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WITH A NULL LAGRANGIAN: HIGHER INTEGRABILITY
AND REMOVABILITY OF SINGULARITIES. I!

A. A. Egorov

Dedicated to Academician Yuri Grigor’evich Reshetnyak
on the occasion of his 85th birthday

The aim of this paper is to derive the self-improving property of integrability for derivatives of solutions of
the differential inequality with a null Lagrangian. More precisely, we prove that the solution of the Sobolev
class with some Sobolev exponent slightly smaller than the natural one determined by the structural
assumption on the involved null Lagrangian actually belongs to the Sobolev class with some Sobolev
exponent slightly larger than this natural exponent. We also apply this property to improve Holder
regularity and stability theorems of [19].
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Introduction

In this paper and [22] we establish higher integrability and removability properties of
solutions v: V' — R™, V C R", of the following inequality

FO'(z)) < KGW (x)) + H(x) a.e. V (1)

constructed by means of a continuous function F: R™*™ — R, a null Lagrangian
G : R™*"™ — R, a measurable function H: V — R, and a constant K > 1. Here v/(z)
denotes the differential of v at € V. In the case H(x) = 0 this inequality has the form

FO'(z)) < KGW'(x)) a.e. V. (2)

In [19], the author has obtained some results on closure of sets of solutions to (2) with respect
to the local convergence in the Lebesgue space and their Holder regularity (for example, see
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[19, Theorems 7 and 8]). Using these results, the author has proved the theorems ([19,
Theorems 1 and 3-6]) on stability of the class of solutions to the equation

F@/'(z)) = G/ (x)) ae €V (3)

(also see [16-18]).

Our main results are analogs of the well-known higher integrability and removability
theorems for mappings with bounded distortion (quasiregular mappings). A mapping v €
I/V&)’C"(V;R") of an open set V' C R"™ is an (sense-preserving) mapping with K-bounded
distortion, K > 1, if v satisfies the distortion inequality

|V (2)|" < K detv'(z) a.e.V, (4)

where |v'(z)| is the operator norm of the matrix v’(z). If, in addition, v is topologi-
cal, then v is K-quasiconformal. The distortion inequality is the particular case of (2)
with the following functions F(v'(z)) = |[v/(z)|" and G(v'(x)) = detv'(x). The theory of
quasiconformal mappings and mappings with bounded distortion is the key part of mod-
ern geometric analysis which has many diverse applications (for example, see monographs
[2, 6, 10, 30, 31, 32, 36, 41, 45, 46, 49, 52, 53, 58, 59, 60, 61, 62, 63, 68, 69] and the bibliog-
raphy therein).

The higher integrability for planar mappings with bounded distortion was established
by B. Bojarski [8, 9]. More precisely, he proved that there exists an exponent p(2, K) > 2
such that mappings with K-bounded distortion (a priori in WI})CQ ) belong to WI})CS for every
s < p(2,K). F. W. Gehring [28] has extended this result to n-dimensional quasiconformal
mappings. The existence of an exponent p(n,K) > n > 3 such that all n-dimensional
mappings with K-bounded distortion lie in Wlics for every s < p(n,K) was obtained by
A. Elcart and N. G. Meyers [54] and, independently, by Yu. G. Reshetnyak [57] (also see [29,
50, 51, 58, 59, 60, 61, 62]). Moreover, Yu. G. Reshetnyak [57] has established that p(n, K') —
oo as K — 1 (also see [33]). For n = 2 this result was obtained by O. Lehto [48]. The higher
integrability result has a dual version. In two papers, T. Iwaniec and G. Martin [35] (for
even dimensions) and T. Iwaniec [34] (for all dimensions) have proved that there exists an
exponent 1 < E(n,K) < n such that if a mapping v € Wli’f with some p > Q(n,K) satisfies
inequality (4), i. e. v is a weakly quasiregular mapping, then v belongs to Wlics for every
s < p(n, K) (also see [23, 36, 37] and for n = 2 the monograph [49]). Here the word “weakly”
means that the Sobolev integrable exponent p of v may be smaller then the dimension n.
In this case, detv’(z) need not be locally integrable. Thus the natural exponent for the
distortion inequality is the dimension n. K. Astala [1] proved that p(2, K') = 2K /(K +1) and
P(2,K) = 2K/(K — 1) are the sharp exponents for higher integrability of planar mappings
with bounded distortion (also see [2]).

