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ORDER BORNOLOGICAL LOCALLY CONVEX LATTICE CONES

D. Ayaseh, A. Ranjbari

In this paper, we introduce the concepts of us-lattice cones and order bornological locally convex lattice
cones. In the special case of locally convex solid Riesz spaces, these concepts reduce to the known concepts
of seminormed Riesz spaces and order bornological Riesz spaces, respectively. We define solid sets in locally
convex cones and present some characterizations for order bornological locally convex lattice cones.
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1. Introduction

The theory of locally convex cones as developed in [5] and [11], uses an order theoretical
concept or a convex quasiuniform structure to introduce a topological structure on a cone.
Examples of locally convex cones contain classes of functions that take infinite values and
families of convex subsets of vector spaces. These type of structures are not vector space
and also may not even be embedded into a larger vector spaces in order to apply technics
from topological vector spaces. These structures are studied in the general theory of locally
convex cones. The class of bornological locally convex spaces is an important class of locally
convex spaces which are introduced by Mackey in 1946. Every bounded linear operator on
a bornological space is continuous. These structures have an advantage which they can be
written as an inductive limit of seminormed spaces. Therefore every complete Hausdorff
bornological locally convex space is the inductive limit of Banach spaces. We establish these
results for locally convex cones in [3]. Also, We investigated the bornological convergence
for cones in [2|. In the case of locally convex lattice cones, we want to study the order
bornological locally convex lattice cones. The investigating of these structure is interesting,
since these structures are the order inductive limit of us-lattice cones which are the extensions
of seminormed Riesz spaces. We note that in the case of vector lattices the concept of separated
us-lattice cones reduces to the concept of normed Riesz spaces and the concept of symmetric
complete separated wus-lattice cones reduces to the concept of Banach lattices, which have
many applications in Economics. This research can be useful for researchers in mathematical
economic theory. For recent researches see [2—4, 6, 9].

A cone is a set & endowed with an addition and a scalar multiplication for nonnegative real
numbers. The addition is assumed to be associative and commutative, and there is a neutral
element 0 € &. For the scalar multiplication the usual associative and distributive properties
hold, that is a(fBa) = (af)a, (a+ B)a = aa + Ba, a(a+b) = aa + ab, la = a and 0a = 0 for
all a,b e & and o, 5 > 0.

Let & be a cone. A collection 4 of convex subsets U C P2 = 22 x P is called a convez
quasiuniform structure on &2, if the following properties hold:
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(Uy) A CU for every U € U (A ={(a,a) : a € P});

(Uy) for all U,V € U there is a W € U such that W CUNV;
(Us) \U o pU C (A + p)U for all U € 4 and A, > 0;

(Uy) aU € sh for all U € U and « > 0.

Here, for U,V C &2 by U oV we mean the set of all (a,b) € 2?2 such that there is some
c € & with (a,c¢) € U and (c,b) € V.

Let & be a cone and U be a convex quasiuniform structure on &. We shall say (£, 4) is
a locally convex cone if

(Us) for each a € & and U € U there is some p > 0 such that (0,a) € pU.

With every convex quasiuniform structure 4 on & we associate two topologies: The
neighborhood bases for an element a in the upper and lower topologies are given by the
sets

U(a) ={be & :(bya) €U}, resp. (a)U={be Z:(a,b)cU}, Ueil

The common refinement of the upper and lower topologies is called symmetric topology.
A neighborhood base for a € & in this topology is given by the sets

U(a)U =U(a)N(a)U, U €l

Let & and # be convex quasiuniform structures on &?. We say that 4l is finer than #
it W C sl

The extended real number system R = R U {+oo} is a cone endowed with the usual
algebraic operations, in particular a + oo = +oo for all @ € R, a - (+00) = 400 for all & > 0
and 0 - (+00) =0. We set ¥ = {€: ¢ > 0}, where

E=14(a,b 6@2:a<b+6.
fien e R acor)

Then ¥ is a convex quasiuniform structure on R and (R, ”f;) is a locally convex cone.
For a € R the intervals (—oo,a + €| are the upper and the intervals [a — ,4o00| are the
lower neighborhoods, while for a = 400 the entire cone R is the only upper neighborhood,
and {+oc} is open in the lower topology. The symmetric topology is the usual topology on R
with as an isolated point +oc.

