £ as follows:

ly = {(:ck) Ew:ZM<|x—;|) < o0, for somep>0},

k=1

They proved that £;; is a Banach space normed by

)l = inf{p >0:3 M (@) < 1},

k=1

REMARK 1. An Orlicz function satisfies the inequality M (Az) < AM (x), for all \ with
0 < A < 1. The following inequality will be used throughout the article.

Let p = (px) be a positive sequence of real numbers with 0 < py < suppp = G, D =
max (1, 2G*1). Then for all ax, by € C for all £ € N, we have

|ak + bi|P* < D {lag|"* + [bx[**}

and for all A € C, [A|P* < max (1, [A[9).

The studies on paranormed sequence spaces were initiated by Nakano [17] and Simons [20]
at the initial stage. Later on it was further studied by Maddox [15], Nanda [18], Las-
cardies [12], Lascardies and Maddox [13] and many others. Parasar and Choudhary [19],
Mursaleen, Khan and Qamaruddin [16] and many others studied paranormed sequence spaces
using Orlicz functions.

2. Definition and Preliminaries

A sequence space F is said to be: solid (or normal) if (x}) € E implies (apzy) € E for all
sequences of scalars (o) with |ax| < 1 for all k& € N; monotone if it contains the canonical
preimages of all its step spaces; symmetric if (vr()) € E whenever (z1) € E, where 7 is a
permutation on N; convergence free if (yx) € E whenever (z) € E and y; = 0 whenever
x = 0; sequence algebra if (zk,yx) € E whenever (z3) € E and (yi) € E.
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A sequence (zy) in a 2-normed space (X, ||-,-]|) is said to converge to some L € X in the
2-norm if limg_, ||z — L, ul| = 0, for every u € X, and is said to be Cauchy sequence with
respect to the 2-norm if limy ;o ||z — 27, u|| = 0, for every u € X.

If every Cauchy sequence in X converges to some L € X, then X is said to be complete
with respect to the 2-norm. Any complete 2-normed space is said to be 2-Banach space.

Now we give the following two familiar examples of 2-norm which will be used in the next
section to construct examples.

ExaMPLE 1. Consider the spaces ¢, ¢ and c¢g of real sequences. Let us define:

|z, y|| = sup sup |z;y; — @y,
iEN jEN

1€
where x = (21, z2,23,...) and ¥y = (Y1,¥2,¥3,...). Then ||-,-|| is a 2-norm on ¢, ¢ and cy.
EXAMPLE 2. Let us take X = R? and Consider the function [|-,-|| on X definded as:

11 Z12

HCCl,SCQHE = abs <
€21 T22

> , x = (2, T42) € R2, 1=1,2.

Then ||-,-|| is a 2-norm on X.

Let p = (pr) be any bounded sequence of positive real numbers and A = (\g) be a
sequence of non-zero reals. Let m, n be non-negative integers, then for a real linear 2-normed
space (X,|-,-]|) and for a sequence M = (M) of Orlicz functions we define the following
sequence spaces:

oM - A ) = i = (20) € w0):
A?m))\kxk Pk
klim (Mk<H7,zH>> =0, z € X, for some p > 0},
—00 p
M - Ay A,) = {2 = () € w0):
A?m))‘kxk —L Pk
klim <Mk< ‘—,z >> =0, z€ X,L € X, for some p > 0},
—00 p
loo (M, ||+ II, Alyy Ay p) = {x = (z1) € w(X) :
A?m))\kxk Pk
sup (Mk<H7,z >> < o0, z € X, for some p > 0},
k>1 P

where (A?m))\kxk) = (A?n;)l)\kxk — A?Tg)l)\k—mxk—m) and A?m))\kxk = M\gxp for all k € N and

which is equivalent to the binomial representation

" n
AT = —1)Y _ —mo-
(m) ARk Z( ) <’U> Ak—mvTk—mo

v=0

In the above expansion it is important to note that we take xy_,,, = 0 and A\y_,,, = 0, for
non-positive values of k — mu.
It is obvious that

CO(Mv H7 -",A?m),[\,p) - C<M7 Hv -H,A?m),A,p) - EOO(M7 H'?'HvA?m)vAvp)'



Some vector valued multiplier difference sequence spaces 29

The inclusions are strict as follows from the following examples.

