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1. Introduction

Kaplansky-Hilbert module or AW *-module arose naturally in Kaplansky’s study of AW *-
algebras of type I [2]. I. Kaplansky proved some deep and elegant results for such structures,
and therefore they have many properties of Hilbert spaces. In [7] A. G. Kusraev estab-
lished functional representations of Kaplansky—Hilbert modules and AW *-algebras of type |
by spaces of continuous vector-functions and strongly continuous operator-functions, respec-
tively. The functional representations are the main technical tool used in this paper. Cycli-
cally compact sets and operators in lattice-normed spaces were introduced by A. G. Kusraev
in [5] and [6], respectively. In [8] (see also [9]) a general form of cyclically compact operators
in Kaplansky—Hilbert modules, which, like the Schmidt representation of compact operators
in Hilbert spaces, as well as a variant of the Fredholm alternative for cyclically compact oper-
ators, was also given. Recently, cyclically compact sets and operators in Banach—Kantorovich
spaces over a ring of measurable functions were investigated in [1, 3, 4].

In this paper, we introduce and study the concepts of the trace class operators and global
eigenvalue and multiplicity of a global eigenvalue, and give a variant of Lidskii trace formula
for cyclically compact operators in Kaplansky—Hilbert modules. We refer to [9] for the whole
standard terminology and detailed information.

2. Preliminaries

A C*-module over the Stone algebra A is a A-module X equipped with a A-valued inner
product (- |-) : X x X — A satisfying the following conditions:

() (z]z) 20 (z|z) =0 2=0;

2) (@ ly) =25

(3) {az +by | z) =a(z|2) +b(y|2);
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(4) X is complete with respect to the norm |||z := ||{z | x)H%
for all z, y, z in X and a, b in A. As well as its scalar-valued norm |||-|||, a C*-module X has
a vector norm, given by || := \/(z | ). It is not difficult to deduce [|z[| = |||z||| and the

Cauchy-Bunyakovskii-Schwarz inequality | (z | y) | < |z]|y]-

A Kaplansky—Hilbert module or an AW *-module over A is a unitary C*-module over A
that enjoys the following two properties:

(1) let « be an arbitrary element in X, and let (e¢)ecz be a partition of unity in P(A)
with ecz = 0 for all £ € E; then x = 0;

(2) let (x¢)ecz be a norm-bounded family in X, and let (e¢)ecz be a partition of unity
in 9P(A); then there exists an element & € X such that ecx = ecx¢ for all £ € E where P(A)
denotes complete Boolean algebra of all projections p of A (i. e., p> = p and p* = p). We say
that X is faithful if for every a € A the condition axz = 0 for all x € X implies that a = 0.

Throughout this paper the letters X and Y denote faithful Kaplansky—Hilbert modules
over A. Moreover, Q and H will denote an extremally disconnected compact space and
a Hilbert space, respectively.

Let BA(X,Y) denote the set of all continuous A-linear operators from X into Y. In
case X =Y, By(X) := Ba(X,X) is an AW*-algebra of type I with center isomorphic
to A [2, Theorem 7]. Every continuous A-linear operator is dominated and bo-continuous [9,
Theorem 7.5.7.(1)]. Furthermore, for every continuous A-linear operator T,

|71 :sup{|Tac| e X, x| < 1} :sup{|Tx|:x€X, |z| = 1},

holds, and |T'| € Orth(A) [9, Theorem 5.1.8.], whence we can identify |T'|1 and |T'| since
Orth(A) = A.

Let B be a complete Boolean algebra. Denote by Prty(B) the set of sequences v : N — B
which are partitions of unity in B. For vq,v5 € Prtn(B), the symbol 11 < vy abbreviates
the following assertion: if m,n € N and vi(m) A va(n) # Op then m < n. Given a mix-
complete subset K C X, a sequence s : N — K, and a partition v € Prty(B), put s, :=
mix (v(n)s(n))n € N. A cyclic subsequence of s : N — K is any sequence of the form (s,, )ren,
where (Vg )ren C Prin(B) and v < vgyq for all £ € N. A subset C' C X is said to be cyclically
compact if C'is mix-complete and every sequence in C' has a cyclic subsequence that converges
(in norm) to some element of C'. A subset in X is called relatively cyclically compact if it is
contained in a cyclically compact set. An operator T' € By (X,Y") is called cyclically compact
if the image T (C') of any bounded subset C' C X is relatively cyclically compact in Y. The
set of all cyclically compact operators is denoted by £ (X,Y).