For cones & and 2, a mapping T : & — 2 is called a linear operator if T'(a + b) =
T(a)+T(b) and T'(aa) = oT'(a) hold for all a,b € &2 and a > 0. If both (£, 4) and (2, %)
are locally convex cones, the operator T is called (uniformly) continuous if for every W € #
one can find U € U such that (T x T)(U) C W.

A linear functional on 22 is a linear operator p: & — R. The dual cone &* of a locally
convex cone (Z,4) consists of all continuous linear functionals on &?. The polar of the
neighborhood U € i is defined as folows:

U°={pe @ : pa)<pb) +1, V(a,b) eU}.

Let 4 be a convex quasiuniform structure on &2. The subset % of il is called a base for i,
whenever for every U € U there are n € N, Uy,...,U, € & and Aq,..., A\, > 0 such that
MU Nn---n AU, CU.

Suppose that (Z,4) is a locally convex cone. We shall say that FF C 22 is u-bounded
(uniformly-bounded) if it is absorbed by each U € . A subset A of & is called bounded above
(below) whenever A x {0} (res. {0} x A) is u-bounded (see [3]).
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2. Solid sets and us-lattice cones

Locally convex lattice cones as a generalization of locally solid Riesz spaces has been
introduced by Walter Roth in [10]. Here, we use the definition of this structure which have
been presented in the terms of convex quasiuniform structures. We define solid sets in locally
convex lattice cones and use them for our aim.

DEFINITION 1. Let &2 be a cone and < be a reflexive, transitive and antisymmetric order
on & (& is an ordered cone). We shall say that &2 is a V (or A)-lattice cone whenever

(1) a,b € & implies that aVb € & (or a ANb € P);

(2) for a,b,ce P, (a+c)V(b+c)=aVb+clor (a+c)AN(b+c)=anb+c).

The cone & is called a lattice cone if it is a V and A-lattice cone.

Let & and 2 be V (or A)-lattice cones. The linear operator T : & — 2 is called
V (or A)-lattice homomorphism whenever T(aV b) = T(a)V T'(b) (or T(a Ab) = T(a) NT(b))
for a,b € .

Let E be a Riesz space. A subset A of E is called solid whenever |b| < |a| and a € A imply
that b € A (see [1]). We note that for a € E, |a| = a V (—a). Now, we present a definition
of solid sets in lattice cones.

DEFINITION 2. Let & be a V (or A)-lattice cone. We shall say that a subset B of 922 is
V (or A)-solid, whenever

(1) a < b implies that (a,b) € B;

(2) (a,b) € aB and (¢,b) € B imply that (a V ¢,b) € (a+ 8)B (or (a,b) € aB and
(a,c) € B imply that (a,bAc) € (a+ ()B).

If &2 is a lattice cone, the subset B is called solid whenever it is V-solid and A-solid.

The V (or A)-solid hull of a subset B of &2 is the smallest (with respect to the set inclusion)
V (or A)-solid subset of &2, which contains B, we denote it by shy (B) (or sha(B)). Also we
denote the solid hull of B by sh(B).

If E is a Riesz space and A C F is solid (in the sense of the Riesz spaces) and convex,
then A = {(¢,b) € E? : 3a € A, ¢ < b+ a} is solid in the sense of lattice cones. Indeed,
if a < b for a,b € E, then (a,b) € A, since 0 € A and a < b+ 0. Now, let (a,b) € vA
and (¢,b) € AA for v, A > 0. Then we have a < b+ ~t and ¢ < b+ A\’ for some ¢, € A.
Now, we have t V 0,t' V0 € A, since A is solid. Then a < b+ v(t V 0) + A(¢ vV 0) and
¢ <b+~(tV0)+ A(t'VO0). This shows that a Ve < b+~(tV0)+ A(#' V0). Since A is convex,
we conclude that y(t Vv 0) + A(t' V0) € (y+ \)A. Therefore (aV¢,b) € (7 + \)A. Similarly, we
can prove that A is A-solid.

DEFINITION 3. Let &2 be an ordered cone and 4 be a convex quasiuniform structure on &2.
We shall say that Ll is compatible with the order structure of & whenever a < b implies that
(a,b) € U for all U € U for a,b € Z.

DEFINITION 4. Let & be a V (or A)-lattice cone and i be a compatible convex quasiuni-
form structure on & such that (£, 4) is a locally convex cone. Then we shall say that (Z7,4)
is a locally convex V (or A)-lattice cone, whenever  has a base of V (or A)-solid sets. If 4l has a
base of V (or A)-solid sets, then it is called V (or A)-solid convex quasiuniform structure. If &7
is a lattice cone, then the convex quasiuniform structure il is called solid whenever it has a
base of solid sets. The locally convex cone (£, 4l) is called locally convez lattice cone if 1 has
a base of solid sets.

