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Making use of Boolean valued representation it is proved that Kaplansky–Hilbert lattices and injective
Banach lattices may be produced from each other by means of the convexification procedure. The re-
lationship between the Kantorovich’s heuristic principle and the Boolean value transfer principle is also
discussed.
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1. Introduction

The aim of this note is to demonstrate that Kaplansky–Hilbert lattices and injective
Banach lattices may be produced from each other by means of the well known convexification
procedure. This is done via the Boolean valued analysis approach. The subject gives a good
opportunity to discuss also the relationship between the Kantorovich’s heuristic principle and
the Boolean value transfer principle.

Everywhere below B is a complete Boolean algebra and V(B) the corresponding Boolean
valued model of set theory, see [3, 22]. Let Λ be a real Dedekind complete AM -space with
unit

�
endowed with a unique f -algebra multiplication. Then Λ̄ := Λ ⊕ iΛ is a commutative

C∗-algebra often called a Stone algebra. We write Λ = Λ(B) whenever B is a Boolean algebra
of band projections in Λ. The unexplained terms of use below can be found in [19] and [27].

2. Kantorovich’s Principle

L. V. Kantorovich was among the first who studied operators in ordered vector spaces. He
indicated an important instance of ordered vector spaces, a Dedekind complete vector lattice,
often called a Kantorovich space or a K-space. This notion appeared in Kantorovich’s first
fundamental article [16] on this topic where he wrote:

“В этой заметке я определяю новый тип пространств, которые я называю линейными

полуупорядоченными пространствами. Введение этих пространств позволяет изучать

линейные операции одного общего класса (операции, значения которых принадлежат

такому пространству ) как линейные функционалы.” 1

c© 2012 Kusraev A. G.
1 In this note, I define a new type of space that I call a semiordered linear space. The introduction of such

a space allows us to study linear operations of one abstract class (those with values in such a space) as linear
functionals.
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Here Kantorovich stated an important methodological principle, the heuristic transfer

principle for K-spaces, claiming that the elements of a K-space can be considered as gen-
eralized reals. Essentially, this principle turned out to be one of those profound ideas that,
playing an active and leading role in the formation of a new branch of analysis, led eventually
to a deep and elegant theory of K-space rich in various applications. At the very beginning
of the development of the theory, attempts were made at formalizing the above heuristic ar-
gument. In this direction, there appeared the so-called identity preservation theorems which
claimed that if some proposition involving finitely many functional relations is proven for the
reals then an analogous fact remains valid automatically for the elements of every K-space
(see [17, 27, 35]). The depth and universality of Kantorovich’s principle were demonstrated
within Boolean valued analysis. More about the Kantorovich’s universal heuristics and innate
integrity of his methodology see in [24].

3. Boolean Valued Analysis

Boolean valued analysis signifies the technique of studying properties of an arbitrary
mathematical object by means of comparison between its representations in two different
Boolean valued models of set theory. As the models, we usually take the von Neumann

universe V (the mundane embodiment of the classical Cantorian paradise) and the Boolean

valued universe V(B) (a specially-trimmed universe whose construction utilizes a complete
Boolean algebra B). The principal difference between V and V(B) is the way of verification of
statements: there is a natural way of assigning to each statement φ about x1, . . . , xn ∈ V(B)

the ‘Boolean truth-value’ [[φ(x1, . . . , xn)]] ∈ B. The sentence φ(x1, . . . , xn) is called true
in V(B) if [[φ(x1, . . . , xn)]] =

�
. For any complete Boolean algebra B, all the theorems of

Zermelo–Fraenkel set theory are true in V(B). There is a smooth mathematical technique for
revealing interplay between the interpretations of one and the same fact in the two models V
and V(B). The relevant ascending-and-descending machinery rests on the functors of canonical

embedding X 7→ X∧, descent X 7→ X↓, and ascent X 7→ X↑, see [22, 23].
Boolean valued analysis stems from the fact that each internal field of reals of a Boolean

valued model descends into a universally complete vector lattice. Thus, a remarkable oppor-
tunity opens up to expand and enrich the mathematical knowledge by translating information
about the reals to the language of other branches of functional analysis.

