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USING HOMOLOGICAL METHODS ON THE BASE
OF ITERATED SPECTRA IN FUNCTIONAL ANALYSIS

E. I. Smirnov

We introduce new concepts of functional analysis: Hausdorff spectrum and Hausdorff limit or H-limit of
Hausdorff spectrum of locally convex spaces. Particular cases of regular H-limit are projective and induc-
tive limits of separated locally convex spaces. The class of H-spaces contains Fréchet spaces and is stable
under forming countable inductive and projective limits, closed subspaces and quotient spaces. Moreover,
for H-space an unproved variant of the closed graph theorem holds true. Homological methods are used
for proving of theorems of vanishing at zero for first derivative of Hausdorff limit functor: Haus1(X ) = 0.

Key words: topology, spectrum, closed graph theorem, differential equation, homological methods, cat-
egory.

Introduction

The study which was carried out in [1–2] of the derivatives of the projective limit functor
acting from the category of countable inverse spectra with values in the category of locally
convex spaces made it possible to resolve universally homomorphism questions about a given
mapping in terms of the exactness of a certain complex in the abelian category of vector
spaces. Later in [3] a broad generalization of the concepts of direct and inverse spectra of
objects of an additive semiabelian category G (in the sense V. P. Palamodov) was introduced:
the concept of a Hausdorff spectrum, analogous to the δs-operation in descriptive set theory.
This idea is characteristic even for algebraic topology, general algebra, category theory and
the theory of generalized functions. The construction of Hausdorff spectra X = {Xs,F , hs′s}
is achieved by successive standard extension of a small category of indices Ω. The category H

of Hausdorff spectra turns out to be additive and semiabelian under a suitable definition of
spectral mapping. In particular, H contains V. P. Palamodov’s category of countable inverse
spectra with values in the category TLG of locally convex spaces [1]. The H-limit of a
Hausdorff spectrum in the category TLG generalizes the concepts of projective and inductive
limits and is defined by the action of the functor Haus : H → TLC. The class of H-spaces
is defined by the action of the functor Haus on the countable Hausdorff spectra over the
category of Banach spaces; the closed graph theorem holds for its objects [8] and it contains
the category of Fréchet spaces and the categories of spaces due to De Wilde [7], D. A. Rajkov
[5] and Suslin [6]. The H-limit of a Hausdorff spectrum of H-spaces is an H-space [7]. There
are many injective objects in the category H and the right derivatives Hausi (i = 1, 2, . . .) are
defined, while the “algebraic” functor Haus : H (L)→ L over the abelian category L of vector
spaces (over R or C) has injective type, that is if 0 → X → Y → Z is an exact sequence
of mappings of Hausdorff spectra with values in L, then the limit sequence 0→ Haus(X )→
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Haus(Y ) → Haus(Z ) is exact or acyclic in the terminology of V. P. Palamodov [2]. In
particular, regularity of the Hausdorff spectrum X of the nonseparated parts of Y guarantees
the exactness of the functor Haus : H (TLC)→ TLC and the condition of vanishing at zero:
Haus1(X ) = 0. The classical results of Malgrange and Ehrenpreis on the solvability of the
unhomogeneous equation p(D)D′ = D′, where p(D) is a linear differential operator with
constant coefficients in Rn and D′ = D′(S) is the space of generalized functions on a convex
domain S ⊂ Rn, can be extended to the case of sets S which are not necessarily open or
closed. Analogous theorems for Fréchet spaces were first proved by V. P. Palamodov [1–2].

1. We recall certain definitions and theorems which are used in this chapter and which
were brought into the discussion in [3–6]. Let Ω be a small category. By a directed class in
the category we mean a subcategory satisfying the following properties:

(i) no more than one morphism is defined between any two objects;
(ii) for any objects a, b there exists an object c such that there exist a→ c and b→ c.
Let A be some category and s denotes the object of a category A (if Q ∈ Ω and a, b ∈ Q

we will denote the corresponding morphisms of category Ω by a
Q−→ b). We shall call the

category B with objects S, where S is a subcategory of A, a standard extension of the

category A if the following conditions are satisfied:
1◦. A is a complete subcategory of B;
2◦. The morphism ωSS′ : S′ → S of the category B is defined by the collection of

morphisms ωss′ : s′ → s (s′
ωss′−→ s) of the category A such that

(a) for every s′ ∈ S′ there exists s ∈ S such that s′
ωss′−→ s;

