УДК **539.3**

ИССЛЕДОВАНИЕ ГАРМОНИЧЕСКИХ КОЛЕБАНИЙ ПОЛОГО ЦИЛИНДРА С ВИНТОВОЙ АНИЗОТРОПИЕЙ НА ОСНОВЕ ТРЕХМЕРНЫХ УРАВНЕНИЙ ТЕОРИИ УПРУГОСТИ¹

И. А. Панфилов, Ю. А. Устинов

На основе трехмерной теории упругости исследуются особенности распространения гармонических волн в полом цилиндре с винтовой анизотропией. Основное внимание уделено изучению осесимметричных колебаний. Проводится сравнительный анализ с результатами, полученными ранее на основе прикладных теорий.

Ключевые слова: винтовая анизотропия, гипотезы Тимошенко — Рейсснера, гипотезы Кирхгофа — Лява, квазикрутильные и квазипродольные колебания.

1. Введение

Основные соотношения линейной теории упругости для тел с винтовой анизотропией и результаты исследований задачи Сен-Венана для цилиндра с винтовой анизотропией опубликованы в [5–7]. В этих работах, в частности, показано, что при растяжениисжатии цилиндра с винтовой анизотропией помимо продольных деформаций возникают сдвиговые и, наоборот, при кручении помимо сдвиговых — продольные.

В [8] для математического моделирования распространения пульсовых волн в артериальных сосудах на основе гипотез Кирхгофа — Лява получены уравнения колебаний оболочки с винтовой анизотропией. В [9] в рамках безмоментной теории исследованы некоторые особенности волновых процессов, порождаемых винтовой анизотропией. В [10, 11] анонсированы методы построения решений динамических краевых задач на основе прикладной теории типа Кирхгофа — Лява и результаты исследований некоторых конкретных задач, в [12] дается подробное описание этих результатов. Серия проведенных расчетов показала, что в осесимметричном случае винтовая анизотропия порождает связь между продольными и крутильными колебаниями, которая математически описывается амплитудными коэффициентами однородных волн.

Настоящая работа посвящена исследованию гармонических волн в полом цилиндре с винтовой анизотропией на основе трехмерных уравнений теории упругости. Также на основе полученных результатов анализируется область применения прикладной теории Кирхгофа — Лява (К.-Л.) и теории типа Тимошенко — Рейсснера (Т.-Р.).

^{© 2011} Панфилов И. А., Устинов Ю. А.

¹Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований, проект № 09-01-00065-а, и Министерства образования и науки РФ в рамках Федеральной целевой программы «Научные и научно-педагогические кадры инновационной России» на 2009–2013 гг., госконтракт № ПЗ61.

2. Основные соотношения теории упругости в винтовой системе координат и постановка задачи

Обозначим через r_1 , r_2 — внутренний и внешний радиусы цилиндра срединной поверхности оболочки, a — радиус срединной поверхности оболочки, h — ее толщину. С центром некоторого поперечного сечения цилиндра свяжем декартову систему координат $Ox_1x_2x_3$, направив Ox_3 по оси цилиндра.

Введем винтовую систему координат r, φ, z , связанную с декартовой соотношениями

$$x_1 = r\cos(\varphi + \tau z), \quad x_2 = r\sin(\varphi + \tau z), \quad x_3 = z, \tag{1}$$

где $r_1 \leqslant r \leqslant r_2$; $\tau = \operatorname{tg}(\alpha)/a$ — геометрический параметр винтовой анизотропии.

Соотношения (1) при r = const, $\varphi = \text{const}$ являются параметрическими уравнениями винтовой линии. С каждой винтовой линией свяжем репер Френе с ортами главной нормали e_1 , главной нормали e_2 , касательной e_3 .

Переход от базиса Френе к базису винтовой системы координат e_r, e_{φ}, e_z , первые два орта которой связаны с ортами декартовой системы $Ox_1x_2x_3$ соотношениями

$$e_r = i_1 \cos(\varphi + \tau z) + i_2 \sin(\varphi + \tau z), \quad e_\varphi = -i_1 \sin(\varphi + \tau z) + i_2 \cos(\varphi + \tau z),$$

осуществляется с помощью ортогональной матрицы

$$A = \left| \begin{array}{ccc} -1 & 0 & 0 \\ 0 & -\cos\alpha & \sin\alpha \\ 0 & \sin\alpha & \cos\alpha \end{array} \right|,$$

