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The purpose of this article is to extend the Abramovich’s construction of a maximal normed extension
of a normed lattice to quasi-Banach setting. It is proved that the maximal quasi-normed extension X*
of a Dedekind complete quasi-normed lattice X with the weak o-Fatou property is a quasi-Banach lattice
if and only if X is intervally complete. Moreover, X has the Fatou and the Levi property provided
that X is a Dedekind complete quasi-normed space with the Fatou property. The possibility of applying
this construction to the definition of a space of weakly integrable functions with respect to a measure
taking values from a quasi-Banach lattice is also discussed, since the duality based definition does not
work in the quasi-Banach setting.
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1. Introduction

For over recent 25 years the spaces of integrable functions with respect to a measure
taking values in a Banach (quasi-Banach) lattice have been a field of increased interest. The
spaces of integrable and weakly integrable functions with respect to a vector measure possess
interesting order and metric properties and have been studied intensively by many authors.
They find applications in important problems such as the representation of abstract quasi-
Banach lattices as spaces of integrable functions, the study of the optimal domain of linear
operators, domination and factorization of operators, spectral integration etc., see [4, 5, 7, 18,
20] and the references therein.

A key role in the theory is played by the space LL () of weakly integrable functions with
respect to a measure p with values in a Banach space, see the survey paper by Curbera and
Ricker |5] and the book by Okada, Ricker and Sanches Pérez [18|. However, in the context of
quasi-Banach spaces, when the conjugate space may turn out to be trivial, the duality based
definition of L (1) does not work, so we need to find a suitable substitute for L} (11).

In the case of a measure taking values from a quasi-Banach lattice two natural candidates
for the space of weakly integrable function were indicated in [10]. The first one arises as the
domain of the smallest extension of the integration operator (see Aliprantis and Burkinshaw
[3, Theorem 1.30]), and the second one is based on the construction of the maximal normed
extension introduced by Abramovich in [1]. The approach based on the smallest extension of
the integration operator is presented in [11].
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In order to realize the second possibility, it is necessary to extend Abramovich’s cons-
truction to quasi-Banach setting, as done in this article. In Section 2 we sketch the needed
information concerning quasi-Banach lattices and prove some Riesz—Fischer type completeness
theorems for quasi-normed lattices; next, we gave a characterization of order continuous quasi-
Banach lattices. In Section 3 we examine the construction of the maximal quasi-normed
extension introduced by Abramovich [1] for Banach lattices. It is proved that the maximal
quasi-normed extension X* of a Dedekind complete quasi-normed lattice X with the weak
o-Fatou property is a quasi-Banach lattice if and only if X is intervally complete. Moreover,
X* has the Fatou and the Levi property provided that X is a Dedekind complete quasi-normed
space with the Fatou property.

We use the standard notation and terminology of Aliprantis and Burkinshaw [3] and
Meyer-Nieberg [17] for the theory of vector and Banach lattices (see also Abramovich and
Aliprantis [2], Luxemburg and Zaanen [13]). Throughout the text we assume that all vector
spaces are defined over the field of reals and all vector lattices are Archimedean. We let :=
denote the assignment by definition, while N and R symbolize the naturals and the reals.

2. Quasi-Banach Lattices

In this section, we briefly sketch the needed information concerning quasi-Banach lattices.
In particular, we give some simple results on the completeness and order continuity of quasi-
Banach lattices for which we have not found references.

DEFINITION 2.1. A quasi-normed space is a pair (X, | - ||) where X is a real vector space
and || - || is a quasi-norm, a function from X to R such that the following conditions hold:

(1) ||z]] = 0 for all z € X and ||z|| =0 if and only if x = 0.

(2) ||Az|| = |Al||z|| for all z € X and A € R.

(3) There exists a constant C' > 1 with ||z 4+ y|| < C(||z| + ||y||) for all z,y € X.
If, in addition, for some 0 < p < 1 the inequality

4) |l +y||? < ||lz]|P + ||y||P holds for all x,y € X,

then || - || is called a p-norm and (X, || - ||) is called a p-normed space.

The best constant C' in 2.1(3) is called the quasi-triangle constant, or quasi-norm
multiplier, or modulus of concavity of the quasi norm. Note that || S 7_, x| < Sor_; CF||x|
for all x1,...,x, € X.