According to the principles of Boolean valued analysis there exists an internal field of
reals R in the model V(B) which is unique up to isomorphism. In other words, there exists
R ∈ V(B) for which [[R is a field of reals ]] =

�
. Moreover, if [[R ′ is a field of reals ]] =

�
for

some R ′ ∈ V(B) then [[ the ordered fields R and R ′ are isomorphic ]] =
�
.

By the same reasons there exists an internal field of complex numbers C ∈ V(B) which is
unique up to isomorphism. Moreover, V(B) |= C = R ⊕ iR. We call R and C the internal

reals and internal complexes in V(B).
The fundamental result of Boolean valued analysis is Gordon’s Theorem [10] which reads

as follows: Each universally complete vector lattice is an interpretation of the reals in an ap-

propriate Boolean valued model. Formally:

Theorem 1. Let R be the reals inside V(B). Then R↓, with the descended operations

and order, is a universally complete vector lattice. Moreover, there exists an isomorphism χ
of B onto the Boolean algebra of band projections in R↓ such that

χ(b)x = χ(b)y ⇐⇒ b 6 [[x = y ]], χ(b)x 6 χ(b)y ⇐⇒ b 6 [[x 6 y ]]

for all x, y ∈ R↓ and b ∈ B. Moreover, V(B) |= “R∧ is a dense ordered subfield of R”.
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The converse is also true: Each Archimedean vector lattice embeds in a Boolean valued

model, becoming a vector sublattice of the reals (viewed as such over some dense subfield of

the reals). More details can be found in [19, 22, 23].

Remark 1. Applications of Boolean-valued models to functional analysis stem from the
works by E. I. Gordon [10, 11] and G. Takeuti [32]. The term Boolean valued analysis is due
to G. Takeuti [33, 34].

4. Kapansky–Hilbert Modules

Let X be a unitary Λ̄-module. The mapping 〈· | ·〉 : X×X → Λ̄ is called a Λ̄-valued inner

product, whenever for all x, y, z ∈ X and a ∈ Λ̄ the following are satisfied:

(1) 〈x |x〉 > 0; 〈x |x〉 = 0 ⇔ x = 0;

(2) 〈x | y〉 = 〈y |x〉∗;
(3) 〈ax | y〉 = a〈x | y〉;
(4) 〈x+ y | z〉 = 〈x | z〉 + 〈y | z〉.

IfX is complete with respect to the norm ‖x‖ :=
√

‖〈x, x〉‖∞ (x ∈ X), it is called a C∗-module

over Λ̄. A C∗-module X over Λ̄ is a Kaplansky–Hilbert module over Λ̄ = Λ̄(B) if it enjoys the
property: Given a norm-bounded family (xξ)ξ∈Ξ in X and a partition of unity (eξ)ξ∈Ξ in B,
there exists an element x ∈ X such that eξx = eξxξ for all ξ ∈ Ξ, see [19, Definition 7.4.5.].

Consider a Kaplansky–Hilbert module X with a Λ̄-valued inner product 〈·, ·〉. The norm
‖x‖ :=

√
‖〈x|x〉‖∞ (x ∈ X) and the Λ-valued norm x :=

√
〈x|x〉 (x ∈ X) in X are related

as ‖x‖ =
∥∥ x

∥∥
∞ (x ∈ X). Moreover, two forms of the Cauchy–Bunyakovskĭı inequality are

fulfilled:

〈x | y〉 6 x · y , ‖〈x | y〉‖∞ 6 ‖x‖ ‖y‖ (x, y ∈ X).

The following result due to M. Ozawa [29] (together with the other results from [28, 30])
tells us that the category of Kaplansky–Hilbert modules over Λ̄ = Λ̄(B) and bounded Λ̄-li-
near operators is equivalent to the category of Hilbert spaces and bounded linear operators
in V(B). For a Banach space X inside V(B) the descent X ↓ and the bounded descent X ⇓
are defined as X ↓ :=

{
x ∈ V(B) : [[x ∈ X ]] =

� }
and X ⇓ :=

{
x ∈ X ↓ : [[‖x‖ 6 C∧]] =

�
for

some C ∈ R+

}
. More details see in [19, Chapter 8].