где $\alpha = \operatorname{arctg}(x), x = \tau r.$

Будем считать материал цилиндра локально трансверсально изотропным, у которого направления главных осей тензора упругих свойств совпадают с направлениями ортов e_1 , e_2 , e_3 , где орт e_3 определяет направление оси упругой симметрии. В этом базисе соотношения обобщенного закона Гука имеют вид [13]:

$$\sigma_{11} = c_{11}e_{11} + c_{12}e_{22} + c_{13}e_{33},$$

$$\sigma_{22} = c_{12}e_{11} + c_{11}e_{22} + c_{13}e_{23},$$

$$\sigma_{33} = c_{13}(e_{11} + e_{12}) + c_{33}e_{33},$$

$$\sigma_{23} = c_{44}e_{23}, \quad \sigma_{13} = c_{44}e_{13}, \quad \sigma_{12} = c_{66}e_{12}.$$
(2)

Здесь e_{ij} , σ_{ij} — компоненты тензоров малых деформаций и напряжений соответственно, $2c_{66} = c_{11} - c_{12}$.

При переходе от базиса Френе к базису винтовой системы координат, как показано в [7, 8], для закона Гука получаем следующие выражения:

$$\sigma' = \mathbf{C}' e', \quad \mathbf{C}' = (c'_{ij}), \quad i, j = 1, \dots, 6,$$

$$\sigma' = (\sigma_{rr}, \sigma_{\varphi\varphi}, \sigma_{zz}, \sigma_{\varphiz}, \sigma_{rz}, \sigma_{r\varphi},)^T,$$

$$e' = (e_{rr}, e_{\varphi\varphi}, e_{zz}, 2e_{\varphi z}, 2e_{rz}, 2e_{r\varphi})^T.$$
(3)

Здесь

$$\begin{split} c_{11}' &= c_{11}, \quad c_{12}' = c_{12}l_c^2 + c_{13}l_s^2, \\ c_{13}' &= c_{13}l_c^2 + c_{12}l_s^2, \quad c_{14}' = l_c l_s(c_{13} - c_{12}), \\ c_{22}' &= c_{11}l_c^4 + (2c_{13} + 4c_{44}) l_c^2 l_s^2 + c_{33}l_s^4, \\ c_{23}' &= c_{13}l_c^4 + (c_{11} + c_{33} - 4c_{44}) l_c^2 l_s^2 + c_{13}l_s^4, \\ c_{24}' &= -c_{11}l_c^3 l_s - c_{13}(l_c l_s^3 - l_c^3 l_s) + c_{33}l_c l_s^3 - 2c_{44}(l_c l_s^3 - l_c^3 l_s), \\ c_{33}' &= c_{11}l_s^4 + 2c_{13}l_c^2 l_s^2 + c_{33}l_c^4 + 4c_{44}l_c^2 l_s^2, \\ c_{34}' &= -l_c l_s(c_{11}l_s^2 - c_{13} + 2c_{13}l_c^2 + 2c_{44}l_c^2 - 2c_{44}l_s^2), \\ c_{44}' &= c_{11}l_c^2 l_s^2 - 2c_{13}l_c^2 l_s^2 + c_{33}l_c^2 l_s^2 + c_{44}(1 - 4l_c^2 l_s^2), \\ c_{55}' &= c_{44}l_c^2 + c_{66}l_s^2, \quad c_{56}' &= l_c l_s(c_{44} - c_{66}), \quad c_{66}' &= c_{66}l_c^2 + c_{44}l_s^2, \\ l_c &= \cos \alpha, \quad l_s &= \sin \alpha. \end{split}$$

Остальные элементы матрицы С' равны нулю.

В базисе винтовой системы координат e_r, e_{φ}, e_z компоненты тензора деформаций выражаются через координаты вектора смещений

$$u = (u_r, u_\varphi, u_z)^2$$

следующими формулами:

$$e_{rr} = \partial_r u_r, \quad e_{\varphi\varphi} = (u_r + \partial_\varphi u_\varphi)/r, \quad e_{zz} = Du_z,$$

$$2e_{r\varphi} = \partial_r u_\varphi + (\partial_\varphi u_r - u_\varphi)/r, \quad 2e_{rz} = \partial_r u_z + Du_r,$$

$$2e_{z\varphi} = \partial_\varphi u_z/r + Du_\varphi.$$
(4)

Уравнения движения в данном случае имеют вид:

$$\partial_r (r\sigma_{rr}) - \sigma_{\varphi\varphi} + \partial_\varphi \sigma_{r\varphi} + rD\sigma_{rz} = -\rho r \partial_t^2 u_r,$$

$$\partial_r (r\sigma_{r\varphi}) + \sigma_{r\varphi} + \partial_\varphi \sigma_{\varphi\varphi} + rD\sigma_{\varphi z} = -\rho r \partial_t^2 u_\varphi,$$

$$\partial_r (r\sigma_{rz}) + \partial_\varphi \sigma_{\varphi z} + rD\sigma_{zz} = -\rho r \partial_t^2 u_z.$$
(5)

