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Introduction

A Riemannian manifold (M, g) is called a geodesic orbit manifold (GO-manifold) if every
its geodesic is an orbit of a one-parameter group of isometries of (M, g). Every such manifold
is homogeneous and can be identified with a coset space M = G/H of a transitive Lie group G
of isometries. A Riemannian homogeneous space (M = G/H, g) of a Lie group G is called
a space with homogeneous geodesics (or a geodesic orbit space, shortly, GO-space), if any its
geodesic is an orbit of a one-parameter subgroup of the group G. This terminology was
introduced by O. Kowalski and L. Vanhecke in the paper [17]. We discuss some properties of
geodesic orbit Riemannian manifolds and related results in Section 1.

The main goal of this paper is a complete classification of geodesic orbit Riemannian
metrics on spheres Sn. The classification of all transitive and effective actions of connected
compact Lie groups on spheres is obtained in [18]. We collect in Table 1 all variants to repre-
sent Sn as a homogeneous space G/H. In this table, by dim(G/H) we denote the dimension of
the corresponding space (and the corresponding sphere), dim(M ) (respectively, dim(MGO))
means the dimension of the space of G-invariant (the space of G-invariant geodesic orbit)
Riemannian metrics on the homogeneous space G/H.

Note that Riemannian metrics of constant sectional curvature constitute a one-parameter
family of metrics on each sphere Sn, n > 2 (there is no such notion for the trivial case n = 1).
These are exactly the metrics invariant under the action of the orthogonal group O(n + 1)
and under its connected unit component SO(n + 1). These groups are respectively the full
isometry group and the full connected isometry group of each metric of constant curvature
on Sn.

We list all inclusions between the isometry groups in Table 1: G2 ⊂ SO(7), SU(k) ⊂
U(k) ⊂ SO(2k), Sp(k) ⊂ Sp(k)U(1) ⊂ Sp(k)Sp(1) ⊂ SO(4k), Sp(k) ⊂ Sp(k)U(1) ⊂ U(2k),
SU(4) ⊂ Spin(7) ⊂ SO(8), Spin(9) ⊂ SO(16) (see details e. g. in Chapter 4 of [20]).

It should be noted that geodesic orbit metrics on some spaces in Table 1 are well known.
Below we describe all known results and emphasize the cases that should be studied.

c© 2013 Nikonorov Yu. G.
1 The project was supported in part by the State Maintenance Program for the Leading Scientific Schools

of the Russian Federation, grant № NSh-921.2012.1, and by Federal Target Grant «Scientific and educational
personnel of innovative Russia» for 2009–2013, agreement № 8206, application № 2012-1.1-12-000-1003-014.



68 Nikonorov Yu. G.

Table 1

Invariant metrics on spheres

G H dim(G/H) dim(M ) dim(MGO) Cond.

1 SO(n+ 1) SO(n) n 1 1 n > 1

2 G2 SU(3) 6 1 1

3 Spin(7) G2 7 1 1

4 SU(2) {e} 3 6 1

5 SU(n+ 1) SU(n) 2n+ 1 2 2 n > 2

6 U(n+ 1) U(n) 2n+ 1 2 2 n > 1

7 Spin(9) Spin(7) 15 2 2

8 Sp(n+ 1)Sp(1) Sp(n) diag(Sp(1)) 4n+ 3 2 2 n > 1

9 Sp(n+ 1)U(1) Sp(n) diag(U(1)) 4n+ 3 3 3 n > 1

10 Sp(n+ 1) Sp(n) 4n+ 3 7 2 n > 1

Case 1). The homogeneous space SO(n+1)/SO(n) is irreducible symmetric, all SO(n+
1)-invariant Riemannian metrics are SO(n+ 1)-normal homogeneous (hence, geodesic orbit)
and constitute the set of Riemannian metrics of constant sectional curvature on Sn. This set
is a part of any other family of invariant metrics from Table 1.

Cases 2) and 3). The spaces G2/SU(3) and Spin(7)/G2 are isotropy irreducible. All
invariant metrics on these spaces are normal homogeneous (hence, GO-metrics) and have
constant sectional curvature (see Section 7 in [12]).