Let x € X, y € Y. Define the operator 6, , : X — Y by the formula

Ory(2) = (2| 2)y, z€X,

and note that 6, , € #(X,Y).

The techniques employed in [1] yield the following theorem: U = S is a cyclically compact
opeartor on Cy (Q, H) if and only if there is a comeager set Qo in @ such that u(q) is
a compact operator on H for all ¢ € Q.

3. The Trace Class

In this section, we study the trace class operators on Kaplansky—Hilbert modules and
investigate the dualities of the trace class.
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From now onward, it will be assumed that (ex)ren, (fx)ken, and (ug)gen verify the
representation of a cyclically compact operator T as in [9, Theorem 8.5.6]
3.1. DEFINITION. Let 1 < p < co. The symbol .%,(X,Y") denotes the set of all cyclically

compact operators T such that (u})pen is o-summable in A. Put v,(T) := (0-_ ey ,ui)%.

A(X,Y) and S (X,Y) are called the trace class and the Hilbert—Schmidt class, respec-
tively.

3.2. Proposition. Let T' € #(X,Y). Then T is in /1 (X,Y) if and only if there
exist families (x;);c; in X and (y;)ie; in Y such that (|332||yz|)2€[ is o-summable and T =
bo-Y ic1 Oz,y;- In particular, if (x;)icr and (y;)icr are projection orthonormal families and
(vi)ier Is a family with positive elements, then vi(T) = 0-Y_,c; ailxi|yil-

QU T is in . (X,Y), then the result follows from z,, := pne, and y, := f,.

For the converse, assume that the families (z;);cr and (y;)ies satisfy the stated conditions.
The inequality

k k k
Zﬂn Z Ten‘fn Z( Z en‘xl><y2’fn>)
n=1 n=1

el

/2 , 4 1/2
<o (D Y ) (zuyn | fi>|2) < oS el
n=1

el el

holds for each k € N, and the proof is finished. >

3.3. Corollary. Let T € % (X,Y) and A € A. Then vi(A\T) = |Mv1(T) and |T| < v1(T)
and

vi(T) = inf { 0-> lzillyil = (@i)ier € X, (yi)ier C Y}
el

where (z;)ier and (y;)ier satisfy condition (ii) of Proposition 3.2.

3.4. Lemma. Let T' € .#1(X). Then the net (|(Te | e)|) e is o-summable in A for all
projection bases &, and the sum o-)_ . (Te | €) is the same for all projection bases & of X.

< It is enough to observe that there exist a positive cyclically compact operator R and
a cyclically compact operator Rg in .#(X) such that T'= R; Ry and (Te | e) = (Rqe | Rye)
hold for every e € &, namely,

o) o0
1/2 1/2
Ry := bo- E Mk/ efkvflw Ry = bO‘E ::“k/ Hek,fk' >
k=1 k=1

The trace of T € #1(X) is defined by tr(T) := 0-)_ . (Te | ) where & is a projection
bases of X. Observe that v1(T) = tr(T') is satisfied for every positive operator T in .#; (X ) and
tr(T) = 0-> icr (yi | #5) where (2)ier and (y;)ier satisfy the condition (ii) of Proposition 3.2,
and so tr is a A-linear operator.

3.5. Lemma. The following statements hold:

(i) tr : (A(X),v1(-)) — A is a dominated and bo-continuous A-linear operator. In
particular, |tr(T)| < v1(T) and |tr| = 1;

(ii) tr(T*) = tr(T)* (T € A (X));

(iii) tr(TL) = tr(LT) whenever TL, LT € /(X)) (T € #(X) and L € By(X));

(iv) If T € A (Y,X) and L € By(X,Y), then TL € S (X), LT € (YY) and [tr(TL)| <

T)|L|.
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< (i) Using the representation of T, we deduce |tr(T")| < v1(T"). Thus, tr is bo-continuous
and subdominated, and hence it is dominated, by virtue of [9, Theorem 4.1.11.(1)].

(ii) Follows immediately from the definition of tr.