Also, higher integrability results have been established for the following mapping classes:
the classes of mappings that are close to multidemensional holomorphic mappings [39, 40, 41];
the classes of mappings that are close to solutions of linear elliptic partial differential equa-
tions [7, 14, 41]; the classes of quasihomoteties [64, 65]; the classes of quasiregular mappings of
several n-dimensional variables [12, 13, 14]; the classes of weakly (K7, K»)-quasiregular map-
pings [24, 27, 67]; the classes of degenerate weakly (K7, K3)-quasiregular mappings [26]; the
classes of weakly (K71, Ko(x))-quasiregular mappings of several n-dimensional variables [25];
and a series of other calsses [41-43]. Mappings of these classes, as mappings with bounded
distortion, can be considered as solutions to (1) with specific functions F', G, and H (some
examples of such considerations can be found in [19, §2]). Our main higher integrability



24 Egorov A. A.

result (Theorem 2.1) contain (either partially, or fully, or in an improved form) some of the
known results on higher integrability for mappings of these classes. We also apply this result
to improve the above-mentioned theorems on Hélder regularity and stability. In this paper,
as in [16-19], we develop approaches and methods used for investigations of mappings with
bounded distortion to study properties of solutions to (1). Some results of this paper have
been announced in [20, 21].

The main aim of this paper is to prove Theorem 2.1 on higher integrability of solutions
to (1). Applying this theorem, in the next paper [22], we establish a result on removability
of singularities for solutions to (1). Also, in [22], using the Hodge decomposition theory
developed by T. Iwaniec and G. Martin [34-36], we derive integral estimates for minors of
Jacobian matrixs. These estimates have independent interest. In this paper they are used in
the proof of Theorem 2.1.

This paper is organized as follows. In §1 we give the basic notation and terms. The main
results are stated in §2. In §3 we expose some auxiliary lemmas. The proof of the higher
integrability theorem (Theorem 2.1 is given in §4).

1. Notation and Terminology

Let A be a set in R™. The topological boundary of A is denoted by dA. The diameter
of A is defined as diam A := sup{|z — y| : z,y € A}. The outer Lebesgue measure of A is
denoted by |A|. We use the symbol dimgy A for the Hausdorfl dimension of A.

ceey

»»»»»

(Ciyevy Gn) s R = R™, where (,(x) == >0 Guy, p=1,...,m, z = (x1,...,2,) € R™
The operator norm in R™*™ is defined as |¢| := sup{|{(z)] : = € R", |z| < 1}. The

number of k-tuples of ordered indices in Tk := {I = (i1,...,ip) : 1 < iy < -+ < i <
n, i,, € {1,...,n}, » = 1,...,k} equals the binomial coefficient (Z) = ﬁlk)' Given
z € R* and I € Tk, we put 2y = (2i,,...,2;,) € RF. If I € T¥ and J € TX, then

Cipig - leik
detyr ¢ := det < > is the k x k-minors of the matrix { € R™*", For ¢ > —k we
Ciwin -+ Siin

put [(|fdet;; ¢ =0 at ¢ =0.

The Jacobian matrix of u = (u1,...,uy): U C R — R™ at a point € U is the matrix
0 8( j1 3+ g )
u'(x) == (a—zﬁ(:n)) p=tim If I €TF and J € TX, then g%‘;(x) = 5)(7;27;3:)(5”) := det v/ (x)
and Oru,(x) = (ggf‘ (m),...,g;‘f‘ (m)), w=1,...,m. For h:U — R we put hy(x) =
21 21

sup(h(z),0), x € U.

Let 7 be a real vector space equipped with a norm |-|. We say that a function ®: 7 — R
is positively homogeneous of degree p € R if ®(tx) = tPP(x) for all t > 0 and = € ¥\ {0}. For
e> —1we put |z|fz =0at z =0.

