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Abstract. It is known that any derivation § : .# — .# on the von Neumann algebra .# is an inner,
i.e. 6(z) := da(x) = [a,2] = ax — xza, x € A, for some a € #. If H is a separable infinite-dimensional
complex Hilbert space and ¢ (H) is a C*-subalgebra of compact operators in C*-algebra Z(H) of all
bounded linear operators acting in H, then any derivation 6 : ¢ (H) — J# (H) is a spatial derivation,
i.e. there exists an operator a € #(H) such that §(z) = [z,a] for all 2 € K(H). In addition, it has
recently been established by Ber A. F., Chilin V. 1., Levitina G. B. and Sukochev F. A. (JMAA, 2013)
that any derivation § : & — & on Banach symmetric ideal of compact operators & C J# (H) is a spatial
derivation. We show that the same result is also true for an arbitrary Banach *-ideal in every von Neumann
algebra .#. More precisely: If .Z is an arbitrary von Neumann algebra, & be a Banach *-ideal in .# and
0: & — & is a derivation on &, then there exists an element a € .# such that §(z) = [z,q] for all z € &,
i.e. 0 is a spatial derivation.
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1. Introduction

It is well known [1, Lemma 4.1.3] that every derivation on a C*-algebra A is norm
continuous. In fact, this also easily follows from another well known fact [1, Corollary 4.1.7]
that every derivation on A realized as a #-subalgebra in the algebra Z(H) of all bounded
linear operators on a Hilbert space H is given by a reduction of an inner derivation on a von
Neumann algebra . = A"’ (the closure of A in the weak operator topology on Z(H)). In the
special setting when A = J#(H) (the ideal of all compact operators on H) and .# = #(H),
the latter result states that for every derivation § on A there exists an operator a € #(H ) such
that 0(z) = [a,z] for every x € J#(H). The ideal J# (H) is a classical example of a Banach
operator ideal in A(H) (see |2, 3, 4, 5]). Any such ideal & # # (H) is a Banach *-algebra
(albeit not a C*-algebra) and a natural question immediately suggested by this discussion is
as follows.

Question 1. Let (&,] - ||s#) C # (H) be a Banach ideal of compact operators on H and
let §: & — & be a derivation on &. Is § continuous with respect to a norm || - || on &7 If
this fact is true, then does there exist an operator a € %(H) such that 6(x) = [a, z] for every
re&7

The positive answer to Question 1 was obtained in the paper [6] (see also [7]).
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Let now .# be an arbitrary von Neumann algebra. An *-ideal & of .# is called a Banach
x-ideal, if & is equipped with a Banach norm || - || ¢, such that

lazblle < llall.z - =lls - 0]~

forall x € & and a,b € .
It is natural to pose the following variant of question 1.

Question 2. Let .# be an arbitrary von Neumann algebra and let (&,||-||¢) be a Banach
x-ideal of # . Let §: & — & be a derivation on &. Is § continuous with respect to a norm ||| &
on &7 If this fact is true, then does there exist an operator a € .4 such that §(z) = [a, x] for
every x € &7

The following theorem, the main result of this paper, gives a positive answer to Question 2.

Theorem 1. Let (&, | -|ls) be a Banach x-ideal of the von Neumann algebra .2/ and let
§: & — & be a derivation on &. Then there exists an element a € & such that §(z) = [a, 2]
for all x € &. Moreover, we can choose such an element a as follows: ||a||.z < ||0|le—e-

2. Preliminaries

For details on the von Neumann algebra theory, the reader is referred to e.g. [1, 8, 9].

Let H be a Hilbert space over the field C of complex numbers, let Z(H) be the x-algebra
of all bounded linear operators on H, let .# be a von Neumann subalgebra in Z(H) and let
P(M) = {p e .M : p*=p=rp*} be the lattice of all projections in .#. The center of a von
Neumann algebra .# will be denoted by Z(.#).

Let A be an arbitrary subalgebra in .#. A linear mapping §: A — .# is called derivation
on A with values in .# if the equality d(zy) = 0(z)y + x0(y) holds for all z,y € A. It is not
difficult to verify that for every a € A the mapping 0,(x) = [a,z] = ax — xa, x € A, defines
a derivation on A, in addition d,(A) C A. Such derivations ¢, are called inner derivations
on A.

If A is a x-subalgebra in .# then a derivation §: A — .# is said to be a x-derivation if
0(z*) = §(z)* for all z € A. For every derivation 6: A — .# of a *-algebra A into .# we
define mappings

o(x) + o(x*)*
6Re(x) = %’ 6Im(x) =— = A

It is easy to see that dre and Oy, are s-derivations on A, moreover 6 = d0re + 01m-

Let & be a two-sided ideal in .#Z. Then & is an *-ideal in .# and the conditions x € .#,
y € &, |z| < |y| imply that z € &.

We need the following property of two-sided ideals in von Neumann algebras.

Proposition 1 [10, Proposition 2.4.22]. If & is wo-closed two-sided ideal in a von Neumann
algebra ./ then there exists a central projection z € % (.#)) such that & = z - M .

A non-zero two-sided ideal & of .4, equipped with a Banach norm ||-||¢, is called a Banach
x-1deal, if
llazblls < llall.z - [10ll.z - llzls
whenever x € & and a,b € A .