EXAMPLE 1. Let (E,7) be a locally convex solid Riesz space. Then 7 has a base ¥ of
solid, convex and balanced subsets. For V € ¥, weset V = {(a, b)cE?: JveV,a<b+ v}.
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Then ¥ = {V : V € ¥} is a solid convex quasiuniform structure on E. Therefore (E,¥) is
a locally convex lattice cone.

Let & be a cone. A subset B of &2 is called uniformly conver whenever it has the
properties (U;) and (Us). The locally convex cone (£2,4) is called a wuc-cone whenever
U={aU : a> 0} for some U € U (see [3]). If & is a V (or A)-lattice cone and U is V (or A)-
solid, then (Z2,4) is called Vs (or Ays)-lattice cone. In the case that &2 is a lattice cone
and U is solid, (£, 4) is called us-lattice cone. For example normed Riesz spaces and Banach
lattices are us-lattice cones as locally convex cones. Also the locally convex cone (R, ¥) is
a us-lattice cone. We note that every us-lattice cone is a locally convex lattice cone.

Let & be a V (or A)-lattice cone and B C 422, We denote the smallest uniformly convex
and V (or A)-solid subset of 222, which contains B by us\ (B) (or uss(B)), and we call it the
uniformly convex \V (or A)-solid hull of B. If & be a lattice cone, then we denote the uniformly
convex solid hull of B, by us(B).

Proposition 1. In a locally convex V (or A)-lattice cone, the V (or A)-solid hull of a u-
bounded set is u-bounded.

< Let (22,4) be a locally convex V (or A)-lattice cone and B be a u-bounded subset
of 222. Let B be a base of V (or A)-solid sets for 4. For every U € B there is A > 0 such that
B C \U. This shows that usy(B) C usy(AU) = AU (or usp(B) C usp(AU) = AU), since U
is V (or A)-solid. Therefore us\ (B) (or usn(B)) is u-bounded. >

Corollary 1. In a locally convex lattice cone, the solid hull of a u-bounded set is u-bo-
unded.

Proposition 2. Let & be a V (or N)-lattice cone and (2,4, )~er be a family of locally
convex V (or A)-lattice cones. Also, let for every v € T', gy : &2 — P is a V (or A)-lattice
homomorphism. Then the coarsest convex quasiuniform structure { on &7, which makes all g,
continuous, is V (or A)-solid and (£, 4) is a locally convex V (or A)-lattice cone.

< Tt is enough to show that for every v € I' and V (or A)-solid U, € L, (g, % g,) " H(Uy)
is V (or A)-solid in the V (or A)-lattice cone &?. We prove the assertion for the case that &7 is
a V-lattice cone. Indeed, let a < b for a,b € &. Then g.,(a) < g,(b) for each v € T, since g,
is a V-lattice homomorphism for each v € I'. This implies that (g,(a), g,(b)) € Uy, since U,
is V-solid for each v € I'. Then (a,b) € (g, X gy)~*(U,). Now, let (a,b) € a(gy x g4) 1 (U,)
and (c,b) € B(gy x g,)"1(U,) for a,b,c € & and v € I'. Then (g,(a),g,(b)) € aU, and
(g4(c), g4(b)) € BU,. Now, since U, is V-solid an g, is V-lattice homomorphism, we conclude
that (g,(aV c),gy(b)) = (gy(a) V g,(c), g(b)) € (a + B)U,. Therefore (aVe,b) € (a+ B)(gy X
9) "1 (Uy).

Under the assumptions of Proposition 2, (£, 4l) is called V (or A)-order projective limit of
locally convex V (or A)-lattice cones (25,4, )er by the V (or A)-lattice homomorphisms g,
~ € I'. Similarly, the concept of order projective limit can be defined.

Proposition 3. Every locally convex V (or A)-lattice cone is the \V (or N)-order projective
limit of some Vs (or Ays)-lattice cones.