(iii) Use the representation of T' to obtain tr(LT) = tr(T'L).

(iv) If (x;)ier and (y;)ier satisfy the condition (ii) of Proposition 3.2 for T', then (L*z;);er
and (y;);es also satisfy the same conditions for T'L. Therefore, we have T'L € .#1(X) and the
inequality

tr(TL)| =

o-> (yi | L)

el

O—Z (Ly; | x;)

iel

<oy |Lyillail < [Lo-) luillil.

el i€l

and so the desired inequality follows from Corollary 3.2. >

Let (,%” , |-|,A) be a Banach—Kantorovich space. Denote by 2 * the set of all A-linear
operator 1 : 2~ — A such that (3c € A) |n(z)| < c|lz| (Vo € 27), and note that 2™* consists
of all |||-||[-continuous A-linear operators n: 2" — A.

3.6. Theorem. If ¢ : A (Y,X) — #(X,Y)* is defined by ¢(T)(A) = tr(T'A) for all

Ae X (X,)Y)and T € (Y, X), then ¢ satisfies the following properties:

(i) ¢ is a bijective A-linear operator from . (Y, X) to # (X,Y)*;

(i) v1(T) = ()| (T € A(Y, X)).

< By Lemma 3.5(i) and (iv), ¢ is a well-defined dominated A-linear operator, and
lo(T)| < v1(T) holds for all T € (Y, X). Let ¢ € #(X,Y)*. Since .#(X,Y) is a
Kaplansky-Hilbert module, ¢| ,(x,y) is in #2(X, Y)* and there exists a unique S € .%,(X,Y)
such that ¢4, x,y) = (,9). Thus, ¢|9,xv)(A) = tr(S*A4) (A € H(X,Y)). Assume that
(xk)keN, (Yr)ken, and (Ag)gen satisfy representation of S* as [9, Theorem 8.5.6]. Define
Py =" 0y 2, (m€N), and note that |P,,| < 1. Thus, the following inequality

8] = 1911 > || Pl = |6(Prn)| = [tr(S* Pn)[ = D> M

implies that S* € (Y, X). From ¢(S*) is bo-continuous ¢(S*)(A) = ¢(A) is satisfied for
all A € #(X,Y). Thus, ¢ is onto and |p(S*)| = v1(S*) holds, and the proof is finished. >

The proof of the following lemma can be extracted from the proof of [10, Proposition 1.3].
3.7. Lemma. If the mapping o : X X Y — A satisfies the properties:

(i) o(Az1 + pxe,y) = Ao(x1,y) + po(z2,y) (x1,22 € X, y €Y, \,u € A);
(ii) oz, Ay + py2) = No(@,y1) + p'o(z,y2) (v € X, yr,y2 €Y, A, p € A);
(iii) There exists some A € A such that |o(z,y)| < M|z||ly| (z € X, y € Y)
then there exists a unique A € BA(X,Y) such that |A| < X and o(z,y) = (Az | y).
3.8. Theorem. Ifv : (BA(X,Y),||) = (# (Y, X)*,||,) is defined by ¥(L)(T) = tr(TL)

for all L € By(X,Y) and T € #(Y, X), then v satisfies the following properties:

(i) ¢ is a bijective A-linear operator from Bp(X,Y) to A (Y, X)*;

(i) |L] = [(L)], (L € BA(X,Y)).

< By Lemma 3.5(i) and (iv), ¢ is a well-defined dominated A-linear operator, and
|(L)]; < |L| holds for all L € Bx(X,Y). Let 7 € (Y, X)*. Define o : X xY — A
by o(x,y) := 7(0y,2), and observe that

lo(z,y)| = ‘T(ey,w)‘ < |7'|1”1(9y,w) < |7|1|37”Z/|
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Therefore, there exists A € Bx(X,Y) with o(z,y) = (Az | y). This implies that ¢)(A)(0y,.) =
7(0y.) and |Az|*> < || Az||z]. Thus, we have |A| < |7]; and ¢(A)(T) = 7(T) (T
1Y, X)), and the proof is finished. >

m

4. Lidskii trace formula

Our main aim in this section is to prove Lidskii trace formula for cyclically compact
operators in a Kaplansky—Hilbert modules.

