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A NUMERICAL METHOD FOR THE SOLUTION
OF FIFTH ORDER BOUNDARY VALUE PROBLEM
IN ORDINARY DIFFERENTIAL EQUATIONS

P. K. Pandey

In this article we have proposed a technique for solving the fifth order boundary value problem as a coupled
pair of boundary value problems. We have considered fifth order boundary value problem in ordinary
differential equation for the development of the numerical technique. There are many techniques for
the numerical solution of the problem considered in this article. Thus we considered the application
of the finite difference method for the numerical solution of the problem. In this article we transformed
fifth order differential problem into system of differential equations of lower order namely one and four.
We discretized the system of differential equations into considered domain of the problem. Thus we got
a system of algebraic equations. For the numerical solution of the problem, we have the system of algebraic
equations. The solution of the algebraic equations is an approximate solution of the problem considered.
Moreover we get numerical approximation of first and second derivative as a byproduct of the proposed
method. We have shown that proposed method is convergent and order of accuracy of the proposed method
is at lease quadratic. The numerical results obtained in computational experiment on the test problems
approve the efficiency and accuracy of the method.
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1. Introduction

The presences of differential equations in mathematical modelling of physical phenomena
in natural sciences are common. A fifth order differential equation and corresponding boundary
value problem arise in the study of dynamics of the fluid in rheology [1, 2]. In this article we
consider a method for the numerical solution of the fifth order boundary value problems of the
following form:

u® (z) = flz,u), a<z<b (1.1)

where function f(x,u) is regular and differentiable in [a,b] and subject to the boundary
conditions

u(a) = o1, u'(a) =0z, u'(a)=ca3, wu(d)=p and u'(b) =/

where aq, oo, a3, £1 and By are real constant.

A literature on the theoretical concepts of existence and uniqueness of the solution
of problem (1.1) in detail can be found in [3]. Thus the existence and uniqueness of the
solution to problem (1.1) is assumed. The emphasis in this article will be on the development
of a numerical method for the approximate numerical solution of the fifth order boundary
value problem.
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In the literature little work reported on the solution of odd higher order boundary
value problems. Some work reported in the literature specially on fifth order boundary
value problems are finite difference method [4], spline method [5, 6], adomian decomposition
method [7], spectral Galerkin and collocation method |2, 8, 9], differential transformation [10]
and references therein. Recently problem (1.1) solved by reproducing kernel method and some
literary work reported in [11].

Hence, the purpose of this article is to develop numerical method for solution of fifth
order boundary value problems (1.1). An odd third order boundary value problem solved
and boundary conditions incorporated in natural way in [12]. Motivated by that work,
we developed finite difference method for numerical solution of fifth order boundary value
problem by reducing to system of odd-even order boundary value problems. To the best of
our knowledge, in the literature no method similar to proposed method for the numerical
solution of problem (1.1) has been reported. We hope that others may find the proposed
method an improvement to those existing finite difference methods for fifth order boundary
value problems.

We have presented our work in this article as follows: In Section 2 the finite difference
method, in Section 3 we derived a finite difference method. In Section 4, we have discussed
convergence of the proposed method under appropriate condition. The application of the
proposed method on the test problems and numerical results in Section 5. A discussion and
conclusion on the overall performance of the proposed method are presented in Section 6.

2. The Difference Method

Let us consider the following initial value problem,

d

& =v(z), a<xz<b, (2.1)
dx

with the initial condition

u(a) = aq,

where v(x) is some differentiable function in [a,b]. Then equation (1.1) transformed into the
following form,
d*v
i = f(z,u), a<z<b, (2.2)

with the boundary conditions
v(a) =ag, v'(a)=asz, v0b)=p and V' (b) =1,

where 71 is an approximate value and equal to 2(0{1%%132)@275 U Thus the fifth order
boundary value problem (1.1) has been reduced to a system of lower order boundary value
problems (2.1)—(2.2).