Two quasi-norms || - || and || - || are equivalent if there is a constant A > 1 such that
A7Y|z|| < ||=||" < A||z|| for all z € X. By the Aoki-Rolewicz theorem (see [8]), each quasi-
norm is equivalent to some p-norm for some 0 < p < 1.

Theorem 2.2 (Aoki-Rolewicz). Let (X, || - ||) be a quasi-normed space with the quasi-
triangle constant C > 1 and p = (1 +log, C)~!. Define || - ||, : X — R as

n 1 n
lllyi= inf{<Zkaup)p I neN} (0 e X)
k=1 k=1

Then 0 < p < 1, | - ||, is a p-norm, and ||z||, < ||lz|| < 2V/7|z||, for all z € X
< See Maligranda [15, Theorem 1.2|, Pietsch [19, 6.2.5]. >

Thus, we may assume unless otherwise is mentioned that a quasi-Banach space is equipped
with a p-norm for some 0 < p < 1.
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A topological vector space X is said to be locally bounded if it has a bounded neighborhood
of zero. A quasi-normed space is a locally bounded topological vector space if we take the sets
{r e X : |z <e} (0 <e€R) for a base of neighborhoods of zero. Moreover, this topology
may be induced by metric d(z,y):= ||z — y||” (z,y € X) where ||-|| is an equivalent p-norm.
Conversely, Hyers [6] proved that the topology of a locally bounded topological vector space X
can be deduced from a quasi-norm, which may be obtained as the Minkowski functional of
a bounded balanced neighborhood B of zero:

|z]:= ||z||p:==inf {0 <AeR: z € AB} (z€X).
A quasi-norm may be discontinuous in its own topology [19, 6.1.9]. However, every quasi-norm

is equivalent to a continuous one, since a p-norm is continuous.

DEFINITION 2.3. A quasi-Banach space (p-normed space) is a quasi-normed space which
is complete in its metric uniformity.

Theorem 2.4. A quasi-normed space X := (X, || - ||) with a triangle constant C > 1 is
complete (and hence a quasi-Banach space) if and only if for every series (xy) in X such that
S, Ckllak|l < oo there exists > 50 |z € X and

00
D> o
k=1

< See Maligranda [15, Theorem 1.1]. >

o0

<Y O .
k

=1

The basic results of the Banach space theory such as open mapping theorem and the
closed graph theorem (for linear operators) are valid also in the context of quasi-Banach
spaces, see [9].

DEFINITION 2.5. A quasi-Banach (quasi-normed, p-Banach) space (X, || - ||) is called
a quasi-Banach lattice (respectively, quasi-normed lattice, p-Banach lattice) if, in addition,
X is a vector lattice and |z| < |y| implies ||z|| < ||y|| for all z,y € X.

Lemma 2.6. In any quasi-normed lattice X lattice operations are continuous and the
positive cone is closed. Moreover, if an increasing (decreasing) net (zqo)aca IS quasi-norm
convergent to x € X, then x = supye Zo (¢ = infoea xq)-

<1 This can be ensured just as in the case of Banach lattice using monotonicity of the
quasi-norm and quasi-triangle inequality. >

It follows from Lemma 2.6 that the completion of a quasi-normed lattice X is a quasi-
Banach lattice including X as a vector sublattice. Along similar lines, it can also be proved
that Amemiya’s result on completeness of normed lattices is true in the context of quasi-
normed spaces: a quasi-normed lattice X is complete if and only if every increasing Cauchy
sequence in X is convergent. This fact in combination with Theorem 2.4 leads to the following
result.

Theorem 2.7. For a quasi-normed space X := (X, | - ||) with a triangle constant C' > 1
the following assertions are equivalent:

(1) X is a quasi-Banach lattice.

(2) For every series (x1) in X such that Y oo, C¥||zk|| < oo there exists x € X with
T =3 5o The

(3) For every series (z1) in X such that Y oo, C¥||zk|| < oo there exists x € X with
T =0-Y poq Tpi=SUPpeN O peq Tk

< See [12, Theorem 2.7]. >
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DEFINITION 2.8. A quasi-Banach lattice (X, || - ||) (as well as the quasi-norm || - ||) is said
to be order continuous, if z, | 0 implies ||z4|| | O for any net (z4)aca in X. If arbitrary nets
are replaced by sequences, one speak of order o-continuity.