EXAMPLE 3. Let m =2, n = 2, M (z) = 22 for all k is odd and M (z) = 2° for all k is
even, for all z € [0,00) and py, =1 for all k > 1. Consider the 2-normed space as defined in
Example 2 and let the sequences A = (k*) and z = (75, 7). Then z € ¢(M, |-, ||, A%Z),A,p),

k’2’ k’2
but z ¢ CO(M) ||7 'H,A%2),A,p)-

EXAMPLE 4. Let m =2, n = 2, My(x) = |z|, for all k > 1 and z € [0,00) and pj = 2 for
all k£ odd and pg = 3 for all k£ even. Consider the 2-normed space as defined in Example 1
and let the sequences A = (1,1,1,...) and = = {1,3,2,4,5,7,6,8,9,11,10,12,...}. Then
YIS goo(M7 H? ~H,A%2),A,p), but g—f C(Mv H? -”,Aé),[\’p).

Lemma 1. If a sequence space E is solid, then E is monotone.

3. Main Results

In this section we prove the main results of this article.

Proposition 1. The classes of sequences co(M, |-, -H,A?m),A,p), c(M, ||, -||,A?m),A,p)
and loo (M, ||+, -], A?m) ,\,p) are linear spaces.
Theorem 2. For Z = ls, ¢ and co, the spaces Z(M, ||-,-||, A7, ), A, p) are paranormed

sapces, paranormed by

P
g(z) = inf {p? : supMk(
k>1

(m

)

’An ))\k.xk

z><1, zeX},

< Clearly g(z) = g(—=z); © = 6 implies g(f) = 0. Let (z) and (yx) be any two sequences
of the space co(M, |-, -|l, A?m),A,p). Then there exist p1, p2 > 0 such that for every z in X,

><1, supMk( ><1
E>1

Let p = p1 + p2. Then by the convexity of Orlicz functions, we have for every z in X

where H = max(1,supg>; p)-

(
P1

(
P2

y % y <

sup Mk(
k>1

A? ))\k.xk + A(m ALYk p1 A?m))\kxk
3 P P1+ P2 k P1
AT\ AkYk
p1 + P2 k P2

Hence we have,

’ A? ))\k.xk + A(m))\kyk

z)gl,zeX}
)gl,zeX}

') AEYE
+ inf {pQ% : 21;111>Mk<H (m H) <1, z€ X} — g(z +y) <g(x) +9).

. P
glx+y) = 1nf{pH : supMk(
k>1

)\kwk
< inf {pl%k : supMk<H (m)
k>1

)
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The continuity of the scalar multiplication follows from the following equality:

z)gl,zeX}

)

: Pi
g(ax) = inf {pH : sup My,
k>1

A )\kxk
= inf{(t|a!)pﬁk : supMk< ‘L,z ) <1, z € X},
E>1 t
where ¢ = £, Hence the spaces co(M, |-, -, A?m),A,p) is a paranormed space, paranormed
by g. The rest of the cases will follow similarly. >
Theorem 3. If (X, |-,-||) is a 2-Banach space, then the spaces Z(M, ||-, -||,A?m),A,p),
for Z = l, ¢ and ¢y are complete paranormed spaces, paranormed by
o o /\kxk
g(:c):mf{pH :supMk(H )él, ZEX}
k=1
where H = max(1,supy>; pk)-
< We prove the result for the space oo (M, |-, -, Al A p) and for other spaces it will
follow on applying similar arguments.
Let (2%) be any Cauchy sequence in Lo (M, |-, A” ) A,p). Let g > 0 be fixed and
t > 0 be such that for 0 < € < 1, ﬂ > 0 and zot > 0. Then there exists a positive integer

ng such that g(z® — 27) < I—Ot, for all 7,5 > ng. Using the definition of paranorm, we get

)

AT ))\k(x};_ — xfg)
o

inf{p%:supMk< (m Z><1,Z€X}<i (Vi,j = no).
k>1 p t

Then we get for every z in X

A(a, — )
supMk(H (m r , 2
k>1 a:’—m])

It follows that for every z € X and k > 1

(|

Z_xj)

, 2

> <1 (Vi,j > ng).

