УДК 517.98

MAXIMAL QUASI-NORMED EXTENSION OF QUASI-NORMED LATTICES

A. G. Kusraev and B. B. Tasoev

To Professor A. B. Shabat on occasion of his 80th birthday

The purpose of this article is to extend the Abramovich's construction of a maximal normed extension of a normed lattice to quasi-Banach setting. It is proved that the maximal quasi-normed extension X^{\varkappa} of a Dedekind complete quasi-normed lattice X with the weak σ -Fatou property is a quasi-Banach lattice if and only if X is intervally complete. Moreover, X^{\varkappa} has the Fatou and the Levi property provided that X is a Dedekind complete quasi-normed space with the Fatou property. The possibility of applying this construction to the definition of a space of weakly integrable functions with respect to a measure taking values from a quasi-Banach lattice is also discussed, since the duality based definition does not work in the quasi-Banach setting.

Mathematics Subject Classification (2010): 46A16, 46B42, 46E30, 46G10, 47B38, 47G10.

Key words: quasi-Banach lattice, maximal quasi-normed extension, Fatou property, Levi property vector measure, space of weakly integrable functions.

1. Introduction

For over recent 25 years the spaces of integrable functions with respect to a measure taking values in a Banach (quasi-Banach) lattice have been a field of increased interest. The spaces of integrable and weakly integrable functions with respect to a vector measure possess interesting order and metric properties and have been studied intensively by many authors. They find applications in important problems such as the representation of abstract quasi-Banach lattices as spaces of integrable functions, the study of the optimal domain of linear operators, domination and factorization of operators, spectral integration etc., see [4, 5, 7, 18, 20] and the references therein.

A key role in the theory is played by the space $L_w^1(\mu)$ of weakly integrable functions with respect to a measure μ with values in a Banach space, see the survey paper by Curbera and Ricker [5] and the book by Okada, Ricker and Sánches Pérez [18]. However, in the context of quasi-Banach spaces, when the conjugate space may turn out to be trivial, the duality based definition of $L_w^1(\mu)$ does not work, so we need to find a suitable substitute for $L_w^1(\mu)$.

In the case of a measure taking values from a quasi-Banach lattice two natural candidates for the space of weakly integrable function were indicated in [10]. The first one arises as the domain of the smallest extension of the integration operator (see Aliprantis and Burkinshaw [3, Theorem 1.30]), and the second one is based on the construction of the maximal normed extension introduced by Abramovich in [1]. The approach based on the smallest extension of the integration operator is presented in [11].

^{© 2017} Kusraev A. G. and Tasoev B. B.

In order to realize the second possibility, it is necessary to extend Abramovich's construction to quasi-Banach setting, as done in this article. In Section 2 we sketch the needed information concerning quasi-Banach lattices and prove some Riesz-Fischer type completeness theorems for quasi-normed lattices; next, we gave a characterization of order continuous quasi-Banach lattices. In Section 3 we examine the construction of the maximal quasi-normed extension introduced by Abramovich [1] for Banach lattices. It is proved that the maximal quasi-normed extension X^{\varkappa} of a Dedekind complete quasi-normed lattice X with the weak σ -Fatou property is a quasi-Banach lattice if and only if X is intervally complete. Moreover, X^{\varkappa} has the Fatou and the Levi property provided that X is a Dedekind complete quasi-normed space with the Fatou property.

We use the standard notation and terminology of Aliprantis and Burkinshaw [3] and Meyer-Nieberg [17] for the theory of vector and Banach lattices (see also Abramovich and Aliprantis [2], Luxemburg and Zaanen [13]). Throughout the text we assume that all vector spaces are defined over the field of reals and all vector lattices are Archimedean. We let := denote the assignment by definition, while \mathbb{N} and \mathbb{R} symbolize the naturals and the reals.

2. Quasi-Banach Lattices

In this section, we briefly sketch the needed information concerning quasi-Banach lattices. In particular, we give some simple results on the completeness and order continuity of quasi-Banach lattices for which we have not found references.

DEFINITION 2.1. A quasi-normed space is a pair $(X, \|\cdot\|)$ where X is a real vector space and $\|\cdot\|$ is a quasi-norm, a function from X to \mathbb{R} such that the following conditions hold:

- (1) $||x|| \ge 0$ for all $x \in X$ and ||x|| = 0 if and only if x = 0.
- (2) $\|\lambda x\| = |\lambda| \|x\|$ for all $x \in X$ and $\lambda \in \mathbb{R}$.
- (3) There exists a constant $C \ge 1$ with $||x+y|| \le C(||x|| + ||y||)$ for all $x, y \in X$.
- If, in addition, for some 0 the inequality
- (4) $||x+y||^p \le ||x||^p + ||y||^p$ holds for all $x, y \in X$,

then $\|\cdot\|$ is called a *p-norm* and $(X,\|\cdot\|)$ is called a *p-normed space*.

The best constant C in 2.1(3) is called the quasi-triangle constant, or quasi-norm multiplier, or modulus of concavity of the quasi norm. Note that $\|\sum_{k=1}^n x_k\| \leq \sum_{k=1}^n C^k \|x_k\|$ for all $x_1, \ldots, x_n \in X$.

Two quasi-norms $\|\cdot\|$ and $\|\cdot\|'$ are equivalent if there is a constant $A \ge 1$ such that $A^{-1}\|x\| \le \|x\|' \le A\|x\|$ for all $x \in X$. By the Aoki–Rolewicz theorem (see [8]), each quasi-norm is equivalent to some p-norm for some 0 .

