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Making use of Boolean valued representation it is proved that Kaplansky—Hilbert lattices and injective
Banach lattices may be produced from each other by means of the convexification procedure. The re-
lationship between the Kantorovich’s heuristic principle and the Boolean value transfer principle is also
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1. Introduction

The aim of this note is to demonstrate that Kaplansky—Hilbert lattices and injective
Banach lattices may be produced from each other by means of the well known convexification
procedure. This is done via the Boolean valued analysis approach. The subject gives a good
opportunity to discuss also the relationship between the Kantorovich’s heuristic principle and
the Boolean value transfer principle.

Everywhere below B is a complete Boolean algebra and V® the corresponding Boolean
valued model of set theory, see [3, 22]. Let A be a real Dedekind complete AM-space with
unit 1 endowed with a unique f-algebra multiplication. Then A:= A @ A is a commutative
C*-algebra often called a Stone algebra. We write A = A(B) whenever B is a Boolean algebra
of band projections in A. The unexplained terms of use below can be found in [19] and [27].

2. Kantorovich’s Principle

L. V. Kantorovich was among the first who studied operators in ordered vector spaces. He
indicated an important instance of ordered vector spaces, a Dedekind complete vector lattice,
often called a Kantorovich space or a K-space. This notion appeared in Kantorovich’s first
fundamental article [16] on this topic where he wrote:

“B 31001 3aMeTKe sT OIpEeJIe/IsII0 HOBBIE THIT IPOCTPAHCTB, KOTOPBIE s HA3BIBAIO JIUHEHHBIMI
I0JTy yIOPSIIOUYeHHBIMH IPOCTPAHCTBAMH. BBejgenue 3Tux 1mpocTpancTB 1MO3BOJISIET H3YydaTh
JIHHEHHbIe OHepaIliu OJHOrO 00Iero Kjiacca (omepaiun, 3HAYCHUsS KOTOPBIX HPHHAICKAT

TAKOMY IPOCTPAHCTBY ) KaK JIHHefHble (pyHKIoHabL.” !
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! n this note, I define a new type of space that I call a semiordered linear space. The introduction of such
a space allows us to study linear operations of one abstract class (those with values in such a space) as linear
functionals.
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Here Kantorovich stated an important methodological principle, the heuristic transfer
principle for K-spaces, claiming that the elements of a K-space can be considered as gen-
eralized reals. Essentially, this principle turned out to be one of those profound ideas that,
playing an active and leading role in the formation of a new branch of analysis, led eventually
to a deep and elegant theory of K-space rich in various applications. At the very beginning
of the development of the theory, attempts were made at formalizing the above heuristic ar-
gument. In this direction, there appeared the so-called identity preservation theorems which
claimed that if some proposition involving finitely many functional relations is proven for the
reals then an analogous fact remains valid automatically for the elements of every K-space
(see [17, 27, 35]). The depth and universality of Kantorovich’s principle were demonstrated
within Boolean valued analysis. More about the Kantorovich’s universal heuristics and innate
integrity of his methodology see in [24].

3. Boolean Valued Analysis

Boolean wvalued analysis signifies the technique of studying properties of an arbitrary
mathematical object by means of comparison between its representations in two different
Boolean valued models of set theory. As the models, we usually take the von Neumann
universe V (the mundane embodiment of the classical Cantorian paradise) and the Boolean
valued universe V®) (a specially-trimmed universe whose construction utilizes a complete
Boolean algebra B). The principal difference between V and V(®) is the way of verification of
statements: there is a natural way of assigning to each statement ¢ about z1,...,z, € V&
the ‘Boolean truth-value’ [¢(x1,...,x,)] € B. The sentence ¢(z1,...,x,) is called true
in V® if [¢(z1,...,2,)] = 1. For any complete Boolean algebra B, all the theorems of
Zermelo-Fraenkel set theory are true in V(® . There is a smooth mathematical technique for
revealing interplay between the interpretations of one and the same fact in the two models V
and V®  The relevant ascending-and-descending machinery rests on the functors of canonical
embedding X — X", descent X — X |, and ascent X — X7, see [22, 23|.