Now for t > 0 with M, (WTO) > 1, foreach k> 1

AP N\ (zh — o)
Mk(H (m) k( k- k)’z
g(a' —a7)

This implies that

n 7 n 1 tr 5 g
| AL Ay, — Al Ay, 2| < <70> <%> =5 z€X

Hence (A?m) )\kxﬁg) is a Cauchy sequence in 2-Banach space X for all k eN. = (A?m))\kxfg)
is convergent in X for all £ € N. For simplicity, let lim; .o A?m))\k% =y for each k € N.
Let k£ =1, we have
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n
lim A?m))\lxzi = lim Z(—l)” (n> Moy = lim Az} = g1, (1)
1—00 1—00 =0 (% 1—00
Similarly we have
lim A?m))\kl"i; =y, k=12,...,nm. (2)

11— 00
Thus from (1) and (2) we have lim;_, o, xhnm exists. Let lim;_, xiHnm = X14nm. Proceeding
in this way inductively, we have lim; . 2}, = x}, exists for each £ € N. Now we have for all
Z‘vj > no.

A N (2h —ad
inf {p%k : supMk<‘ (m) i 2

)gl, zeX}gs

V2
E>1 P
R P A?’m))\kw.z; B A?m))\kx?ﬁ
= lim inf< p# : sup My 211 <1, ze X <e¢
J—0o0 E>1 P
o m AR ARy, = AL M .
= lim inf< p# : sup My 2 <1, ze X <e (Viz=mng).
j—00 k1 p
It follows that (z° — z) € £oo(M, |-, -H,A?m),A,p).
Since (7%) € lo (M, -l A?m),A,p) and KOO(M, -l A?m),A,p) is a linear space, so we
have z = z' — (¢ — ) € oo (M, |-, -, A?m),A,p). This completes the proof. >
Theorem 4. If0 < pp < qr < oo for each k, then Z(M, ||~,-H,A?m),A,p) C
Z(]M7 Il -H,A?m),A,q), for 7 = ¢q and c.

<1 We prove the result for the case Z = ¢y and for the other case it will follow on applying
similar arguments.

Let (xr) € co(M, ||, |, A’(’m),A,p). Then there exist some p > 0 such that
A?m))‘kxk Pk
k—o0 P

.. . AL A\ AkTh Pk .
This implies that (Mk (H%, zH)) < e (0 <e < 1) for sufficiently large k. Hence we
get
An )\kCCk dk An )\kxk Pk
(22 ) e 22 )
k—o0 P k—o0 P
= (Ik) S Co (M7 H?HaA?m)7A7q> .

Thus CO(M) ||7 HaA?m))Aap) - CO(HMa "y HaA?m)’A7Q)
Similarly, c(M, Il -l A?m),A,p) - C(HM, eIl A?m),A,q). This completes the proof. >

The following result is a consequence of Theorem 6.
Corollary 5. (a) If 0 < inf py < pi < 1, for each k, then
Z(Ma ||7 ||7A?m)’A7p) g Z(Ma ||7 ||7A?m)aA)) Z = Co, C.

(b) If 1 < pi, < suppg < oo, for each k, then

Z(M7 H7H7A7(’Lm)7A) g Z(M7 H7H7A7(’Lm)7A7p)7 Z = €o, C.
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Theorem 6. Z(M,|-,|, A”y;)l,A,p) C Z(M,H-,-H,A?m),A,p) (in general for i =
1,2,....,n—=1) Z(M,|, -, A(m),A,p) C Z(M, ||-,-||,A?m),A,p)), for Z = U, ¢ and cy.

<1 Here we prove the result for Z = ¢y and for the other cases it will follow on applying
similar arguments.