< Let (22,4) be a locally convex V (or A)-lattice cone. Then i has a base B of
V (or A)-solid sets. For B € B, we set Up = {aB : o > 0}. Then 4p is a V (or A)-solid
convex quasiuniform structure on & and (Z2,4p) is a locally convex V (or A)-lattice cone
for each B € B. Now, it is easy to see that (Z2,4) is the V (or A)-order projective limit of
(Z,4p)Bes by the identity mappings. >

Corollary 2. Every locally convex lattice cone is the order projective limit of some us-
lattice cones.
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In the special case of locally convex solid Riesz spaces, Proposition 3 yields that every
(Hausdorff) locally convex solid Riesz space is the projective limit of (normed) seminormed
Riesz spaces.

3. Order bornological locally convex lattice cones

Suppose that (£,4) and (2, %) are locally convex cones and T : & — 2 is a linear
operator. We shall say T is u-bounded if (T x T)(F) is u-bounded in 22 for every u-bounded
subset F of 222, We shall say (2,4) is a bornological cone if every u-bounded linear operator
from (£,4) into any locally convex cone is continuous (see [3]).

Let (22,4) and (2, %) be locally convex cones. The linear operator T': & — 2 is called
bounded below whenever T maps bounded below subsets of &2 into bounded below subsets
of 2. The locally convex cone (£, 4) is called b-bornological whenever every bounded below
linear operator from (£, 4l) into other locally convex cone is continuous (see [3]).

Bornological and b-bornological locally convex cones have been studied in [3]. Firstly, we
review the construction of this structure briefly: Let &2 be a cone and U be a uniformly convex
subset of . We set Zy ={a € & : IX >0, (0,a) € AU} and Uy = {aU : a > 0}. Then
(Py,Uy) is a locally convex cone (a uc-cone). In [3], we proved that there is the finest convex
quasiuniform structure 4, (or ;) on locally convex cone (2, 4) such that £?2 (or &) has
the same u-bounded (or bounded below) subsets under 4l and (- (or ;). The locally convex
cone (Z,4l;) is the inductive limit of the uc-cones (P, Uy )yes, where B is the collection
of all uniformly convex u-bounded subsets of 922. Also (Z,4l,,) is the inductive limit of
the uc-cones (Zy,Uy)vesn, where B = {uch({0} x B) : B is bounded below}. If (22,4l) is
bornological or b-bornological, then il is equivalent to L. or 4, respectively.

DEFINITION 5. We shall say that the locally convex V (or A)-lattice cone (Z2,4) is V (or A)-
order bornological whenever every u-bounded V (or A)-lattice homomorphism from (£, 4l) in
to any locally convex V (or A)-lattice cone is continuous.

Obviously, every bornological locally convex V (or A)-lattice cone is V (or A)-order
bornological. For example, every Vs (or Ays)-lattice cone is V (or A)-order bornological. Also
every us-lattice cone is order bornological. It has been proved in [3], that every locally convex
cone which its convex quasiuniform structure has countable base is bornological. This shows
that if (22, 4) is a locally convex lattice cone and 4l has a countable base, then (2, 4l) is order
bornological.

EXAMPLE 2. Let X be a topological space, and let & be the cone of all R,-valued
continuous functions on X, where R, is endowed with the usual, that is the one-point
compactification topology. We consider on & the pointiwise order. For each £ > 0, we set
£ =1{(f,g9) € #? :Vr € X, f(z) < g(x) +¢}. Then for each ¢ > 0, £ is a solid set and
U ={€:e > 0} is a solid convex qusiuniform structure. Then (22, 4l) is a locally convex
lattice cone. We note that (Z,4) is order bornological locally convex lattice cone, since it
is a ws-lattice cone. The cone & is not a vector space and it may not be embedded in any
vector space.

Theorem 1. Let (£, ) er be a family of locally convex V (or A)-lattice cones. Also
let & be a V(or N)-lattice cone and for each v € T, f, : &, — & be a V(or N)-
lattice homomorphism such that & = span(U,cr fy(#,)). Then & endowed with the
convex quasiuniform structure U created by the sets of the form usy(U,er(fy X f7)(Us))
(or usa(U,er(fy x f1)(Uy))), where U, € £y, is a locally convex V (or A)-lattice cone.