Theorem 2.2 (Aoki–Rolewicz). Let $(X, \|\cdot\|)$ be a quasi-normed space with the quasi-triangle constant $C \ge 1$ and $p = (1 + \log_2 C)^{-1}$. Define $\|\cdot\|_p : X \to \mathbb{R}$ as

$$||x||_p := \inf \left\{ \left(\sum_{k=1}^n ||x_k||^p \right)^{\frac{1}{p}} : x = \sum_{k=1}^n x_k, n \in \mathbb{N} \right\} \quad (x \in X).$$

Then $0 , <math>\|\cdot\|_p$ is a p-norm, and $\|x\|_p \le \|x\| \le 2^{1/p} \|x\|_p$ for all $x \in X$.

 \triangleleft See Maligranda [15, Theorem 1.2], Pietsch [19, 6.2.5]. \triangleright

Thus, we may assume unless otherwise is mentioned that a quasi-Banach space is equipped with a p-norm for some 0 .

A topological vector space X is said to be *locally bounded* if it has a bounded neighborhood of zero. A quasi-normed space is a locally bounded topological vector space if we take the sets $\{x \in X: \|x\| \leqslant \varepsilon\}$ $\{0 < \varepsilon \in \mathbb{R}\}$ for a base of neighborhoods of zero. Moreover, this topology may be induced by metric $d(x,y) := \|x-y\|^p$ $(x,y \in X)$ where $\|\cdot\|$ is an equivalent p-norm. Conversely, Hyers [6] proved that the topology of a locally bounded topological vector space X can be deduced from a quasi-norm, which may be obtained as the Minkowski functional of a bounded balanced neighborhood B of zero:

$$||x|| := ||x||_B := \inf \{0 < \lambda \in \mathbb{R} : x \in \lambda B\} \quad (x \in X).$$

A quasi-norm may be discontinuous in its own topology [19, 6.1.9]. However, every quasi-norm is equivalent to a continuous one, since a p-norm is continuous.

Definition 2.3. A quasi-Banach space (p-normed space) is a quasi-normed space which is complete in its metric uniformity.

Theorem 2.4. A quasi-normed space $X := (X, \|\cdot\|)$ with a triangle constant $C \geqslant 1$ is complete (and hence a quasi-Banach space) if and only if for every series (x_k) in X such that $\sum_{k=1}^{\infty} C^k \|x_k\| < \infty$ there exists $\sum_{k=1}^{\infty} x_k \in X$ and

$$\left\| \sum_{k=1}^{\infty} x_k \right\| \leqslant \sum_{k=1}^{\infty} C^{k+1} \|x_k\|.$$

 \triangleleft See Maligranda [15, Theorem 1.1]. \triangleright

The basic results of the Banach space theory such as open mapping theorem and the closed graph theorem (for linear operators) are valid also in the context of quasi-Banach spaces, see [9].

DEFINITION 2.5. A quasi-Banach (quasi-normed, p-Banach) space $(X, \| \cdot \|)$ is called a quasi-Banach lattice (respectively, quasi-normed lattice, p-Banach lattice) if, in addition, X is a vector lattice and $|x| \leq |y|$ implies $||x|| \leq ||y||$ for all $x, y \in X$.

Lemma 2.6. In any quasi-normed lattice X lattice operations are continuous and the positive cone is closed. Moreover, if an increasing (decreasing) net $(x_{\alpha})_{\alpha \in A}$ is quasi-norm convergent to $x \in X$, then $x = \sup_{\alpha \in A} x_{\alpha}$ $(x = \inf_{\alpha \in A} x_{\alpha})$.

It follows from Lemma 2.6 that the completion of a quasi-normed lattice X is a quasi-Banach lattice including X as a vector sublattice. Along similar lines, it can also be proved that Amemiya's result on completeness of normed lattices is true in the context of quasi-normed spaces: a quasi-normed lattice X is complete if and only if every increasing Cauchy sequence in X is convergent. This fact in combination with Theorem 2.4 leads to the following result.

Theorem 2.7. For a quasi-normed space $X := (X, \|\cdot\|)$ with a triangle constant $C \ge 1$ the following assertions are equivalent:

- (1) X is a quasi-Banach lattice.
- (2) For every series (x_k) in X_+ such that $\sum_{k=1}^{\infty} C^k ||x_k|| < \infty$ there exists $x \in X$ with $x = \sum_{k=1}^{\infty} x_k$.
- (3) For every series (x_k) in X_+ such that $\sum_{k=1}^{\infty} C^k ||x_k|| < \infty$ there exists $x \in X$ with $x = o \sum_{k=1}^{\infty} x_k := \sup_{n \in \mathbb{N}} \sum_{k=1}^n x_k$.
 - \triangleleft See [12, Theorem 2.7]. \triangleright

DEFINITION 2.8. A quasi-Banach lattice $(X, \|\cdot\|)$ (as well as the quasi-norm $\|\cdot\|$) is said to be *order continuous*, if $x_{\alpha} \downarrow 0$ implies $\|x_{\alpha}\| \downarrow 0$ for any net $(x_{\alpha})_{\alpha \in A}$ in X. If arbitrary nets are replaced by sequences, one speak of *order* σ -continuity.

Theorem 2.9. For a quasi-Banach lattice X the following are equivalent:

- (1) X is order continuous.
- (2) Every increasing order bounded sequence in X_+ is convergent.
- (3) X is Dedekind σ -complete and order σ -continuous.
- \triangleleft See [12, Theorem 2.10]. \triangleright

DEFINITION 2.10. A quasi-Banach lattice $(X, \|\cdot\|)$ is said to have the weak Fatou property (respectively weak σ -Fatou property) if there exists K > 0 (called the weak Fatou constant) such that for every increasing net (x_{α}) (respectively sequence (x_n)) with the supremum $x \in X$ we have $\|x\| \le K \sup_{\alpha} \|x_{\alpha}\|$ (respectively $\|x\| \le K \sup_{\alpha} \|x_{\alpha}\|$). If K = 1 then $\|x\| = \sup_{\alpha} \|x_{\alpha}\|$ and in this situation X is said to have the Fatou property (respectively σ -Fatou property).