Following Ch. B. Morrey [55], we say that a continuous function F': R™*" — R is quasi-
conver, if

B0, )| F(C) < / F(C+¢/(2)) da (5)
B(0,1)

for all ¢ € C§°(B(0,1);R™) and ( € R™*". Let p > 1. Following M. A. Sychev [66], we
say that a quasiconvex function F' is strictly p-quasiconvez if, for ( € R™*™ and ¢,C > 0,
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there is 0 = d(¢,e,C) > 0 such that, for each mapping ¢ € C§°(B(0,1); R™) satisfying
HSDIHLP(B(OJ);R’”X”) < C|B(07 1)|1/p’ the condition fB(O,l) F(C"’SO,(:L')) dr < |B(Ov 1)|(F(C) +5)
implies [{z € B(0,1) : |¢'(z)] = €}| < €|B(0,1)|. Observe that in the mathematical liter-
ature the term strictly quasiconvexity is also used for another property (which is close but
nonequivalent to ours) consisting in the fact that the strict inequality in the definition of
quasiconvexity (5) is valid for nonzero mappings ¢ (for example, see [38]). In this article we
use the term in the sense of M. A. Sychev’s definition [66]. In the case p > 1 the notion of
strictly p-quasiconvexity for functions F' of this article is equivalent to the notion of strictly
closed p-quasiconvexity from J. Kristensen’s article [44] which is defined in terms of the the-
ory of gradient Young measures (see [44, Proposition 3.4]). Observe that we can replace the
ball B(0, 1) in the definitions of quasiconvexity and strictly p-quasiconvexity by an arbitrary
bounded domain U with [0U| = 0 (for example, see [56]). A function G: R™*" — R is a
null Lagrangian if both functions G and —G are quasiconvex. The term “null Lagrangian”
appeared due to the following fact: The Euler-Lagrange equation corresponding to the vari-
ational integral [;; G(v/(x))dx with null Lagrangian G holds identically for all admissible
mappings u: U C R" — R™ (see [4] and also [5, 36, 56]). The only the affine combinations of
minors (called quasiaffine functions) are null Lagrangians [15, 47] (also see [3, 4, 5, 36, 55, 56]);

ie.
min{m,n}

GO =+ > > qurdety ¢, ¢eR™™ (6)
k=1 Jjerf, IeTk

for some ~vo,7vsr € R.

2. Statement of the Main Results

The principal result on higher integrability of solutions to (1) states as follows

Theorem 2.1 (Higher integrability). Let n,m,k € N and t > k such that 2 < k <
min{n,m}, and let V be an open set in R"™. Suppose that a continuous function F': R™*"™ — R
satisfies

F(¢) = crl¢lF, ¢ e R™™, (7)

with some constant cg > 0, a null Lagrangian G: R™*™ — R is homogeneous of degree k, and
a measurable function H: V — R has Hy € L{ (V). Then for K > 1 there exist two numbers

loc

p =pF,G,K) and p = p(F,G, K) depended only F, G, and K with 1 <p <k <p <t
such that for a given exponent p > p every solution v € Wli’p(V; R™) to (1) actually lies in

C

Wl’s(V;Rm) for all s € (p,p). Moreover, for a number € > 0, a vector b € R™, and a test

loc

function ¢ € C§°(V') we have the Caccioppoli-type inequality

()0 ()l s vy < CllI(0() =) © @' ()] + @)l (e + ' Hi ()l s (v (8)

with some constant C' = C(F,G, K,s) > 0 depended only F, G, K, and s.
In the case H(z) =0 a straightforward consequence of Theorem 2.1 is the following.
Corollary 2.2. Under the conditions of Theorem 2.1, there exist two numbers Py =
py(F.G,K) and py = Po(F,G, K) depended only F, G, and K with 1 < p, < k < Py
such that for a given exponent p > p every solution v € WLP(V:R™) to (2) actually lies

loc

in Wh(V;R™) for all s € (py:Po)- Moreover, for a vector b € R™ and a test function

loc

© € C§°(V) we have the homogeneous Caccioppoli-type inequality

”@(‘)U/(‘)HLs(V;RMn) < Coll(v(-) —b) ® (P/(')HLS(V;R"LX") 9)
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with some constant Cy = Co(F, G, K,s) > 0 depended only F, G, K, and s.

Now we apply Theorem 2.1 to improve some results from [19].