< We consider the case that (2,8, ),er are locally convex V-lattice cones. Firstly, we
prove that the elements of & are bounded below with respect to the sets usv (U, er f+(Us))-
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Let a € &. Then there are n € N, v1,...,v, € I', and a,, € &,,, © = 1,...,n, such that
a=>", fy(ay). There are \; > 0, i = 1,...n, such that (0,a,,) € \;U,,. This shows that
(0,a) € Aus(U,er f7(Uy)), where A = maxi<i<p A Then (£,4l) is a locally convex cone.
Since the sets usy(U,cr f7(Uy)) are V-solid, we conclude that (£2,4) is a locally convex
V-lattice cone. A similar argument yields our claim for the case that (£, ) cr are locally
convex A-lattice cones. >

The projective and inductive limits had been investigated for topological vector spaces
and locally convex cones in [8] and [7], respectively. Under the assumptions of Theorem 1,
(2,4) is called the V (or A)-order inductive limit of the locally convex V (or A)-lattice cones
(Z,,4), under the V (or A)-lattice homomorphisms f, : &, — 2. Similarly, the concept of
order inductive limit can de defined.

Corollary 3. An order inductive limit of locally convex lattice cones is a locally convex
lattice cone.

Corollary 4. An order inductive limit of locally convex solid Riesz spaces is a locally
convex solid Riesz space.

Proposition 4. Let (£,4) be the V (or A)-order inductive limit of locally convex
V (or A)-lattice cones (Z.,8L,)y € T, under lattice homomorphisms f : &, — £, v € T,
and (2, %) be a locally convex cone. Then the linear mapping T : &? — 2 is continuous if
and only if for every v € I', Tof, is continmious.

<1 The mapping T is continuous if and only if for each W € %, (T x T)"1(W) € 4L
By Theorem 1, this holds if and only if for every v € "

(fy X [) (T x T)"Y(W)) = (Tof, x Tof,)~ (W) € 4L,

In the other words, we require the continuity of each Tof, for each v € I'. >

Proposition 5. An V (or A)-order inductive limit of V (or A)-order bornological locally
convex lattice cones is V (or A)-order bornological.

< Let (22,4) be the V (or A)-order inductive limit of V (or A)-order bornological locally
convex lattice cones (2,4, ) by the V (or A)-lattice homomorphisms f,, v € I'. Also suppose
that 7" be a u-bounded V (or A)-lattice homomorphism from (22 4l) into another locally
convex V (or A)-lattice cone (2, %#"). Then for every v € I, Tof, is a u-bounded V (or A)-lat-
tice homomorphism on (Z2,,4L,). Since (#,,4L,) is V (or A)-order bornological, we conclude
that Tof, is continuous for each v € I', by Proposition 4. Therefore T" is continuous by
Proposition 4. >

Similarly, one can prove that an order inductive limit of order bornological locally convex
lattice cones is order bornological.

Theorem 2. Let (Z,81) be a locally convex V (or A)-lattice cone. Then there is the
finest V (or A)-solid convex quasiuniform structure i,l‘vﬂ (or L[‘AT ) on & under which P?
has the same u-bounded subsets as under $l. Under the convex quasiuniform structure L[‘Vﬂ
(or ilf;‘), & isa V (or N)-order bornological cone, the \ (or A)-order inductive limit of a family
of Vys (or Ays)-sublattice cones of &?. The locally convex cone (Z2,4) is V (or A)-order

bornological if and only if ${ and L[‘VT' (or ﬂf\ﬂ) are equivalent.

<1 We prove the theorem for the case that (£, 4) is a locally convex V-lattice cone. Let B
be the collection of all u-bounded V-solid subsets of #2. For B € B, we set

Pp={aec P: IXN>0s.t. (0,a) € A\B} and lUp={aB: a>0}.
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We consider on &5 the order induced by the original order of &2. Since B is V-solid, it is
easy to see that (Zp,Up) is a locally convex V,-lattice cone. We have &2 = (Jpc &B-
Indeed, for a € &, Let B’ be the smallest uniformly convex V-solid subset of 272, which
contains {(0,a)}. Then B’ € B and a € Pp. Now let (t@,ﬂr/ﬂ) be the V-order inductive
limit of (Zp,Up)pesn, under the inclusion mappings Ip : P — Z. Then (t@,il‘vﬂ) is
a locally convex V-lattice cone by Theorem 1. The u-boundedness of B € B shows that
Ip: (P, Up) — (Z,4) is continuous. Now, we conclude that Ll‘vﬂ is finer than 4 by the
definition of V-order inductive limit. Then wu-boundedness in il|v7‘ implies u-boundedness

in $L. On the other hand, if F C £? is u-bounded with respect to 4, then it is u-bounded
in (Z5,45), where F= usy(F'). Now, the continuity of I yields that F' is u-bounded with
respect to Ll|vﬂ. Also (@,Ll‘vﬂ) is V-order bornological by Proposition 5. For the final part of
theorem, we note that the identity mapping I : (Z2,4) — (@’L%) is a u-bounded V-lattice
homomorphism. Now, if (Z2,4) is order bornological, then I is continuous. Therefore i is
finer than U‘Vﬂ. On the other hand 4, is finer than 4. Then they are equivalent. Similarly we
can prove the theorem for the case that (Z2,4) is a locally convex A-lattice cone. >

Corollary 5. If (#2,4l) is a V (or A)-order bornological locally convex V (or A)-lattice
cone, then i =817, (or & = 4P ).