DEFINITION 2.11. Say that a quasi-normed lattice $(X, \| \cdot \|)$ has the *Levi property* (respectively σ -Levi property) if $\sup_{\alpha} x_{\alpha}$ (respectively $\sup_{n} x_{n}$) exists for every increasing net (x_{α}) (respectively sequence (x_{n})) in X_{+} provided that $\sup_{\alpha} \|x_{\alpha}\| < \infty$ (respectively $\sup_{n} \|x_{n}\| < \infty$). A quasi-KB-space is an order continuous quasi-normed lattice with the Levi property.

Proposition 2.12. Suppose that X is a quasi-normed lattice with the Levi property. Then X is a Dedekind complete quasi-Banach lattice with the weak Fatou property.

Assume that X has the Levi property but lacks the weak Fatou property. Then for every $n \in \mathbb{N}$ there exists an increasing net $(y_{n,\alpha})_{\alpha \in A(n)}$ in X_+ such that $y_n = \sup_{\alpha \in A(n)} y_{n,\alpha}$ exists and

$$||y_n|| \ge n\tau$$
, $\tau = C^n n^2 \sup_{\alpha \in A(n)} ||y_{n,\alpha}|| \quad (n \in \mathbb{N}),$

where $C \ge 1$ is the triangle constant of X. Putting $\bar{y}_n := y_n/\tau$, $\bar{y}_{n,\alpha} := y_{n,\alpha}/\tau$ we arrive at the following relations:

$$\bar{y}_n = \sup_{\alpha \in \Lambda(n)} \bar{y}_{n,\alpha}, \quad \|\bar{y}_n\| \geqslant n, \quad \|\bar{y}_{n,\alpha}\| \leqslant C^{-n} n^{-2} \quad (n \in \mathbb{N}).$$

Let (x_{γ}) stands for the net of finite suprema of elements in $\{\bar{y}_{n,\alpha}: n \in \mathbb{N}, \alpha \in A(n)\}$. If $x_{\gamma} = \bar{y}_{n_1,\alpha_1} \vee \cdots \vee \bar{y}_{n_k,\alpha_k}$ with $\alpha_j \in A(n_j)$, then

$$||x_{\gamma}|| \le ||\bar{y}_{n_1,\alpha_1} + \dots + \bar{y}_{n_k,\alpha_k}|| \le \sum_{j=1}^k C^j ||\bar{y}_{n_j,\alpha_j}|| \le \sum_{j=1}^k C^j C^{-n_j} n_j^{-2} \le \sum_{n=1}^\infty \frac{1}{n^2} < \infty.$$

By hypothesis, $x = \sup_{\gamma} x_{\gamma}$ exists and satisfies $x \geq \bar{y}_n$ for all $n \in \mathbb{N}$. Consequently, $||x|| \geq n$ for all $n \in \mathbb{N}$, a contradiction. \triangleright

3. Maximal Quasi-Normed Extension

Consider a quasi-normed lattice $(X, \|\cdot\|)$ with the quasi-triangle constant C. Let X^{δ} stand for the Dedekind completion of X, so that X is identified with a majorizing order dense

sublattice of X^{δ} , while X^{δ} itself is a Dedekind complete vector lattice. Define a function $\|\cdot\|_{\delta}: X^{\delta} \to \mathbb{R}$ as

$$\|\bar{x}\|_{\delta} := \inf \{ \|x\| : x \in X_+, |\bar{x}| \le x \} \quad (\bar{x} \in X^{\delta}).$$

Clearly, $||x|| = ||x||_{\delta}$ for all $x \in X$ and $||\bar{x}||_{\delta} < \infty$ for each $\bar{x} \in X^{\delta}$, since X is majorizing sublattice. Positive homogeneity and monotonicity of $||\cdot||_{\delta}$ are obvious. Moreover, if $|\bar{x}| \leq x$ and $|\bar{y}| \leq y$ for some $x, y \in X$ and $\bar{x}, \bar{y} \in X^{\delta}$, then $|\bar{x} + \bar{y}| \leq x + y$ and $||\bar{x} + \bar{y}||_{\delta} \leq ||x + y|| \leq C(||x|| + ||y||)$ and hence $||\bar{x} + \bar{y}||_{\delta} \leq C(||\bar{x}||_{\delta} + ||\bar{y}||_{\delta})$. It follows that $(X_{\delta}, ||\cdot||_{\delta})$ is a quasi-normed lattice with the same quasi-triangle constant.

Lemma 3.1. If $(X, \|\cdot\|)$ is a quasi-Banach lattice with a triangle constant C or a p-Banach lattice, then so is $(X^{\delta}, \|\cdot\|_{\delta})$.

 \lhd Assume that $\sum_{k=1}^{\infty} C^k \|\bar{x}_k\|_{\delta} < \infty$ for a sequence (\bar{x}_k) in X_+^{δ} . Pick $x_k \in X_+$ such that $\bar{x}_k \leq x_k$ and $\|x_k\| \leq \|\bar{x}_k\|_{\delta} + 1/(2C)^k$. Then

$$\sum_{k=1}^{n} C^{k} \|x_{k}\| \leqslant \sum_{k=1}^{n} C^{k} \|\bar{x}_{k}\|_{\delta} + \sum_{k=1}^{n} \frac{1}{2^{k}}$$

and hence $\sum_{k=1}^{\infty} C^k ||x_k|| < \infty$. By Theorem 2.6 $x := o \cdot \sum_{k=1}^{\infty} x_k$ exists in X. Consequently, $o \cdot \sum_{k=1}^{\infty} \bar{x}_k$ exists in X^{δ} , since $\sum_{k=1}^{n} \bar{x}_k \leqslant x$ for all $n \in \mathbb{N}$. \triangleright