Case 4). All left-invariant metrics on a compact Lie group G, that are geodesic orbit
with respect to G, should be biinvariant (see Proposition 8 in [2]). Since the group SU(2)
is simple, then all biinvariant Riemannian metrics on SU(2) constitute a one-parameter
family of metrics. Since SU(2)2/diag(SU(2)) = SO(4)/SO(3), then these metrics are exactly
metrics of constant curvature on S3 = SU(2).

Cases 5) and 6). Note that the set of U(n + 1)-invariant metrics on S2n+1 coincides
with the set of SU(n+ 1)-invariant metrics and constitutes a 2-parametric family of metrics.
Every such metric is naturally reductive and weakly symmetric [26, 27, 28]. Therefore, in
both these cases we have a two-parameter family of geodesic orbit metrics.

Case 7). The family of invariant metrics on Spin(9)/Spin(7) is 2-parametric. All these
metrics are weakly symmetric but not naturally reductive [27, 28]. Therefore, we have a
two-parameter family of geodesic orbit metrics.

Case 8). The family of invariant metrics on Sp(n + 1)Sp(1)/Sp(n) diag(Sp(1)) is 2-
parametric. Every such metric is naturally reductive and weakly symmetric [27, 28]. There-
fore, in both these cases we have a 2-parameter family of geodesic orbit metrics. More details
on this case could be found in Sections 2.

Case 9). Note that the previous family is a part of this one. The family of Sp(n+1)U(1)-
invariant metrics on Sp(n + 1)U(1)/Sp(n) diag(U(1)) = S4n+3 is 3-parametric. Every such
metric is weakly symmetric (see e. g. 12.9.2 in [24] or Table 1 in [25]). Therefore, in this
case we have a three-parameter family of geodesic orbit metrics. Details on the normality
and the natural reductivity of Sp(n+ 1)U(1)-invariant metrics could be found in Remark 1.
Some explicit form of geodesic vectors for Sp(n+ 1)× U(1)-invariant metric could be found
in Section 4.

Case 10). In the last case we get a 7-dimensional space of Sp(n + 1)-invariant metrics
on Sp(n + 1)/Sp(n) = S4n+3. This is a unique case that we should study in details. We
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deal with this case in Sections 2 and 3. By Theorem 1, a homogeneous Riemannian space
(S4n+3 = Sp(n + 1)/Sp(n), g) is geodesic orbit if and only if the metric g is invariant under
Sp(n+ 1)Sp(1).

The structure of the paper is the following. We recall in Section 1 some useful facts on the
class of geodesic orbit Riemannian manifolds and some related classes of Riemannian mani-
folds. In Section 2 we discuss actions of the groups Sp(n+1), Sp(n+1)U(1), Sp(n+ 1)Sp(1)
(and corresponding invariant metrics) on the sphere S4n+3. In the next section we classify
Sp(n+1)-invariant geodesic orbit metrics on S4n+3. The final section is devoted to an explicit
description of geodesic vectors for Sp(n+ 1)U(1)-invariant metrics on the sphere S 4n+3.

Acknowlegment. The author is grateful to V. N. Berestovskii, W. Ziller, and O. S. Yakimova
for helpful discussions.

1. On geodesic orbit manifolds

There are some important subclasses of geodesic orbit manifolds. Indeed, GO-spaces may
be considered as a natural generalization of Riemannian symmetric spaces, introduced and
classified by È. Cartan in [13]. On the other hand, the class of GO-spaces is much larger
than the class of symmetric spaces. Any homogeneous space M = G/H of a compact Lie
group G admits a Riemannian metric g such that (M, g) is a GO-space. It suffices to take
the metric g induced by a biinvariant Riemannian metric g0 on the Lie group G such that
(G, g0) → (M = G/H, g) is a Riemannian submersion with totally geodesic fibres. Such
geodesic orbit space (M = G/H, g) is called a normal homogeneous space (in the sense of
M. Berger [10]). It should be noted also that any naturally reductive Riemannian manifold is
geodesic orbit. Recall that a Riemannian manifold (M, g) is naturally reductive if it admits a
transitive Lie group G of isometries with a biinvariant pseudo-Riemannian metric g0, which
induces the metric g on M = G/H (see [12] and [16]).

