TWO MEASURE-FREE VERSIONS OF THE BREZIS-LIEB LEMMA

E. Yu. Emelyanov, M. A. A. Marabeh

Dedicated to Professor A. E. Gutman on the occasion of his 50th anniversary

We present two measure-free versions of the Brezis-Lieb lemma for uo-convergence in Riesz spaces.

Mathematics Subject Classification (2010): 28A20, 46E30, 46B42.

Key words: Brezis-Lieb lemma, uniformly integrable sequence, Riesz space, uo-convergence, almost order bounded set, σuo -continuous mapping.

1. Introduction

The Brezis–Lieb lemma [2, Theorem 2] has numerous applications mainly in calculus of variations (see, for example [3, 6]). We begin with its statement. Let $j: \mathbb{C} \to \mathbb{C}$ be a continuous function with j(0)=0. In addition, let j satisfy the following hypothesis: for every sufficiently small $\varepsilon>0$, there exist two continuous, nonnegative functions φ_{ε} and ψ_{ε} such that

$$|j(a+b) - j(a)| \leqslant \varepsilon \varphi_{\varepsilon}(a) + \psi_{\varepsilon}(b) \tag{1}$$

for all $a, b \in \mathbb{C}$. The following result has been stated and proved by H. Brezis and E. Lieb in [2].

Theorem 1.1 (Brezis-Lieb lemma [2, Theorem 2]). Let (Ω, Σ, μ) be a measure space. Let the mapping j satisfy the above hypothesis, and let $f_n = f + g_n$ be a sequence of measurable functions from Ω to \mathbb{C} such that:

- (i) $g_n \xrightarrow{\text{a.e.}} 0$;
- (ii) $j \circ f \in L^1$;
- (iii) $\int \varphi_{\varepsilon} \circ g_n d\mu \leqslant C < \infty$ for some C independent of ε and n;
- (iv) $\int \psi_{\varepsilon} \circ f d\mu < \infty$ for all $\varepsilon > 0$.

Then, as $n \to \infty$,

$$\int (j(f+g_n) - j(g_n) - j(f))d\mu \to 0.$$
(2)

Here we reproduce its proof from [2, Theorem 2] with several simple remarks.

 $\triangleleft \text{ Fix } \varepsilon > 0 \text{ and let } W_{\varepsilon,n} = [|j \circ f_n - j \circ g_n - j \circ f| - \varepsilon \varphi_{\varepsilon} \circ g_n]_+. \text{ As } n \to \infty, W_{\varepsilon,n} \xrightarrow{\text{a.e.}} 0.$ On the other hand,

$$|j \circ f_n - j \circ g_n - j \circ f| \leq |j \circ f_n - j \circ g_n| + |j \circ f| \leq \varepsilon \varphi_{\varepsilon} \circ g_n + \psi_{\varepsilon} \circ f + |j \circ f|.$$

^{© 2016} Emelyanov E. Yu., Marabeh M. A. A.

 $^{^1}$ This research was funded by Middle East Technical University BAP, research project $N\!\!_{2}$ BAP-01-01-2016-001.

Therefore, $0 \leq W_{\varepsilon,n} \leq \psi_{\varepsilon} \circ f + |j \circ f| \in L^1$. By dominated convergence,

$$\lim_{n \to \infty} \int W_{\varepsilon,n} d\mu = 0. \tag{3}$$

However,

$$|j \circ f_n - j \circ g_n - j \circ f| \leqslant W_{\varepsilon,n} + \varepsilon \varphi_{\varepsilon} \circ g_n \tag{4}$$

and thus

$$I_n := \int |j \circ f_n - j \circ g_n - j \circ f| d\mu \leqslant \int [W_{\varepsilon,n} + \varepsilon \varphi_{\varepsilon} \circ g_n] d\mu.$$

Consequently, $\limsup I_n \leqslant \varepsilon C$. Now let $\varepsilon \to 0$. \triangleright

REMARK 1.1. (i) The conditions (3) and (4) mean that the sequence $|j \circ f_n - j \circ g_n|$ lies eventually in the set $[-|j \circ f|, |j \circ f|] + \frac{3\varepsilon C}{2}B_{L^1}$, where B_{L^1} is the unit ball of L^1 . In other words, the sequence $j \circ f_n - j \circ g_n$ is almost order bounded.

- (ii) The superposition operator $J_j:L^0\to L^0$, $J_j(f):=j\circ f$ induced by the mapping j in the proof above can be replaced by a mapping $J:L^0\to L^0$ satisfying some reasonably mild conditions for keeping the statement of the Brezis–Lieb lemma.
- (iii) Theorem 1.1 is equivalent to its partial case when the \mathbb{C} -valued functions are replaced by \mathbb{R} -valued ones.

The following proposition is motivated directly by the proof of [2, Theorem 2].