В формулах (5) ρ — плотность материала цилиндра;

$$\partial_r = \frac{\partial}{\partial r}, \quad \partial_{\varphi} = \frac{\partial}{\partial \varphi}, \quad \partial_z = \frac{\partial}{\partial z}, \quad \partial_t = \frac{\partial}{\partial t}D = \partial_z - \tau \partial_{\varphi}.$$

Будем считать, что боковая поверхность цилиндра свободна от напряжений

при
$$r = r_{\beta}$$
 $(\beta = 1, 2)$: $\sigma_{rr} = \sigma_{r\varphi} = \sigma_{rz} = 0.$ (6)

Для исследования гармонических волновых процессов в цилиндре будем использовать различные операторные формы [15]. Для этого введем следующие векторы:

$$\sigma_r = (\sigma_{rr}, \sigma_{r\varphi}, \sigma_{rz})^T, \sigma_{\varphi} = (\sigma_{r\varphi}, \sigma_{\varphi\varphi}, \sigma_{z\varphi})^T, \sigma_z = (\sigma_{rz}, \sigma_{z\varphi}, \sigma_{zz})^T.$$

Используя соотношения (3), (4) и ограничиваясь осесимметричным случаем, представим σ_r , σ_{φ} , σ_z в виде:

$$\sigma_r = \partial_z A_r u + B_r u, \quad \sigma_\varphi = \partial_z A_\varphi u + B_\varphi u, \quad \sigma_z = \partial_z A_z u + B_z u. \tag{7}$$

Здесь

$$\begin{split} A_r &= \left\| \begin{array}{cccc} 0 & c_{14}' & c_{13}' \\ c_{56}' & 0 & 0 \\ c_{55}' & 0 & 0 \end{array} \right\|, \quad B_r = \left\| \begin{array}{cccc} c_{11}'\partial_r + c_{12}'/r & 0 & 0 \\ 0 & c_{66}'(\partial_r - 1/r) & c_{56}'\partial_r \\ 0 & c_{56}'(\partial_r - 1/r) & c_{55}'\partial_r \end{array} \right\|, \\ A_\varphi &= \left\| \begin{array}{cccc} c_{56}' & 0 & 0 \\ 0 & c_{24}' & c_{23}' \\ 0 & c_{44}' & c_{34}' \end{array} \right\|, \quad B_\varphi = \left\| \begin{array}{cccc} 0 & c_{66}'(\partial_r - 1/r) & c_{56}'\partial_r \\ c_{12}'\partial_r + c_{22}'/r & 0 & 0 \\ c_{14}'\partial_r + c_{24}'/r & 0 & 0 \end{array} \right\|, \\ A_z &= \left\| \begin{array}{cccc} c_{56}' & 0 & 0 \\ 0 & c_{44}' & c_{34}' \\ 0 & c_{34}' & c_{33}' \end{array} \right\|, \quad B_z = \left\| \begin{array}{cccc} 0 & c_{56}'(\partial_r - 1/r) & c_{56}'\partial_r \\ c_{14}'\partial_r + c_{24}'/r & 0 & 0 \\ c_{13}'\partial_r + c_{23}'/r & 0 & 0 \end{array} \right\|. \end{split}$$

В этой работе остановимся на осесимметричных колебаниях. Отыскивая решение в виде гармонической волны

$$u = e^{i(kz-\omega t)}a, \quad \sigma_r = e^{i(kz-\omega t)}b_r, \quad \sigma_\varphi = e^{i(kz-\omega t)}b_\varphi, \quad \sigma_z = e^{i(kz-\omega t)}b_z,$$
$$a = (a_r, ia_\varphi, ia_z)^T, \quad b_r = (ib_{rr}, b_{r\varphi}, b_{rz})^T,$$
$$b_\varphi = (b_{r\varphi}, ib_{\varphi\varphi}, ib_{\varphiz})^T, \quad b_z = (b_{rz}, ib_{\varphi z}, ib_{zz})^T,$$

на основании (5), (6) получаем двухпараметрическую спектральную задачу

$$L(k,\omega)a \equiv -k^2 A_2 a + ikA_1 a + A_0 + r\rho\omega^2 Ia = 0$$
(8)

при
$$r = r_{\beta}$$
: $(ikA_r + B_r)a = 0.$ (9)