An important class of GO-spaces consists of weakly symmetric spaces, introduced by
A. Selberg [21]. A homogeneous Riemannian manifold (M = G/H, g) is a weakly symmetric

space if any two points p, q ∈M can be interchanged by an isometry a ∈ G. This property does
not depend on the particular G-invariant metric g. Weakly symmetric spaces M = G/H have
many interesting properties and are closely related with spherical spaces, commutative spaces,
Gelfand pairs etc. (see papers [3, 25] and book [24] by J. A. Wolf). The classification of weakly
symmetric reductive homogeneous Riemannian spaces was given by O. S. Yakimova [25] on the
base of the paper [3] (see also [24]). It is very important that weakly symmetric Riemannian

manifolds are geodesic orbit by a result of J. Berndt, O. Kowalski, and L. Vanhecke [11].

Note that generalized normal homogeneous Riemannian manifolds (δ-homogeneous man-

ifold, in another terminology) constitute another important subclass of geodesic orbit man-
ifold. All metrics from this subclass are of non-negative sectional curvature and have some
other interesting properties (see details in [4–6]). In the paper [9], a classification of general-
ized normal homogeneous metrics on spheres and projective spaces is obtained. Finally, we
notice that Clifford-Wolf homogeneous Riemannian manifolds constitute a partial subclass
of generalized normal homogeneous Riemannian manifolds [7].

Many interesting results about GO-spaces one can find in [2, 11, 14, 15, 19, 22, 23, 28],
where there are also extensive references.

Now we recall some important properties of homogeneous Riemannian spaces and geodesic
orbit Riemannian spaces in particular.
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Let M = G/H be a homogeneous space of a compact connected Lie group G. Let us
denote by 〈·, ·〉 a fixed Ad(G)-invariant Euclidean metric on the Lie algebra g of G (for
example, the minus Killing form if G is semisimple) and by

g = h⊕ p (1)

the associated 〈·, ·〉-orthogonal reductive decomposition, where h is the Lie algebra of the
group H. An invariant Riemannian metric g on M is determined by an Ad(H)-invariant
inner product go = (·, ·) on the space p which is identified with the tangent space Mo at the
initial point o = eH.

Recall that X ∈ g is called a geodesic vector if the orbit of the point o = eH under the
action of the one-parameter group γ(t) = exp(tX), t ∈ R, is a geodesic in (M = G/H, g), see
details in the paper [17] or in Section 5 of the book [8].

For a given inner product (·, ·), we consider a metric endomorphism A : p → p that
is defined by the equality (X,Y ) = 〈AX,Y 〉 for all X,Y ∈ p. Obviously, A is Ad(H)-
equivariant, positive definite and symmetric operator (with respect to 〈·, ·〉). It is clear
also that a metric endomorphism determines a corresponding invariant Riemannian metric
uniquely. The following lemma is very useful.

Lemma 1 [1]. A compact homogeneous Riemannian manifold (M = G/H, g) with reduc-

tive decomposition (1) and metric endomorphism A is GO-space if and only if for any X ∈ p

there is Z ∈ h such that [Z +X,AX] ∈ h. The latter condition is equivalent to the property

of Z +X ∈ g to be a geodesic vector.

2. On invariant metrics and transitive actions of groups
Sp(n+ 1), Sp(n+ 1)U(1), and Sp(n+ 1)Sp(1) on S4n+3

Let H be the field of quaternions. Denote by i, j, k the quaternionic units in H (ij =
−ji = k, jk = −kj = i, ki = −ik = j, ii = jj = kk = −1). For X = x1 + ix2 + jx3 + kx4,

xi ∈ R, define Re(X) = x1 (the real part of X), X = x1− ix2− jx3−kx4 and ‖X‖ =
√
XX .

If Re(X) = x1 = 0, then the quaternion X is called pure imaginary.