Set [A] = inf {m € P(A) : 7A = A}, the support of X in A.

4.1. DEFINITION. Let T be an operator on X. A scalar A € A is said to be an eigenvalue

if there exists nonzero x € X such that T'r = Az. A nonzero eigenvalue A is called a global
eigenvalue if for every nonzero projection m € A with 7w < [A] there exists a nonzero x € 7X
such that Tz = A\x.

4.2. Proposition. Let T be a continuous A-linear operator on X and A be a nonzero

scalar. Then the following statements are equivalent:
(1) The scalar X € A is a global eigenvalue of T';
(2) There is x € X such that Tz = Mz and |z| € B(A) with |z| > [)\].

< (2) = (1) : Obvious.
(1) = (2) : Let A be a global eigenvalue of T'. Consider the set

C:={(lz],z) : [z] e B(A), 0 < |z| < [A], Tz = Az} .

The definition of global eigenvalue and [2, Lemma 4.] yield [A] = sup {|z| : (7, 2) € C'}. From
this and the Exhaustion Principle, there exists an antichain (1q)aca in PB(A) such that
SUPaea pa = [A], and for each o € A there is (|z4],24) € C with pa < |74]. Hence, we get
z:=b0-Y_ e 4 PaTa With |z] = [A] and Tz = Az, whence the proof. >

Let T be in Bx(X,Y). For an eigenvalue A of T define

= U ker(T'— AI)".

neN

The following lemma gives a relation between Ny and ker(7'— AI)™ (n € N)
4.3. Lemma. Let T be a cyclically compact operator on X and X\ be a global eigenvalue

of T. If w is a nonzero projection with m < [\A], then there exist a nonzero projection p with
p < mandn € N such that uNy = pker(T — XI)".

< Assume by way of contradiction that the assertion is false. Then a sequence (x,)neN
can be constructed such that z,, € m( (ker(T — AD™*E N ker(T — AN and 7 = |,
Therefore, it follows from

(T =AD" (T —MN)zxy — Az, — (T — XN)zp,) =0 (m < n)
that (7" — M)z, — Aty — (T — M)y, € ker(T' — AI)™, and so

| Tz, — Twm| = Az + (T — M)y, — A2y — (T — )\I):cm)|2
> M |? + (T = ADan — Az — (T — ADap|?
> [APlan] = 7|A? # 0

which contradicts cyclically compactness of T'. This proves the lemma. >
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Let T be a cyclically compact operator on X. For a global eigenvalue A\ of T" and for each
N € N define

pn(A) == sup {m € P(A) : 7N = wker(T — M)V, 7 < A}

Using the lemma above, we immediately have the following corollary.
4.4. Corollary. Let T be a cyclically compact operator on X and \ be a global eigenvalue

of T'. The following conditions are satisfied:

(1) pn(A) < py+1(A);

(2) pn(AM)Nx = py(A) ker (T — AI)N;

(3) [A] =sup{pn(N) : N € N}.

According to [9, Theorem 7.4.7(2)], for each N € N, there exists a partition (b¢)ecx
of pn(A) such that beNy is a strictly s(be)-homogeneous Kaplansky-Hilbert module over
beA. Since T is cyclically compact, s(b¢) must be a finite number. From [9, Theorem
7.4.7.(1)], we can assume that = = N and »(7\ y(n)) = n where 7\ y(n) := b,. So, there
is a unique sequence (7)), in PB(A)N such that 7 == (Ta1(n)),,ey is a partition of pi(A)
and 7y ;(n) Ny = 7y (n) ker(T — AI)! is a strictly n-homogeneous Kaplansky—Hilbert module
over Ty (n)A. Moreover, Ty ;(n) < Ty;41(n) and 75;(n) A Tax(m) = 0 are satisfied for all
k,l,m,n € Nwith n # m. So, (Tx(n)),cy is a partition of [A] where 7\(n) := sup;ey {721(n)}.

Now, we define the multiplicity of global eigenvalues of cyclically compact operators on
X which is an element of the universally complete vector lattice (ReA)*°, which in turn is
the universal completion of ReA.