Theorem 2.9. For a quasi-Banach lattice X the following are equivalent:
(1) X is order continuous.

(2) Every increasing order bounded sequence in X is convergent.

(3) X is Dedekind o-complete and order o-continuous.

< See [12, Theorem 2.10]. >

DEFINITION 2.10. A quasi-Banach lattice (X, ||-||) is said to have the weak Fatou property
(respectively weak o-Fatou property) if there exists K > 0 (called the weak Fatou constant)
such that for every increasing net (x,,) (respectively sequence (x,,)) with the supremum z € X
we have ||z|| < K sup,, ||za|| (respectively ||z|| < K sup,, ||z,]|). If K = 1 then ||z| = sup,, ||za]|
and in this situation X is said to have the Fatou property (respectively o-Fatou property).

DEFINITION 2.11. Say that a quasi-normed lattice (X, || - ||) has the Levi property
(respectively o-Levi property) if sup, z, (respectively sup,, x,) exists for every increasing
net (z4) (respectively sequence (z,)) in X4 provided that sup, ||z.] < oo (respectively
sup,, ||zn|| < 00). A quasi-KB-space is an order continuous quasi-normed lattice with the Levi
property.

Proposition 2.12. Suppose that X is a quasi-normed lattice with the Levi property.
Then X is a Dedekind complete quasi-Banach lattice with the weak Fatou property.

<l The fact that a quasi-normed lattice with the Levi property has also the weak
Fatou property is the only thing that needs verification. The proof is similar to that of
Proposition 2.4.19 in Meyer-Nieberg [17].

Assume that X has the Levi property but lacks the weak Fatou property. Then for every
n € N there exists an increasing net (Yn,a)aca(n) in X4 such that y, = supea(n) Yn,a exists
and

lynll = n7, 7= C"n?supaeapmy lUnall (0 €N),

where C' > 1 is the triangle constant of X. Putting ¢, := yn/7, Un.a = Yn,o/T We arrive at the
following relations:

Jn=SWacA(m) Inar  Tnll =1 |lfnall <CT"n7* (n€N).

Let (x,) stands for the net of finite suprema of elements in {y,o : n € N, a € A(n)}.
If 20 = Unyay VooV Unpap, With o € A(ny), then

=
3

k
_ _ = 1
H$7H < ||yn1,a1 +ot ynkﬂk” < ZCJHynj@jH ZCJC n]n Z —5 < o0
j=1

j=1 n=1

By hypothesis, z = sup,, 7, exists and satisfies z > g, for all n € N. Consequently, ||z| > n
for all n € N, a contradiction. >

3. Maximal Quasi-Normed Extension

Consider a quasi-normed lattice (X, -||) with the quasi-triangle constant C. Let X?°
stand for the Dedekind completion of X, so that X is identified with a majorizing order dense
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sublattice of X°, while X?° itself is a Dedekind complete vector lattice. Define a function
Il lls: X° = Ras

lz]|s:= inf{HxH cx e Xy, |7 < :U} (z € X‘s).

Clearly, ||z|| = ||lz||s for all # € X and ||Z||s < oo for each & € X?, since X is majorizing
sublattice. Positive homogeneity and monotonicity of || - ||s are obvious. Moreover, if |Z| < z
and || < y for some 2,y € X and Z,5 € X?, then |z + 7| <z +y and ||z + 7lls < ||z +y| <
C(||z]|+ly||) and hence ||z+7||s < C(||Z||s+||7lls)- It follows that (X5, ||-||s) is a quasi-normed
lattice with the same quasi-triangle constant.

Lemma 3.1. If (X, ||-||) is a quasi-Banach lattice with a triangle constant C' or a p-Banach
lattice, then so is (X°, | - ||s5).

< Assume that > 7%, C*||Zg||ls < oo for a sequence (zy) in X¢. Pick ), € X such that
T < xp and kaH < H.TkH(g + 1/(20)k Then

n n n 1
k k)~

d CHla <) C HkaHéJrZQ—k

k=1 k=1 k=1

and hence > 7%, C*||zg|| < oo. By Theorem 2.6 x:= 0-Y oo, 7, exists in X. Consequently,
0-> 7% | T, exists in X°, since S}, #x < x for all n € N. 1>

Assume now that (X, || - ||) is a Dedekind complete quasi-normed lattice with a quasi-
triangle constant C'. Identify X with an order dense ideal in its universal completion X™".
Define a function || - ||, : X* — RU {400} by putting

[Z],c:=sup {||z] : z € X, 0< & < |2} (2 X").