Proposition 1.2 (Brezis-Lieb lemma for mappings on L^0). Let (Ω, Σ, μ) be a measure space, $f_n = f + g_n$ be a sequence in L^0 such that $g_n \xrightarrow{\text{a.e.}} 0$, and $J: L^0 \to L^0$ be a mapping satisfying J(0) = 0 and such that the sequence $J(f_n) - J(g_n)$ is almost order bounded. Then

$$\lim_{n \to \infty} \int \left(J(f + g_n) - \left(J(g_n) + J(f) \right) \right) d\mu = 0.$$
 (5)

 \triangleleft As in the proof of the Brezis-Lieb lemma above, denote $I_n := \int |J(f+g_n) - (J(f) + J(g_n))| d\mu$. By the conditions, the sequence

$$J(f + g_n) - (J(f) + J(g_n)) = (J(f_n) - J(g_n)) - J(f)$$

a.e.-converges to 0 and is almost order bounded. Therefore, by the generalized dominated convergence, $\lim_{n\to\infty}I_n=0$. \triangleright

Since almost order boundedness is equivalent to uniform integrability in finite measure spaces, the following corollary is immediate.

Proposition 1.3 (Brezis-Lieb lemma for uniform integrable sequence $J(f_n) - J(g_n)$). Let (Ω, Σ, μ) be a finite measure space, $f_n = f + g_n$ be a sequence in L^0 such that $g_n \xrightarrow{\text{a.e.}} 0$, and $J: L^0 \to L^0$ be a mapping satisfying J(0) = 0 and such that the sequence $J(f_n) - J(g_n)$ is uniformly integrable. Then

$$\lim_{n \to \infty} \int (J(f + g_n) - (J(g_n) + J(f))) d\mu = 0.$$
 (6)

2. Two variants of the Brezis-Lieb lemma in Riesz spaces

Recall that a sequence x_n in a Riesz space E is order convergent (or o-convergent, for short) to $x \in E$ if there is a sequence z_n in E satisfying $z_n \downarrow 0$ and $|x_n - x| \leqslant z_n$ for all $n \in \mathbb{N}$ (we write $x_n \stackrel{\circ}{\to} x$). In a Riesz space E, a sequence x_n is unbounded order convergent (or uo-convergent, for short) to $x \in E$ if $|x_n - x| \land y \stackrel{\circ}{\to} 0$ for all $y \in E_+$ (we write $x_n \stackrel{uo}{\to} x$).

Here we give two variants of the Brezis–Lieb lemma in Riesz space setting by replacing a.e.-convergence by uo-convergence, integral functionals by strictly positive functionals and the continuity of the scalar function j (in Theorem 1.1) by the so called σ -unbounded order continuity of the mapping $J: E \to F$ between Riesz spaces E and F. As standard references for basic notions on Riesz spaces we adopt the books [1, 7, 8] and on unbounded order convergence the papers [4, 5].

It is well known that if (Ω, Σ, μ) be a σ -finite measure space, then in L^p $(1 \le p \le \infty)$, uo-convergence of sequences is the same as the almost everywhere convergence (see, for example [5]). Therefore, in order to obtain versions of Brezis-Lieb lemma in Riesz spaces, we shall replace the a.e.-convergence by the uo-convergence.

A mapping $f: E \to F$ between Riesz spaces is said to be σ -unbounded order continuous (in short, σuo -continuous) if $x_n \xrightarrow{uo} x$ in E implies $f(x_n) \xrightarrow{uo} f(x)$ in F. Clearly this definition is parallel to the well-known notion of σ -order continuous mappings between Riesz spaces.

Let F be a Riesz space and l be a strictly positive linear functional on F. Define the following norm on F:

$$\parallel x \parallel_{l} := l(|x|). \tag{7}$$

Recall that a Banach lattice E is said to be *order continuous* if every order null net is norm null, and a subset A of E is said to be *almost order bounded* if for any $\varepsilon > 0$ there exists $u_{\varepsilon} \in E_{+}$ such that $A \subset [-u_{\varepsilon}, u_{\varepsilon}] + \varepsilon B_{E}$, where B_{E} is the closed unit ball in E. We say that a net x_{α} is almost order bounded if the set of its members is almost order bounded.

The next lemma will be used to prove a version of Brezis–Lieb lemma for arbitrary strictly positive linear functionals.

Lemma 2.1 (See [5, Proposition 3.7]). Let X be an order continuous Banach lattice. If a net x_{α} is almost order bounded and uo-convergent to x, then x_{α} converges to x in norm.

Suppose that F is a Riesz space and l is a strictly positive linear functional on F, then the $\|\cdot\|_l$ -completion $(F_l,\|\cdot\|_l)$ of $(F,\|\cdot\|_l)$ is an AL-space, and so it is order continuous Banach lattice. The following result is a measure-free version of Proposition 1.2.