Let us consider a (left) vector space Hn+1 over H. For X = (X1, X2, . . . , Xn+1) ∈ Hn+1

and Y = (Y1, Y2, . . . , Yn+1) ∈ Hn+1 we define (X,Y )1 =
∑n+1

s=1 XsY s. Then Sp(n + 1) is the
group of all H-linear operators A : Hn+1 → Hn+1 with the property (A(X), A(Y ))1 = (X,Y )1
for every X,Y ∈ Hn+1. If we choose some (·, ·)1-orthonormal quaternionic basis in Hn+1, then
we can identify Sp(n + 1) with a group of matrices A = (aij), aij ∈ H, with the property
A−1 = A∗, where a∗ij = aji for 1 6 i, j 6 n+ 1. In this case sp(n+ 1) consists of quaternionic(
(n + 1) × (n + 1)

)
-matrices A with the property A∗ = −A. Later on we shall use these

identifications.

We have a natural embedding H 7→ R4 via x1 + ix2 + jx3 + kx4 7→ (x1, x2, x3, x4) and
the induced embedding Hn+1 7→ R4n+4. It is well known that the group G := Sp(n+ 1) acts
transitively on the sphere

S4n+3 =
{(
X1, X2, . . . , Xn+1

)
∈ Hn+1 : ‖X1‖2 + ‖X2‖2 + · · · + ‖Xn+1‖2 = 1

}
.

Let us consider natural embedding diag(Sp(1), Sp(n)) ⊂ Sp(n + 1), and let K and H be
the images of Sp(1) and Sp(n) respectively under this embedding. Then H is the isotropy
subgroup of a point (1, 0, . . . , 0) ∈ Hn+1 under the above action of Sp(n+1). Since K = Sp(1)
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is a normal subgroup in the group diag(Sp(1), Sp(n)), then we have the following (almost
effective) transitive action of G×K on S4n+3 = G/H:

(a, b)(cH) = acHb−1 = acb−1H, a, c ∈ G, b ∈ K. (2)

The isotropy group of this action at the point (1, 0, . . . , 0) ∈ Hn is

Sp(n− 1)× Sp(1) = Sp(n− 1)× diag(Sp(1)) ⊂ Sp(n)× Sp(1) = G×K.

We also get an effective representation S4n+3 = Sp(n + 1)Sp(1)/Sp(n) diag(Sp(1)) (after
dividing by the noneffectiveness kernel).

Let L be any subgroup U(1) = S1 in K = Sp(1). Then we get transitive (and almost
effective) action of G× L on S4n+3 = G/H:

(a, b)(cH) = acHb−1 = acb−1H, a, c ∈ G, b ∈ L, (3)

that is a part of the action (2). In this case we get the following isotropy group at the point
(1, 0, . . . , 0) ∈ Hn+1:

Sp(n)× U(1) = Sp(n)× diag(U(1)) ⊂ U(1)× Sp(n)× U(1) ⊂ Sp(n+ 1)× U(1) = G× L.

We also get an effective representation S4n+3 = Sp(n+ 1)U(1)/Sp(n) diag(U(1)).

For A,B ∈ sp(n+ 1) we define

〈A,B〉 =
1

2

(
Re(AB∗)

)
. (4)

It is easy to see that 〈·, ·〉 is a Ad(Sp(n + 1))-invariant inner product on the Lie algebra
g = sp(n+ 1).

We write Eij for the skew-symmetric matrix with 1 in the ij-th entry and −1 in the ji-th
entry, and zeros elsewhere. We denote by Fij the symmetric matrix with 1 in both the ij-th
and ji-th entries, and zeros elsewhere. Denote also by Gi the matrix with

√
2 in ii-th entry,

and zeros elsewhere.
It is easy to check that the matrices iGi, jGi, kGi, Eij, iFij , jFij , kFij , where 1 6 i, j 6

n+ 1 and i < j, constitute a 〈·, ·〉-orthonormal (see (4)) basis in sp(n+ 1).

Let us consider the following 〈·, ·〉-orthogonal decomposition:

sp(n + 1) = k⊕ sp(n)⊕ p1 = sp(n)⊕ p, k = l⊕ p2, (5)

where k and l are the Lie algebras of the Lie subgroups K and L (see above). Therefore, the
embedding of k⊕ sp(n) = sp(1)⊕ sp(n) in sp(n+ 1) is defined by (A,B) 7→ diag(A,B), where
A ∈ sp(1) and B ∈ sp(n).