Let n,m,k € N such that 2 < k < min{n, m}. We need the following hypothesis on
continuous functions F': R™*"” — R and G: R™*™ — R (see [19]):

(H1) F is quasiconvex;

(H1") F is strictly k-quasiconvex;

(H2) G is a null Lagrangian;

(H3) F and G are positively homogeneous of degree k;

(H4) sup{K > 0: F({) > KG(¢), ( e R™"} =1,

(H5) % = inf{F(¢) : ¢ € R™" || =1} > 0;
(H6) dg := sup{>_ jcr«

mo

o

rerk lvarllzr? : z € R, |z] = 1} < kd)/(n — k) in the case
kE <n.

Here the coefficients vy are taken from (6) for the null Lagrangian G. By (H3), the
representation (6) for the null Lagrangian G consists only of k x k-minors; i.e.,

GQ)= Y qurdety(, (eR™™ (10)
Jelk Ielk
Since F is continuous, (H3) implies (7) with cp = c%.
The following theorem on Hoélder regularity of solutions to (1) is a straightforward conse-
quence of Theorem 2.1 and [19, Theorem 8§].
Theorem 2.3 (Holder regularity). Suppose F and G satisfy (H2)—(H6). Put Ky = oo
0
for k =n and Ko = (nf% for k < n. Suppose that K € [1,Ky) and § € (0,1) satisfy the
inequality
Kdg 1
< . 11
ke T n—k+kd (11)
Let p is the exponent from Theorem 2.1, p > p, and V' be an open set in R™. Then every
solution v € VV&’?(V;R’”) to (1) with H(x) = const satisfies the Holder condition with
exponent § on each compact subset in V.

The next theorem on stability of the class of solutions to (3) is a straightforward conse-
quence of Corollary 2.2 and [19, Theorem 4].

Theorem 2.4 (Stability in the C-norme). Suppose that F' and G satisfy (H1)—(H6). Let

K > 1, and let P, denote the exponent from Corollary 2.2. Let V' be a domain in R", and

let U be a compact subset in V. Then there is a function o(K) = apq,vu(K) defined for

1 < K < Ky and such that limg_,; a(K) = «(1) = 0 and, for each mappingv € Wli’f(v; R™),

p > p,, which satisfies inequality (2) there is a mapping u € Wlf)’f(v; R™) which is a solution
to (3) such that

v —ullc@wrm) < a(K)diam (V). (12)

The following theorem improves Theorem 2.4 in the case when the function F' satis-
fies (H1’). In this case, in addition to the estimate (12) of proximity (in the C-norm) of
solutions of inequality (1) to solutions to equation (3), we obtain proximity estimates (in the
LF-norm) for the derivatives of these mappings. The theorem is a straightforward consequence
of Corollary 2.2 and [19, Theorem 6].

Theorem 2.4 (Stability in the Sobolev norme). Suppose that F and G satisfy (H1') and
(H2)—(H6). Then the conclusion of Theorem 2.4 is valid together with (12) and the following
inequality:

[0 = || (g gmxny < a(K) diam o (V). (13)
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3. Auxiliary Lemmas

In the proof of the higher integrability theorem we need the following lemmas.

Lemma 3.1. Let n,m,k € N, 2 < k < min(m,n), p>1,b € R™, I = (iy,...,ix) € I'F,
J=(j1,...,Jr) €T and V C R" be an open set. For a mappingv: V — R™ and a function
¢: V — R define the mappings w = (w1y,...,wy): V = R™ and h = (hy,...,hy): V - R™
by the rules w(-) := v(-) — b and h(-) := ¢(-)w(-). If v and ¢ are differentiable at = € V', then
the following inequality

[p(2)v' ()P~ det 1 (p(2)0' () — B ()P~ detr I (x)
< (2k + p)lw(@) @ ¢ (@)|(1F ()] + [w(z) @ ' () )P (14)

holds.

<1 Observe that
p(x)v'(z) = W' (z) — w(z) ® ¢'(z). (15)

We have
Irhj, — wj, I

dety;(h —w® ¢') = det :

Orh;, —w;, Orp

Hence, det j;(h' —w ® ¢') = detyr h' — Zizl A, where
Orhj,

Orh;,,_,
A, :=det wj, 0
afhjwrl = Wy, 8190

Orhj, — wj,drp
Observe that
|As| < |Orhyjy |- .- |0rhj, | |lw;, 01| |0rhy, , — wj,.,Org|. .. |0rhj, — w;, Orep|
< |’U)J ® 3190| |81hJ|”‘1|81hJ —wy® 8190|k_% < |w = 80/| |h/|%_1|h/ —w® g0/|k_”.