Let © = (zy) € co(M, |-, -]], A(m) ,A\,p). Then there exist p > 0 such that
) A?Tg)l)\kxk Pk
khm M, — 5 z =0. (3)

On considering 2p, by the convexity of Orlicz functions, we have

A" )\kxk A" 1)\k$k 1 A? )1)\k—m$k;—m
St M (22 ) ) 2 (M "

Hence we have
Pk
M
(e (| =254]))
AT 1)\kxk; Pk Anfl)\k_mxk_m
<of (g(n(|=24])))" + (Lo
p

Then using (3), we get
A?m)Akxk Pk
lim (Mk<H72 )> —0.
k—o0 2p

Thus CO(M’ ||'7'HaA?Tg)l’Aap) - CO(M’ ||7HaA?m)aA7p) >
The inclusion is strict as follows from the following example.
EXAMPLE 5. Let m =3, n = 2, My(x) = 20, for all k > 1 and = € [0,00) and p;, = 2 for

all k odd and pi = 3 for all £ even. Consider the 2-normed space as defined in Example 2
and let the sequences A = (1) and x = (z5) = (k?,k?). Then A(B))\kxk =0, for all k € N.

)

, 2

)}

Then z € Co(M,H','H,A%B),A,p). Again we have A(g))\kSCk = =3, for all Kk € N. Hence
z ¢ co(M, |-, A(13),A,p). Thus the inclusion is strict.

Theorem 7. The following spaces cg (M, Il -H,A?m),A,p), c(M, Il ~H,A?m),A,p) and
oo (M, |||l A?m),A,p) are not monotone and as such are not solid in general.

<1 The proof follows from the following example. >

EXAMPLE 6. Let n = 2, m = 3, p, = 1 for all £ odd and pp = 2 for all k even
and My(z) = 22, for all k > 1 and for all # € [0,00). consider the 2-normed space as
defined in Example 1. Then A%B))\kxk = Mg — 2Mp_3Tk_3 + A\p_eTi—g, for all K € N.
Consider the J™ step space of a sequence space E defined as, for (z1), (yx) € EY implies
that y, = mp, for k odd and y, = 0 for k even. Consider the sequences A = (k3) and
x = (k%) Then z € Z(M,||~,-H,A%3),A,p) for Z = 0y, ¢ and ¢,, but its J* canonical
pre-image does not belong to Z(HM, o<l A(23),A,p) for Z = {4, ¢ and ¢,. Hence the spaces

Z(]M7 -l A(m),A,p) for Z = {4, ¢ and ¢, are not monotone and as such are not solid in
general.
Theorem 8. The following spaces are not symmetric in general: ¢ (M, -l A?m) ) A,p),

C(M’ Hv 'H,A?m),/\,p), goo(Ma ||7 'H,A?m),/\,p).
<1 The proof follows from the following example. >
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EXAMPLE 7. Let n = 2, m = 2, p, = 2 for all £ odd and pp = 3 for all k even
and My(z) = 22, for all * € [0,00) and for all k¥ > 1. Consider the 2-normed space as
defined in Example 1. Then A%Q))\kxk = Mgk — 2Mp—9Tp_o + Ap_4Tp_g4, for all K € N.
Consider the sequences A = (1,1,1,...) and x = (zj) defined as z; = k for k odd and

x, = 0 for k even. Then A%z))\kxk =0, for all Kk € N. Hence (xy) € Z(M, ||~,-H,A%2),A,p),
for Z = ly, c and ¢,. Consider the rearranged sequence, (yi) of (x) defined as (yx) =
(1, %3, T2, Tg, T5, X7, TG, TS, T9, T11, L10, 12, - - -)- Lhen (yx) & Z(M, |-, -\|,A%2),A,p), for Z =
lso, c and c,. Hence the spaces Z (M, -l A?m) , A,p), for Z = l,, c and ¢, are not symmetric
in general.