Assume now that $(X, \|\cdot\|)$ is a Dedekind complete quasi-normed lattice with a quasi-triangle constant C. Identify X with an order dense ideal in its universal completion X^u . Define a function $\|\cdot\|_{\varkappa}: X^u \to \mathbb{R} \cup \{+\infty\}$ by putting

$$\|\hat{x}\|_{\varkappa} := \sup \{ \|x\| : x \in X, \ 0 \leqslant x \leqslant |\hat{x}| \} \quad (\hat{x} \in X^u).$$

Observe that $\|x\| = \|x\|_{\varkappa}$ for all $x \in X$. Denote $X^{\varkappa} := \{\hat{x} \in X^u : \|\hat{x}\|_{\varkappa} < \infty\}$. If $0 \leqslant u \leqslant |\hat{x} + \hat{y}| \leqslant |\hat{x}| + |\hat{y}|$ for some $\hat{x}, \hat{y} \in X^{\varkappa}$ and $u \in X$, then there exist $x, y \in X$ with $0 \leqslant x \leqslant |\hat{x}|$, $0 \leqslant y \leqslant |\hat{y}|$, and u = x + y. It follows that $\|u\| \leqslant C(\|x\| + \|y\|) \leqslant C(\|\hat{x}\|_{\varkappa} + \|\hat{y}\|_{\varkappa})$ and thus $\|\hat{x} + \hat{y}\|_{\varkappa} \leqslant C(\|\hat{x}\|_{\varkappa} + \|\hat{y}\|_{\varkappa})$. Similarly, $\|\cdot\|_{\varkappa}$ is a p-norm, whenever $\|\cdot\|$ is. Taking into account obvious monotonicity and positive homogeneity of $\|\cdot\|_{\varkappa}$, we see that $(X^{\varkappa}, \|\cdot\|_{\varkappa})$ is a quasi-normed lattice with the quasi-triangle constant C and, if $\|\cdot\|$ is a p-norm, so is $\|\cdot\|_{\varkappa}$.

Definition 3.2. A maximal quasi-normed extension of a quasi-normed lattice $(X, \|\cdot\|)$ is the pair $(X^{\delta \varkappa}, \|\cdot\|_{\delta \varkappa})$ with $X^{\delta \varkappa} := (X^{\delta})^{\varkappa}$ and

$$\|\hat{x}\|_{\delta\varkappa} := \sup \left\{ \inf\{\|x\|: \ x \in X, \ |\bar{x}| \leqslant x\}: \ \bar{x} \in X^{\delta}, \ 0 \leqslant \bar{x} \leqslant |\hat{x}| \right\} \quad (\hat{x} \in X^{\delta\varkappa}).$$

Observe that if X is Dedekind complete then $X^{\delta \varkappa} = X^{\varkappa}$ and $\|\cdot\|_{\delta \varkappa} = \|\cdot\|_{\varkappa}$.

Lemma 3.3. If $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ are quasi-normed lattices, Y is an order dense ideal in X^u containing X, and $\|x\|_X = \|x\|_Y$ for all $x \in X$, then $Y \subset X^{\varkappa}$.

 \triangleleft This is an immediate consequence of the definition. \triangleright

DEFINITION 3.4. A quasi-normed lattice X is called *intervally complete* if every order interval of X is complete or, in other words, every order bounded Cauhcy sequence of X is convergent to an element of X.

It can be easily seen that each intervally complete quasi-normed lattice is an order dense ideal of its own metric completion and every order ideal of any quasi-Banach lattice is an intervally complete quasi-normed lattice. Thus, the class of intervally complete quasi-normed lattices coincides with the class of order dense ideals of quasi-Banach lattices.

Lemma 3.5. Intervally complete quasi-normed lattice is uniformly complete.

 \lhd Let (x_n) be a uniformly Cauchy sequence, that is, there exist $e \in X_+$ and a sequence of reals (ε_n) such that $\lim_n \varepsilon_n = 0$ and $|x_{n+k} - x_n| \leqslant \varepsilon_n e$ for all $n, k \in \mathbb{N}$. Then $||x_{n+k} - x_n|| \leqslant \varepsilon_n ||e||$ and (x_n) is Cauchy in $(X, ||\cdot||)$. Moreover, $|x_{k+1}| \leqslant |x_1| + \varepsilon_1 e$ for all $k \in \mathbb{N}$. By hypothesis, there exists $x = \lim_n x_n$ in $(X, ||\cdot||)$. Passage to the limit in $|x_{n+k} - x_n| \leqslant \varepsilon_n e$ with $k \to \infty$ yields $|x - x_n| \leqslant \varepsilon_n e$ for all $n \in \mathbb{N}$, whence X is uniformly complete. \triangleright

Lemma 3.6. Let \tilde{X} be the metric completion of an intervally complete quasi-normed lattice X. Then \tilde{X} is Dedekind complete if and only if so is X.

 \lhd If \tilde{X} is Dedekind complete then so is X, since X is an order dense ideal of \tilde{X} . Assume that a quasi-normed lattice X is intervally complete and Dedekind complete and prove \tilde{X} is Dedekind complete. It was proved by Veksler [21, 22] that an Archimedean vector lattice is Dedekind complete if and only if it is uniformly complete and has the projection property. By Lemma 3.5 it suffices to show that \tilde{X} has the projection property. Consider an element $x \in \tilde{X}$ and a band \tilde{B} in \tilde{X} and pick a sequence (x_n) in X converging to x. Observe, that $B := \tilde{B} \cap X$ is a band of X and $B^{\perp} = \tilde{B}^{\perp} \cap X$, since X is an order dense ideal in \tilde{X} . If π stands for the band projection in X onto B, then $\pi' := I_X - \pi$ is the band projection onto B^{\perp} . The sequences (πx_n) and $(\pi' x_n)$ are Cauchy, as so is (x_n) , hence they converge to some $u \in \tilde{X}$ and $u' \in \tilde{X}$, respectively. Clearly, $u \in \tilde{B}$, $u' \in \tilde{B}^{\perp}$, and x = u + u'. \triangleright

Lemma 3.7. A quasi-normed lattice X is intervally complete if and only if every increasing order bounded Cauchy sequence in X_+ is quasi-norm convergent.