I7|
Corollary 6. If (22,4) is a locally convex lattice cone, then there is the finest solid convex
quasiuniform structure ;| on &, under which P2 has the same u-bounded subsets as under
. Under the convex quasiuniform structure ), & is an order bornological cone, the order
inductive limit of a family of us-sublattice cones of &?. The locally convex cone (Z,4l) is
order bornological if and if {4 and | are equivalent.

Proposition 6. Let (Z,4) be a locally convex lattice cone. Then i is finer than Uy

< Since £? has the same u-bounded subsets under $ and 7|, and 4 is the finest convex
quasiuniform structure that has this property, we conclude that (; is finer than . >

Proposition 7. Every bornological locally convex lattice cone is order bornological.

< Let (£2,4) be a bornological locally convex lattice cone. Then we have 4l = 4[.. Now,
since $ C ;| C i, we conclude that & = 8. >

In the following theorem we characterize V (or A)-order bornological locally convex
V (or A)-lattice cones

Theorem 3. For locally convex V (or A)-lattice cone (Z,41) the followings are equivalent:

(a) (2,4) is V(or A)-order bornological;

(b) for every uniformly convex V (or A)-solid subset V of 2 that absorbs all u-bounded
subsets, there is U € 4 such that U C V;

(c) every u-bounded V (or A)-lattice homomorphism from & into any Vs (or Ays)-lattice
cone is continuous.

(d) (2,4) is the V (or A)-order inductive limit of some us-lattice subcones of (Z,4).

< The statements (a) and (d) are equivalent by Proposition 5 and Theorem 2.

(a — b): Let (a) holds and V be a uniformly convex V (or A)-solid subset of &2, that
absorbs all u-bounded subsets. We set ¥ = {aV : a > 0}. Then (£, %) is a locally convex
V (or A)-lattice cone. The identity mappings I : (£, U) — (£, 7) is u-bounded, since V
absorbs all u-bounded subsets. On the other hand I is a V (or A)-lattice homomorphism.
Now (a) yields that I is continuous. Therefore there exists U € 4 such that U C V.

(b — a): Let (b) holds and T" be a u-bounded V (or A)-lattice homomorphism from (£, )
into another locally convex V (or A)-lattice cone (2,%#). Let W € # be V (or A)-solid. Then
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(T x T)"}(W) is a uniformly convex V (or A)-solid subset of &2, since T is a V (or A)-lat-
tice homomorphism. Now there is U € i such that U C (T x T)~*(W) by (b). Then T is
continuous.

(a — ¢): The proof is clear.

(¢ — a): Suppose that (¢) holds and T is a u-bounded V (or A)-lattice homomorphism
from (Z,4) into another locally convex V (or A)-lattice cone (2, %#'). For W € #', we set
Ww = {aW : a > 0}. Clearly for every W € #', T : (2, ) — (2, #w) is a u-bounded
V (or A)-lattice homomorphism and then it is continuous by (c). Now, let W € #. Then we
have W € #y. Therefore there is U € i such that (T'x T)(U) C W. >

Corollary 7. As a special case in locally convex solid Riesz spaces, Theorem 3, (c) yields
that a locally convex solid Riesz space E is order bornological if and only if every bounded
lattice homomorphism from E into a seminormed Riesz space is continuous.

DEFINITION 6. Let (£2,4) and (£2,%) be locally convex V (or A)-lattice cones.
We shall say that T is |7|y (or |7|x)-continuous whenever T : (t@,il‘vﬂ) - (2, V/G/‘)
(or T: (‘@7”1/\7\) — (2, 7/‘;\')) is continuous. Similarly, we can define the concept of |7|-conti-

nuity.

Proposition 8. Let (Z,4) and (2,#') be locally convex V (or A)-lattice cones. Then
the V (or A)-lattice homomorphism T : (Z,) — (2,%) is u-bounded if and only if T
is ||y (or |T|A)-continuous.