4.5. DEFINITION. Let T be a cyclically compact operator on X and A be a global

eigenvalue of T'. The multiplicity of A\ will be denoted by 7 and is described as follows:

Ty = O—Z ntz(n) = O—Znigg {mai(n)} = sup {n7y;(n)} € (Re A)™.

neN neN l,neN

Now, we define the multiplicity of global eigenvalues of cyclically compact operators on
X which is an element of the universally complete vector lattice (Re A)*°, which in turn is
the universal completion of Re A.

4.6. Lemma. Let U = Sj bein End (C4 (Q, H)) and X be a global eigenvalue of U. Then
there is a meager subset By such that \(q) is a nonzero eigenvalue of u(q) for all ¢ € Ay \ By.

< By Proposition 4.2, UT = AT is satisfied for some 7 € Cy (Q,H) with || = [A].
Thus, u(q)z(q) = Mq)z(g) holds for all ¢ € Q¢ := domu N domz. Define By := Qf U
(Ax\ {q € Q : A(q) # 0}), and note that By is a meager set in (). The lemma follows. >

4.7. Lemma. Let U = Sy be a cyclically compact operator on Cy (Q,H) and A be

a global eigenvalue of U. Then there is a meager subset Aq such that for all ¢ € Ay \ Ap the
following equality holds:

ker(U — Al)(q) := (ker(U — M) (q) = ker(u(q) — A(g)]).

< Clearly, ¢ € domu implies ker(U — AI)(q) C ker(u(q) — A(¢)I). As U is a cyclically
compact operator, there exists a partition of [\], (bg)ren in P(A) such that b, ker(U — AI)
is a strictly n-homogeneous Kaplansky—Hilbert module over b,C(Q). Fix k€ N. Let
{€; : 1 = 1,...,k} be a basis for by ker(U — AI). Then for some meager set Aj the set
{ei(q) : i=1,...,k} is a basis of ker(U — AI)(q) for all ¢ € V}, \ Ag, where Vj, is the clopen
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set corresponding to the projection by. From the lemma above we obtain a meager subset By
such that A(q) is a nonzero eigenvalue of u(q) for all ¢ € Ay \ By. Define

Cr:={q € Vi \ (Ax U By) : ker(U — XI)(q) # ker(u(q) — X(g)I)}.

Then we can see that C}, is meager, and so Ag = (A,\ \ (UkeN Vk)) U (UkeN A U Ck) U By is
meager. Therefore, ker(U — AI)(q) = ker(u(q) —A(¢)I) holds for all ¢ € A\ Ao, as desired. >

An immediate consequence of the preceding results is the following.
4.8. Corollary. Let U = Sy be a cyclically compact operator on Cy (Q,H) and X be

a global eigenvalue of U. Then there exists a meager set By such that for all ¢ € Ay \ By the
following statements hold:

(1) A(q) is a nonzero eigenvalue of compact operator u(q);

(2) (ker(U — AD)¥) (q) = ker(u(q) — M(g)D)* (k € N);

(3) Na(q) = Ny(q) where Ny, is the generalized eigenspace, corresponding to the eigen-
value \(q);

(4) Ta(q) = m(A(q)) where m(A(q)) is the algebraic multiplicity of A(q).

Denote by Sp*(u(q)) the set of all non-zero eigenvalues of u(q), that is Sp*(u(q)) =

Sp(u(g)) \ {0}

4.9. Lemma. Let U = S be a cyclically compact operator on Cy (Q,H) and let ¥ be
a finite subset of C(Q) consisting of global eigenvalues of U and the set

A, C {q € dom(u) : Sp*(u(q)) \ {o(q) : 0 € X} # &}

be non meager in Q. If A\, is in Sp*(u(q)) \ {o(q) : o € £} for each q € A,, then there is
a global eigenvalue \ of U and a comeager set (Qy that satisfy the following conditions:

(1) [Nl = Vnen7mn where my is the projection corresponding to clopen set Uy :=
int (cl (Ay)) with

Ay i={g€ A, : (Vo € Do) — Al 2 /N and |A| > 1/N};

(2) Tn|Al = 47y and Tn|o — A = g7y (N € N0 € 2);

(3) If ¢ is in An N Qo, then |A(g)| > % and |o(q) — Mq)| = 5k hold for each o € ¥;
(4) If AM(q) # 0 holds for some q € Qq, then A(q) € Sp*(u(q)) \ {c(q) : 0 € X};

(5) If M(q) = 0 holds for some q € Qq, then q ¢ A,.