Boolean valued analysis stems from the fact that each internal field of reals of a Boolean
valued model descends into a universally complete vector lattice. Thus, a remarkable oppor-
tunity opens up to expand and enrich the mathematical knowledge by translating information
about the reals to the language of other branches of functional analysis.

According to the principles of Boolean valued analysis there exists an internal field of
reals # in the model V®) which is unique up to isomorphism. In other words, there exists
% € V®) for which [Z is a field of reals] = 1. Moreover, if [ 2 is a field of reals] = 1 for
some Z' € VB then [the ordered fields #Z and %' are isomorphic] = 1.

By the same reasons there exists an internal field of complex numbers € € V® which is
unique up to isomorphism. Moreover, V(&) =€ =%®i%. We call Z and € the internal
reals and internal complezes in V(®),

The fundamental result of Boolean valued analysis is Gordon’s Theorem [10] which reads
as follows: Fach universally complete vector lattice is an interpretation of the reals in an ap-
propriate Boolean valued model. Formally:

Theorem 1. Let #Z be the reals inside V®). Then #|, with the descended operations
and order, is a universally complete vector lattice. Moreover, there exists an isomorphism x
of B onto the Boolean algebra of band projections in % | such that

x()z=x()y < b<[z=y], x(b)z<xOby < b<[z<y]
for all z,y € #Z| and b € B. Moreover, V(®) = “R” is a dense ordered subfield of Z”.
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The converse is also true: Each Archimedean vector lattice embeds in a Boolean valued
model, becoming a vector sublattice of the reals (viewed as such over some dense subfield of
the reals). More details can be found in [19, 22, 23].

REMARK 1. Applications of Boolean-valued models to functional analysis stem from the
works by E. I. Gordon [10, 11] and G. Takeuti [32]. The term Boolean valued analysis is due
to G. Takeuti [33, 34].

4. Kapansky—Hilbert Modules

Let X be a unitary A-module. The mapping (-[) : X x X — A is called a A-valued inner
product, whenever for all z,y,z € X and a € A the following are satisfied:

(1) (z[z) 20; (z]z) =0 & z=0;

(2) (zly) = (wlx)"

(3) (az|y) = alz|y);

(4) (@+ylz) = {z]2) + y]2).
If X is complete with respect to the norm |[z[|:= /[[{z, 2)[|c (= € X)), it is called a C*-module
over A. A C*-module X over A is a Kaplansky—Hilbert module over A = A(B) if it enjoys the
property: Given a norm-bounded family (z¢)¢ez in X and a partition of unity (e¢)eez in B,

there exists an element x € X such that ecx = ecx¢ for all § € Z, see [19, Definition 7.4.5.].
Consider a Kaplansky-Hilbert module X with a A-valued inner product (-,-). The norm

llz|l:= v/|{z|z)]|co (x € X) and the A-valued norm |z|:= \/(z|r) (z € X) in X are related
as ||z|| = H|x|Hoo (x € X). Moreover, two forms of the Cauchy—Bunyakovskii inequality are
fulfilled:

@ly) <lzl-lyl, 19l < Il iyl (z.y € X).

The following result due to M. Ozawa [29] (together with the other results from [28, 30])
tells us that the category of KaplanskyHilbert modules over A = A(B) and bounded A-li-
near operators is equivalent to the category of Hilbert spaces and bounded linear operators
in V). For a Banach space 2" inside VB the descent 2| and the bounded descent Z |
are defined as 2| :={z € V® : [z € 2] =1} and 2= {z € 2| : [[lz| < C"] =1 for
some C' € Ry }. More details see in [19, Chapter 8].