Observe that ||z|| = ||z, for all x € X. Denote X*:= {& € X" : ||Z]|,, < oco}. If 0 < u <
|z + 9| < |Z| + |g] for some Z,7 € X* and u € X, then there exist z,y € X with 0 <z < |Z|,
0 <y < gl and w = 2+ y. It follows that ul] < C(Jz] + lyll) < C(I&lx + 3]l) and
thus |2 + g, < C(||Z]],c + [|9]]5). Similarly, || - ||,. is a p-norm, whenever || - || is. Taking into
account obvious monotonicity and positive homogeneity of || - ||,., we see that (X*, | - ||,.) is a
quasi-normed lattice with the quasi-triangle constant C' and, if || - || is a p-norm, so is || - ||

DEFINITION 3.2. A mazimal quasi-normed extension of a quasi-normed lattice (X, || - ||)
is the pair (X%, ]| - |l5,) with X% := (X%)* and

1155 := Sup{inf{HQCII creX, |7 <z} 7e X, 0<F< yae\} (& € X%,

Observe that if X is Dedekind complete then X°% = X* and || - [|s;c = || - || -

Lemma 3.3. If (X, || - |x) and (Y,| - ||y) are quasi-normed lattices, Y is an order dense
ideal in X" containing X, and ||z||x = ||z||y for all z € X, then Y C X*.

< This is an immediate consequence of the definition. >

DEFINITION 3.4. A quasi-normed lattice X is called intervally complete if every order
interval of X is complete or, in other words, every order bounded Cauhcy sequence of X is
convergent to an element of X.

It can be easily seen that each intervally complete quasi-normed lattice is an order dense
ideal of its own metric completion and every order ideal of any quasi-Banach lattice is an
intervally complete quasi-normed lattice. Thus, the class of intervally complete quasi-normed
lattices coincides with the class of order dense ideals of quasi-Banach lattices.
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Lemma 3.5. Intervally complete quasi-normed lattice is uniformly complete.

< Let (z,) be a uniformly Cauchy sequence, that is, there exist e € X and a sequence of
reals (g,,) such that lim, e, = 0 and |z,4x — zp| < epe for all n,k € N. Then ||z, — zp] <
enllell and (x,) is Cauchy in (X,|| - ||). Moreover, |xxi1| < |z1| + 1€ for all k& € N. By
hypothesis, there exists x = lim,, x,, in (X, || - ||). Passage to the limit in |z, — z,| < epe
with & — oo yields |z — x,| < ene for all n € N, whence X is uniformly complete. >

Lemma 3.6. Let X be the metric completion of an intervally complete quasi-normed
lattice X. Then X is Dedekind complete if and only if so is X.

< If X is Dedekind complete then so is X, since X is an order dense ideal of X. Assume
that a quasi-normed lattice X is intervally complete and Dedekind complete and prove X is
Dedekind complete. It was proved by Veksler [21, 22] that an Archimedean vector lattice is
Dedekind complete if and only if it is uniformly complete and has the projection property. By
Lemma 3.5 it suffices to show that X has the projection property. Consider an element x € X
and a band B in X and pick a sequence (x,) in X converging to . Observe, that B:= BN X
is a band of X and B+ = BX N X, since X is an order dense ideal in X. If 7 stands for
the band projection in X onto B, then 7’ := Ix — m is the band projection onto Bt. The
sequences (mzp) and (7'z,) are Cauchy, as so is (z,,), hence they converge to some u € X
and u’ € X, respectively. Clearly, v € B, v/ € B+, and z = u+u'. >

Lemma 3.7. A quasi-normed lattice X is intervally complete if and only if every increasing
order bounded Cauchy sequence in X, is quasi-norm convergent.

< The proof given in [23, Theorem 1.1] for normed lattices works in the quasi-normed
setting. >

Lemma 3.8. Let X be a universally complete vector lattice and (T4 )aca an increasing
net in X, . Then there exists a band projection m on X such that sup, 7z exists in X, while
for the complementary band projection 7' := Ix —m we have N7'e = sup,, 7 (zo A Ne) for all
N eNande e X,.