< Let (22,4) and (2,%#) be locally convex V-lattice cones and T : (£, U) — (2, %)
be a u-bounded V-lattice homomorphism. Then T : ((@,LL‘Vﬂ) — (2, V/G/‘) is u-bounded,
since #? has the same u-bounded subsets under 4 and il‘/\T - Now, since (& ,Ll‘vﬂ) is V-order
bprnological, we conclude that T is |7|y-continuous. One the other hand if T'is ||y -continuous,
then T : (‘@’1%) — (2, Vﬂ‘x) is u-bounded. This implies that T : (2,U) — (2,%) is

u-bounded. On can prove the assertion for the case that (22, 4) and (2,%#) are locally
convex A-lattice cones. >

Corollary 8. Let (£,4) and (2,#') be locally convex lattice cones. Then the lattice
homomorphism T : (2,U) — (2, %) is u-bounded if and only if it is |T|-continuous.

Corollary 9. Every continuous V (or A)-lattice homomorphism is |T|y (or |T|)-continuo-
us. Also, every continuous lattice homomorphism is |T|-continuous.

Let (Z,4) be a locally convex V (or A)-lattice cone. We investigate the behavior of the
convex quasiuniform structure U‘Vﬂ (or U‘/\ﬂ) under V (or A)-order inductive limit.

Theorem 4. Let (Z2,4) be the V (or N)-order inductive limit of locally convex lattice cones
(2,44 )yer under the V (or A)-lattice homomorphisms f : P — &, v € I'. Then (£, 4,))
is the V (or A)-V (or A)-order inductive limit of locally convex lattice cones (ywﬂ\vﬂy)vef
(or (l@y,ﬂf\ﬂw)yep) under V (or A)-lattice homomorphisms fr: P, — &,y €T.

< We prove the theorem for the case that (£2,4) is the V-order inductive limit of locally

convex lattice cones (£, ) cr. For every y € T, f, : (‘@V’ul\/fh) — (Z,47)) is continuous

by Proposition 8. Let (£, #') be the V-order inductive limit of locally convex lattice cones

(t@y,ﬂrﬁh)wep under V-lattice homomorphisms f, : &, — &, v € I'. Then Ll|\/Th C ¥, by

the definition of V-order inductive limit. We claim that 222 has the same u-bounded subsets
under ¥ and L[‘VTW If B is u-bounded under L[‘VTW then it is u-bounded under 4. This shows
. Therefore B is

that for v € T, (fy x fy)"(B) is u-bounded under &l,, and then in !,l|\/7‘ﬂY
u-bounded under # . Now, this shows that the identity mapping I : (Q@,ﬂr/ﬂ) — (P2, W) is
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u-bounded. Then it is continuous, since ('@’ul\/ﬂ) is V-order bornological. Then W = il‘vﬂ.
A similar argument yields our claim for the other case. >

Corollary 10. The convex quasiuniform structure ;| is stable under the order inductive
limit.

In [3], we introduced the weak convex quasiuniform structure on a locally convex cone.
Here, we define the absolute weak convex quasiuniform structure on a locally convex V (or A)-
lattice cone.

Let (22,4) be a locally convex V (or A)-lattice cone and let Ly(or L) is the set of all
continuous V (or A)-lattice homomorphism from (2, 1) into (R, ¥). We denote by o (Z, Ly)
(or U5 (2, Lp)) the coarsest convex quasiuniform structure on &, that makes all u € Ly
(or g € L), continuous. In fact (£, 85(Z, Ly)) (or (Z,45(Z, Ln))) is the V (or A)-order
projective limit of (R, %) under all y € Ly (or g € Ly). This shows that (2, U5(Z, L))
(or (2, Uj,|(Z, Lp))) is a locally convex V (or A)-lattice cone. If (,41) is a locally convex
lattice cone and L is the set of all continuous lattice homomorphism from (£, 4) into (R, ”f;),
then we can define the solid convex quasiuniform structure on l,(¢, L) in a similar way.

For a locally convex lattice cone (Z2,4l), it is easy to see that U, (22, 2*) is finer than
o (£, L). But for some locally convex lattice cones, these convex quasiuniform structures
are equivalent.