We define N finite numbers of nodal points a < zg < 21 < 22 < ... < xny41 < b using
uniform step length h such that z; = a 4+ th, i = 0,1,2,...,N + 1, in [a,b], the domain
in which the solution of the problem (1.1) is desired. Suppose we wish to determine the
numerical approximation of solution u(z) of the problem (1.1) at the nodal point z; and let
u; denotes the numerical approximation of u(x) at node x = x;, i = 1,2,..., N. Furthe let us
denote f; as the approximation of the value of the source function f(z,u(z)) at node = = x;,
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i =0,1,2,...,N + 1. Thus the system boundary value problem (2.1)—(2.2), a transformed
boundary value problem (1.1) at node x = x; may be written as,

4
U@‘():fia
i =wv;, i=1,2,...,N.

Following the ideas in [13, 14], we propose our finite difference method for v(x), v'(z) and
u(x) a numerical solution of problem (2.3),

4

h (fisr +13fi + fiz1);

=2(vi41 = 205 + i) + h(vi —viog) = o5

h4
=3(vis1 — vim1) + BV +4vj + v y) = @(fz‘ﬂ — fic1);
h2
—hv; + 7’0; +u; —u;—1 =0.

If the forcing function f(z,u) in problem (1.1) is linear then the system of equations (2.4)
will be linear otherwise we will obtain nonlinear system of equations.

3. Derivation of the Difference Method

In this section we out line the derivation of the proposed method, we have followed the
same approach as given in [13, 14]. Let us write a linear combination of solution v(z), v'(x)
and source function f(xz,u) at nodes xz41, x;

a1(vig1 +vi1) + agvi + hby(viyy — vi_q) + h* (er(fixs + fio1) + cofi) =0, (3.1)

where ag, a1, b1, cg and ¢; are constants to be determined. Using Taylor series expansion
about the point x; and method of undetermine coefficients, we obtain

13 1
b =(4,-2,1,—,—— |]. 2
(QO)al) 1560)61) () D) 90) 90> (3 )

Thus from (3.1)—(3.2), we have

h4
—2(vip1 — 2v; + v—1) + h(vig —vi_1) — %(fi—l—l +13f; + fic1) + T; = 0, (3.3)
where T; is truncation error and equal to %01(8)- Similarly we can derive the following

equations

h4
=3(vit1 — vic1) + h(vigg + 40+ v_) — @(fi—i—l — fi-1) +T) =0,

B2 (3.4)
—hv; + 7@2 +ug —uio + T =0,
where T/, T? are truncation errors and respectivel 1t LA R SO Thus f
7 T pectively equal to g55v; 7, —%u;™. us from

(3.3)-(3.4), we conclude that the order of the proposed finite difference method (2.4) will be
at least O(h?).
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4. Convergence Analysis

We will consider following linear test equation for convergence analysis of the proposed
method (2.4).
u® (z) = f(x), a<xz<b (4.1)

u(a) =y, u'(a)=az, u'(a)=a3, wubd)=p and v'(b)=P.

Let u be the solution obtained by method (2.4) of the problem (4.1), we can write in the
matrix form

Ju=RH. (4.2)

Let U be the exact solution of problem (4.1). Thus finite difference method (2.4) may be
written in matrix

JU=RH+T. (4.3)

Let us define an error matrix a difference between approximate and exact solution of
problem (4.1), i.e. E = u — U and subtract (4.3) from (4.2), we have

E=-J!T, (4.4)
where
Ay hAi2  Agz
J = —3A21 hA22 A23 ,
2
and
4 =2 0 0 1 0
-2 4 =2 -1 0 1
A= , A= )
-2 4 =2 -1 0 1
0 -2 4 NxN 0 -1 0 NxN
1 0
1 4 1 1 1 0
Ay = , Az = y ,
1 4 1 ’
0 1 4 NxN 0 1 NxN
1 0
-1 1
Azz = ;
-1 1
0 -1 1 NxXN

A2 = A, Agp = A3z and A3 = A3 = Onx,

/ / T / / T
u:[Ul,...,vN,vl,...,vN,ul,...,uN] 5 U:[Vl,...,VN,%,...,VN,Ul,...,UN] 5
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RH = (di)3N><17