< There is no loss of generality in assuming that X = C(Q) with extremally compact
space Q. (Recall that the symbol C(Q) denotes the universally complete vector lattice of all
continuous functions f : Q) — [—00, 0o] for which the open set {g € Q : —oo < f(q) < 0o} is
dense in @.) Let (z,) be an increasing net in C(Q)) and define two functions z,z : Q — [0, o0]
by

T(q) = supfza(q) : @« € A} (¢ € @),
z(q): Uelilyf(q) sup 7(¢) (¢€Q),

where .#(q) is a basis of neighborhoods of ¢. Then Z is lower semicontinuous and x is
continuous, see |24, Lemma V.1.2 and Theorem V.1.1]. Consider an open set @y := {q €
Q : x(q) < oo} and observe that its closure Qg is clopen. Now, let 7 stands for the band
projection of Cu(Q) corresponding to Qo and 7z stands for the function coinciding with z
on Qo and vanishing on Q1 := Q \ Qo. Evidently, 72 € Co(Q) and 7z = sup, T4, see [24,
Theorem V.2.1]. At the same time x(q) = oo for all ¢ € @1, so that Z(q) = co for allg € @1\ A
where A is a meager subset of Q1. The latter implies that Ne(q) = sup,, z4(q) A Ne(q) for all
q € Q1 \ A, whence the desired equation N7'e = sup,, 7’'(z, A Ne) follows. >

Lemma 3.9. Let X be a quasi-normed lattice X with the weak o-Fatou property. If X
is intervally complete and Dedekind complete, then its maximal quasi-normed extension X*
is intervally complete.
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< Take an increasing order bounded Cauchy sequence (&) in X7. Since X* is Dedekind
complete, there exists & = sup,, Z,,. Prove that (&,) converges to .

We may assume without loss of generality that A:=) "7 ,C"n||Zy41 — &plx<oo.
Applying Lemma 3.8 to the increasing sequence (2,,) with 2, := > | k(Zp41 — &) yields
a band projection m on X such that Z:= sup,, 72, exists in X% and for 7’ := Ixu — 7 we
have N7'e = sup,, 7'(2, A Ne) for all N € N and e € X, 0 < e < 2. Making use of the weak
o-Fatou property and monotonicity of the quasi-norm we deduce

N||7'e|| < K sup,, ||7'(2m A Ne)|| < K sup,, ||Zmll» < KA < .

It follows that n’e = 0 for all e € X and hence 7’2 = 0, since X is order dense ideal in X".
Thus, 7 = Ix« and Z = sup,, 2, € X*. To ensure that Z € X* it suffices to check that ||z|| < A
for an arbitrary element x € X with 0 < z < 2. For any such x put y,:= 2, A x and observe
that (y,) is an increasing sequence in X with x = sup,, y,. Moreover, (y,) is Cauchy, since
for arbitrary n,l € N we can estimate:

[Yn+t = Ynll = 1Znss A w — 2n Al < Zng — 20l
n+l 9]
= > C*llder — 2kl < D CPkllErir — kll — 0
k=n+1 k=n+1

as n — oo. The interval comleteness of X implies that the sequence (y,) is convergent
in X, so that lim, vy, = sup,y, = x by Lemma 2.6. Observe now that [|z|| < A, since
lynll < |I2n]l < A and |[Jz|| = limy, ||y,|| < A, whence Z € X*.

Now we are able to show that (Z,) converges to z. First note that £—&, = 0-> ;2 (Zx41—
Zr), and consequently

[o¢]
n(& —&n) <o) k(Er4 — &) < £
k=n

It follows that 0 < & — &, < (1/n)Z and ||Z — 2|, < (1/n)]|2]|,. — 0. Appealing to Lemma 3.7
completes the proof. >

Theorem 3.10. Let (X,|| - ||x) be a Dedekind complete quasi-normed lattice with the
weak o-Fatou property. The maximal quasi-normed extension (X*,|| - ||..) is a quasi-Banach
lattice if and only if X is intervally complete.