Theorem 2. The bounded descent of an arbitrary Hilbert space in V(B) is a Kaplansky–

Hilbert module over the Stone algebra Λ̄(B). Conversely, if X is a Kaplansky–Hilbert module

over Λ̄(B), then there is a Hilbert space X in V(B) whose bounded descent X ⇓ is unitarily

equivalent with X. The space X is unique to within unitary equivalence inside V(B).

Remark 2. The concept of Kaplansky–Hilbert module was introduced by I. Kaplansky
in [18] under the name AW ∗-module. In the introduction he wrote:

“. . . the new idea is to generalize Hilbert space by allowing the inner product to take values

in a more general ring then the complex numbers. After the appropriate preliminary theory

of these AW ∗-modules has been developed, one can operate with a general AW ∗-algebra of

type I in almost the same manner as with the factor.”

In other words, the central elements of an AW ∗-algebra can be taken as complex numbers
and one can work with factors rather then with general AW ∗-algebras. Needles to say, this
is a version of Kantorovich’s heuristic principle.
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5. Injective Banach Lattices

A real Banach lattice X is said to be injective if, for every Banach lattice Y , every closed
vector sublattice Y0 ⊂ Y , and every positive linear operator T0 : Y0 → X there exists a
positive linear extension T : Y →X with ‖T0‖=‖T‖. Equivalently, X is an injective Banach
lattice if, whenever X is lattice isometrically imbedded into a Banach lattice Y , there exists
a positive contractive projection from Y onto X. Thus, the injective Banach lattices are
the injective objects in the category of Banach lattices with the positive contractions as
morphisms. Arendt [2, Theorem 2.2] proved that the injective objects are the same if the
regular operators with contractive modulus are taken as morphisms. More details see in Lotz
[26], Cartwright [9], Haydon [14], and Buskes [5].

A band projection π in a Banach lattice X is called an M -projection if ‖x‖ =
max{‖πx‖, ‖π⊥x‖} for all x ∈ X, where π⊥ := IX − π. The collection of all M -projections
forms a subalgebra M(X) of the Boolean algebra of all band projections P(X) in X. The
f -subalgebrs of the center Z (X) generated by M(X) is called the M -center and denoted
by Zm(X). Observe that the relations B ' M(X) and Λ(B) ' Zm(X) are equivalent. The
notion of an M -projection plays a crucial role in the theory of injective Banach lattices. In
a wider context of a general Banach space theory the concept see in [4] and [13].

Let X and Y be Banach lattices and B a Boolean algebra which is identified with a
subalgebra of P(X) and a subalgebra of P(Y ). An operator T : X → Y is called B-linear, if
it is linear and b ◦ T = T ◦ b for all b ∈ B. Say that X is lattice B-isometric to Y and write
X 'B Y if there is a B-linear lattice isometry from X onto Y .

Now we are able to state a Boolean valued transfer principle from AL-spaces to injective
Banach lattices. See [21] for details.

Theorem 3. The bounded descent X := X ⇓ of an AL-space X in V(B) is an injective

Banach lattice with B ' M(X) and Λ(B) ' Zm(X). Conversely, if X is an injective Banach

lattice and B = M(X), then there exists a unique up to lattice isometry AL-space X in V(B)

whose bounded descent is lattice B-isometric to X.

Remark 3. Again Kantorovich’s principle works: The M -center of an injective Banach
lattice can be taken as the field of reals, since the only injective Banach lattices with one-
dimensional M -centers are AL-spaces [14, Theorem 3F]. More precisely, according to The-
orem 3 and principles of Boolean valued analysis, each theorem about the AL-space within
Zermelo–Fraenkel set theory has an analog for the original injective Banach lattice inter-
preted as the Boolean-valued AL-space. Translation of theorems from AL-spaces to injective
Banach lattices is carried out by appropriate general operations of Boolean-valued analysis,
see [21].