 \lhd The proof given in [23, Theorem 1.1] for normed lattices works in the quasi-normed setting. \triangleright

Lemma 3.8. Let X be a universally complete vector lattice and $(x_{\alpha})_{\alpha \in A}$ an increasing net in X_+ . Then there exists a band projection π on X such that $\sup_{\alpha} \pi x_{\alpha}$ exists in X, while for the complementary band projection $\pi' := I_X - \pi$ we have $N\pi'e = \sup_{\alpha} \pi'(x_{\alpha} \wedge Ne)$ for all $N \in \mathbb{N}$ and $e \in X_+$.

 \lhd There is no loss of generality in assuming that $X = C_{\infty}(Q)$ with extremally compact space Q. (Recall that the symbol $C_{\infty}(Q)$ denotes the universally complete vector lattice of all continuous functions $f: Q \to [-\infty, \infty]$ for which the open set $\{q \in Q: -\infty < f(q) < \infty\}$ is dense in Q.) Let (x_{α}) be an increasing net in $C_{\infty}(Q)$ and define two functions $\bar{x}, x: Q \to [0, \infty]$ by

$$\bar{x}(q) = \sup\{x_{\alpha}(q) : \alpha \in A\} \quad (q \in Q),$$
$$x(q) := \inf_{U \in \mathcal{N}(q)} \sup_{q' \in U} \bar{x}(q') \quad (q \in Q),$$

where $\mathcal{N}(q)$ is a basis of neighborhoods of q. Then \bar{x} is lower semicontinuous and x is continuous, see [24, Lemma V.1.2 and Theorem V.1.1]. Consider an open set $Q_0 := \{q \in Q : x(q) < \infty\}$ and observe that its closure \bar{Q}_0 is clopen. Now, let π stands for the band projection of $C_{\infty}(Q)$ corresponding to \bar{Q}_0 and πx stands for the function coinciding with x on \bar{Q}_0 and vanishing on $Q_1 := Q \setminus \bar{Q}_0$. Evidently, $\pi x \in C_{\infty}(Q)$ and $\pi x = \sup_{\alpha} \pi x_{\alpha}$, see [24, Theorem V.2.1]. At the same time $x(q) = \infty$ for all $q \in Q_1$, so that $\bar{x}(q) = \infty$ for all $q \in Q_1 \setminus A$ where A is a meager subset of Q_1 . The latter implies that $Ne(q) = \sup_{\alpha} x_{\alpha}(q) \wedge Ne(q)$ for all $q \in Q_1 \setminus A$, whence the desired equation $N\pi'e = \sup_{\alpha} \pi'(x_{\alpha} \wedge Ne)$ follows. \triangleright

Lemma 3.9. Let X be a quasi-normed lattice X with the weak σ -Fatou property. If X is intervally complete and Dedekind complete, then its maximal quasi-normed extension X^{\varkappa} is intervally complete.

 \triangleleft Take an increasing order bounded Cauchy sequence (\hat{x}_n) in X_+^{\varkappa} . Since X^{\varkappa} is Dedekind complete, there exists $\hat{x} = \sup_n \hat{x}_n$. Prove that (\hat{x}_n) converges to \hat{x} .

We may assume without loss of generality that $A := \sum_{n=1}^{\infty} C^n n \|\hat{x}_{n+1} - \hat{x}_n\|_{\varkappa} < \infty$. Applying Lemma 3.8 to the increasing sequence (\hat{z}_n) with $\hat{z}_n := \sum_{k=1}^n k(\hat{x}_{k+1} - \hat{x}_k)$ yields a band projection π on X^u such that $\hat{z} := \sup_n \pi \hat{z}_n$ exists in X^u and for $\pi' := I_{X^u} - \pi$ we have $N\pi'e = \sup_n \pi'(\hat{z}_n \wedge Ne)$ for all $N \in \mathbb{N}$ and $e \in X$, $0 \le e \le \hat{z}$. Making use of the weak σ -Fatou property and monotonicity of the quasi-norm we deduce

$$N\|\pi'e\| \leqslant K \sup_m \|\pi'(\hat{z}_m \wedge Ne)\| \leqslant K \sup_m \|\hat{z}_m\|_{\varkappa} \leqslant KA < \infty.$$

It follows that $\pi'e = 0$ for all $e \in X$ and hence $\pi'\hat{z} = 0$, since X is order dense ideal in X^u . Thus, $\pi = I_{X^u}$ and $\hat{z} = \sup_n \hat{z}_n \in X^u$. To ensure that $\hat{z} \in X^{\varkappa}$ it suffices to check that $||x|| \leq A$ for an arbitrary element $x \in X$ with $0 \leq x \leq \hat{z}$. For any such x put $y_n := \hat{z}_n \wedge x$ and observe that (y_n) is an increasing sequence in X_+ with $x = \sup_n y_n$. Moreover, (y_n) is Cauchy, since for arbitrary $n, l \in \mathbb{N}$ we can estimate:

$$||y_{n+l} - y_n|| = ||\hat{z}_{n+l} \wedge x - \hat{z}_n \wedge x||_{\varkappa} \leqslant ||\hat{z}_{n+l} - \hat{z}_n||_{\varkappa}$$

$$= \sum_{k=n+1}^{n+l} C^k k ||\hat{x}_{k+1} - \hat{x}_k||_{\varkappa} \leqslant \sum_{k=n+1}^{\infty} C^k k ||\hat{x}_{k+1} - \hat{x}_k||_{\varkappa} \to 0$$

as $n \to \infty$. The interval comleteness of X implies that the sequence (y_n) is convergent in X, so that $\lim_n y_n = \sup_n y_n = x$ by Lemma 2.6. Observe now that $||x|| \le A$, since $||y_n|| \le ||\hat{z}_n||_{\varkappa} \le A$ and $||x|| = \lim_n ||y_n|| \le A$, whence $\hat{z} \in X^{\varkappa}$.