Theorem 2. The bounded descent of an arbitrary Hilbert space in V® is a Kaplansky—
Hilbert module over the Stone algebra A(B). Conversely, if X is a Kaplansky-Hilbert module
over A(B), then there is a Hilbert space 2 in V®) whose bounded descent 2|} is unitarily
equivalent with X. The space 2 is unique to within unitary equivalence inside V(®.

REMARK 2. The concept of Kaplansky—Hilbert module was introduced by I. Kaplansky
in [18] under the name AW *-module. In the introduction he wrote:

“...the new idea is to generalize Hilbert space by allowing the inner product to take values
in a more general ring then the complex numbers. After the appropriate preliminary theory
of these AW*-modules has been developed, one can operate with a general AW *-algebra of
type I in almost the same manner as with the factor.”

In other words, the central elements of an AW *-algebra can be taken as complex numbers
and one can work with factors rather then with general AW *-algebras. Needles to say, this
is a version of Kantorovich’s heuristic principle.
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5. Injective Banach Lattices

A real Banach lattice X is said to be injective if, for every Banach lattice Y, every closed
vector sublattice Yy C Y, and every positive linear operator Ty : Yy — X there exists a
positive linear extension 7' : Y — X with ||Ty||=||T||. Equivalently, X is an injective Banach
lattice if, whenever X is lattice isometrically imbedded into a Banach lattice Y, there exists
a positive contractive projection from Y onto X. Thus, the injective Banach lattices are
the injective objects in the category of Banach lattices with the positive contractions as
morphisms. Arendt [2, Theorem 2.2] proved that the injective objects are the same if the
regular operators with contractive modulus are taken as morphisms. More details see in Lotz
[26], Cartwright [9], Haydon [14], and Buskes [5].

A band projection 7 in a Banach lattice X is called an M-projection if |z| =
max{ |7z, |7+ x|} for all # € X, where 7+ := Iy — 7. The collection of all M-projections
forms a subalgebra M(X) of the Boolean algebra of all band projections P(X) in X. The
f-subalgebrs of the center 2°(X) generated by M(X) is called the M-center and denoted
by Z,n(X). Observe that the relations B ~ M(X) and A(B) ~ Z,,(X) are equivalent. The
notion of an M-projection plays a crucial role in the theory of injective Banach lattices. In
a wider context of a general Banach space theory the concept see in [4] and [13].

Let X and Y be Banach lattices and B a Boolean algebra which is identified with a
subalgebra of P(X) and a subalgebra of P(Y'). An operator T': X — Y is called B-linear, if
it is linear and boT = T o b for all b € B. Say that X is lattice B-isometric to Y and write
X ~p Y if there is a B-linear lattice isometry from X onto Y.

Now we are able to state a Boolean valued transfer principle from AL-spaces to injective
Banach lattices. See [21] for details.

Theorem 3. The bounded descent X := 27|} of an AL-space 2 in V® is an injective
Banach lattice with B ~ M(X) and A(B) ~ Z£,,(X). Conversely, if X is an injective Banach
lattice and B = M(X), then there exists a unique up to lattice isometry AL-space 2 in V(®)
whose bounded descent is lattice B-isometric to X.

REMARK 3. Again Kantorovich’s principle works: The M-center of an injective Banach
lattice can be taken as the field of reals, since the only injective Banach lattices with one-
dimensional M-centers are AL-spaces [14, Theorem 3F]. More precisely, according to The-
orem 3 and principles of Boolean valued analysis, each theorem about the AL-space within
Zermelo—Fraenkel set theory has an analog for the original injective Banach lattice inter-
preted as the Boolean-valued AL-space. Translation of theorems from AL-spaces to injective
Banach lattices is carried out by appropriate general operations of Boolean-valued analysis,
see [21].

6. Interaction: Kaplansky—Hilbert Lattices and Injectives

A real Banach lattice X is said to be a Kaplansky—Hilbert lattice over A whenever X @iX
is a Kaplansky-Hilbert module over A with respect to the norm ||z + iyl := /||z||% + |ly||?
(x,y € X). A Kaplansky—Hilbert lattice over A = R is called a Hilbert lattice, see [27].
Kaplansky—Hilbert lattices and injective Banach lattices are closely related and one can be
transformed into another by means of the well known procedure of a-convexification. This
surprising fact is almost trivial inside an appropriate Boolean valued model.