6. Interaction: Kaplansky–Hilbert Lattices and Injectives

A real Banach lattice X is said to be a Kaplansky–Hilbert lattice over Λ whenever X⊕ iX
is a Kaplansky–Hilbert module over Λ̄ with respect to the norm ‖x + iy‖ :=

√
‖x‖2 + ‖y‖2

(x, y ∈ X). A Kaplansky–Hilbert lattice over Λ = R is called a Hilbert lattice, see [27].
Kaplansky–Hilbert lattices and injective Banach lattices are closely related and one can be
transformed into another by means of the well known procedure of α-convexification. This
surprising fact is almost trivial inside an appropriate Boolean valued model.

For α, s, t ∈ R, α > 0, we denote tα := sgn(t)|t|α and σα(s, t) := (s1/α + t1/α)α. In a
vector lattice X, we introduce new vector operations ⊕ and ∗, while the original ordering
6 remain unchanged: x ⊕ y := (x1/α + y1/α)α, λ ∗ x := λαx (x, y ∈ X; λ ∈ R). Then
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X(α) := (X,⊕, ∗,6) is again a vector lattice called an α-convexification of X. Note, that
1/α-covexification is also called an α-concavification, see [25, pp. 53, 54]. Define also a
homogeneous function ‖ · ‖α : X(α) → R by ‖x‖α := ‖x‖1/α. In the case of a function space X
we have X(α) = {f : fα ∈ X}.

We need one more useful concept introduced by G. Buskes and A. van Rooij [8]. Let X
be a vector lattice. The pair (X

�
,�) is called a square of E if the following conditions are

fulfilled: (1) X
�

is a vector lattice; (2) � : X ×X → X
�

is a symmetric lattice bimorphism;
(3) for any vector lattice Y and every symmetric lattice bimorphism ϕ : X ×X → Y there
exists a unique lattice homomorphism S : X

� → Y such that S ◦ � = ϕ.

Theorem 4. An arbitrary Archimedean vector lattice X has a unique (up to a lattice

isomorphism) square (X
�
,�). If X is uniformly complete then X

�
= X(1/2) and x � y :=

(xy)1/2 for all x, y ∈ X. If X is a q-convex Banach lattice for some q > 2, then X
�

equipped

with the norm ‖x� x‖� := ‖x� x‖1/2 := ‖x‖2 is also a Banach lattice.

C The existence of X
�

was established in [8]. For the identity X
�

= X(1/2) see [31,
Proposition 4.8 (ii)]. The last statement can be found in [25, p. 53]. B

Theorem 5. Let X be a Banach lattice and Λ a Dedekind complete AM -space with unit.

Then X is a Kaplansky–Hilbert lattice over Λ if and only if the square X
�

is an injective

Banach lattice with Λ ' Zm(X
�
). In this case the map ι : x 7→ x� |x| is an isometric order

isomorphism from X onto X
�
.

Remark 4. Theorem 5 says that Kaplansky–Hilbert lattices and injective Banach lattices
are related as L2 and L1. Ivanov [15] proved that if X := L2([0, 1]) (and hence X

�
=

L1([0, 1])), then the bijection ι : x 7→ x� |x| is also a (non-linear) homeomorphism.

Denote by
√

the inverse of ι, i. e.
√

(x � |x|) = x and
√

(y) � |√(y)| = y for all x ∈ X
and y ∈ X

�
. Then ‖y‖� = ‖√(y)‖2 and ‖x‖ =

√
‖x� |x|‖�. The maps ι and

√
were named

in [15] the alternating square and the alternating square root, respectively.

A positive operator T : X → Y (resp. a positive bilinear operator T : X × X → Y ) is
said to have the Levi property if im(T )⊥ = {0} and supxα exists in X for every increasing
net (xα) ⊂ X+, provided that (Txα) (resp. (T (xα, xα))) is order bounded in Y , see [21,
Definition 2.5].

Corollary 1. A real Banach lattice X is injective if and only if its M -center Λ:= Zm(X)
is Dedekind complete and X (2) is a Kaplansky–Hilbert lattice over Λ.