Therefore,

k
| det 7 (b — o) —dety 1| < [w@ | D IW|THE —w e ¢ [F. (16)
»=1
Let us consider 2 cases.
Case 1:
0 < |W(z) —w(z) @ ¢'(x)] < W (2)]. (17)
We have
Hh, —we (p/‘p_k detJ](h, —we (,0/) - ‘h,’p_k det s h,|
<N —we¢|P|dety (M —w® )] [|W —w® | 7F — |W|7F
+ W -—w® g0'|p|h'|_k‘ detjr(h' —w® ¢') — det |
+ B[R det g K| —w e )P — [BP|. (18)
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We estimate each term on the right-hand side of (18). We obviously have the inequalities
ar® —ay® < k(ag —ay)a;*! (19)

and

D —1

ah —af < plag —ar) ah (20)

for 0 < a3 < ag. Using (17) and (19), we get
Hh/ - w®(p/‘—k o ‘h/’_k| — ’h/ o w®g0/]_k _ ‘h/’_k
<SE(H| =W —we DN —we | <kwe | |h —we |7 (21)
By Hadamard’s inequality
|detsr(h —w® )| < B —wo |k (22)
Combining (21) with (22), we have
W —w® ¢ P|dety (W —we )| ||F —we o7k — ]h’\_k‘
<Ewe | |h —we @ P <klwe ¢ |(IW]+we P (23)

Using (16) and (17), we obtain
I —w e PIR || ety (W — w @ @) — det g B|

k
< —we PN w e @) 3 W —w e o'

n=1

k
<lw@ || —we P (W —we¢|/|p])F
n=1

<kw@¢||h —we P <klwe (K] +we P (24)
Using (17) and (20), we get
W —we ¢l — [WP] =W~ W —we P
<p(H] = W —we P < plwe | WP (25)

By Hadamard’s inequality
|det 7 1) < |[W|". (26)

Combining (25) with (26), we have

0| 7F | et H'|[[B —w @ ¢ [P — [BP] < plw @ '] P[P~
<plw @ (I + lwe '[P~ (27)

Using (15), (18), (23), (24), and (27), we obtain (14) in case 1.
Case 2:

0 < | (2)] < I (2) — w(x) ® &' (x)]. (28)



Solutions of the differential inequality with a null Lagrangian 29

‘We have

W —w @ '[P Fdet (W —w@ ) — | [P~*det 1 b
< —we || detyr (b —we )| [|F —we [P — 0P|
+ B —we | FP| detyr (B —w @ ¢') — det g |
+ B[Pl det K| || —w® | 7F — 1] 7F|. (29)

We estimate each term on the right-hand side of (29). Using (20) and (28), we get
1M —we P — WP = | —we P — |
<p(W —we | = W) —we P~ <plwe | [F —we '[P
If we combain this with (22), we obtain
|V —w® | 7F dety (b —w® ) |[W —w® [P — 0P|
<plw@ ¢ —we P <plw e GI(F] + we P (30)

Using (16) and (28), we get
‘h/ —we (p/’_k‘h/’p‘ detJ](h/ —we& QD/) —det g h/’

k
< —we | TR Plo @ ¢ | Y I —w © |

n=1
k
<lwe @[NPy (W/IF —w e )
n=1
< Klw @ @[ NP7 < Klw @ ¢|(1] + [w e )P (31)
Using (19) and (28), we have
Hh/ —w®<p/\_k o ‘h,‘_k‘ — ’h/‘_k o ‘h, —w®gp’]_k
SE(W —w | = [WDIR|TF < klw @ ¢ |17
If we combain this with (26), we obtain
B[Pl detr W'l [[W —w @ @[ = [W[7F < Klw @ | [P
<Klw @ @|(W]+we ' P (32)

Combining (15) and (29)—(32), we get (14) in case 2. >

Lemma 3.2. Suppose that a null Lagrangian G is homogeneous of degree k. Under the
conditions of Lemma 3.1, we have

lp(2)v (@) PG () (2)) — |1 (@)[P~*G(K ()]
< Clw(z) @ ' (@)|(IF (@)] + lw(z) @ ¢'(2) )P (33)

with some constant C' = C(G,p) depended only on G and p.
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< Using (10) and (14), we get

lp(2)v' () PF G p(a)! (2)) — |0 (2)PEG (I (x)]

< Y0 huallle@)e! (@)P7* detyr (o) (x) — B (x) P~ det i b ()]
Jelk 1erk

<(2k:+p)< > |7J1|>|w(l‘)®<P'(l‘)l(|h/(l‘)lHw(fﬂ)@w'(l‘)l)p_l->

JeTk IeTk

m?