Theorem 9. The following spaces are not convergence free in general:
CO(Mv Hv H7 A?m),/\,p), C(M7 H7 Ha A?m),A,p), gOO(M7 H7 Ha A?m),A,p)-

<1 The proof follows from the following example. >

EXAMPLE 8. Let m = 3, n = 1, p; = 6 for all k and M (z) = 25, for k is even and
My (z) = |z|, for k is odd, for all x € [0,00). Then Aé))\kxk = ApTp — A\h—3Tk—3, for all
k € N. Consider the 2-normed space as defined in Example 2. Let A = (%) and consider the
sequences (x) and (yx) defined as xp = (%k:, %k‘) for all £k € N and y;, = (ék‘g, %k:‘g) for all
k € N. Then (zy) € Z(M, H-,-H,A(lB),A,p), but (yx) ¢ Z(M, H-,~H,A%3),A,p), for Z =4, c
and c¢,. Hence the spaces Z(M, -l A?m),A,p), for Z = Ly, ¢ and ¢, are not convergence
free in general.

Theorem 10. The following spaces are not sequence algebra in general:
CO(Mv Hv H7 A?m),/\,p), C(M7 H7 Ha A?m),A,p), gOO(M7 H7 Ha A?m),A,p)-

<1 The proof follows from the following example. >

EXAMPLE 9. Let n =2, m = 1, p = 1 for all k and My (z) = 22, for each k € N and
x € [0,00). Then A%l))\kxk = ApTh — 2Ab—1Tk—1 + Ap—oxp_o, for all £ € N. Consider the
2-normed space as defined in Example 2. Consider A = (k;_14) and let z = (k°, k%) and y =
(K5, kS). Then z,y € Z(M, Il '||,A(21),A,p), Z =l and ¢, but z,y ¢ Z(M, ||',-H,A%1),A,p),
for Z = ¢, Hence the spaces C(M, Il -1l A?m),A,p), loo (M, I, -1l A?m),A,p) are not sequence
algebra in general.

EXAMPLE 10. Let n =2, m = 1, pp, = 3 for all k and M;,(z) = 7, for each k € N and
x € [0,00). Then A%l))\k:ck = MeTp — 2A\p—1%f—1 + Ap—2Tp_o, for all k € N. Consider the
2-normed space as defined in Example 1. Consider A = (k%) and let x = (k7) and y = (k7).

Then z,y € CO(M, H-,~H,A%1),A,p), but z,y ¢ Z(M, H-,-H,A(zl),A,p), for Z = £y, c. Hence
the space ¢ (M sl A%l),A, p) is not sequence algebra in general.
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BECOBBIE ITPOCTPAHCTBA BEKTOPHO3HAYHBIX PASHOCTHBIX
IOCJIEJOBATE/IBHOCTEN, OIIPEJIEJISIEMBIE
IOCJIEJOBATE/ILHOCTHIO ®YHKIINI OPJINYA

Hyrra X.

BBoasTcs HOBBIE K1ACCHI PA3HOCTHBIX IIOCIEIOBATEILHOCTEN CO 3HAYEHUAMH B 2-HOPMHPOBAHHOM BEKTOD-
HOM I[POCTPAHCTBE C MIOMOIIBIO TocJeoBaTebHocT GyHKIui OpJirda, OrpaHUYEHHON I10C/IEI0BATEI b
HOCTH TOJIOYKUTEJIbHBIX YHCEJI U BECOBOI IOCJIE/IOBATEIBHOCTU HEHYJIEBBIX BEIIECTBEHHBIX UUCET. YCTa-
HaBJINBAETCs, YTO 3TU KJIACCHI ABJIAIOTCHA ITOJTHBIMUA TapAHOPMUPOBAHHBIMU IIPOCTPAHCTBAMH U U3y YalOTCHA

HEKOTOpbIE UX CBOMCTBA.

KurroueBblie ciioBa: pa3HOCTHAS TOCJIE0BATEIBHOCTD, 2-HOpMa, mapaHopMa, ¢dpyHkus OpJrrnda, moJTHOTa,
COJIMJIHOCTD, CUMMETPUIHOCTb, MOHOTOHHOCTbD.