C By Theorem 5 X (2) is a Kaplansky–Hilbert lattice over Λ if and only if (X (2))
�

is an
injective Banach lattice. It remains to observe that (X (2))

�
= (X(2))(1/2) = X(1) = X. B

Corollary 2. A Banach lattice X with the Dedekind complete M -center Λ = Zm(X)
is a Kaplansky–Hilbert lattice over Λ if and only if there exists a linear Maharam operator

Φ : X
� → Λ with the Levi property such that ‖x‖ =

√
‖Φ(x� x)‖∞ (x ∈ X).

C This is immediate from Theorem 5 and [21, Theorem 5.1 (3)]. A standard proof (i. e.
without involving V(B)) can be given using [6, Theorem 3.1] and [20, Proposition 4.4]. B

Corollary 3. A Banach lattice X is injective if and only if Λ = Zm(X) is Dedekind

complete and there exists a bilinear orthosymmetric Maharam operator 〈·, ·〉 : X (2)×X(2) → Λ
with the Levi property such that ‖x‖ = ‖〈√(x),

√
(x)〉‖2

∞ (x ∈ X).

C Apply Corollary 2 with X := X (2), observe that the bilinear operator 〈x, y〉 := Φ(x� y)
is Maharam if and only if so is the linear operator Φ : X = (X (2))

� → Λ (see [20, Proposi-
tion 4.4]), and take into account [21, Theorem 5.1] with the identity 〈√(x),

√
(x)〉 = Φ(|x|). B
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7. Proof of Theorem 5

Everywhere below X is a Banach lattice in V(B) and X = X ⇓.
For a non-empty subset A of a vector lattice, denote by ∨(A) (resp. ∧(A)) the collection

of all vectors that can be written as suprema (resp. infima) of finite subsets of A. Put
∧∨ (A) := ∧(∨(A)) and ∨∧ (A) := ∨(∧(A)). It always turns out that ∨∧ (A) = ∧∨ (A).
Denote by Pfin(A) the set of all finite subsets of A.

Lemma 1. For any nonempty set A ⊂ X we have [[∧∨ (A↑) = (∧∨ (A))↑]] =
�
.

C The relation A ⊂ ∧∨ (A) implies that A↑ ⊂ ∧∨ (A)↑ and thus ∧∨ (A↑) ⊂ ∧∨ (A)↑, since
∧∨ (A)↑ is a sublattice. For the converse, take u ∈ ∧∨ (A) represented as u =

∧
k∈n

∨
f(k)

with n ∈ N and f : n := {0, 1, . . . , n− 1} → Pfin(A). Making use of the relation Pfin(A↑) =
{θ↑ : θ ∈ Pfin(A)}↑, define an internal function g : n∧ → Pfin(A↑) by [[g(k∧) = f(k)↑]] =

�

(k ∈ n). It is easy to verify that
[[
u =

∧
k∈n∧

∨
g(k)

]]
=

�
and therefore [[u ∈ ∧∨ (A↑)]] =

�
.

Now, if [[x ∈ ∧∨ (A)↑]] =
�

then there exists a partition of unity (bξ) in B and a family (uξ)
in ∧∨ (A) such that bξ 6 [[x = uξ]] for all ξ. Taking into account that uξ is in ∧∨ (A↑) we
deduce bξ 6 [[x = uξ]] ∧ [[uξ ∈ ∧∨ (A↑) 6 [[x ∈ ∧∨ (A↑) ]], whence [[x ∈ ∧∨ (A↑)]] =

�
. B

Denote by H (RN ) the vector lattice of all continuous functions ϕ : RN → R which are
positively homogeneous (≡ ϕ(λt) = λϕ(t) for λ > 0 and t ∈ RN ). If S := {t = (t1, . . . , tN ) ∈
RN : |t1|+ · · ·+ |tN | = 1}, then the map ϕ 7→ ϕ|S is a lattice isomorphism from H (RN ) onto
C(S), the Banach lattice of continuous functions on S. Thus, H (RN ) can be also considered
as a Banach lattice with the induced norm.