For a,s,t € R, a > 0, we denote t* := sgn(t)[t|* and oq(s,t) := (sV/* + t1/*)* In a
vector lattice X, we introduce new vector operations & and *, while the original ordering
< remain unchanged: z @y := (2 4+ y¥/*)* Asxz:= A (z,y € X; A € R). Then
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X(a) . — (X, ®,*,<) is again a vector lattice called an a-convezification of X. Note, that
1/a-covexification is also called an a-concavification, see [25, pp. 53, 54]. Define also a
homogeneous function || - |4 : X(® — R by ||z||o:= |lz[|*/*. In the case of a function space X
we have X(®) = {f: foe X}

We need one more useful concept introduced by G. Buskes and A. van Rooij [8]. Let X
be a vector lattice. The pair (X®,®) is called a square of E if the following conditions are
fulfilled: (1) X is a vector lattice; (2) ® : X x X — X is a symmetric lattice bimorphism;
(3) for any vector lattice Y and every symmetric lattice bimorphism ¢ : X x X — Y there
exists a unique lattice homomorphism S : X© — Y such that So® = ¢.

Theorem 4. An arbitrary Archimedean vector lattice X has a unique (up to a lattice

isomorphism) square (X°,®). If X is uniformly complete then X© = X(1/2) and z © y:=
(my)l/2 for all z,y € X. If X is a g-convex Banach lattice for some q > 2, then X equipped
with the norm ||z ® z||®:= ||z ® |1 )5 := ||z||? is also a Banach lattice.

< The existence of X was established in [8]. For the identity X = X(1/2) see [31,
Proposition 4.8 (ii)]. The last statement can be found in [25, p. 53]. >

Theorem 5. Let X be a Banach lattice and A a Dedekind complete AM -space with unit.
Then X is a Kaplansky-Hilbert lattice over A if and only if the square X is an injective
Banach lattice with A ~ 2,,(X®). In this case the map ¢ : x — x ® |z| is an isometric order
isomorphism from X onto X©.

REMARK 4. Theorem 5 says that Kaplansky—Hilbert lattices and injective Banach lattices
are related as L? and L'. Ivanov [15] proved that if X := L?([0,1]) (and hence X =
L'([0,1])), then the bijection ¢ :  + x ® |x| is also a (non-linear) homeomorphism.

Denote by 4/ the inverse of ¢, i.e. /(z ®|z|) = z and /(y) © |\/(y)| = y for all x € X
and y € X°. Then [ly||® = ||[v/(»)||? and ||z| = v/]]z © |2][|®. The maps ¢ and / were named
in [15] the alternating square and the alternating square root, respectively.

A positive operator T': X — Y (resp. a positive bilinear operator 7': X x X — Y) is
said to have the Levi property if im(T)+ = {0} and sup z, exists in X for every increasing
net (x,) C Xy, provided that (T'zy) (resp. (T(zq,2q))) is order bounded in Y, see [21,
Definition 2.5].

Corollary 1. A real Banach lattice X is injective if and only if its M-center A := %, (X)
is Dedekind complete and X is a Kaplansky—Hilbert lattice over A.

< By Theorem 5 X® is a Kaplansky Hilbert lattice over A if and only if (X (2))® is an
injective Banach lattice. It remains to observe that (X ®)® = (X2)(1/2) = x() = X >

Corollary 2. A Banach lattice X with the Dedekind complete M-center A = %,,(X)
is a Kaplansky-Hilbert lattice over A if and only if there exists a linear Maharam operator

® : X® — A with the Levi property such that ||z|| = \/|[®(z ©® 2)| s (z € X).