Здесь

$$A_{2}a = rA_{z}a, \quad A_{1}a = \partial_{r}(rA_{r}a) + SA_{\varphi}a + rB_{z}a, \quad A_{0} = \partial_{r}(rB_{r}a) + SB_{\varphi}a,$$
$$S = \left\| \begin{array}{ccc} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\|, \quad I = \left\| \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right\|.$$

2.1. Основные соотношения прикладной теории, основанной на гипотезах Кирхгофа — Лява. Известно [14], что классическая теория оболочек Кирхгофа — Лява (К.-Л.) основывается на двух основных гипотезах, которые в рассматриваемом случае формулируются следующим образом:

1) абсолютные значения напряжений $\sigma_{rr}, \sigma_{rz}, \sigma_{r\varphi} \ll \sigma_{\varphi\varphi}, \sigma_{\varphi z}, \sigma_{zz}$, в силу чего в соотношениях закона Гука первыми тремя можно пренебречь;

2) прямые углы между нормалью к срединной поверхности оболочки до деформации остаются таковыми и после деформации.

В соответствии с этими гипотезами основные соотношения принимают следующий вид:

$$u_r = u_r^0(\varphi, z), \quad u_\varphi = u_\varphi^0(\varphi, z) + \alpha \theta_\varphi, \quad u_z = u_z^0(\varphi, z) + \alpha \theta_z, \\ \theta_\varphi = -a^{-1}(\partial_\varphi u_r^0 - u_\varphi^0), \quad \theta_z = -Du_z^0, \quad -h/2 \leqslant \alpha \leqslant h/2,$$
(10)

где $u_r^0, u_{\varphi}^0, u_z^0$ — смещения точек срединной поверхности; $\theta_{\varphi}, \theta_z$ — углы поворота нормали. Соответственно, компоненты тензоров деформаций и кривизны имеют вид:

$$e_{\varphi\varphi} = e_{\varphi\varphi}^{0} + \alpha \varkappa_{\varphi\varphi}, \quad e_{zz} = e_{zz}^{0} + \alpha \varkappa_{zz}, \quad e_{\varphi z} = e_{\varphi z}^{0} + \alpha \varkappa_{\varphi z}, \\ e_{rz} = e_{r\varphi} = 0, \quad e_{\varphi\varphi}^{0} = a^{-1}(u_{r}^{0} + \partial_{\varphi}u_{\varphi}^{0}), \quad e_{zz}^{0} = Du_{z}^{0}, \quad 2e_{z\varphi}^{0} = Du_{\varphi}^{0} + a^{-1}\partial_{\varphi}u_{z}^{0}, \quad (11) \\ \varkappa_{\varphi\varphi} = a^{-2}(\partial_{\varphi}u_{\varphi}^{0} - \partial_{\varphi}^{2}u_{r}^{0}), \quad \varkappa_{zz} = -D^{2}u_{r}^{0}, \quad 2\varkappa_{z\varphi} = a^{-1}Du_{\varphi}^{0} - 2a^{-1}D\partial_{\varphi}u_{r}^{0}.$$

В качестве основных характеристик напряженного состояния введем усилия и моменты

$$T_i = hc'_{ij}e^0_j, \quad M_i = h^3c'_{ij}e^1_j/12 \quad (i, j = 1, 2, 3).$$

Здесь и ниже — суммирование по повторяющемся индексам;

$$\begin{split} T_1 &= T_{\varphi\varphi}, \quad T_2 = T_{zz}, \quad T_3 = T_{\varphi z}, \\ M_1 &= M_{\varphi\varphi}, \quad M_2 = M_{zz}, \quad M_3 = M_{\varphi z}, \\ e_1^0 &= e_{\varphi\varphi}^0, \quad e_2^0 = e_{zz}^0, \quad e_3^0 = e_{\varphi z}^0, \\ e_1^1 &= \varkappa_{\varphi\varphi}, \quad e_2^1 = \varkappa_{zz}, \quad e_3^1 = \varkappa_{\varphi z}. \end{split}$$

Используя вариационный принцип Гамильтона и считая независимыми вариациями $\delta u_r^0, \delta u_{\varphi}^0, \delta u_{z}^0,$ получаем следующие уравнения движения:

$$DT_{2} + a^{-1}\partial_{\varphi}T_{3} - h\rho\partial_{t}^{2}u_{z} = 0,$$

$$a^{-1}\partial_{\varphi}T_{1} + DT_{3} + a^{-1}Q_{1} - h\rho\partial_{t}^{2}u_{\varphi} = 0,$$

$$a^{-1}\partial_{\varphi}Q_{1} + DQ_{2} - a^{-1}T_{1} - h\rho\partial_{t}^{2}u_{r} = 0.$$

$$Q_{1} = DM_{1} + a^{-1}\partial_{\varphi}M_{3}, \quad Q_{2} = DM_{3} + a^{-1}\partial_{\varphi}M_{2},$$
(12)

здесь Q_1, Q_2 — поперечные силы.