(b) if s′
ωss′−→ s, p′

ωpp′−→ p, s
ωS

ps−→ p, then there exists a morphism s′
ωS′

ps−→ p′ and the following
diagram is commutative:

s
S−−−−→ p

ωss′
x

xωpp′

s′
S′
−−−−→ p′

We will establish the successive standard extensions of categories

Ω(s) ⊂ B(T ) ⊂ Σ(F )→ Σ0(F ) ⊂ D(F ),

where T ⊂ Ω denotes directed classes of objects s ∈ Ω, coincides as object of category B ;
F , F ∈ B , denote filter bases of sets T ∈ B , considered as objects of category Σ, and F ,
F ⊂ Σ, denote directed classes of objects F ∈ Σ of the dual category Σ0, considered as objects
of category D . We shall say that such classes F are admissible for Ω; put |F | =

⋃
T∈F T ,

|F | =
⋃

F∈F |F |, so that |F | ⊂ Ω and |F | ⊂ Ω. The most characteristic constructions
connected with Hausdorff spectra use in the role of the small category Ω = Ord I, where I is
a partially ordered set of indices, considered as category.

Example 1 (standard extension of the category A). Let G and A be categories, T (F )
the category of covariant functors F : G→ A with functorial morphism Φ : F1 → F2 defined
by the rule [2] which assigns to each object g ∈ G a morphism Φ(g) : F1(g) → F2(g) of the
category A such that for any morphism ω : g → h of the category G the following diagram is
commutative

F1(h)
Φ(h)−−−−→ F2(h)

F1(ω)

x
xF2(ω)

F1(g)
Φ(g)−−−−→ F2(g)
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It is clear that each object s ∈ A generates a covariant functor Fs : g ∈ G 7→ s ∈ A such that
A ⊂ T . Moreover, A is a complete subcategory of T .

We will show that T provides a standard extension of the category A (by means of the
category G). Let F ∈ T and S ⊂ A be such that S = ∪g∈GF (g) and for s′, s ∈ S the set of
morphisms Hom(s′, s) = ∪ωF (ω), where ω : g → h and s′ = F (q), s = F (h). Therefore the
category B is defined, where S is a subcategory of A and the morphisms ωSS′ : S′ → S of
the category B are generated by the collection of functorial morphisms Φ : F ′ → F , where
F ′ ∈ T generates S ′, while F generates S according to the method indicated above.

If we take such a functorial morphism Φ : F ′ → F , then the morphisms Φ(g) : F ′(g) →
F (g) (g ∈ G) of the category A form a collection of morphisms ωss′ : s′ → s (s′ = F ′(g),
s = F (g)) such that (a) is satisfied. Condition (b) follows from consideration of the definition
of the functorial morphism.

Thus, B is a standard extension of the category A. If G = Ord I, where I is a linearly
ordered set, then T = B(S).

Example 2 (Palamodov [1]). The categories of direct and inverse spectra over a semia-
belian category K are standard extensions of the category K.

Example 3 (construction of an admissible class for Ω). Let T be a separated topological
space and Ω a countable set. We shall call a set A ⊂ T an s-set if

A =
⋃

B∈K

⋂

t∈B

Tt ,

where Tt (t ∈ Ω) is a subset of T and K is the family of subsets B of the set Ω such that
(a) for each B ∈ K the set TB = ∩t∈BTt is compact in T ,
(b) the sets TB (B ∈ K ) form a fundamental system of compact subsets of A.

Proposition 1. Every separable metric space is an s-set.

Proposition 2. Let A be a subset of the finite-dimensional space Rn. Then A is an s-set
and moreover

A =
⋃

B∈K

⋂

t∈B

Tt, (1)

where the Tt are compact subsets of Rn.

Thus, s-sets are a generalization on the one hand of compact spaces (and locally compact
spaces which are countable at infinity) and on the other of separable metric spaces. However,
s-sets will be of interest to us in connection with the possibility of constructing the associated
functor of a simple Hausdorff spectrum.

Let A be some s-set, so that

A =
⋃

B∈K

⋂

t∈B

Tt,

where Tt ⊂ T , B ⊂ Ω. We may assume without loss of generality that the family Q of
subsets Tt (t ∈ Ω) is closed with respect to finite intersections and unions (that is, there exist
corresponding surjections Φs,Ψs : d(Ω)→ Ω, where d(Ω) is the set of finite subsets of Ω).