EXAMPLE 3. Let Ry = Ry U {+o00}. We set U = {(a,b) € (R{)?: a < b} and U = {U}.
If we consider usual order on R, then il is a solid convex quasiuniform structure on R, and
(R, ) is a locally convex lattice cone (a us-lattice cone). The dual cone of (R, 1) consists
of all nonnegative reals an functionals 0 and 00 acting as:

0, a =0,

400 else,

0(a) =

0 else

— {+OO, a = "‘OO’ and +T.O(U,) — {

respectively. Since all elements of Ei are lattice homomorphism, we conclude that
ﬂ|0|(ﬁ+,L) = MU(K+,E1). In fact, we have L = 22*. It is easy to see that il is strictly
finer than 80, (R4, L).

DEFINITION 7. Let (£,4) and (2,%#') be locally convex V (or A)-lattice cones. The
linear operator T' : & — 2 is called |o|-continuous, whenever T' : (Z,4,/(Z, Lv))) —
(2,7,)(2,Ly)) (or T : (2, U15|(Z, L)) = (2,#|5/(2,Ln))) is continuous.

Proposition 9. Let (Z,4) and (2,#') be locally convex V (or A)-lattice cones. Then
every continuous V (or A)-lattice homomorphism from (Z,4) into (2, %) is |o|-continuous.

< We prove the assertion for the case that (2, ) and (2, %) be locally convex V-lattice
cones. We denote the sets of all continuous V-lattice homomorphisms on 2 and & by L|
and Ly, respectively. Let T': (22, 4) — (2, %) be a continuous V-lattice homomorphism and
Wi| € #|5/(2, L,). Then there are n € N and 1, ..., pu, € L, such that

n

ﬂ A;l(i) - VV\U\’

=1

where A; = p; X g, for ¢ = 1,...,n. We have p;0T" € Ly for ¢ = 1,...,n, since T is
a continuous V-lattice homomorphism. We set I'; = p;0T x p;0T, for i« = 1,...,n. Then
Ul = My T (1) € 45 (2, Ly) and we have (T x T)(U}y)) € Wiy >
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Theorem 5. Let (Z2,4) be a V (or A)-order bornological locally convex lattice cone
and (2,%) be a locally convex V (or A)-lattice cone which has the same u-bounded subsets
under W and #|,|(2, Lv)) (or #|,|(2,Ly))). Then every |o|-continuous V (or A)-lattice ho-
momorphism from & into 2 is continuous.

< Let T be a |o|-continuous V (or A)-lattice homomorphism from & into 2. Since every
u-bounded subset is weakly u-bounded, we conclude that T' is u-bounded by the assumptions.
Now, since (£, 4) is order bornological, T" is continuous. >

Corollary 11. Let (22,4) be a V (or A)-order bornological locally convex lattice cone.
Then every linear functional on (£2,4), which is V (or A)-lattice homomorphism, is continuous
if and only if it is |o|-continuous.
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MMOPAJKOBO BOPHOJIOTUYECKUWE JIOKAJIBHO
BHIITYKJIBIE PEHNIETOYHBIE KOHYCHI

Aitazex JI., Pankbapu A.

B crarne BBOAATCHA IIOHATULA US-PEHIETOYHOIO KOHYCa U IOPAAKOBO 60pHOJ’IOI‘I/I‘IeCKOI‘O JIOKAJIbHO BBIITYK-

JIOTO PENIETOTHOTO KOHyCa. B crenmanbHOM ciydae JOKaIbHO COMUAHOrO (= HOPMAIBHOTO) MPOCTPAHCTBA
Pucca (= BEKTOpHO#H pENIeTKHW) 3TW TOHATHS CBOAATCA K XOPOIIO W3BECTHBIM TOHATHAM TMOJIyHODPMU-
poBaHHOTO TIpocTpaHCcTBa Prcca m mopsaAKOBO GOPHOJIOIMYIECKOT0 MPOCTPAHCTBA Prcca, cCOOTBETCTBEHHO.

BBO,I[I/ITCSI TaKzKe€ TIOHATHE COJIMIHOTO MHOXKECTBa B JIOKAJIbBHO BBIITYKJIOM KOHYCE U JAOTCA HEKOTOPbIE
XapaKTepu3aluu MmOpAIKOBO 60pHOII01"I/I‘IeCKI/IX JIOKQJIBHO BBIIMIYKJIBIX PEMETOYHBIX KOHYCOB.

KurodyeBrble cjioBa: JI0KAJIHHO BBIMLYKJIBIN PENMIETOYHBIN KOHYC, TIOPSAIKOBO OOPHOJIOTHYIECKUN KOHYC.