2.2. Основные соотношения прикладной теории, основанной на гипотезах Тимошенко — Рейсснера. Для повышения точности расчетов в прикладной теории Тимошенка — Рейснера (Т.-Р.) допускаются искажения прямых углов между нормалью и срединной поверхностью, в силу чего углы поворота нормали θ_{φ} , θ_z становятся новыми дополнительными неизвестными, а в выражениях обобщенного закона Гука (3) следует положить только $\sigma_{rr} = 0$. При этом основные соотношения принимают вид:

$$u_r = u_r^0(\varphi, z), \quad u_\varphi = u_\varphi^0(\varphi, z) + \alpha \theta_\varphi, \quad u_z = u_z^0(\varphi, z) + \alpha \theta_z, \tag{13}$$

$$e_{\varphi\varphi} = e_{\varphi\varphi}^{0} + \alpha \varkappa_{\varphi\varphi}, \quad e_{zz} = e_{zz}^{0} + \alpha \varkappa_{zz}, \quad e_{\varphi z} = e_{\varphi z}^{0} + \alpha \varkappa_{\varphi z},$$

$$e_{rz} = e_{rz}^{0} + \alpha \varkappa_{rz}, \quad e_{r\varphi} = e_{r\varphi}^{0} + \alpha \varkappa_{r\varphi},$$

$$e_{\varphi\varphi}^{0} = a^{-1}(u_{r}^{0} + \partial_{\varphi}u_{\varphi}^{0}), \quad e_{zz}^{0} = Du_{z}^{0}, \quad 2e_{z\varphi}^{0} = Du_{\varphi}^{0} + a^{-1}\partial_{\varphi}u_{z}^{0},$$

$$\varkappa_{\varphi\varphi} = a^{-2}(\partial_{\varphi}u_{\varphi}^{0} - \partial_{\varphi}^{2}u_{r}^{0}), \quad \varkappa_{zz} = -D^{2}u_{z}^{0},$$

$$2\varkappa_{z\varphi} = a^{-1}u_{\varphi}^{0} - 2D\partial_{\varphi}u_{r}^{0},$$

$$2e_{rz} = \theta_{z} + Du_{r}^{0}, \quad 2\varkappa_{rz} = 0,$$

$$2e_{r\varphi} = \theta_{\varphi} + a^{-1}(\partial_{\varphi}u_{r}^{0} - u_{\varphi}^{0}), \quad 2\varkappa_{r\varphi} = -a^{-1}\theta_{\varphi}.$$
(14)

Основными характеристиками напряженного состояния по-прежнему остаются усилия и моменты, а соотношения обобщенного закона Гука принимают вид:

$$T_i = hc'_{ij}e^0_j, \quad M_i = h^3c'_{ij}e^1_j/12 \quad (i = 1, 2, 3; \ j = 1, 2, 3, 4, 5).$$

$$\begin{split} T_1 &= T_{\varphi\varphi}, \quad T_2 = T_{zz}, \quad T_3 = T_{\varphi z}, \\ Q_1 &= hc'_{5j}e^0_j, \quad Q_2 = hc'_{4j}e^0_j, \\ M_1 &= M_{\varphi\varphi}, \quad M_2 = M_{zz}, \quad M_3 = M_{\varphi z}, \\ e^0_1 &= e^0_{\varphi\varphi}, \quad e^0_2 = e^0_{zz}, \quad e^0_3 = e^0_{\varphi z}, \quad e^0_4 = e^0_{rz}, \quad e^0_5 = e^0_{r\varphi}, \\ e^1_1 &= \varkappa_{\varphi\varphi}, \quad e^1_2 = \varkappa_{zz}, \quad e^1_3 = \varkappa_{\varphi z}, \quad e^1_4 = \varkappa_{rz}, \quad e^1_5 = \varkappa_{r\varphi}. \end{split}$$