Observe, that (RN )∧ = (R∧)N
∧

. If ϕ ∈ H (RN ) then [[ϕ∧ : (RN )∧ → R∧ is a continu-
ous function ]] =

�
and [[ there exists a unique continuous function ϕ̃ ∈ H (RN∧

) such that
ϕ̃|(RN )∧ = ϕ∧ ]] =

�
, see [12, Lemma 16]. Evidently, the map τ : ϕ 7→ ϕ̃ is a lattice isomor-

phism from H (RN ) into H (RN∧

)↓. Let ek stands for the kth coordinate function on RN ,
i. e. ek : (t1, . . . , tN ) 7→ tk. Clearly, ẽk is a kth coordinate function on RN∧

.

Lemma 2. The following holds inside V(B): the Banach lattice H (RN∧

) is lattice iso-

morphic to the completion of the R-normed vector lattice H (RN )∧ over R∧.

C Recall that if Q is the field of rationals then Q∧ is the field of rationals in V(B). Denote
by Q(e1, . . . , eN ) and Q〈e1, . . . , eN 〉 the Q-linear subspace and Q-linear sublattice generated
by {e1, . . . , eN}. Let Q∧(ẽ1, . . . , ẽN ) and Q∧〈ẽ1, . . . , ẽN 〉 be the corresponding internal objects
in V(B). If A := τ(Q(e1, . . . , eN )) and B := τ(Q〈e1, . . . , eN 〉) then B = ∧∨ (A) (see [1, Lemma
5.63]) and B↑ = ∧∨ (A↑) by Lemma 1. Moreover, A↑ = Q∧(ẽ1, . . . , ẽN ), since Q(e1, . . . , eN )
is defined by a restricted formula. The last two observations imply B↑ = Q∧〈ẽ1, . . . , ẽN 〉.
It remains to note that B↑ is uniformly dense in H (RN∧

) and is lattice isometric to the
sublattice Q〈e1, . . . , eN 〉∧ which is uniformly dense in H (RN )∧. B

Lemma 3. Let x1, . . . , xN ∈ X, x := (x1, . . . , xN ), and x be an element of V(B) with

[[ x = (x1, . . . , xN∧)B ]] =
�
. If x̂ : H (RN ) → X and x̂ : H (RN∧

) → X are homogeneous

functional calculi in X and X , respectively, then x̂↓ ◦ τ = x̂.

C By Lemma 2 x̂ is a unique continuous extension of the map from τ
(
H (RN )∧

)
into X

defined by x̂ : ϕ̃ 7→ x̂(ϕ). Therefore, [[ x̂(ϕ̃) = x̂(ϕ) ]] =
�

for all ϕ ∈ H (RN ). B

Lemma 4. If 0 < α ∈ R, then (X (α))⇓ = (X ⇓)(α). In particular,
(
X

�
)
⇓ =

(
X ⇓

)�
.

C Denote x = (x1, x2), x := (x1, x2)
B and observe that (x1, x2) 7→ x̂(σα) and (x1, x2) 7→

x̂(σα) are the operations of addition in X and X , respectively. The addition in X (α) is the
bounded descent of the addition in X (α), since x̂↓(σ̃α) = x̂(σα) by Lemma 3.

Similar assertion about multiplication is evident. B
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Now we are in a position to prove Theorem 5.

C Assume that X is a Kaplansky–Hilbert lattice over Λ. By Theorem 2 there is a real
Hilbert space X inside V(B) such that X and X ⇓ are unitary equivalent real Kaplansky–
Hilbert modules over Λ. In view of [21, Theorem 4.1] X is also a Banach lattice inside V(B).
Thus, from [27, Corollary 2.7.5] we deduce [[X is lattice isometric to L2(µ) := L2(Ω,Σ, µ) for
some measure space (Ω,Σ, µ) ]] =

�
. Taking into consideration the relation (L2(µ))

�
= L1(µ)

we conclude that [[X
�

is lattice isometric to L1(µ)]] =
�
. By Theorem 3 X

�⇓ is an injective
Banach lattice with Λ ' Zm(X

�
) and it remains to apply Lemma 4.