The set Ω will be partially ordered if we put t′ 6 t whenever Tt ⊂ Tt′ ; let G = OrdQ.
Further, we may assume that each set B ∈ K is directed in (Ω,6). Let I be the factor
set of all possible complexes s = [t1, t2, . . ., tn], where ti ∈ |K |, ti = pris (i = 1, 2, . . . , n,
n ∈ N), with respect to the equivalence relation on the set of ordered n-tuples of elements
of |K | : (t1, t2, . . ., tn) ∼ (t′1, t

′
2, . . ., t

′
n) if and only if {t1, t2, . . ., tn} = {t′1, t′2, . . ., t′n}. The

set I becomes partially ordered if we put s′ 6 s, where s = [t1, t2, . . ., tn], s′ = [t′1, t
′
2, . . ., t

′
n],

whenever for each ti there exists t′j such that t′j 6 ti; let Ω = Ord I.
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By continuing the construction following the method of transformation of indices we
will construct an admissible class F for Ω. For each s = [t1, t2, . . ., tn] ∈ |F | the subset
Rs =

⋃n
i=1 Tti is defined and moreover if s′ 6 s then Rs ⊂ Rs′ . Thus a contravariant functor

of the simple Hausdorff spectrum H(A) : |F | → G is defined and moreover

A =
⋃

F∈F

⋂

s∈F

Rs. (2)

It is an essential point that I is a countable set and the family
{⋂

F Rs

}
is a fundamental

system of nonempty compact subsets of A.
Let G be some category. We shall call a covariant functor HF : Ω → G a Hausdorff

spectrum functor if Ω = |F | for some admissible class F ∈ D . If F = |F | then HF is a
functor of the direct spectrum, while if F = {|F |} (that is, F consists of a single element
|F | = |F |) then HF is a functor of the inverse spectrum.

If F is an admissible class for Ω and the functor

hF :





|F | → G ,

s 7→ Xs,(
s′

ωss′−−−→ s
)
7→
(
Xs → Xs′

)
,(

F ′ ωFF ′−−−→ F
)
7→
(
(Xs)s∈|F | → (Xs′)s′∈|F ′|

)

is injective on objects and morphisms (in the set-theoretic sense), then there exists a directed
class (

(Xs)s∈|F |, qFF ′
)
F,F ′ ∈ F

of classes (Xs, hs′s)s,s′∈|F | (F ∈ |F |) which are directed in the dual category G
0 and which

satisfy the following conditions.

1◦. The morphism Xs
hs′s−→ Xs′ is chosen and fixed if and only if the morphism s′

ωss′−→ s is
chosen and then hs′s : Xs → Xs′ is the only morphism.

2◦. The diagram

Xs
hs′′s−−−−→ Xs′′

hs′s

y
yhs′s′′

Xs′ Xs′

is commutative for all s′′
ωs′s′′−→ s′

ωss′−→ s.

3◦. If (Xs)s∈|F |
qF ′F−→ (Xs′)s′∈|F ′|, then for each Xs′ (s′ ∈ |F ′|) there exists a unique

morphism hs′s : Xs → Xs (s ∈ |F |). The collection of morphisms hs′s (s′ ∈ |F ′|) defines
the morphism qF ′F so that we shall write qF ′F = (hs′s)F ′F . Each set F ∈ F is a filter base
of subsets T ⊂ |F | and moreover for each T ∈ F the class (Xs, hs′s)T is directed in the
category G

0.

Definition 1. We shall call a class (Xs, hs′s)s,s′∈|F | satisfying conditions 1◦–3◦ a Haus-

dorff spectrum over the category G and we shall denote it by {Xs,F , hs′s}.
The direct and inverse spectra of a family of objects are particular cases of Hausdorff

spectra: it suffices to put F = |F |, hs′s = qF ′F in the direct case and F = {|F |}, hs′s : Xs →
Xs′ (s′ → s), qF ′F = i|F | = i|F | in the inverse case.

Under a suitable definition of spectral mapping (see the structure of the category D(F ))
the set of Hausdorff spectra over G forms a category which we denote by SpectG. If X =
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{Xs,F , hs′s}, Y = {Yp,F
1, hp′p} are objects from SpectG, then we shall say that two

Hausdorff spectrum mappings ωY X : X → Y and ω′
Y X : X → Y are equivalent if for any

F ∈ F there exists F ∗ ∈ F
1 such that the diagram

Xs
ωps−−−−→ Yp

ω′
p′s

y
yhp∗p

Yp′
hp∗p′−−−−→ Yp∗

is commutative for any p∗ ∈ |F ∗|.
Now let us consider a new category H (G) whose objects are the objects of the category

SpectG, but the set HomH(X ,Y ) is formed by the equivalence classes of mappings ωY X :
X → Y . We shall denote such classes by ‖ωY X‖.