На основании вариационного принципа Гамильтона, считая независимыми вариациями δu_r^0 , δu_{ω}^0 , δu_z^0 , $\delta \theta_z$, $\delta \theta_{\varphi}$, получаем следующие динамические уравнения:

$$DT_{2} + a^{-1}\partial_{\varphi}T_{3} - h\rho_{0}\partial_{t}^{2}u_{z} = 0,$$

$$a^{-1}\partial_{\varphi}T_{1} + DT_{3} + a^{-1}Q_{1} - h\rho_{0}\partial_{t}^{2}u_{\varphi} = 0,$$

$$a^{-1}\partial_{\varphi}Q_{1} + DQ_{2} - a^{-1}T_{1} - h\rho_{0}\partial_{t}^{2}u_{r} = 0,$$

$$DM_{2} + a^{-1}\partial_{\varphi}M_{3} - Q_{2} - \frac{h^{3}}{12}\rho_{0}\partial_{t}^{2}\theta_{z} = 0,$$

$$DM_{3} + a^{-1}\partial_{\varphi}M_{1} - Q_{1} - \frac{h^{3}}{12}\rho_{0}\partial_{t}^{2}\theta_{\varphi} = 0.$$
(15)

3. Построение дисперсионных кривых

Для проведения исследований перейдем к безразмерным координатам $\xi = r/r_2$, $\zeta = z/r_2$ и введем параметры $\gamma = r_2k$ — безразмерное волновое число, $\Omega = r_2\omega/c$ — безразмерная частота, $c = (E'/\rho)^{1/2}$ — параметр, имеющий размерность скорости. Все модули отнесем к E'.

Расчеты проводились для материала со следующими техническими константами (биологическая ткань стенки артериального сосуда [3]):

$$E' = 4.905 \cdot 10^8, \quad E = 0.833 \cdot E', \quad G' = E'/6, \quad \nu' = 0.45, \quad \nu = 0.54.$$

ЗАМЕЧАНИЕ. Метод получения и особенности спектров волновых чисел для гипотез Кирхгофа — Лява и Тимошенко — Рейсснера подробно описан в [9, 12].

Как следует из общей теории твердых волноводов [15] корни дисперсионного уравнения расположены симметрично в комплексной плоскости $\gamma = \alpha + i\beta$. Расчеты показали, что для осесимметричного случая при низкочастотных колебаниях ($\Omega \ll 1$) для теории на основе гипотез Кирхгофа — Лява спектр волновых чисел состоит из двух пар вещественных волновых чисел $\gamma_1^{\pm} = \pm \gamma_1 (\gamma_1 > 0), \gamma_2^{\pm} = \pm \gamma_2 (\gamma_2 > 0)$ и четырех комплексных

$$\gamma_3^+ = \gamma_3 = \alpha_3 + i\beta_3, \quad \gamma_4^+ = \gamma_4 = -\bar{\gamma_3}, \quad \gamma_3^- = \bar{\gamma_3}, \quad \gamma_4^- = -\gamma_3,$$

где $\alpha_3 > 0, \beta_3 > 0$. Для теории Тимошенко — Рейсснера добавляется еще одна пара комплексных корней: $\gamma_5^+ = \gamma_5 = \alpha_4 + i\beta_4, \gamma_5^- = \bar{\gamma_5}$.

Перейдем к описанию метода построения дисперсионных кривых на основе трехмерных уравнений теории упругости.

Спектральную задачу (8) преобразуем к безразмерному виду

$$L(\gamma, \Omega)a \equiv (-\gamma^2 A_2' + i\gamma A_1' + A_0' + \xi \Omega^2 I)a = 0$$
(16)

при
$$\xi = \xi_{\alpha}$$
: $(i\gamma A'_r + B'_r)a = 0.$ (17)

Здесь матрицы A'_j получаются путем деления элементов матриц A_j на E', заменами $r_{\alpha} = r_2 \xi_{\alpha}, \, \partial_r = r_2 \partial_{\xi} \, (\alpha = 1, 2), \, \partial_{\xi}$ — обыкновенная производная по ξ .

Дисперсионные кривые для трехмерного случая были получены на основе численного интегрирования спектральной задачи (16) «методом пристрелки». Для реализации метода эта задача была преобразована в краевую задачу для системы обыкновенных дифференциальных уравнений первого порядка следующего вида:

$$\frac{da}{d\xi} = G_{11}a + G_{12}b, \quad \frac{db}{d\xi} = G_{21}a + G_{22}b, \quad b(\xi_1) = 0, \quad b(\xi_2) = 0, \tag{18}$$

где $b = \xi b_r$. Выражения для матриц G_{ij} здесь не приводятся ввиду очевидности способа их построения на основе вышеприведенных формул.

Рис. 2.