Without loss of generality we may suppose that the Lie subalgebra l = u(1) (u(1)⊕sp(n) ⊂
sp(1)⊕ sp(n) ⊂ sp(n+ 1)) is spanned on the vector iG1. Then p2 = Lin{jG1,kG1}.

Any Sp(n + 1)-invariant metric on S4n+3 is defined by an Ad(Sp(n))-invariant inner
product (·, ·) on p. Note that Ad(Sp(n)) acts irreducibly on p1 and trivially on k. Therefore,
any such inner product is generated by the metric endomorphism of the type

A = Ã⊕ x1 Id |p1 (6)

for some x1 > 0 and some symmetric and positive definite operator Ã : k→ k. In particular,
it implies that the space of Sp(n+1)-invariant Riemannian metric on S4n+3 is 7-dimensional.
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If Ã = x2 Id |p2 ⊕ x3 Id |l, then the inner product (·, ·) generates Sp(n + 1) × L-invariant

metric on S4n+3 (see Section 4). If Ã = x2 Id |k, then the inner product (·, ·) generates
Sp(n+ 1)×K-invariant metric on S4n+3, see e. g. [27].

Remark 1. Let us note that for x1 = x2 6= x3 we get Sp(n + 1)U(1)-naturally reduc-
tive metrics on the sphere S4n+3 (they are even Sp(n + 1)U(1)-normal homogeneous for
x3 < x1 = x2). All these metrics are also U(2n + 2)-invariant and U(2n + 2)-naturally re-
ductive. By analogy, for x3 = x2 6= x1 we get Sp(n+ 1)Sp(1)-naturally reductive metrics on
the sphere S4n+3 (for x3 = x2 < x1 these metrics are even Sp(n + 1)Sp(1)-normal homoge-
neous). Obviously, for x1 = x2 = x3 we get Sp(n+ 1)-normal homogeneous metrics. For all
other values of parameters xi, i = 1, 2, 3, Sp(n + 1)U(1)-invariant metrics are not naturally
reductive. See details in [27] and [28].

Remark 2. Consider the homogeneous spaces Sp(n + 1)/Sp(n) · U(1), where n > 1,
U(1) ⊂ Sp(1), and Sp(1) is the first factor in the group Sp(1) × Sp(n) ⊂ Sp(n + 1). The
Lie algebra of the group Sp(n) · U(1) is l⊕ sp(n) ⊂ sp(n+ 1) in the decomposition (5). It is
known that the homogeneous space Sp(n+1)/Sp(n) ·U(1) is diffeomorphic to CP 2n+1, hence
we get a representation of an odd-dimensional complex projective space. It is also known
that the space Sp(n+ 1)/Sp(n) · U(1) admits a two-parameter family of Sp(n+ 1)-invariant
Riemannian metrics [27]. All these metrics are weakly symmetric [28]. It is interesting that
only Sp(n+ 1)-normal and SU(2n+ 2)-normal metrics in this family are naturally reductive.
Note that explicit expressions of geodesic vectors for Sp(n+ 1)-invariant Riemannian metrics
on CP 2n+1 = Sp(n+ 1)/Sp(n) · U(1) could be found in paper [4].

3. Sp(n+ 1)-invariant geodesic orbit metrics on the sphere S4n+3

Here we classify all geodesic orbit metrics on the sphere S4n+3 with respect to the group
Sp(n + 1). At first, we should establish some auxiliary results. By direct calculation we get
the following lemma (see the definitions of Eij , Fij , and Gi in the previous section).

Lemma 2. For any 1 6 i < j 6 n+ 1 the following relations are fulfilled:

[αGk, Eij ] = [αGk, βFij ] = 0 (∀ k 6∈ {i, j}, ∀α, β ∈ {i, j,k});

[αGi, Eij ] =
√

2αFij , [αGj , Eij ] = −
√

2αFij (∀α ∈ {i, j,k});

[αGi, αFij ] = −
√

2Eij, [αGj , αFij ] =
√

2Eij (∀α ∈ {i, j,k});

[αGi, βFij ] = [αGj , βFij ] =
√

2(α · β)Fij (∀α, β ∈ {i, j,k}, β 6= α),

where · means the quaternion multiplication.