Proposition 2.2 (A Brezis-Lieb lemma for strictly positive linear functionals). Let E be a Riesz space and F_l be the AL-space constructed above. Let $J: E \to F_l$ be σuo -continuous with J(0) = 0, and x_n be a sequence in E such that:

- (i) $x_n \xrightarrow{\text{uo}} x \text{ in } E;$
- (ii) the sequence $(J(x_n) J(x_n x))_n$ is almost order bounded in F_l . Then

$$\lim_{n \to \infty} \| J(x_n) - J(x_n - x) - J(x) \|_{l} = 0.$$
 (8)

 \lhd Since $x_n \xrightarrow{uo} x$ and J is σuo -continuous, then $J(x_n) \xrightarrow{uo} J(x)$ and $J(x_n - x) \xrightarrow{uo} J(0) = 0$. Thus, $J(x_n) - J(x_n - x) \xrightarrow{uo} J(x)$. It follows from Lemma 2.1 that $\lim_{n \to \infty} \|J(x_n) - J(x_n - x) - J(x)\|_{l} = 0$. \triangleright

In the following Brezis–Lieb type lemma, the σuo -continuity of mappings between Riesz spaces is used.

Proposition 2.3 (A Brezis-Lieb lemma for σuo -continuous linear functionals). Let E, F be Riesz spaces, l a σuo -continuous linear functional on F, $J: E \to F$ a σuo -continuous mapping with J(0) = 0, and $x_n \xrightarrow{uo} x$ in E. Then

$$\lim_{n \to \infty} l(J(x_n) - J(x_n - x) - J(x)) = 0.$$
 (9)

 \triangleleft Since $x_n \xrightarrow{uo} x$ and J is σuo -continuous, then $J(x_n) \xrightarrow{uo} J(x)$ and $J(x_n - x) \xrightarrow{uo} J(0) = 0$. Thus, $(J(x_n) - J(x_n - x) - J(x)) \xrightarrow{uo} 0$. But l is σuo -continuous, so $l(J(x_n) - J(x_n - x) - J(x)) \xrightarrow{uo} 0$. Since in \mathbb{R} the uo-convergence, the o-convergence, and the standard convergence are all equivalent, then $\lim_{n \to \infty} l(J(x_n) - J(x_n - x) - J(x)) = 0$. \triangleright

Note that in opposite to Proposition 2.3, in Proposition 2.2 we do not suppose the functional l to be σuo -continuous.

References

- 1. Aliprantis C. D., Burkinshaw O. Positive operators.—Orlando, Florida: Acad. Press, Inc., 1985.—xvi+367 p.—(Pure and Appl. Math. Vol. 119).
- 2. Brezis H., Lieb E. A relation between pointwise convergence of functions and convergence of functionals // Proc. Amer. Math. Soc.—1983.—Vol. 88, № 3.—P. 486–490.
- 3. Brezis H., Nirenberg L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents // Comm. Pure Appl. Math.—1983.—Vol. 36, № 4.—P. 437–477.
- Gao N., Troitsky V., Xanthos F. Uo-convergence and its applications to Cesàro means in Banach lattices.—Preprint, arXiv:1509.07914.
- 5. Gao N., Xanthos F. Unbounded order convergence and application to martingales without probability // J. Math. Anal. Appl.—2014.—Vol. 415, № 2.—P. 931–947.
- 6. Lieb E. Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities // Ann. of Math.—1983.—Vol. 118, № 2.—P. 349–374.
- 7. Luxemburg W. A. J., Zaanen A. C. Riesz Spaces. Vol. I.—Amsterdam: North-Holland Publ. Comp., 1971.—viii+514 p.
- 8. Zaanen A. C. Riesz Spaces II // North-Holland Mathematical Library.—Amsterdam: North-Holland Publ. Comp., 1983.—xi+720 p.

Received January 11, 2016.

EDUARD YU. EMELYANOV

Middle East Technical University,

Department of Mathematics, Prof.

TURKEY, 06800, Ankara, Dumlupinar Bulvari, 1

E-mail: eduard@metu.edu.tr;

Sobolev Institute of Mathematics,

Laboratory of Functional Analysis, leading researcher

4 Koptyug Avenue, Novosibirsk, 630090, Russia

 $E\text{-}mail: \verb| emelanov@math.nsc.ru||$

Mohammad A. A. Marabeh

Middle East Technical University,

Department of Mathematics, $Ph.D.\ student$

TURKEY, 06800, Ankara, Dumlupinar Bulvari, 1

E-mail: mohammad.marabeh@metu.edu.tr

ДВА ВАРИАНТА ЛЕММЫ БРЕЗИСА — ЛИБА БЕЗ ИСПОЛЬЗОВАНИЯ СХОДИМОСТИ ПОЧТИ ВСЮДУ

Емельянов Э. Ю., Мараби М. А. А.

Рассматриваются две версии леммы Брезиса — Либа для uo-сходимости в пространствах Рисса.

Ключевые слова: лемма Брезиса — Либа, равномерно интегрируемая последовательность, пространство Рисса, uo-сходимость, почти порядково ограниченное множество, σuo -сходимость.