Now we are able to show that (\hat{x}_n) converges to \hat{x} . First note that $\hat{x} - \hat{x}_n = o - \sum_{k=n}^{\infty} (\hat{x}_{k+1} - \hat{x}_k)$, and consequently

$$n(\hat{x} - \hat{x}_n) \leqslant o \sum_{k=n}^{\infty} k(\hat{x}_{k+1} - \hat{x}_k) \leqslant \hat{z}.$$

It follows that $0 \le \hat{x} - \hat{x}_n \le (1/n)\hat{z}$ and $\|\hat{x} - \hat{x}_n\|_{\varkappa} \le (1/n)\|\hat{z}\|_{\varkappa} \to 0$. Appealing to Lemma 3.7 completes the proof. \triangleright

Theorem 3.10. Let $(X, \|\cdot\|_X)$ be a Dedekind complete quasi-normed lattice with the weak σ -Fatou property. The maximal quasi-normed extension $(X^{\varkappa}, \|\cdot\|_{\varkappa})$ is a quasi-Banach lattice if and only if X is intervally complete.

 \lhd The necessity is immediate from the fact that X is an order dense ideal of X^{\varkappa} . To prove the sufficiency observe that the metric completion $(Y, \|\cdot\|_Y)$ of $(X^{\varkappa}, \|\cdot\|_{\varkappa})$ is Dedekind complete by Lemma 3.6. At the same time X^{\varkappa} is order dense ideal of Y, since X^{\varkappa} is intervally complete by Lemma 3.9 and an intervally complete quasi-normed lattice is an order dense ideal of its metric completion. Thus, $X \subset Y \subset (X^{\varkappa})^u = X^u$ and $\|x\| = \|x\|_Y$ for all $x \in X$ so that $Y \subset X^{\varkappa}$ by Lemma 3.3. It follows that $Y = X^{\varkappa}$ and X^{\varkappa} is complete. \rhd

It is evident that if X has the Levi property then $X = X^{\varkappa}$ but the converse is false, see [1, Examples 2 and 5]. The next result asserts that the maximal quasi-normed extension with the weak Fatou property has the Levi property.

Theorem 3.11. Let X be a Dedekind complete quasi-normed lattice. Then the maximal quasi-normed extension X^{\varkappa} has the Levi property if and only if X has the weak Fatou property.

 \lhd Let X be a Dedekind complete quasi-normed lattice with the weak Fatou constant K. Take an increasing net (\hat{x}_{α}) in X^{\varkappa} with $B := \sup_{\alpha} \|\hat{x}_{\alpha}\|_{\varkappa} < \infty$. By Lemma 3.8 there exists a band projection π on X^{\varkappa} such that $\hat{x} = \sup_{\alpha} \pi \hat{x}_{\alpha}$ exists in X^{u} and for every $N \in \mathbb{N}$ and

 $e \in X_+$ we have $N\pi^{\perp}e = \sup_{\alpha} \pi^{\perp}(\hat{x}_{\alpha} \wedge Ne)$. Making use of the weak Fatou property we deduce $N\|\pi^{\perp}e\| \leqslant K \sup_{\alpha} \|\pi^{\perp}(\hat{x}_{\alpha} \wedge Ne)\| \leqslant K \sup_{\alpha} \|\hat{x}_{\alpha}\|_{\varkappa} = BK$ and $\pi^{\perp} = 0$, since N and e are arbitrary. It follows that π is the identity operator and $\hat{x} = \sup_{\alpha} \hat{x}_{\alpha}$. Show that $\hat{x} \in X^{\varkappa}$. If $x \in X$ and $0 \leqslant x \leqslant \hat{x}$ then $x \wedge \hat{x}_{\alpha} \in X$ and $(x \wedge \hat{x}_{\alpha})$ is an increasing net with the supremum x. By the weak Fatou property we have $\|x\| \leqslant K \sup_{\alpha} \|x \wedge \hat{x}_{\alpha}\| \leqslant K \sup_{\alpha} \|\hat{x}_{\alpha}\|_{\varkappa} = KB$. It follows that $\sup\{\|x\| : x \in X, 0 \leqslant x \leqslant \hat{x}\} \leqslant KB$ and $\hat{x} \in X^{\varkappa}$.

To prove the converse, it suffices to observe that if X^{\varkappa} has the Levi property, then X has the weak Fatou property by Proposition 2.12. \triangleright

Proposition 3.12. Let X be a Dedekind complete quasi-normed lattice. Then the maximal quasi-normed extension X^{\varkappa} has the Fatou property if only if X has the Fatou property.

 \lhd The necessity is obvious. To prove the sufficiency take an increasing net (\hat{x}_{α}) in X_{+}^{\varkappa} such that $\hat{x} = \sup_{\alpha} \hat{x}_{\alpha}$ for some $\hat{x} \in X_{+}^{\varkappa}$. Pick an arbitrary $x \in X_{+}$ with $0 \leqslant x \leqslant \hat{x}$ and note that $\hat{x}_{\alpha} \wedge x$ is an increasing set in X_{+} and $\sup_{\alpha} \hat{x}_{\alpha} \wedge x = x$. In virtue of the Fatou property we have $\|x\| = \sup_{\alpha} \|\hat{x}_{\alpha} \wedge x\| \leqslant \sup_{\alpha} \|\hat{x}_{\alpha}\|_{\varkappa}$. Hence, $\|x\| \leqslant \sup_{\alpha} \|\hat{x}_{\alpha}\|_{\varkappa} \leqslant \|\hat{x}\|_{\varkappa}$ for all $x \in X_{+}$ with $0 \leqslant x \leqslant \hat{x}$. The latter implies that $\|\hat{x}\|_{\varkappa} = \sup_{\alpha} \|\hat{x}_{\alpha}\|_{\varkappa}$.