The following lemma is very important for our goals.

Lemma 3. For any 2 6 s 6 n + 1 and given vectors U = a1iG1 + a2jG1 + a3kG1 and

V = b1E1s + b2iF1s + b3jF1s + b4kF1s, there is a vector W = c1iGs + c2jGs + c3kGs such that

[U, V ] = [W,V ].

C All is clear when V is trivial. Now we suppose that V 6= 0. Using Lemma 2, we
see that the equality [U, V ] = [W,V ] is equivalent to u · v = v · w for the quaternions
u = a1i + a2j + a3k, v = b1 + b2i + b3j + b4k, and w = c1i + c2j + c3k. But now we
can define w by the formula w = v−1 · u · v. This definition is correct, since for a given
nonzero quaternion q, a map of the type a 7→ q · a · q−1 (that is an automorphism of the
field of quaternions) preserves a subspace of pure imaginary quaternions. Indeed, if a 6= 0
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is a pure imaginary, then a−1 = ‖a‖−2a = −‖a‖−2a. Therefore, if b = q · a · q−1, then
‖b‖−2b = b−1 = q · a−1 · q−1 = −‖a‖−2b, and b is also pure imaginary. B

Theorem 1. A homogeneous Riemannian space (S4n+3 = Sp(n+1)/Sp(n), g) is geodesic

orbit with respect to Sp(n+1), if and only if the metric g is invariant under Sp(n+1)×Sp(1).

C Suppose that a metric endomorphism A (see (6)) generates a Riemannian geodesic
orbit metric g with respect to Sp(n + 1). Then by (6) and Lemma 1 we get that for any
X ∈ k = sp(1) there is Z ∈ sp(n) such that [Z +X, ÃX] ∈ sp(n). But [Z, ÃX] ∈ [sp(n), k] =
0, therefore, [X, ÃX] ∈ sp(n). On the other hand, [X, ÃX] ∈ [k, k] = k. Hence, we get
[X, ÃX] = 0 for all X ∈ k = sp(1). Now, it is easy to see that Ã = x2 Id |k for some x2 > 0
and (·, ·) generates Sp(n + 1) × Sp(1)-invariant metric on S4n+3 (see the discussion in the
previous section). Indeed, the centralizer of any nontrivial X ∈ sp(1) in sp(1) is exactly RX.
Therefore, Ã preserves all 1-dimensional subspaces in sp(1) and should be a multiple of Id
on k = sp(1).

Now, consider any Sp(n + 1) × Sp(1)-invariant metric on S4n+3. It is generated by a
metric endomorphism of the type A = x2 Id |k ⊕ x1 Id |p1 . For any X = X1 + X2 (X1 ∈ p1,
X2 ∈ k) we get AX = x1X1 + x2X2. In order to prove that this metric is geodesic orbit with
respect to Sp(n+ 1), it suffices to find Z ∈ sp(n) such that [Z,X1] = (x2/x1−1)[X2, X1] (see
Lemma 1). If x1 = x2 then we can choose Z = 0. Consider now the case x1 6= x2.

Let X1 = X2
1 +X3

1 + · · ·+Xn+1
1 , where Xs

1 ∈ Lin{E1s, iF1s, jF1s,kF1s}, 2 6 s 6 n+1. By
Lemma 3, there is a vector Us ∈ Lin{iGs, jGs,kGs} ⊂ sp(n) such that [Us, X

s
1 ] = (x2/x1 −

1)[X2, X
s
1 ]. Now by Lemma 2, we get

(x2/x1 − 1)[X2, X1] =
n+1∑

s=2

(x2/x1 − 1)[X2, X
s
1 ]

=

n+1∑

s=2

[Us, X
s
1 ] =

n+1∑

s=2

[Us, X1] =

[ n+1∑

s=2

Us, X1

]
.