< Without loss of generality we may assume that u(q) is a compact operator on H for
each ¢ € domwu. Since A, = |Jyey An is not meager, Uy, # @ holds for some Ny. Let hy
be an eigenvector of u(g) corresponding to A\, with ||h4|| = 1 for every ¢ € A,. For every
N,n e Nand g € Uy N Ay we can find a clopen set U, , v C Uy such that

1 1
l(w)hy = Aghgll < - and |o(w) =] > 5 (0 €5)
for all w € Uy, yNdomu. We can establish a global eigenvalue Ay of U such that [Ay] = mn
and

1 1
’)‘N’>N7TN and WN‘U_)\N‘>W7TN (O’EE).

Therefore, if we define A := T A1 + 0-) yen(TN+1 — TN)AN11, then [A] = \/ yey v and A is
a global eigenvalue of U. This and Proposition 4.6 complete the proof. >
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4.10. Theorem. Let T be a cyclically compact operator on X. Then there exists

a sequence (\),cy consisting of global eigenvalues of T' or zeros in A with the following
properties:

(1) ’)\k‘ < |T|7 [/\k] = [)‘k—l-l] (k) S N) and o-lim j_,oo A\, = 0;

(2) There exists a projection T, in A such that mo|\g| is a weak order-unity in wo A for
all k € N;

(3) There exists a partition (1) of the projection 7 such that mo\; = 0, 7, < [M\], and
7Tk)\k+m =0, m,k eN;

(4) m\krm # Tk for every nonzero projection m < Too + T and for all m, k € N;

(5) Every global eigenvalue X of T' is of the form A\ = mixgen (prAx), Where (pi)gen IS
a partition of [\].

<1 The theorem will be proved in case of X = Cx (Q, H) and T' = S;. General case can be
obtained by the functional representations of Kaplansky—Hilbert modules and bounded linear
operators on them (see [9, Theorems 7.4.12 and 7.5.12]). Now, by induction and Lemma 4.9,
a sequence (\,,) consisting of global eigenvalues of Sj or zeros, and a decreasing sequence of
comeager sets (@), can be established as follows:

(1) if Ap(q) # 0 holds for some g € @y, then A\, (q) € Sp*(u(q)) \{Ni(q) :i=1,...,n —1};

(ii) if An(¢) = 0 holds for some ¢q € @y, then Sp*(u(q)) \ {Ni(¢) :i=1,...,n—1} = &

(iii) Sp*(u(q)) = {Mnu(q) : A\n(q) # 0 (n € N)} is satisfied for all ¢ € Qo := [ Qn.

Define 7o = Ajen M) and mo = Mt and 7 i= [A] A [Mega]” (k € N). Then this
implies (2), (3) and (4). Moreover, since |\, (¢)| < |Ju(g)|| and limy_ Ax(g) = 0 hold for all
q € Qo, we have |\,| < |U| and o-lim A\ = 0, and so this implies (1). Let X be an global
eigenvalue of U. Then we can assume that the meager set A( satisfies the condition of the
Lemma . From (iii) we have (A) N Qo) \ Ao = Upey Ar Where

Ap = {q € Ay \ Ap: )\(q) = )\k(q)} (k € N)

Since Ay, \ int (cl (Ay)) is nowhere dense, [A] = \/;.cn pr and ppA = A, where gy, denotes
the projection corresponding clopen set int (cl (Az)). Thus, there exists a partition (py),cy
of [A] such that A = mix pp Ak € N holds, and the proof is finished. >

Let (Ar)pen be as Theorem 4.10. If Ay, = 0, take 7, = 0.
4.11. DEFINITION. The sequence (Ax(T')),cn, Where A\ (T') := Ay is given by the above

theorem, is called a global eigenvalue sequence of T' with the multiplicity sequence (T (T'))keN
where 7(T) :=Ty,.