For any objects X ,Y ,Z ∈ H the law of composition defines a bilinear mapping

HomH(X ,Y )×HomH(Y ,Z )→ HomH(X ,Z )

(HomH(X ,Y ) is an abelian group).

Definition 2. Let X = {Xs,F , hs′s} be a Hausdorff spectrum over the category G.
We shall call an object Z of the category G a categorical H-limit of the Hausdorff spectrum

X over G if for any objects A,B ∈ G and spectral mappings A
a−→ X

b−→ B there exists a

unique sequence in G A
α−→ Z

β−→ B such that the diagram

A
a−−−−→ X

α

y
yb

Z
β−−−−→ B

is commutative in the category SpectG.

The concepts of projective and inductive limits over the category G are special cases of
categorical H-limits. For example, let X be the inverse spectrum of objects from G. Then
(Lim) holds and moreover any object Xs from X can be taken for B ∈ G with the identity
morphism bs : Xs → Xs forming the spectral mapping bs : X → Xs (s ∈ |F |). Thus the
following diagram is commutative

A
a−−−−→ X

α

y
yb

Z
β−−−−→ X

where b = (bs), β = (βs), βs : Z → Xs (s ∈ |F |), b is the identity morphism of the category
SpectG. Therefore the diagram

A
a−−−−→ X

α

y
∥∥∥

Z
β−−−−→ X

is commutative for any object A ∈ G.

The categorical H-limit of a Hausdorff spectrum (the functor Haus) exists in any semi-
abelian category G with direct sums and products (for example, the category of vector
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spaces L, the category TLC of topological vector groups, the category TLC of locally convex
spaces).

Let Ω be a countable set and X = {Xs,F , hs′s} a regular Hausdorff spectrum in the
category TLC; such a spectrum is said to be countable. A continuous linear image in the

category TLC of an H-limit X =
←−
lim→

F
hs′sXs of Banach spaces Xs (s ∈ |F |) is called an

H-space. The class of H-spaces contains the Fréchet spaces and is stable with respect to
the operations of passage to countable inductive and projective limits, closed subspaces and
factor spaces. Moreover, a strengthened variant of the closed graph theorem holds for H-
spaces. The class of H-spaces is the broadest of all the analogous classes known at this time,
namely those of Rajkov, De Wilde, Hakamura, Zabrejko–Smirnov. A countable separated
regular H-limit of a Hausdorff spectrum of H-spaces in the category TLC is an H-space [7].

Throughout this chapter Hausdorff spectra are assumed to be countable unless the con-
trary is explicitly stated.

2. Let Haus : H (TLC) → L be the covariant additive Hausdorff limit functor from the
semiabelian category H (TLC) to the abelian category L of vector spaces (over R or C). We
recall [11] that by an injective resolvent I of an object X ∈ H (TLC) we mean any sequence

0 −→ I0
i0−→ I1

i1−→ . . . ,

formed by injective objects and exact in its members I k, k > 1, with ker i0 ∼= X . Any two
injective resolvents of the same object are homotopic to each other. Since there are many
injective objects in the category H (TLC) [3], each object of this category has at least one
injective resolvent. The right derivatives of the Hausdorff limit functor Haus are defined by
the formula

Hausk(X ) = Hk(Haus(I )) (k = 0, 1, . . .),

where X ∈ H (TLC), I is any injective resolvent of X , Haus(I ) is the complex of morphisms
of the category L obtained by application of the functor Haus to each morphism of the
complex I , and Hk(Haus(I )) (k = 0, 1, . . .) are the homologies of the complex Haus(I ).
Each morphism X → Y of the category H (TLC) is covered by a morphism I → Y of the
injective resolvents of the objects X and Y (see [11, Chapter V, § 1]). From this follows
the existence of morphisms Hausk(X )→ Hausk(Y ) so that the objects of Hausk(X ) do not
depend on the choice of injective resolvent. On the other hand the functor Haus has injective
type [3, p. 88], therefore the canonical isomorphism of functors holds:

Haus ∼= Haus0 .