Corollary 3.13. Let X be a Dedekind complete quasi-normed lattice. If X has the Fatou property then the maximal quasi-normed extension X^{\varkappa} has the Fatou and the Levi property. \triangleleft The proof follows immediately from Theorem 3.11 and Proposition 3.12. \triangleright

4. Concluding remarks

REMARK 4.1. The maximal normed extension of a Dedekind complete normed lattice was introduced and the Theorem 3.10 was proved in Abramovich [1, Definition on p. 8 and Theorem 3]. Lemmas 3.6 and 3.7 for normed lattices can be seen in Veksler [22, Lemma 2] and [23, Theorem 1.1], respectively.

REMARK 4.2. In the case of normed lattices Theorem 3.10 is true without the weak σ -Fatou property, see Abramovich [1]. We do not know whether or not the assumption about the weak σ -Fatou property is superfluous in Theorem 3.10.

REMARK 4.3. Let X be a quasi-Banach lattice and $(\Omega, \mathscr{R}^{\mathrm{loc}}, \mu)$ a vector measure space with a localizable measure $\mu: \mathscr{R} \to X_+$ which is countable additive in the sense of order or quasi-norm convergence depending on the context, see [10, 11]. The Bartle–Dunford–Schwartz type integration and the purely order based Kantorovich–Wright integration with respect to μ provide two quasi-Banach lattices of integrable functions, $L^1_{\tau}(\mu)$ and $L^1_o(\mu)$, respectively, see [10]. Moreover, the vector lattice $L^0(\mu)$ (of equivalence classes) of μ -a.e. finite $\mathscr{R}^{\mathrm{loc}}$ -measurable real-valued functions is a universal completion of both quasi-Banach lattices $L^1_o(\mu)$ and $L^1_{\tau}(\mu)$. According to Definition 3.2 we can construct maximal quasi-normed extensions $(L^1_{o\varkappa}(\mu), \|\cdot\|_{o\varkappa})$ and $(L^1_{\tau\varkappa}(\mu), \|\cdot\|_{\tau\varkappa})$ of $L^1_o(\mu)$ and $L^1_\tau(\mu)$, respectively. By virtue of Theorem 3.10 $L^1_{\tau\varkappa}(\mu)$ is a quasi-Banach lattice and an order dense ideal in $L^0(\mu)$. Moreover, $L^1_{\tau\varkappa}(\mu)$ has the Fatou and Levi properties by Corollary 3.13, since $L^1_\tau(\mu)$ is order continuous.

REMARK 4.4. Similarly, $L^1_{o\varkappa}(\mu)$ is a quasi-normed lattice and order dense ideal in $L^0(\mu)$, but $L^1_{o\varkappa}(\mu)$ is metrically complete under the additional assumption that $L^1_o(\mu)$ has the weak σ -Fatou property. We do not know whether $L^1_{o\varkappa}(\mu)$ is metrically complete (and hence a quasi-Banach lattice) without this additional assumption coming from Theorem 3.10.

Definition 4.5. An \mathscr{R}^{loc} -measurable function $f:\Omega\to\mathbb{R}\cup\{\pm\infty\}$ is called weakly integrable with respect to μ or weakly μ -integrable if

$$||f||_{\mu} := \sup_{x^* \in B_+^*} \int |f| \ d|x^* \mu| < +\infty,$$

where $|x^*\mu|: \mathscr{R}^{\mathrm{loc}} \to [0,\infty]$ variation of $x^*\mu$ and B_+^* the positive part of the unit ball in X^* . A weakly integrable function f is integrable with respect to μ if for each $A \in \mathscr{R}^{\mathrm{loc}}$ there exists a vector denoted by $\int_A f d\mu \in X$, such that

$$x^* \left(\int_A f \, d\mu \right) = \int_A f \, dx^* \mu \text{ for all } x^* \in X^*.$$

Denote by $L_w^1(\mu)$ the space of (equivalence classes) all weakly μ -integrable function equipped with the norm $\|\cdot\|_{\mu}$ and let $L^1(\mu)$ stand for the subspace of $L_w^1(\mu)$ consisting of (equivalence classes) all μ -integrable functions. Note that if $\|f\|_{\mu} < \infty$ then $|f| < \infty$ μ -a.e. Thus, $L_w^1(\mu)$ and $L^1(\mu)$ can be considered as subspaces of $L^0(\mu)$.

Theorem 4.6. Let X be a Banach lattice and $(\Omega, \mathcal{R}, \mu)$ a vector measure space with \mathcal{R} -decomposable measure $\mu : \mathcal{R} \to X_+$. Then $L^1_w(\mu)$ and $L^1_{\tau \varkappa}(\mu)$ coincide as Banach lattices.

REMARK 4.7. In Theorem 4.6 \mathscr{R} -decomposability of measure μ provides $L^1_w(\mu)$ with the Levi and Fatou properties (see [4, Theorem 5.8]), while $L^1_{\tau_{\varkappa}}(\mu)$ always has these properties. Without \mathscr{R} -decomposability assumption it may happen that $L^1_w(\mu) \neq L^1_{\tau_{\varkappa}}(\mu)$. Similar questions for the space of order integrable functions $L^1_o(\mu)$ and the corresponding maximal quasi-Banach extension $L^1_{o_{\varkappa}}(\mu)$ remain open.