Therefore, we can choose Z =
∑n+1

s=2 Us. By Lemma 1 we get that A = x2 Id |k⊕x1 Id |p1 does
generate a GO-metric with respect to Sp(n+ 1). B

4. Geodesic vectors for Sp(n+ 1)U(1)-invariant metrics
on the sphere S4n+3

We already know (see Case 9) in Introduction) that all Sp(n+ 1)U(1)-invariant metrics
(they constitute a 3-parametric family) on Sp(n + 1)U(1)/Sp(n) diag(U(1)) = S 4n+3 are
geodesic orbit because of the weak symmetry. On the other hand, sometimes it is useful to
have explicit forms of suitable geodesic vectors. In this section, we get such description for
all Sp(n+ 1)U(1)-invariant metrics on S4n+3.

At first, we give more details on Sp(n + 1)U(1)-invariant metrics on the sphere S 4n+3.
We suppose that l is supplied with the inner product 〈·, ·〉 as a subalgebra of sp(n + 1) (see
the decomposition (5)). Then we can extend 〈·, ·〉 to the Lie algebra sp(n + 1) ⊕ l assuming
〈sp(n+ 1), l〉 = 0. Let us consider the following 〈·, ·〉-orthogonal decompositions:

sp(n+ 1)⊕ l = h̃⊕ p̃1 ⊕ p̃2 ⊕ p̃3, h̃ = h̃1 ⊕ h̃2,

where p̃1 = {(X, 0) ∈ sp(n + 1) ⊕ l |X ∈ p1}, p̃2 = {(X, 0) ∈ sp(n + 1) ⊕ l |X ∈ p2},
p̃3 = {(X,−X) ∈ sp(n + 1) ⊕ l |X ∈ l}, h̃1 = {(X, 0) ∈ sp(n + 1) ⊕ l |X ∈ sp(n)}, h̃2 =
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{(X,X) ∈ sp(n + 1) ⊕ l |X ∈ l}. It is easy to see that the modules p̃i, i = 1, 2, 3, are
ad(h̃)-irreducible. Then every Sp(n + 1)U(1)-invariant metric g on S4n+3 is determined by
the metric endomorphism

A = x1 Id |p̃1
⊕ x2 Id |p̃2

⊕ x3 Id |p̃3

for some positive x1, x2, x3.

Now, we shall find for every X ∈ p̃1⊕ p̃2⊕ p̃3 a vector Z ∈ h̃ such that X+Z is a geodesic
vector on the homogeneous Riemannian space (Sp(n+ 1)U(1)/Sp(n) diag(U(1)) = S 4n+3, g).

Let us consider any X = X1 + X2 + X3, where X1 ∈ p̃1, X2 ∈ p̃2, X3 ∈ p̃3. Then
AX = x1X1 + x2X2 + x3X3 and

[AX,X] = (x1 − x2)[X1, X2] + (x1 − x3)[X1, X3] + (x2 − x3)[X2, X3].

Obviously, [X1, X2] ∈ p̃1, [X1, X3] ∈ p̃1, [X2, X3] ∈ p̃2.
By Lemma 1, it suffices to find a vector Z ∈ h̃ such that [Z,AX] = [AX,X]. Consider

Z = Z1 + Z2, where Z1 ∈ h̃1 and Z2 ∈ h̃2. Since [Z1, X1] ∈ p̃1, [Z1, X2] = [Z1, X3] = 0,
[Z2, X1] ∈ p̃1, [Z2, X2] ∈ p̃2 and [Z2, X3] = 0 we get that [Z,AX] = [AX,X] is equivalent to
the following two equations:

x2[Z2, X2] = (x2 − x3)[X2, X3],

x1[Z1, X1] + x1[Z2, X1] = (x1 − x2)[X1, X2] + (x1 − x3)[X1, X3].
(7)

It is clear that X1 = (Y, 0) ∈ p̃1 for some Y ∈ p1, Z1 = (U, 0) ∈ h̃1 for some U ∈ sp(n),