На рис. 1 и 2 приведены графики первых двух дисперсионных кривых для $\xi_1 = 0.9$, $\xi_2 = 1$ (оболочка средней толщины) и $\xi_1 = 0.1$, $\xi_2 = 1$ (толстая оболочка) соответственно; $\alpha = 45^{\circ}$. Здесь кривые 1, 4 отвечают трехмерной теории, кривые 2, 5 — теории К.-Л., кривые 3, 6 — теории Т.-Р. Кривые 1–3 отвечают при $x \neq 0$ квазипродольным волнам, т. е. тем волнам, которые при x = 0 (когда винтовая анизотропия отсутствует), являются продольными. Кривые 4–6 отвечают квазикрутильными волнам, т. е. тем волнам, которые при x = 0 оказываются крутильными. На рис. 1 для данного диапазона частот первые три дисперсионные кривые сливаются.

Как и следовало ожидать, результаты, полученные на основе теории Т.-Р., более близки к трехмерной теории, чем результаты, полученные на основе теории К.-Л. Также видно, что увеличение толщины ведет к большему расхождению результатов. Эти графики позволяют получить некоторое представление об области применимости прикладной теории Кирхгофа — Лява и теории Тимошенко — Рейсснера. Так, например, прямолинейный участок рис. 1 первой дисперсионной кривой принадлежит области $0 \le \gamma \le \gamma^* = 0.7$, $0 \le \Omega \le \Omega^* = 0.9$, второй дисперсионной кривой — $0 \le \gamma \le \gamma_1^* = 0.9$, $0 \le \Omega \le \Omega_1^* = 1.5$. Из этих неравенств можно сделать вывод о том, что для цилиндра, с выбранными параметрами, прикладная теория К.-Л. и теория Т.-Р. будет давать удовлетворительные результаты, если круговая частота $\omega < c_1 \Omega^*/a$.

Поскольку множество собственных частот Ω_n (n = 1, 2, ...) неограничено и принадлежит дисперсионным кривым, то данная прикладная теория может претендовать на достаточно точное определение только тех частот, значения которых принадлежат диапазонам $0 \leq \Omega_n \leq \Omega^*, 0 \leq \Omega_n \leq \Omega_1^*$.

4. Критические частоты и высокочастотные колебания

Волновые процессы с круговой частото
й $\Omega \geqslant \Omega^*$ условно будем называть высокочастотными.

Под «критическими частотами» в данном случае понимается множество СЗ ω_l (l = 1, 2, ...) самосопряженной спектральной задачи

$$L(0,\omega)a \equiv A_0 + r\rho\omega^2 Ia = 0 \quad \text{при} \quad r = r_\beta : \ B_r a = 0, \tag{19}$$

которая является частным случаем задачи (8), если в последней положить k = 0.

Теории, основанные на гипотезах Кирхгофа — Лява и гипотезах Тимошенко — Рейсснера, позволяют получить только первую критическую частоту и первые три критических частоты соответственно.

В таблице 1 в столбцах приводятся значения первых трех критических частот при $\alpha = 45^{\circ}$ для различных толщин ($\xi_2 = 1, \xi_1$ — варьируется).

трехмерная теория		теория ТР.		теория КЛ.	
$\xi_1 = 0.9\xi_2$	$\xi_1 = 0.7 \xi_2$	$\xi_1 = 0.9 \xi_2$	$\xi_1 = 0.7 \xi_2$	$\xi_1 = 0.9 \xi_2$	$\xi_1 = 0.7 \xi_2$
1.44	1.39	1.45	1.20	1.45	1.22
17.23	5.81	13.12	4.48	_	—
19.51	6.59	15.19	5.07	_	_

Таблица 1

Для трехмерной теории критические частоты были полученны путем численного интегрирования уравнений (18). Для контроля точности результатов, полученных численным методом, поставленная задача (4)–(6) при k = 0, $\alpha = 0$ (трансверсально-изотропный материал) была решена аналитически. Сравнительный анализ показал полное совпадение результатов, а также позволил идентифицировать типы колебаний, отвечающих каждой из приведенных частот. При изменении параметра α первая частота порождает ветвь квазипродольных колебаний, вторая — квазирадиальных, третья — квазикрутильных.