REMARK 3.3. We can use C(G,p) = (2k +p) 3 jere rerr [7s1| as the constant in (33).
Here 7,5 are the coefficients from (10).

Also, we need the following version of Gehring’s lemma (for example, see [36, Corol-
lary 14.3.1]):

Lemma 3.4. Suppose f and g are non-negative functions of the class L1(R"), 1 < q¢ < o0,
and satisfy

1/q 1/q
1 A 1
- q gi - q
B(a.R)] / ! B(a.2R)] / T\ Bla2m)] / g
B(a,R) B(a,2R) B(a,2R)

for all balls B(a, R) C R™ and some constant A > 0. Then the inequality

/ﬂ<0/f.

holds with some exponent ¢' = ¢'(n,q,A) > ¢ and some constant C = C(n,q,A) > 0
depended only n, ¢, and A.

4. Proof of the Higher Intagrability Theorem

We are now in a position to prove the higher intagrability theorem.

<1 PROOF OF THEOREM 2.1. Let V' C R™ be an open set and 1 < p < t. A suitable range
of Sobolev exponents p will be defined below (see (46), (47), and (48)).
Fix a solution v € W'?(V:R™) to (1). Consider ¢ € C§°(V). We may assume that ¢

loc
is non-negative as otherwise we could consider |p| which has not effect on the required

Caccioppoli-type inequality (8). Using (1) and F(¢) > cr|C|F, we get
W (2)|* < P KGW () + et Hi(z) ace. V. (34)
Multipling both sides by P(z)[v'(z)[P~* and using k-homogeneity of G, we obtain
()0 (@)P < it Klp(a)' (@) [P~ G p(a)' («)
+ et P ()| (2) PP Hy(z) ace. V. (35)

Let e > 0. Put Vi :={x € V : [v/(2)] = e} and Vo := {x € V : |v/(x)| < €}. We have
VinVe =g and |V \ (V1 UVy)| = 0. Then

/ pu'|P = / U+ / o'l (36)
1% i Vo
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We estimate each term on the right-hand side of (36).
Using (35), we have

/\wv ” < 1K/\<pv PEG (pv') + l/cp”!v'!p_’“m- (37)

%1

We estimate each term on the right-hand side of (37).

Using (10) and Hadamard’s inequality, we have —G(¢) < |G(¢)| < C1(Q)[¢|F, ¢ € R™*n,
with C1(G) := 3 jern jers [7s1]. Here v; are the coefficients from (10). Then IC|PFG(¢) +
C1(G)|¢|P = 0. Therefore,

/ v PR G (o0’ + C1(G) / Ul > 0.
Consequently,
/ v P Gv) < / v PG ov') + / v PG (o)
i 1% Va
o) / ou'|P = / oo PG () + (G / o'l (38)
Va \%4 Va

We estimate each term on the right-hand side of (38).
Let b € R™. Define the auxiliary mappings w: V — R™ and h: R™ — R™ by the rules
w(z) :=wv(x) —b, z € V, and

h(z) = p(x)w(z), z€V,
"o, reR"\ V.