Proposition 3. For every free Hausdorff spectrum E ∈H(L)

Hausi(E) = 0 (i = 1, 2, . . .).

We now compute the derived functors Hausi (i > 1) in the following way (see [2, 10]). Let
X = {Xs,F , hs′s} be an arbitrary Hausdorff spectrum and E the free Hausdorff spectrum
with generators Xs (s ∈ |F |). Let us consider the sequence of Hausdorff spectrum mappings

0 −→ X
ωEX−−→ E

ωEE−−→ E −→ 0, (D)

in which the components of the mapping ωEX (i. e. the collection (ωTsT )T∈|ϕ(F )|, where
sT ∈ T is the unique maximal element in T with respect to the direction relation) act
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according to the formula ωTsT
: xsT

7→ (ĥs′sT
xsT

)s′∈T , while the Hausdorff spectrum mapping
ωEE : E → E is formed by means of the morphisms (Tn is a cofinal right-filtering sequence)

ωT ∗Tn : (xs)s∈Tn 7→
(
xs∗ − ĥs∗sTn

XsTn

)
s∗∈T ∗

for any T ∗, Tn ∈ F , F ∈ F , T0 = ∅, Tn−1 ⊂ T ∗ ⊂ Tn, sTn 6⊂ T ∗ (n = 1, 2, . . .).
It is now clear that the sequence (D) is exact; following V. P. Palamodov [2] we shall call

the sequence (D) the canonical resolvent of the Hausdorff spectrum X .
Applying the functor Haus to the canonical resolvent (D) we obtain the sequence of locally

convex spaces

0→ Haus(X )→
⊕

F

∏

F

Xs →
⊕

F

∏

F

Xs ,

where
⊕

F

∏
F Xs is the direct sum of the products of the Xs (s ∈ |F |) under the natural

inductive limit topology; this sequence is acyclic and moreover exact from the left.

Proposition 4. Let Haus : H(TLC)→ L and let

0−−−→X
ωY X−−−→ Y

ωZY−−−→ Z−−−→0 (D′)

be an exact sequence of Hausdorff spectra. Then the following exact connecting sequence is

defined in the category L (δI (i = 1, 2, . . .) are the connecting morphisms):

0 −→ Haus(X) −→ Haus(Y) −→ Haus(Z) −→ Haus1(X)

−→ . . . −→ Hausi−1(Z)
δi−1

−−→ Hausi(X)
ωi

Y X−−→ Hausi(Y)
ωZY−−→ Hausi(Z)

δi

−−−→ . . .

3. In [1] and [2] V. P. Palamodov established the fundamental Theorems 11.1 and 11.2
giving necessary and sufficient conditions for the vanishing at zero Pro1(X ) = 0 for the
functor Pro of the projective limit of a countable family of locally convex spaces. We aim
to establish analogous conditions for the vanishing at zero Haus1(X ) = 0 for the Hausdorff
limit functor and for the not necessarily countable case.

We recall that in questions concerning the stability of the class of H-spaces with respect
to Hausdorff limits and also in the theorem about the representation of H-spaces by means
of Banach spaces the assumption of regularity of the Hausdorff spectrum was an important
condition. Here it will be necessary to impose the following condition. Let X = {Xs,F , hs′s}T
be a Hausdorff spectrum of locally convex spaces and for each T ∈ F let V T

F ⊂
∏

F Xs be
defined by

V T
F =

{
x = (xs) ∈

∏

F

Xs : xs′ = ĥs′sxs, s, s
′ ∈ T

}
,

equipped with the projective topology with respect to the preimages π−1
s τs (s ∈ T ), where

πs :
∏

F Xs → Xs is the canonical projection. The corresponding base of neighborhoods of
zero for the projective topology generates the TV G

(∏
F Xs, σ(T )

)
(T ∈ F ).

Let us form the TV G (
∏

F Xs, σ(F )) with base of neighborhoods of zero V T
F (T ∈ F ).

The Hausdorff spectrum X is said to be regular if
(∏

F Xs, σ(F )

)
satisfies the condition:

convergence of a net (aγ)γ∈P in the TV Gs

(∏
F Xs, σ(T )

)
(T ∈ F ) implies its convergence in

the TV G
(∏

F Xs, σ(F )

)
. If every Xs (s ∈ |F |) has the indiscrete topology, then it is not

difficult to see that the first part of the condition for regularity is equivalent to completeness
of
(∏

F Xs, σ(F )

)
.