Conversely, suppose that X
�

is an injective Banach lattice Then, in view of Theorem 3,
X

�
is lattice B-isometric to Y ⇓ for some Y ∈ V(B) with

[[
Y = L1(µ) = (L2(µ))

�
]]

=
�
.

Using again Lemma 4 we deduce X = (X
�
)(2) 'B (Y ⇓)(2) = ((L2(µ))

�⇓)(2) 'B L
2(µ)⇓. By

Theorem 2 and [21, Theorem 4.1] X is a Kaplansky–Hilbert lattice over Λ. B

References

1. Abramovich Y. A., Aliprantis C. D. An Invitation to Operator Theory.—Providence (R. I.): Amer.
Math. Soc, 2002.—iv+530 p.

2. Arendt W. Factorization by lattice homomorphisms // Math. Z.—1984.—Vol. 185, № 4.—P. 567–571.
3. Bell J. L. Boolean-Valued Models and Independence Proofs in Set Theory.—New York etc.: Clarendon

Press, 1985.—xx+165 pp.
4. Behrends E. M -Structure and Banach–Stone Theorem.—Berlin etc.: Springer, 1979.—(Lecture Notes

in Math., 736.)
5. Buskes G. Separably-injective Banach lattices are injective // Proc. Roy. Irish Acad. Sect.—1985.—

Vol. A85, № 2.—P. 185–186.
6. Buskes G., Kusraev A. G. Representation and extension of orthoregular bilinear operators //

Vladikavkaz Math. J.—2007.—Vol. 9, № 1.—P. 16–29.
7. Buskes G., de Pagter B., van Rooij A., Functional calculus in Riesz spaces, Indag. Math. (N. S.).—

1991.—Vol. 4. № 2.—P. 423–436.
8. Buskes G., van Rooij A. Squares of Riesz spaces // Rocky Mountain J. Math.—2001.—Vol. 31, № 1.—

P. 45–56.
9. Cartwright D. I. Extension of positive operators between Banach lattices // Memoirs Amer. Math.

Soc.—1975.—Vol. 164.—P. 1–48.
10. Gordon E. I. Real numbers in Boolean-valued models of set theory and K-spaces // Dokl. Akad. Nauk

SSSR.—1977.—Vol. 237, № 4.—P. 773–775.
11. Gordon E. I. K-spaces in Boolean-valued models of set theory // Dokl. Akad. Nauk SSSR.—1981.—

Vol. 258, № 4.—P. 777–780.
12. Gordon E. I. To the theorems of identity preservation in K-spaces // Sibirsk. Mat. Zh.—1982.—Vol. 23,

№ 5.—P. 55–65.
13. Harmand P., Werner D., Wener W. M -Ideals in Banach Spaces and Banach Algebras.—Berlin etc.:

Springer, 1993.—viii+384 p.—(Lecture Notes in Math, 1547).
14. Haydon R. Injective Banach lattices // Math. Z.—1977.—Vol. 156.—P. 19–47.
15. Ivanov V. V. Banach Topologies and Kolmogorov’s Problem.—Novosibirsk: Sobolev Inst. Math., 2011.—

16 p.—(Preprint № 257).—[in Russian].
16. Kantorovich L. V. On semiordered linear spaces and their applications to the theory of linear

operations // Dokl. Akad. Nauk SSSR.—1935.—Vol. 4, № 1–2.—P. 11–14.
17. Kantorovich L. V., Vulikh B. Z., Pinsker A. G. Functional Analysis in Semiordered Spaces.—Moscow–

Leningrad: Gostekhizdat, 1950.—548 p.—[in Russian].
18. Kaplansky I. Modules over operator algebras // Amer. J. Math.—1953.—Vol. 75, № 4.—P. 839–858.
19. Kusraev A. G. Dominated Operators.—Dordrecht: Kluwer, 2000.—446 p.
20. Kusraev A. G. A Radon–Nikodým type theorem for orthosymmetric bilinear operators // Positivity.—

2010.—Vol. 14, № 2.—P. 225–238.
21. Kusraev A. G. Boolean Valued Analysis Approach to Injective Banach Lattices.—Vladikavkaz: Southern

Math. Inst. VSC RAS, 2011.—28 p.—(Preprint № 1).
22. Kusraev A. G., Kutateladze S. S. Boolean Valued Analysis.—Novosibirsk: Nauka, 1999.—383 p.—[in

Russian]; (English transl.: Dordrecht: Kluwer, 1999.)