Литература

- 1. Кристенсен Р. М. Введение в механику композитов.-М.: Мир, 1982.-334 с.
- 2. Победря Б. Е. Механика композиционных материалов.—М.: Изд-во МГУ, 1984.—335 с.
- 3. Педли Т. Гидродинамика крупных кровеносных сосудов.—М.: Мир, 1983.—400 с.
- 4. *Пуриня Б. А., Касьянов В. А.* Биомеханика крупных кровеносных сосудов.—Рига: Знание, 1980.— 260 с.
- 5. Устинов Ю. А. Решение задачи Сен-Венана для цилиндра с винтовой анизотропией // Прикладная мат-ка и механика.—2003.—Т. 67, вып. 1.—С. 89—98.
- Устинов Ю. А. Некоторые задачи для упругих цилиндрических тел с винтовой анизотропией // Успехи механики.—2003.—№ 4.—С. 37–62.
- 7. Устинов Ю. А. Задачи Сен-Венана для псевдоцилиндров.-М.: Наука, 2003.-128 с.
- 8. Устинов Ю. А. Модель винтового пульсового движения крови в артериальных сосудах // Докл. РАН.—2004.—Т. 398, № 3.—С. 344–348.
- 9. Богаченко С. Е., Устинов Ю. А. Некоторые особенности волновых процессов в цилиндрической оболочке с винтовой анизотропией // Экологический вестн. науч. центров ЧЭС.—2006.—№ 1.— С. 18–21.
- Панфилов И. А., Устинов Ю. А. Собственные частоты и формы цилиндрической оболочки с винтовой анизотропией // Тр. XI междунар. конф. «Современные проблемы механики сплошной среды».—Ростов-на-Дону: Изд-во ООО «ЦВВР», 2007.—Т. 2.—С. 166–171.
- Панфилов И. А., Устинов Ю. А. Отражение однородных волн от торца полубесконечной цилиндрической оболочки с винтовой анизотропией // Тр. XII междунар. конф. «Современные проблемы механики сплошной среды».—Ростов-на-Дону: Изд-во ООО «ЦВВР», 2008.—Т. 2.—С. 152–156.
- Панфилов И. А., Устинов Ю. А. Некоторые динамические задачи для цилиндрической оболочки с винтовой анизотропией // Изв. вузов. Сев.-Кавк. регион. Естеств. науки. Спецвыпуск. Актуальные проблемы механики.—2009.—С. 97–105.
- 13. Лехницкий С. Г. Теория упругости анизотропного тела.—М.: Наука, 1977.—415 с.
- 14. Гольденвейзер А. Н. Теория упругих тонких оболочек.—М.: Наука, 1976.—512 с.
- Гетман И. П., Устинов Ю. А. Математическая теория нерегулярных твердых волноводов.—Ростовна-Дону: Изд-во РГУ, 1993.—144 с.
- 16. Данфорд Н., Шварц Дж. Т. Линейные операторы. Общая теория.—М.: Мир, 1962.—96 с.
- 17. Гетман И. П., Устинов Ю. А. О методах расчета канатов. Задача растяжения-кручения // Прикладная мат-ка и механика.—2008.—Т. 72, вып. 1.—С. 81–90.
- Гринченко В. Т., Мелешко В. В. Гармонические колебания и волны в упругих телах.—Киев: Наукова думка, 1981.—283 с.
- Мандельштам Л. И. Лекции по оптике, теории относительности и квантовой механике.—М.: Наука, 1972.—437 с.
- 20. Ворович И. И., Бабешко В. А. Динамические смешанные задачи теории упругости для неклассических областей.—М.: Наука, 1973.—320 с.

Статья поступила 4 июня 2010 г.

Панфилов Иван Александрович Южный федеральный университет, аспирант РОССИЯ, 344090, Ростов-на-Дону, ул. Мильчакова, 8 а E-mail: mechanic_rgu@mail.ru

Устинов Юрий Анатольевич Южный федеральный университет, проф. каф. теории упругости РОССИЯ, 344090, Ростов-на-Дону, ул. Мильчакова, 8 а; Южный математический институт ВНЦ РАН и РСО-А, гл. науч. сотр. лаб. мат. методов механики сплошной среды РОССИЯ, 362027, Владикавказ, ул. Маркуса, 22 E-mail: ustinov@math.rsu.ru

A STUDY OF HARMONIC FLUCTUATIONS HOLLOW THE CYLINDER WITH SCREW ANISOTROPY ON THE BASIS OF THREE-DIMENSIONAL EQUATIONS OF ELASTICITY THEORY

Panfilov I. A., Ustinov Y. A.

Distribution of harmonious waves in a floor the cylinder with screw anisotropy are investigated on the basis of the three-dimensional theory of elasticity. The basic attention is given to studying axisymmetric fluctuations. The comparative analysis with the results obtained earlier on the basis of applied theories is carried out.

Key words: Screw anisotropy, Timoshenko–Reissnera hypotheses, Kirhgoffa–Ljava hypotheses, quasitorsional fluctuation, quasilongitudinal fluctuation.