Then h € WHP(R™; R™). We have v’ = b/ —w® ¢'.
Successively using Lemma 3.2, (10), and [22, Theorem 2.1], we deduce

/ v P Gv) < / W PRG(H) + C(Cp) / (W] + lw s P oo ¢
1% 1%

- ¥ fyﬂ/yh’\p_kdetﬂ(h’)+C(G,p)/(!h’\+\w®¢/!)p_1]w®<p'\

Jerk 1eTk \%

< Co(G)|1 — p/k] / WP+ C(G.p) / K|+ lwe g P oo g, (39)
1%

where Co(G) := C(k)C1(G), C(k) is from [22, Theorem 2.1], and C(G,p) = (2k +p)C1(G) is
from Remark 3.3.
Since |v'| < € on Vs, we have

/ P <& / v P 1. (40)
V2 V2
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Combining (38), (39), and (40), we get

/ v PEG(pv') < Co(G)[1 — p/H] / WP
\%1

+C(G7p)/(!h'\ +lw e we ¢l +€Cl(G)/!sav'\”_lsD- (41)

\%

Since |[v| = € on V4, we have
[owprm < [ et
1%1 Vi

Using (37), (41), and (42), we obtain

/ V' < RAKCH(G)[L - p/K] / WP
\ %1
+ G KC(G, p) / (W] + o @ &P w © |
Vv

\ %}

+ecp KC1(G) / v/ [P + et R et / lpv' [P oH . (43)
1% \%

Now combining (36), (40), and (43), and using |pv’| < |V/| + |w ® ¢'|, we get

/ v P < et KCo(G)|1 — p/k] / WP
Vv

+e K C(G,p) / (W] + oo P oo |
Vv

+5(CI_71K01(G)+1)/|90U/|p_190+61"“c}1/|90v/|p_1<,0H+
\%

Va

< G KCy(G)[1 — pfk| / WP + [ K(C(G,p) + C1(G) + 1) + 1]

X /(W’ +lwe @ )P Hwe |+ ple +e TFHL)).

|4

Observe that |h/[P < 2P71(|pv!|P + |w @ ¢'|P). By (44), we get

(44)

/ WP < o / pu'|P 4 2v! / w® P < PR KCy (@)1 - p/k] / WP
1% 1%

+ 207 e K (C(G, p) + C1(G) + 1) + 2]

< / (] + o ® PP (jw © | + (e + £ HL). (45)

|4
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Put
p=p(F,G, K) := inf {p >1: 2 e KOy (G)|L — p/k| < 1} (46)
and
5 =(F, G, K,1) := sup {p <t P KOy (G)|L — p/k| < 1}. (47)
For
pe (D) (48)
we have 2P~ .' KCo(G)|1 — p/k| < 1. From (45) we derive

/Ih'lp < Cs(F,G,K,p)/(Ih'I +w ® GNPHlw @ ¢ + wle + eTEHL)), (49)
\%4

20~ e K(C(G,p)+C1(G)+1)+2]
where C3(F G, K p) 1— gpflcgchz(G)l\l—p/kl

Successively using (|h'|+ |w®¢'|)P < 2P7L(|W P + |w @ ¢'[P), (49), and Hélder’s inequality,
we obtain

/(Ih’|+lw®s@| /Ih’l” /|w®80|”

\%4

< C(F,G, K,p)/(\h’! +lw@ P (lwe |+ ole+e' TFHL))
|4

1

p—1

< C(F,G,K,p) /(\h’!+\w®s@’\)p /(!w®s0’\+so(€+€1"“H+))” :
1% %4

where C(F, G, K, p) := 2P~ (C3(F, G, K,p) + 1). Therefore,
1]+ |w @ [l vy < C(F, G K p)|[|lw @ @' + @(e + & T Hy)l 1oy

Using |pv'| < |B| 4 |w @ ¢| and w = v — b, we get the Caccioppoli-type estimate
0"l Lo (v imeny < C(F, G K p)[[[(v = b) @ ¢ + (e + &' Hy )| o). (50)

Of course now we observe that this inequality holds with p replaced by s for any s € (p,p),
provided we know a prior: that v € Wll (Vi R™).
Let S={s € (p,p):v e Wh5(V3;R™)}. We have p € S. Therefore, S # @. For s € S

we have (8); the constant C' = CI‘O(CF G, K, s) which depends continuously on s is finite in the
range (p,p) but may blow up at the endpoints. If we combine this with the Sobolev embedding
theorem, we obtain that S is relatively closed in (p, P). The theorem will be proved if we can
show that S is open. Obviously, if s € S, then (p, s] C (p,p). We are therefore left only with
the task of showing higher integrability of the differential. It is at this point that Gehrmg S
lemma comes to the rescue. Using (50), we easily derive reverse Holder inequalities for v’.