74 Kusraev A. G.

23. Kusraev A. G., Kutateladze S. S. Introduction to Boolean Valued Analysis.—Moscow: Nauka, 2005.—
526 p.—[in Russian].

24. Kutateladze, S. S. Mathematics and Economics in the Legacy of Leonid Kantorovich // This issue.—
P. 7–21.

25. Lindenstrauss J., Tzafriri L. Classical Banach Spaces. Vol. 2. Function Spaces.—Berlin etc.: Springer-
Verlag, 1979.—x+243 p.

26. Lotz H. P. Extensions and liftings of positive linear mappings on Banach lattices // Trans. Amer. Math.
Soc.—1975.—Vol. 211.—P. 85–100.

27. Meyer-Nieberg P. Banach Lattices.—Berlin etc.: Springer-Verlag, 1991.—xvi+395 p.
28. Ozawa M. Boolean valued interpretation of Hilbert space theory // J. Math. Soc. Japan.—1983.—

Vol. 35, № 4.—P. 609–627.
29. Ozawa M. A classification of type I AW ∗-algebras and Boolean valued analysis // J. Math. Soc. Japan.—

1984.—Vol. 36, № 4.—P. 589–608.
30. Ozawa M. Boolean valued interpretation of Banach space theory and module structure of von Neumann

algebras // Nagoya Math. J.—1990.—Vol. 117.—P. 1–36.
31. Szulga J. (p, r)-convex functions on vector lattices // Proc. Edinburg Math. Soc.—1994.—Vol. 37,

№ 2.—P. 207–226.
32. Takeuti G. Two Applications of Logic to Mathematics.—Princeton: Princeton Univ. Press, 1978.—

viii+137 p.
33. Takeuti G. Boolean valued analysis // Applications of Sheaves (Proc. Res. Sympos. Appl. Sheaf

Theory to Logic, Algebra and Anal., Univ. Durham, Durham, 1977).—Berlin etc.: Springer-Verlag,
1979.—P. 714–731.—(Lecture Notes in Math., 753.)

34. Takeuti G. Boolean completion and m-convergence // Categorical Aspects of Topology and Analysis
(Ottawa, Ont., 1980).—Berlin etc.: Springer-Verlag, 1982.—P. 333–350.—(Lecture Notes in Math., 915.)

35. Vulikh B. Z. Introduction to the Theory of Partially Ordered Spaces.—Moscow: Fizmatgiz, 1961.—407
p.—[in Russian].

Received January 12, 2012.

Anatoly G. Kusraev

Southern Mathematical Institute
Vladikavkaz Science Center of the RAS, Director

Russia, 362027, Vladikavkaz, Markus street, 22
E-mail: kusraev@smath.ru

ПРИНЦИП КАНТОРОВИЧА В ДЕЙСТВИИ:
AW ∗-МОДУЛИ И ИНЪЕКТИВНЫЕ БАНАХОВЫ РЕШЕТКИ

Кусраев А. Г.

Используя методы булевозначного анализа установлено, что решетки Капланского — Гильберта и
инъективные банаховы решетки могут быть преобразованы друг в друга при помощи процедуры
овыпукления. Обсуждается также взаимосвязь между эвристическим принципом переноса Канто-
ровича и принципом переноса в булевозначном анализе.

Ключевые слова: принцип Канторовича, векторная решетка, булевозначный анализ, булевознач-
ное представление, модуль Капланского — Гильберта, инъективная банахова решетка, оператор
Магарам, квадрат векторной решетки, овыпукление.