200 + has + %(fi-i—l + 13f; + fz‘_l), 1=1;
4 .
A (fivr + 13fi + fic1), 2<i<N -1
4 R
280 + hy + &5 (fis1 + 13fi + fic1), = N;
4 .
4 — —3ay — hag + &5 (fir1 — fis1), i=N+1
=< ., .
Z Z—o(fz‘+1—fz‘—14), N+2<i<2N -1,
382 + hy1 + &5 (fiv1 — fic1), i =2N;
aq, 1=2N +1;
0, IN +2<i<3N
and T = (ti)ngla
—%vi(s), 1 <7< N;
ti={ 2ol N4+1<i<2N;
B, 2N +1<i < 3N.
It is easy to prove that matrices Aj1, Ao and Ajss are invertible [15, 16]. Let us define
~1 1 ~1
Uzp = jzlgl,?ji(kfl HA]kAkk Hv k=2,3, UkOw = jini)li,?) HAJkAkk Hv k=12,
M* = H (1—1—1};”?) and M, = H (1—1—020“}).
2<k<3 1<k<2

Let us assume
M.M* < M, + M*

then matrix J is invertible [17] and

max, || Ay || M. M*

I < : 45
) < el 1R (@5)
Thus from (4.4) and (4.5), we have
_ max;, || AL || M, M*
[} = |37 < |17 v (4.6)

M, + M* — M. M*"~

Thus from equation (4.6) it follows that ||E|| is bounded and it will tends to zero as h
approaches to zero. This established the convergence of the method (2.4) and the order of
convergence of method (2.4) is at least O(h?).

5. Numerical Results

To demonstrate the computational efficiency of method (2.4), we have considered two
model problems. In each model problem, we took uniform step size h. In Table 1 and Table 2,
we have shown M AEy, MAFE, and M AFE, the maximum absolute error in the solution wu(z),
derivatives of solution u/(z) and u”(z) of the problems (1) for different values of N. We have
used the following formulas in computation of M AFEy, MAFE, and M AFE5:

MAEy = rgzzi)](v\u(xl) — w4,

MAFE; = max ‘u'(zl) —v;

1<i<N

MAE, = max_|u"(z;) — vﬂ

1<i<N

)
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We have used Gauss Seidel and Newton—Raphson iteration method to solve respectively
linear and nonlinear system of equations arised from equation (2.4). All computations
were performed on a Windows 2007 Ultimate operating system in the GNU FORTRAN
environment version 99 compiler (2.95 of gcc) on Intel Core 13-2330M, 2.20 Ghz PC. The
solutions are computed on N nodes and iteration is continued until either the maximum
difference between two successive iterates is less than 107% or the number of iteration

reached 10°.

PROBLEM 1. The model linear problem given by

u® (z) = -/ (z), 0<z<]1,

subject to boundary conditions

The analytical solution of the problem is u(z) = exp(z)sin(x). The M AEy, MAE;, and
M AE, computed by method (2.4) for different values of N are presented in Table 1.

u(1) = exp(1)sin(1),

Maximum absolute error (Problem 1)

N Maximum absolute error
MAE, MAE, MAE,
16 | .62513351(-3) .15091896(-3) .54979324(-3)
32 | .16224384(-3) .56743622(-4) .43153763(-3)
64 | .44584274(-4) 71525574(-6) .29802322(-4)
128 | .11444092(-4) .47683716(-6) .47683716(-4)

PROBLEM 2. The nonlinear model problem given by

subject to boundary conditions

u(0) = In(5),

The analytical solution of the problem is u(zx) = In(xz + 5). The MAEy, MAE; and M AE,
computed by method (2.4) for different values of N are presented in Table 2.

u/ T 2
u® (z) = E5J(r33))3 + G —2k3x)5’ 0<z<l1,
W (0) = % W(0) = —%, u(1) = In(6),

Maximum absolute error (Problem 2)

N Maximum absolute error
MAE, MAE; MAFE,
16 | .19752979(-3) .40866435(-3) .24468731(-2)
32 | .43869019(-4) .20343065(-3) .24441648(-2)
64 | .11444092(-4) .10140240(-3) .24403818(-2)
128 | .25033951(-5) .50351024(-4) .24273539(-2)

u'(1) = exp(1)(sin(1)+cos(1)).