< This is immediate from Theorem 5 and [21, Theorem 5.1 (3)]. A standard proof (i.e.
without involving V®)) can be given using [6, Theorem 3.1] and [20, Proposition 4.4]. >

Corollary 3. A Banach lattice X is injective if and only if A = 2,,(X) is Dedekind
complete and there exists a bilinear orthosymmetric Maharam operator (-,-) : X @xx@ 5 A
with the Levi property such that ||z|| = ||(v/(z), V(z))|% (z € X).

< Apply Corollary 2 with X := X®) observe that the blhnear operator (x,y):=P(xOy)

is Maharam if and only if so is the linear operator ® : X = (X®)? — A (see [20, Proposi-
tion 4.4]), and take into account [21, Theorem 5.1] with the identity <\/( ),/ () = @(|z|). >
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7. Proof of Theorem 5

Everywhere below 2 is a Banach lattice in V® and X = 27|}

For a non-empty subset A of a vector lattice, denote by V(A) (resp. A(A)) the collection
of all vectors that can be written as suprema (resp. infima) of finite subsets of A. Put
AV (A) = A(V(A)) and VA (A) := V(A(A)). It always turns out that VA (4) = AV (4).
Denote by P, (A) the set of all finite subsets of A.

Lemma 1. For any nonempty set A C X we have [AV (A7) = (AV (A))1] = 1.

< The relation A C AV (A) implies that AT C AV (A)7 and thus AV (AT) C AV (A)T, since
AV (A)7 is a sublattice. For the converse, take u € AV (A) represented as u = A, \V f(k)
with n € Nand f:n:={0,1,...,n — 1} — P5,(A). Making use of the relation Pg,(AT) =
{01 : 0 € Psn(A)}T, define an internal function g : n* — P, (A7) by [g(k") = f(k)T] =1
(k € n). Tt is easy to verify that [u = Ac,n V 9(k)] = 1 and therefore [u € AV (A7)] = 1.
Now, if [x € AV (A)7] = 1 then there exists a partition of unity (b¢) in B and a family (u¢)
in AV (A) such that be < [z = ug] for all £& Taking into account that ug is in AV (A7) we
deduce be < [x = ue] A Jue € AV (AT) < [z € AV (A7) ], whence [z € AV (AT)] =1. >

Denote by #(R”) the vector lattice of all continuous functions ¢ : RN — R which are
positively homogeneous (= p(At) = A\p(t) for A > 0 and t € RY). If S:= {t = (t1,...,ty) €
RN : |ty +---+|tn| = 1}, then the map ¢ — ¢|g is a lattice isomorphism from #(R™) onto
C(S), the Banach lattice of continuous functions on S. Thus, #(R¥) can be also considered
as a Banach lattice with the induced norm.

Observe, that (RM)* = (RN, If ¢ € #/(RY) then [¢" : (RV) — R" is a continu-
ous function] = 1 and [there exists a unique continuous function @ € . (2"") such that
Plmyyn = "] = 1, see [12, Lemma 16]. Evidently, the map 7 : ¢ + ¢ is a lattice isomor-
phism from Z(RV) into s#(%N")|. Let e stands for the kth coordinate function on RV,
ie. eg: (t1,...,tn) — tg. Clearly, € is a kth coordinate function on ZN".

Lemma 2. The following holds inside V®): the Banach lattice 5 (%#N") is lattice iso-
morphic to the completion of the %-normed vector lattice (R )" over R".

< Recall that if Q is the field of rationals then Q" is the field of rationals in V®). Denote
by Q(eq,...,en) and Q(eq,...,en) the Q-linear subspace and Q-linear sublattice generated
by {e1,...,en}. Let Q"(é1,...,én) and Q"(éy,...,€én) be the corresponding internal objects
in VB, If A:= 7(Q(ey,...,en)) and B:= 7(Q(ey, . ..,en)) then B = AV (A) (see [1, Lemma
5.63]) and Bl = AV (A7) by Lemma 1. Moreover, AT = Q"(éy,...,€n), since Q(e1,...,en)
is defined by a restricted formula. The last two observations imply B = Q"(é1,...,én).
It remains to note that BT is uniformly dense in #(#2N") and is lattice isometric to the
sublattice Q(e1,...,en)" which is uniformly dense in 2 (RV)". >

Lemma 3. Let z1,...,2y € X, x:= (21,...,2n), and ¢ be an element of V®) with
[t = (z1,...,an0)B] = 1. If X : Z(RN) - X and T : H(%N") — 2 are homogeneous
functional calculi in X and 2, respectively, then | o 7 = X.