Theorem 1. Let X be a regular Hausdorff spectrum of nonseparated parts over the

category TLC. Then Haus1(X) = 0.
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If Y is a regular Hausdorff spectrum over TLC and X is the Hausdorff spectrum of
nonseparated parts, then it is easy to see that X is also a regular spectrum. In fact, bear-
ing in mind the remark before the theorem, it is sufficient to establish the completeness of(∏

F Xs, σ(F )

)
; this TV G is embedded in the corresponding TV G

(∏
F Ys, σ

1
(F )

)
. If (aγ)γ∈P

is fundamental under σ(F ), then aγ ∈ aγ0 + V T
F (∀T ∈ F , γ � γ(T ), γ0 � γ(T )) and because

of the closedness of V T
F in the latter TV G we obtain the inclusion (a∗ = limP aγ)

a∗ − aγ0 ∈ V T
F (∀T ∈ F, γ0 � γ(T )),

which also implies the convergence of (aγ) to a∗ in
(∏

F Xs, σ(F )

)
.

Thus, in the enunciation of Theorem 1 regularity of the Hausdorff spectrum X can be
replaced by regularity of the Hausdorff spectrum Y .

Theorem 2. Let Y be a regular Hausdorff spectrum, X the Hausdorff spectrum of non-

separated parts of Y and 0→ X→ Y→ Y/X→ 0 an exact sequence of Hausdorff spectra.

Then the sequence 0→ Haus(X)→ Haus(Y)→ Haus(Y/X)→ 0 is exact in the category L.

Let us continue our consideration of the question of exactness of the functor Haus :
H (TLC) → L for an arbitrary exact sequence of Hausdorff spectra 0 → X → Y →
Z → 0. From the proofs given above it is clear that a sufficient condition for the vanishing
at zero Haus1(X ) = 0 is the completeness of the TV G

(∏
F Xs, σ

∗
(F )

)
for each F ∈ F (see

Proposition 7.1 of [3]), where I
∗
(F ) is formed by the filtering V T

F with respect to T . At

the same time each space V T
F is endowed with the linear topology defined by the inverse

image supT π
−1
s τs (T ∈ F ) forming at the same time the TV G

(∏
F Xs, σ(F )

)
so that the

TV G
(∏

F Xs, σ(F )

)
is not in general metrizable. It turns out that completeness of the

TV G
(∏

F Xs, σ
∗
(F )

)
is also a necessary condition for the vanishing at zero Haus1(X ) = 0.

Proposition 5. Let X = {Xs,F, hs′s} be a countable Hausdorff spectrum over the

category L. Then in order that Haus1(X) = 0 it is necessary and sufficient that the

TV G
(∏

F Xs, σ
∗
(F )

)
is complete for each F ∈ F.

Theorem 3. Let X = {Xs,F, hs′s} be a countable Hausdorff spectrum over the cate-

gory L. Then in order that Haus1(X) = 0 it is necessary and sufficient that for each F ∈ F

it is possible to define in
∏

F Xs a quasinorm µ = µF > 0 such that

(i) the associated topological group
(∏

F Xs, τ
∗
(F )

)
is complete, τF > σ∗(F ),

(ii) µ∗F is continuous on
(∏

F Xs, σ
∗
(F )

)
.

C Necessity. This follows from the argument before the theorem, since on putting τF =
σ∗(F ) and

µF (x) =
∞∑

k=1

2−kdTk
(x),

where dTk
(x) = 0 for x ∈ V Tk

F and dTk
(x) = 1 for x ∈

∏
F Xs\V Tk

F (k ∈ N), we obtain (i)
and (ii).

Sufficiency. Let ZF =
⋂∞

k=1 V
Tk
F and let the factor space

∏
F Xs/ZF be endowed with the

images of the topologies σ∗
(F ) and τF , so that, if

dF (ξ) = inf
x∈ξ

µF (x) and d̃F (ξ) = inf
x∈ξ

∞∑

k=1

2−kdTk
(x) ,



Using of homological methods on the base of iterated spectra in functional analysis 81

the MVG(
∏

F Xs/ZF , dF ) is separated and complete and the MVG(
∏

F Xs/ZF , d̃F ) is sep-
arated. Thus on the MVG(

∏
F Xs/ZF , d̃F ) the functional dF is countably semiadditive and

d∗F (ξ) = inf
ξn→ξ

lim
n→∞

dF (ξn) = inf
x∈ξ

µ∗F (x)

is continuous on it. Hence by the Lemma on a countably semiadditive functional [8] we obtain
dF = d∗F and, consequently, the MVG(