W (1)
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The accuracy in numerical approximation of solution in considered model problems
increases as step size h. The order of accuracy in the numerical experiment can be estimated
and it is quadratic in the numerical approximation of solution of problems. The advantage of
the proposed method (2.4) is we get numerical approximation of derivatives as a byproduct.
It is evident in numerical experiment that proposed method (2.4) is convergent.

6. Conclusion

To find the approximate numerical solution of fifth order boundary value problems using
finite difference method has been developed. At nodal point z = z;, ¢ = 1,2,..., N, we have
obtained a system of algebraic equations given by (2.4) which is system of linear equations if
source function f(z,u) is linear otherwise system of nonlinear equations. The propose method
is computationally efficient and accurate; moreover we get numerical approximation of first
and second derivative as a byproduct. In future work, we will deal with similar extension of
the present idea to solve higher order boundary value problems. Work in this direction is in
progress.
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YICJIEHHBIIT METO/I PEIIEHIS
KPAEBOII BATAYN IISTOTO HOPSIKA JIJIsI
OBBIKHOBEHHBIX JU@®®EPEHITNAILHBIX YPABHEHUII

IMTapmnm I1. K.

B nanmnoit crarhe mpeaiokeHa MeTOAMKA PEleHns TPAHUIHON 33/1a91 MATOr0 MOPIIKA KAK COMPIKEHHOMN
napbl TPAHUYHBIX 33/a4. PaccMaTpuBaeTcsa rpaHudHasd 33/1a49a [ATOr0 MOPSIKA [1J1si 0OBIKHOBEHHOT'O Jind-
depenmmabHOr0 ypasueHusi. CymecTBYIOT pa3IuYHbIE METOIBI YHUC/IEHHOTO pEmIeHus TOH 3amadn. Mbr
paccMaTpuBaeM MPUMEHEHHE METOJa KOHEYHBIX PA3HOCTEH i YUCIEHHOTO PelleHus 3ajadu. B JaHHoi
cTaThe MbI mpeodpazoBan auddepeHnnaabHy0 33/1a9y IATOr0 MOPIIKa B cucTeMy auddepeHnnaTbHbIX
ypaBHeHwi 60Ji1ee HU3KOTO TIOPSIKA, & UMEHHO TTEPBOTO 1 YeTBEPTOro. /lajiee, MbI TTPOBEJIN IUCKPETU3AITATIO
cucrembl auddepeHnranbHbIX yPABHEHUN B PACCMATPUBAEMOI 001aCTH U, T€M CaMbIM, TI0JLy YUIU CUCTEMY
anrebpandeckux ypasHaenuil. Tenepsb 1jida YMCJIEHHOTO PEleHre 3aa9u Mbl PACIIOJIATAEM CUCTEMOM are6-
panmvuecKux ypaBHEHWUIA, PEIleHre KOTOPOH CIIYKUT MPUOINKEHHBIM PEIeHNeM PacCMAaTPUBAEMOM 33 1a9N.
Kpome Toro, Mpl 1iosrygaemM YuCA€HHOE IPUOIMKEHHUE [TEPBOM U BTOPOIA IPOU3BOAHBIX B KAYECTBE TIOGOUHO-
r'0 IMPOYKTa IIPe/IJIaraeMoro MeToa. Iloka3aHo, 9To npeiaraeMblii METO/I, CXOIUTCS U TIOPAJA0K TOYHOCTHU
TPeJIaraeMoro MeTO/a, 0 MEHBINel Mepe, KBaJIpaThdeH. UWC/IeHHbIe Pe3yIbTaThl, TIOJIyI€HHBIE B XOIe
BBIYUCJIATEIHHOIO SKCIIEPUMEHTA 110 TECTOBBIM 33/1a49aM, TOATBEPKAA0T 3(DPEKTUBHOCTD U TOYHOCTDH Me-
Toza.

KurodeBrle cjioBa: kpaeBasi 33/1a9a, CXOANMOCTh KyOWIeCKOTO TIOPsiAKa, PA3HOCTHBIN MeTon, mudde-
PEeHIMAJIbHOE YPaBHEHUE I TOr0 OPAIKA, 3a7a49a HEYETHOrO MOPJIKA, 3312493 YeTHO-HEUYeTHOIO TIOPSAIKA.