4.12. Theorem (Lidskii trace formula). Let T be in .#1(X) and (Ax(T')),cn be a global
eigenvalue sequence of T with the multiplicity sequence (Tp(T))ren. Then the following
equality holds

tr(T) = 0-Y_ 7r(T)M(T).

keN

< As in Theorem 4.10, the theorem will be proved in case of X = C4 (Q,H) and T =
Su. Let (Me(T))zeny be a global eigenvalue sequence of T with the multiplicity sequence
(Tr(T))ken- From Corollary 4.8 and Theorem 4.10, there exists a comeager set Qo such that
for each ¢ € Qg the following statements hold:

(i) tr(T)(q) = tr(u(q)) and v1(T)(q) = vi(u(q));

(i) Sp™(u(@) = DalT)(@) : An(T)(0) 2 O

(i) A(T)(a) # A (T) (@) i A(T)(g) 7 0 0r A (T)(g) # 0 for n £ m;
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(iv) if \g(T)(q) # 0, then 7, (T)(¢) = m(Ae(T)(q)) € N where m(A\,(T)(g)) is the algebraic
multiplicity of A\x(T")(q).

From (i), (ii), (iii), (iv) and Lidskii trace formula for the compact operator u(q), we see
that

(T)(q) = tr(u(@)) = Y T(T) (@) e(T) ()

keN

is absolutely convergent on the comeager set (0o, and so we have

tr(T) = 0> 7R(T)M(T). >

keN

References

1. Ganiev I. G., Kudaybergenov K. K. Measurable bundles of compact operators // Methods Funct. Anal.
Topology.—2001.—Vol. 7, Ne 4 —P. 1-5.

2. Kaplansky I. Modules over operator algebras // Amer. J. Math.—1953.—Vol. 75, Ne 4.—P. 839-858.

3. Kudaybergenov K. K., Ganiev I. G. Measurable bundles of compact sets // Uzbek. Mat. Zh.—1999.—
Ne 6.—P. 37-44.—[in Russian].

4. Kudaybergenov K. K. V-Fredholm operators in Banach—Kantorovich spaces // Methods Funct. Anal.
Topology.—2006.—Vol. 12, Ne 3.—P. 234-242.

5. Kusraev A. G. Boolean valued analysis of duality between universally complete modules // Dokl. Akad.
Nauk SSSR.—1982.—Vol. 267, Ne 5.—P. 1049-1052.

6. Kusraev A. G. Vector Duality and Its Applications.—Novosibirsk: Nauka, 1985.—[in Russian|.

7. Kusraev A. G. On functional representation of type I AW *-algebras // Sibirsk. Math. Zh.—1991.—
Vol. 32, Ne 3.—P. 78-88.

8. Kusraev A. G. Cyclically Compact Operators in Banach Spaces // Vladikavkaz Math. J.—2000.—Vol. 2,
Ne 1.—P. 10-23.

9. Kusraev A. G. Dominated Operators.—Dordrecht etc.: Kluwer Academic Publishers, 2000.

10. Wright J. D. M. A spectral theorem for normal operators on a Kaplansky—Hilbert module // Proc.
London Math. Soc.—1969.—Vol. 19, Ne 3.—P. 258-268.

Received September 15, 20183.

UGUR GONULLU

Department of Mathematics and Computer Science
Istanbul Kiiltiir University

Bakirkdy, 34156, Istanbul, TURKEY

E-mail: u.gonullu@iku.edu.tr

KJIACC OIIEPATOPOB CO CJIEAOM U ®OPMVYJIA JINJCKOI'O
B MOAVJIAX KAIIJTAHCKOT'O — I'lJIbBEPTA

I'émrosmro V.

Beoagrca m m3ydaiorcs KIacc OmepaTopoB CO CJI€I0M U TJIO0AIbHBIE COOCTBEHHDBIE 3HAYEHUS HEITPEPHIB-
HBIX TOMOMODPGu3MOB B Moayisax Kammanckoro — ['mipbepra. B wacTtHOCTH, yCcTaHAB/IMBAETCH BAPHAHT
dopmyasl JIuackoro o cireste 1st IMMKINIeCKr KOMIIAKTHBIX 0IepaTopoB B Moyaax Karmramnckoro — ['muiib-
OepTa.

Kunro4gessre cioBa: moaysis Kammamckoro — I'mimsbepra, IUKIMYeCKH KOMIAKTHBIN 0II€paTop, I100a/Ib-
HOe COOCTBEHHOE 3HAUEHMeE, KJIACC OIIePATOPOB CO ciiefoM, (dopmyna JInackoro o ciere.