References

- 1. Abramovich Yu. A. On maximal normed extension of a semi-ordered normed spaces // Izv. Vyssh. Uchebn. Zaved. Mat.—1970.—Vol. 3.—P. 7–17.
- 2. Abramovich Y. A. and Aliprantis C. D., An Invitation to Operator Theory.—Providence (R. I.): Amer. Math. Soc, 2002.—iv+530 p.—(Graduate Stud. in Math. Vol. 50).
- 3. Aliprantis C.D. and Burkinshaw O. Positive Operators.—London etc.: Acad. Press Inc., 1985.—xvi+367 p.
- 4. Calabuig J. M., Delgado O., Juan M. A., and Sánchez Pérez E. A. On the Banach lattice structure of L_w^1 of a vector measure on a δ -ring // Collect. Math.—2014.—Vol. 65.—P. 67–85.
- 5. Curbera G. P. and Ricker W. J. Vector measures, integration, applications // Positivity.—Basel: Birkhäuser, 2007.—P. 127–160.—(Trends Math.).
- Hyers D. H. A note on linear topological spaces // Bull. Amer. Math. Soc.—1938.—Vol. 44, № 2.—P. 76–80.
- Juan A. M. and Sánchez-Pérez E. A. Maurey-Rosenthal domination for abstract Banach lattices // J. Ineq. and Appl.—2013.—Vol. 213.—P. 1–12.
- 8. Kalton N. J. Convexity conditions for non-locally convex lattices // Glasgow Math. J.—1984.—Vol. 25.—P. 141–142.
- 9. Kalton N. J. Quasi-Banach spaces // Handbook of the Geometry of Banach Spaces (Eds. W. B. Johnson and J. Lindenstrauss).—Amsterdam a.o.: Elsevier, 2003.—P. 1118–1130.
- 10. Kusraev A. G. and Tasoev B. B. Kantorovich-Wright integration and representation of quasi-Banach lattices // Dokl. Math.—2017.—Vol. 474.—P. 15–18.
- 11. Kusraev A. G. and Tasoev B. B. Kantorovich-Wright integration and representation of vector lattices // J. Math. Anal. Appl.—2017.—Vol. 455.—P. 554–568.
- 12. Kusraev A. G. and Tasoev B. B. Kantorovich-Wright integration and representation of quasi-Banach lattices // J. Math. Anal. Appl.—(to appear).
- 13. Luxemburg W. A. J. and Zaanen A. C. Riesz Spaces. Vol. 1.—Amsterdam-London: North-Holland, 1971.—514 pp.
- 14. Lewis D. R. On integration and summability in vector spaces // Illinois J. Math.—1972.—Vol. 16.—P. 294–307.
- 15. Maligranda L. Type, cotype and convexity properties of quasi-Banach spaces // Proc. of the International Symposium on Banach and Function Spaces Kitakyushu.—Japan, 2003.—P. 83–120.
- 16. Masani P. R. and Niemi H. The integration theory of Banach space valued measures and the Tonelli-Fubini theorems. II. Pettis integration // Adv. Math.—1989.—Vol. 75.—P. 121–167.

- 17. Meyer-Nieberg P. Banach Lattices.—Berlin etc.: Springer, 1991.—xvi+395 p.
- 18. Okada S., Ricker W. J., and Sánchez-Pérez E. A. Optimal Domain and Integral Extension of Operators Acting in Function Spaces.—Basel: Birkhäuser, 2008.—(Oper. Theory Adv. Appl. Vol. 180).
- Pietsch A. Operator Ideals.—Berlin: Deutsch. Verlag Wiss., 1978; North-Holland, Amsterdam-London-N. Y.-Tokyo, 1980.
- 20. Sanchez Perez E. A. and Tradacete P. Bartle–Dunford–Schwartz integration for positive vector measures and representation of quasi-Banach lattices // J. Nonlin. and Conv. Anal.—2016.—Vol. 17, № 2.—P. 387–402
- 21. Veksler A. I. On realization of Archimedean K-lineals // Sib. Math. J.-1962.-Vol. 3, № 1.-P. 7-16.
- 22. Veksler A. I. The concept of a linear lattice which is normal in itself, and certain applications of this concept to the theory of linear and linear normed lattices // Isv. Vuzov. Math.—1966.—Vol. 4.—P. 13–22.
- 23. Veksler A. I. Interval completeness and intervally complete normability of KN-lineals // Isv. Vuzov. Math.—1970.—Vol. 4.—P. 36–46.
- 24. Vulikh B. Z. Introduction to the Theory of Partially Ordered Spaces.—M.: Fizmatgiz, 1961.—[in Russian].

Received 14 July, 2017

Kusraev Anatoly Georgievich Vladikavkaz Science Center of the RAS, *Chairman* 22 Markus Street, Vladikavkaz, 362027, Russia; North Ossetian State University, *Head of the Department of Mathematical Analysis* 44–46 Vatutin Street, Vladikavkaz, 362025, Russia E-mail: kusraev@smath.ru

TASOEV BATRADZ BOTAZOVICH Southern Mathematical Institute — the Affiliate of Vladikavkaz Science Center of the RAS, Researcher 22 Markus street, Vladikavkaz, 362027, Russia E-mail: tasoevbatradz@yandex.ru

О МАКСИМАЛЬНОМ КВАЗИНОРМИРОВАННОМ РАСШИРЕНИИ КВАЗИНОРМИРОВАННЫХ ВЕКТОРНЫХ РЕШЕТОК

Кусраев А. Г., Тасоев Б. Б.

Цель работы — распространить конструкцию Абрамовича максимального нормированного расширения нормированной решетки на класс квазинормированных решеток. Установлено, что максимальное квазинормированное расширение X^{\varkappa} порядково полной квазинормированной решетки X со слабым счетным свойством Фату является квазибанаховой решеткой в том и только в том случае, когда X интервально полна. Боле того, X^{\varkappa} обладает свойствами Леви и Фату, если только X — порядково полная квазинормированная решетка со свойством Фату. Обсуждается также возможность применения этой конструкции к определению пространства слабо интегрируемых функций относительно меры со значениями в квазибанаховой решетке, не прибегая к двойственности (которая может оказаться тривиальной).

Ключевые слова: квазинормированная решетка, максимальное квазинормированное расширение, свойство Фату, свойство Леви, векторная мера, слабо интегрируемые функции.