Consider g € V and 0 < R < dist(x,V')/3. Put Bg := B(zo, R) and Bar := B(x0,2R).
Let n € C§°(Bar) be a nonnegative function such that

C
n=1on Bg, 0<n<land|y|< ](%n) on Bap. (51)
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Substituting ¢ by n and b by vp,, = @ fBZR v in (50), we get
”nvl”LP(BQR;RmX”) < C(F7 G,K,p)m(’l} - UBzR) ® 77/‘ + 77(5 =+ 81_kH+)”L7’(BzR)‘
Therefore,

/‘nvl‘p<04(F7G7Kap)</‘(U_UBQR)®77/‘I)+/n(€+€1_kH+)p>7
Bor Baor

Baogr

where Cy(F,G, K,p) = (C(F,G, K,p))P. Successively using (51) and the Poincaré-Sobolev
inequality (for example, see [36, Theorem 4.10.3]), we obtain

/\v’\p<05(F,G,K,p) (R_p / \v—vBQR\p—i—/n(E—i—sl_kHJr)p)

Br Baogr Bar
n+tp
<06(F,G,K,p) <R—p< / |UI|7ZZ)> + /(€+€1_kH+)p>
Bor Bar

with some consants C5(F, G, K, p) and Cg(F, G, K, p). Therefore,

n+p

1 / "o 1 / PRI N 1 / 1—k
— v < C7(F,G,K,p — v'|ntp + €+ e "HL)P .
Bal ) ] ( )<<|BQR| vl Dol ) | )
Bgr Baor Bar

Hence, we have the reverse Holder inequality

<|Bl |/|,U/|P> < CS(TvBGvf(ap) / |’U/|"_fp
R 2R

Br Bar

n

1 N
" <|B2R| / (Co(F.G. K, p)(e +&' " Hy)) > )

Baogr

Put ¢ = "Tﬂ’ >1, f= ]v’|”n_fp, and g = (Cy(F,G, K, p)(e —1—51_’“H+))nn_ﬁ7. By Lemma 3.4 we
conclude that f is integrable with a power slightly larger than ¢. This in turn means that v’
is integrable with a slightly higher power then p and so v € Wlif (V;R™) for some p’ > p. >
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PEHNIEHUA TUOPEPEHIMAJIBHOI'O HEPABEHCTBA
C HVYJIb-JTATPAH?KVNAHOM: [IOBBIITAIOIITAACA MHTEI'PUPYEMOCTD
1 YCTPAHUMOCTb OCOBEHHOCTEMN. 1

Eropos A. A.

Ienb10 HACTOAIIEH CTATHY ABJISETCS YCTAHOBJIEHHE CBOMCTBA CAMOYJIy YNIAIOMeics MHTErPUPYEMOCTH TIPO-
u3BO/IHBIX pelnenuil juddepennuaibHOro HEPaBEHCTBA € HYJIb-/IAlPAHKMAHOM. BoJjiee TOYHO, Mbl JIOKa-
3bIBaeM, 9TO permenme kjiaacca CoboseBa ¢ moKazaTeseM CyMMUPYMOCTH, HEMHOTO MEHBITUM €CTECTBEHHO
OTIPEIEJIEHHOTO CTPYKTYPHBIMHA TPETIONIOKEHASIMA Ha HyJTh-JIATPAHKUAH MTOKA3ATENs, (DAKTHIECKHU TTPH-
Hasutexkut npocrpancrBy CoboJieBa ¢ ImOKa3aTeseM CyMMUPYEMOCTH, HEMHOIO OOJIbIIAM €CTeCTBEHHOTO
mokazarenas. Mbl TaKKe TPUMEHSIeM 9TO CBOHCTBO, YTOOBI YJIyYIIUTHh TEOPEMBI O TEIbIEPOBOI PeryJssap-
HOCTH ¥ 00 ycroitumBocTy u3 crarsu [19].

KurodyeBrle ciioBa: Hy/Ib-JIAIDAHZKHUAH, IOBBIIIAIONIAACH UHTEIPUPYMOCTD, CAMOYJ/IYYMIAIOMALCA PEry-
JISPHOCTH, TE/IhIEPOBA PETYISAPHOCTH, YCTORYUBOCTH KJIACCOB OTOOpaKEHMIA.