<1 The necessity is immediate from the fact that X is an order dense ideal of X*. To
prove the sufficiency observe that the metric completion (Y| -||y) of (X*, |- ||..) is Dedekind
complete by Lemma 3.6. At the same time X* is order dense ideal of Y, since X* is intervally
complete by Lemma 3.9 and an intervally complete quasi-normed lattice is an order dense
ideal of its metric completion. Thus, X C Y C (X*)"* = X" and ||z|| = ||z|y for all z € X so
that Y € X*” by Lemma 3.3. It follows that Y = X* and X* is complete. >

It is evident that if X has the Levi property then X = X* but the converse is false, see
[1, Examples 2 and 5]. The next result asserts that the maximal quasi-normed extension with
the weak Fatou property has the Levi property.

Theorem 3.11. Let X be a Dedekind complete quasi-normed lattice. Then the maximal
quasi-normed extension X* has the Levi property if and only if X has the weak Fatou property.

< Let X be a Dedekind complete quasi-normed lattice with the weak Fatou constant K.
Take an increasing net (Z,) in X* with B:= sup, ||Za]/;» < co. By Lemma 3.8 there exists
a band projection m on X* such that & = sup, 72, exists in X* and for every N € N and
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e € X, we have Nnte = sup, 7t (2, A Ne). Making use of the weak Fatou property we
deduce N|rte| < Ksup,, |7+ (2o A Ne)|| < K sup,, ||Zall,» = BK and 7+ = 0, since N and e
are arbitrary. It follows that 7 is the identity operator and Z = sup, Z,. Show that z € X*.
Ifr € Xand 0 < z < & then A%, € X and (xAZ,) is an increasing net with the supremum x.
By the weak Fatou property we have ||z|| < K sup, ||[tAZq| < K sup, ||Za|;c = K B. It follows
that sup{||z| : € X, 0<z <2} < KB and 7 € X*.

To prove the converse, it suffices to observe that if X* has the Levi property, then X has
the weak Fatou property by Proposition 2.12. >

Proposition 3.12. Let X be a Dedekind complete quasi-normed lattice. Then the ma-
ximal quasi-normed extension X* has the Fatou property if only if X has the Fatou property.

< The necessity is obvious. To prove the sufficiency take an increasing net (Z,) in X7
such that & = sup, z, for some 2 € X7. Pick an arbitrary x € X with 0 <z < 2 and note
that o A x is an increasing set in X and sup, o A = z. In virtue of the Fatou property
we have ||z|| = sup,, [|Za A x| < sup, ||Zalls.. Hence, ||z|| < sup, ||Zall; < [|Z]]5 for all x € X
with 0 < z < #. The latter implies that ||Z||,. = sup, ||Za||5. >

Corollary 3.13. Let X be a Dedekind complete quasi-normed lattice. If X has the Fatou
property then the maximal quasi-normed extension X* has the Fatou and the Levi property.

<1 The proof follows immediately from Theorem 3.11 and Proposition 3.12. >

4. Concluding remarks

REMARK 4.1. The maximal normed extension of a Dedekind complete normed lattice
was introduced and the Theorem 3.10 was proved in Abramovich [1, Definition on p.8 and
Theorem 3]. Lemmas 3.6 and 3.7 for normed lattices can be seen in Veksler [22, Lemma 2]
and |23, Theorem 1.1], respectively.

REMARK 4.2. In the case of normed lattices Theorem 3.10 is true without the weak
o-Fatou property, see Abramovich [1]. We do not know whether or not the assumption about
the weak o-Fatou property is superfluous in Theorem 3.10.

REMARK 4.3. Let X be a quasi-Banach lattice and (Q,%loc,,u) a vector measure space
with a localizable measure p : # — X which is countable additive in the sense of order or
quasi-norm convergence depending on the context, see [10, 11]. The Bartle-Dunford—Schwartz
type integration and the purely order based Kantorovich-Wright integration with respect to
p provide two quasi-Banach lattices of integrable functions, L1 (1) and L} (), respectively, see
[10]. Moreover, the vector lattice L°(u1) (of equivalence classes) of y-a.e. finite %'°-measurable
real-valued functions is a universal completion of both quasi-Banach lattices L}(u) and LL(p).
According to Definition 3.2 we can construct maximal quasi-normed extensions (L. (11), ||*[|ox)
and (L1 (u), || |l+s) of LL(1) and LL(u), respectively. By virtue of Theorem 3.10 LL_(u) is a
quasi-Banach lattice and an order dense ideal in L%(u1). Moreover, L () has the Fatou and
Levi properties by Corollary 3.13, since L1(u) is order continuous.