< By Lemma 2 T is a unique continuous extension of the map from 7 (%ﬁ (RN )A) into 2~
defined by T : ¢ +— X(¢p). Therefore, [T(3) = X(¢)] = 1 for all p € F#(RY). >

Lemma 4. If0 < a € R, then (2 ()|l = (2°1)®. In particular, (%G)l} = (%l})G.

< Denote x = (z1,22), r:= (z1,22)® and observe that (z1,22) — X(04) and (21, 12)
t(0,) are the operations of addition in X and 2, respectively. The addition in X (@) is the
bounded descent of the addition in 2 (), since T|(d) = X(04) by Lemma 3.

Similar assertion about multiplication is evident. >
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Now we are in a position to prove Theorem 5.

<1 Assume that X is a Kaplansky—Hilbert lattice over A. By Theorem 2 there is a real
Hilbert space 2 inside V® such that X and .2°| are unitary equivalent real Kaplansky—
Hilbert modules over A. In view of [21, Theorem 4.1] 2" is also a Banach lattice inside V(®).
Thus, from [27, Corollary 2.7.5] we deduce [ is lattice isometric to L2(u):= L?(Q, %, u) for
some measure space (€, %, )] = 1. Taking into consideration the relation (L2(u))® = L' (p)
we conclude that [.2 is lattice isometric to L'(u)] = 1. By Theorem 3 2 | is an injective
Banach lattice with A ~ 2;,(X®) and it remains to apply Lemma 4.

Conversely, suppose that X is an injective Banach lattice Then, in view of Theorem 3,
X is lattice B-isometric to %} for some Z € VB with [# = L'(p) = (L?(n)°] = 1.
Using again Lemma 4 we deduce X = (X)® ~p (# )@ = (L2(n))®}))P ~p L?(p)|. By
Theorem 2 and [21, Theorem 4.1] X is a Kaplansky—Hilbert lattice over A. >
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IIPUHIINIT KAHTOPOBUYA B AENCTBUMN:
AW*-MOIVJIN N UTHBEKTVBHBIE BAHAXOBBHBI PEIIETKH

Kycpaes A. T.

Hcrnonb3yst MeTojibl Oy/IEBO3HAYHOIO aHAJIU3a yCTAHOBJIEHO, 4TO pernerku Kammanckoro — [M'mibbepra u
WHBEKTUBHBIE GAHAXOBBI PEIIETKH MOTLYT OBITH MPeoOpasoBaHbI JAPYT B JpPyra MPU MOMOIIY TPOIEILY Dbl
oBbirykJieHus. O6Cy»K1aeTcsl TaK»Ke B3aNMOCBSA3b MEXKJIy SBPUCTUYECKUM IIPUHIMIIOM IiepeHoca Kanrto-
pOBHUYA U NIPUHIUAIIOM [IEPEHOCA B OyJIEBOZHAYHOM aHAJIM3E.

KuroueBbie cioBa: npuHnun KanTopoBuda, BEKTOpHas pelleTka, OyJIeBO3HAYHBIN aHa/n3, OyJIeBO3HAY-
HOe TIpejicTaBjienre, MoayJib Kammanckoro — ['mibbepra, mHbeKTHBHasi 6aHAXOBa pEIIeTKa, OIepaTop
MarapaM, KBaJIpaT BEKTOPHOI PEIIETKU, OBBILYKJIEHUE.