∏
F Xs/ZF , d̃F ) is complete. But this means that the

TV G(
∏

F Xs, σ
∗
(F )) will be complete, which allows us to conclude on considering all F ∈ F

that Haus1(X ) = 0. The Theorem is proved. B

In the case of a countable inverse spectrum, in particular, we obtain the first part of
Theorem 11.1.1 of [1]; in the case of a direct spectrum X the topology τF is indiscrete for
each singleton set F ∈ F . Moreover, the famous lemma of V. P. Palamodov [1], which makes
up the main part of the proof, is a special case of the lemma about a countably semiadditive
functional [8].

In what follows ϕs
F denotes the filter topology on Xs (s ∈ |F |), which is formed by the

spaces {ĥss′Xs′} (s′ ∈ |F |). We note, however, that the product topology on
∏

F Xs obtained
from the topologies ϕs

F (s ∈ |F |) does not in general coincide with the topology σ∗
(F ).

Sufficient conditions for the vanishing at zero Haus1(X ) = 0, which are more convenient
for applications, are given in the following proposition.

Theorem 4. Let X = {Xs,F, hs′s} be a countable Hausdorff spectrum over the cate-

gory L. In order that Haus1(X) = 0 it is sufficient that for each s ∈ |F | it is possible to define

in Xs a family of quasinorms {ρβs} which determines a complete separated pseudotopological

vector space (Xs, ρβs), preserves the continuity of the morphisms ĥs′s and is such that for

each s ∈ |F |, F ∈ F the following condition is satisfied:

(A) for some βs = βs(F ) the functional ρ∗βs
is continuous in the filter topology (Xs, ϕ

s
F ).

In particular, in the case of an inverse spectrum X we obtain Theorem 5.1 of [2] and
moreover our assertion is even stronger in this case.

Theorem 5. Let X = {Xs,F, hs′s} be a countable Hausdorff spectrum of separated

H-spaces over the category TLC. Then in order that Haus1(X) = 0 it is necessary and

sufficient that the spaces (Xs, ϕ
s
F ) (s ∈ |F |) are complete TV Gs for each F ∈ F.

In the case of an inverse spectrum of Fréchet spaces Theorem 5 extends the criteria (F) and
(R) of V. P. Palamodov’s Corollary 11.4 in [1]. We note that in Theorem 5 it is separatedness
of the pseudotopology which is actually required, therefore in general the H-space may be
nonseparated.

Theorem 6. Let X = {Xs,F, hs′s} be a countable Hausdorff spectrum of H-spaces

over the category TLC with separated associated pseudotopology {(ρPs
s )∗} which preserves

the continuity of the morphisms hs′s. Then in order that Haus1(X) = 0 it is necessary and

sufficient that for each s ∈ |F| there exists a quasinorm ρPs
s (F ) (s ∈ |F |) in Xs such that

(A’) (ρPs
s )∗ is continuous in the filter topology ϕs

F and the system {ρPs
s } preserves the

continuity of the morphisms hs′s.

In particular the theorem by Retakh [9] follows from Theorem 6.
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ИСПОЛЬЗОВАНИЕ ГОМОЛОГИЧЕСКИХ МЕТОДОВ
НА БАЗЕ ИТЕРИРОВАННЫХ СПЕКТРОВ

В ФУНКЦИОНАЛЬНОМ АНАЛИЗЕ

Смирнов Е. И.

В статье водятся новые понятия функционального анализа: хаусдорфов спектр и хаусдорфов пре-
дел или H-предел хаусдорфова спектра в категории локально выпуклых пространств (или даже,
в более общих полуабелевых категориях). Частными случаями регулярного хаусдорфова предела
являются проективный и индуктивный пределы отделимых локально выпуклых пространств. Но-
вый класс H-пространств содержит пространства Фреше и замкнут относительно операций взятия
счетного индуктивного и проективного пределов, перехода к замкнутому подпространству и фактор-
пространству. Более того, для H-пространств справедлив усиленный вариант теоремы о замкнутом
графике. Доказаны теоремы об обращении в нуль первой производной функтора хаусдорфова пре-
дела средствами гомологической алгебры.

Ключевые слова: топология, спектр, замкнутый график, дифференциальные уравнения, гомоло-
гические методы, категория.