REMARK 4.4. Similarly, L (1) is a quasi-normed lattice and order dense ideal in L°(p),
but L. (i) is metrically complete under the additional assumption that L(x) has the weak
o-Fatou property. We do not know whether L!_(u) is metrically complete (and hence a quasi-
Banach lattice) without this additional assumption coming from Theorem 3.10.

DEFINITION 4.5. An Z'°°-measurable function f : © — R U {#o0} is called weakly
integrable with respect to p or weakly p-integrable if

£ i= s [ 17] dia* sl < oc,
z*eBY
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where |2*u| : £'°° — [0, 0c] variation of z*1 and B’ the positive part of the unit ball in X*.
A weakly integrable function f is integrable with respect to p if for each A € Z'°° there exists
a vector denoted by fA fdu € X, such that

x* /fdu :/fdac*,u for all z*e X™.
A A

Denote by LL (1) the space of (equivalence classes) all weakly yu-integrable function equipped
with the norm || - ||, and let L'(p) stand for the subspace of L} (1) consisting of (equivalence
classes) all p-integrable functions. Note that if ||f]|,, < oo then |f| < co p-a.e. Thus, L} (u)
and L'(u) can be considered as subspaces of LO(y).

Theorem 4.6. Let X be a Banach lattice and (2, %, 1) a vector measure space with
Z-decomposable measure p: # — X . Then L. (1) and L (1) coincide as Banach lattices.

REMARK 4.7. In Theorem 4.6 %Z-decomposability of measure p provides L1 (1) with the
Levi and Fatou properties (see [4, Theorem 5.8]), while Ll _(u) always has these properties.
Without Z-decomposability assumption it may happen that L. (u) # L., (u). Similar
questions for the space of order integrable functions L}(u) and the corresponding maximal
quasi-Banach extension L!_(p) remain open.
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O MAKCUMAJIbHOM KBABMHOPMUNPOBAHHOM PACHIMPEHUN
KBABMHOPMNPOBAHHBIX BEKTOPHBIX PEITETOK

Kycpaes A. T, Tacoes b. b.

ITesib paboThl — PaACIPOCTPAHUTH KOHCTPYKIMIO AGPaMOBUYa MAKCUMAJIHBHOIO HOPMUPOBAHHOIO PACIIHU-
peHnsi HOPMHUPOBAHHON PENMIETKH HA KJIACC KBA3WHOPMUPOBAHHBIX PENIETOK. YCTAHOBJIEHO, YTO MAaKCH-
MaJIbHO€ KBA3WHOPMHUPOBAHHOE pacuimpeHne X~ TOPSIKOBO IMOJIHOM KBAa3WHOPMUPOBAHHOM pemeTku X
co cs1abbiM cueTHbIM cBolicTBoM Dary saBisgeTcs KBa3ubOaHAXOBONW PENIeTKON B TOM U TOJBKO B TOM CJIy-
4qae, Korjga X MHTEPBAJIbHO 1oJiHA. Boste Toro, X obnamaer csoiicrBamu Jlesu u @ary, eciu Toabko X —
TIOPSIKOBO TIOJTHAsl KBAa3WHOPMUPOBAaHHAsT permeTka co cBoiictBom Pary. O6GCyXKIaeTcsi TaKKe BO3MOK-
HOCTBH IIPUMEHEHMs ITONW KOHCTPYKIUHU K ONPEEJICHUIO IPOCTPAHCTBA c1abo mHTerpupyeMbix (hyHKImi
OTHOCHUTEJILHO MEPBI CO 3HAYECHUSAMHU B KBAa3MOAHAXOBOI pemeTke, He mpuberas K ABoficTBeHHOCTH (KOTO-
pas MOXKeT OKa3aThCs TPUBHAILHOMN ).

KirogyeBble ciioBa: KBa3MHOPMUPOBaHHAs PELIeTKa, MAKCUMAIbHOE KBA3HHOPMHUPOBAHHOE PACUIMPEHHE,
csoiictBo Paty, cBoiicTBO JleBn, BeKTOpHAs Mepa, c1abo MHTerpupyemble OYHKIIAN.