X3 = (αiG1,−αiG1) ∈ p̃3, X2 = (βjG1 + γkG1, 0) ∈ p̃2, Z2 = (δiG1, δiG1) ∈ h̃2

for some real numbers α, β, γ, δ.
Since [Z2, X2] = (−γδjG1 + βδkG1, 0) ∈ p̃2 and [X2, X3] = (αγjG1 − αβkG1, 0) ∈ p̃2,

then for δ = (x3/x2 − 1)α the equality (7) holds.
Substituting δ = (x3/x2 − 1)α into equality (7) and using the inclusions

[Z2, X1] =
(
(x3/x2 − 1)α[iG1, Y ], 0

)
∈ p̃1,

[X2, X1] =
(
[βjG1 + γkG1, Y ], 0

)
∈ p̃1,

[X3, X1] =
(
α[iG1, Y ], 0

)
∈ p̃1,

we see that the equality (7) is equivalent to the following one:

[U, Y ] =
[
(x3/x1 − x3/x2)αiG1 + (x2/x1 − 1)βjG1 + (x2/x1 − 1)γkG1, Y

]
. (8)

Consider the sum Y = Y2 + Y3 + · · · + Yn+1, where Ys ∈ Lin{E1s, iF1s, jF1s,kF1s},
2 6 s 6 n+ 1. By Lemma 3 there is a vector Us ∈ Lin{iGs, jGs,kGs} ⊂ sp(n) such that

[Us, Ys] =
[
(x3/x1 − x3/x2)αiG1 + (x2/x1 − 1)βjG1 + (x2/x1 − 1)γkG1, Ys

]
.

Now, by Lemma 2, we get
[
(x3/x1 − x3/x2)αiG1 + (x2/x1 − 1)βjG1 + (x2/x1 − 1)γkG1, Y

]

=

n∑

s=2

[
(x3/x1 − x3/x2)αiG1 + (x2/x1 − 1)βjG1 + (x2/x1 − 1)γkG1, Ys

]

=
n∑

s=2

[Us, Ys] =
n∑

s=2

[Us, Y ] =

[ n∑

s=2

Us, Y

]
.
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Hence, if we choose U =
∑n+1

s=2 Us, then the equality (8) holds. Therefore, the vector X +

Z1+Z2, where Z1 =
(
U =

∑n+1
s=2 Us, 0

)
and Z2 = (x3/x2−1)α (iG1, iG1), is a geodesic vector

by Lemma 1. In particular, the metric endomorphism A = x1 Id |p̃1
⊕x2 Id |p̃2

⊕x3 Id |p̃3
does

generate a GO-metric with respect to Sp(n+ 1)× U(1) for every positive x1, x2, x3.

Remark 3. In particular, this proves that every Sp(n + 1)U(1)-invariant metric on the
sphere S4n+3 is geodesic orbit with respect to the group Sp(n+ 1)U(1).

The conclusion

It is clear that Theorem 1 completes the classification for Case 10) in Introduction. There-
fore, we have verified completely all data from Table 1.

All geodesic orbit Riemannian metrics from Table 1 induce geodesic orbit Riemannian
homogeneous metrics on corresponding real projective spaces RP n. The metrics obtained in
such a way, metrics from Remark 2 together with the normal homogeneous metrics on the
projective spaces CP n = SU(n + 1)/S(U(n) × U(1)), HP n = Sp(n+ 1)/Sp(n)× Sp(1), and
CaP 2 = F4/Spin(9) exhaust all geodesic orbit Riemannian metrics on projective spaces (see
details in [27] and [28]).
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ГЕОДЕЗИЧЕСКИ ОРБИТАЛЬНЫЕ МЕТРИКИ НА СФЕРАХ

Никоноров Ю. Г.

В данной работе получена полная классификация геодезически орбитальных римановых метрик на
сферах Sn. Также найдены явные выражения геодезических векторов для Sp(n + 1)U(1)-инвари-
антных метрик на S4n+3.

Ключевые слова: однородные пространства, однородные римановы многообразия, естественно ре-
дуктивные римановы многообразия, нормальные однородные римановы многообразия, геодезически
орбитальные пространства, симметрические пространства, слабо симметрические пространства.