It should be observed that any a Banach *-ideal (&, ||-||¢) is *-closed and that x € .4, y €
& and |z| < |y| imply that z € & and ||z]|¢ < ||y &-
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Let A be a C*-subalgebra in the C*-algebra Z(H). By [1, Lemma 4.1.3] every derivation
§: A— Ais a||| zm)-continuous. The following Theorem gives an extension of the derivation
6 to the von Neumann algebra A"°, where 4" is a wo-closure of C*-subalgebra A in Z(H).

Theorem 2 [10, Proposition 3.2.24], [1, Theorem 4.1.6, Corollary 4.1.7], [11, Theorem 2|.
Let A be a C*-subalgebra in the C*-algebra %(H) and let 6: A — A be a derivation on A.
Then there exists an element a in A“° = .4 such that §(z) = 6,(x) = [a,] for all z € A
and ||6]|asa = ||0a||4—.». Moreover we can choose such an element a € A as follows:

llall.» < % Nbally=.n-

3. Main Results

Throughout this section .# is an arbitrary von Neumann algebra. We recall that
a projection p € P (M) is called an atom if 0 # q € P (M), ¢ < p imply that ¢ = p.
If ¢ is an atom then q-.# -q=q-C.

Proposition 2. Let (&, ] - |l¢) be a Banach *-ideal in the von Neumann algebra .# and
let 6: & — & be a derivation on &. Then § is a continuous mapping on (&, || - ||#)-

< Without loss of generality, we may assume that ¢ is a *-derivation. Since (&, || - ||#) is
a Banach space, it is sufficient to prove that the graph of § is closed. Suppose a contrary. Then
there exist a sequence {a,}7°,; C & and an element 0 # a € & such that a = a*, ||a,|le — 0
and [|6(ay) —allge — 0 as n — oo.

Let a = a4+ — a— be an orthogonal decomposition of a, that is ay,a_ € &, ay,a_ > 0,
and aya_ = 0. Without loss of generality, we may assume that a4 # 0, otherwise we consider
the sequence {—ay}22 . Since a € &, there exists a projection p € .# such that pap > Ap for
some A > 0. Replacing a,, with 4 we may assume pap > p. Hence, for some operator ¢ € .#,
we have p = c*papc € &.

There are two possible cases:

(7) There exists an atom 0 # g € Z(.#) such that ¢ < p;

(73) The lattice (4 does not contain atoms ¢ # 0 such that ¢ < p.

In the case (i), we have ¢ € & and ¢ < qaq. Since ¢ is an atom, it follows ga,q = A,q,
An € C, and we immediately deduce that lim, o, A, = 0 from the assumption ||a,| s — 0.
Since

0(qanq) = 6(q)anq + qd(anq)) = 0(q)ang + qé(an)q + qand(q)
it follows that

16(qanq) — qd(an)qlle < 2(16(q)l.zllanlle =0, as n — oo,
and
q<qaq= |-l — lim 6(qang) = |- ls — lim §(Anq) = d(q) lim A, = 0.
n—oo n—oo n—oo

This contradicts with the assumption that ¢ # 0.

In the case (ii), there exists a pairwise orthogonal sequence {e,}°°, C Z(.#) such that
0 # ey, < p for all n > 1. Clearly, we have {e,}>>; C & and eyae, > e, for any natural
number n € N. Let {m,,}22; be any sequence of positive integers such that

my > (2n+1)/|lenlls, n>1.
Passing to a subsequence if necessary, we may assume without loss of generality that

lanlle < m;12—n’ 10(an) —alle < m;l
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and that
lanlle <27 nmy, 16(en)l,

whenever n > 1 is such that (e, ) # 0. Let us define an element
o
= Zmnenanen €&
n=1

where the series converges in the norm |- || £, since we have ||mpenanen|e < 27". We intend to
obtain a contradiction by showing that the norm ||0(c)||s is larger than any positive integer n.
Indeed, fixing such n > 1, we have [|6(c)||s = |lend(c)en|ls and

llend(c)enlle = [|0(enc)en — d(en)cenlle = mplld(enanen)en — d(en)enanenls
= myllend(enanen)enlls = myllend(an)en + end(en)ane, + enand(en)en||s
= myllen(6(an) — a)en + enaenlle — mnllend(en)anenlle —mnllenand(en)enlls
> mp([lenaenlle — llen(d(an) — a)enlls) — 2manllan|lslld(en) .z
= mp(|lenaenlle — [6(an) —allg) —n > myllenaenlle —1 —n = myllenlle —1 —n > n.

This shows that ¢ is a continuous mapping on (&, - ||¢). >

Proposition 3. Let (&, || - ||#) be a Banach *-ideal in the von Neumann algebra .4 and
let 6 be a derivation on &. Then ¢ is a continuous mapping on (&, - ||.z) and ||6||c =
181l 111La) & 1) < 211011, where [[81] = 16l s 1), 1) -

< By Proposition 2, a derivation §: & — & is a continuous on (&, || - ||¢), in particular,
16]] := (18]l 6~ < oo

Let x € & and d(z) # 0. Let 0 < € < ||0(2)|.» and denote by p, the spectral projection
of the operator |6(z)| corresponding to the segment [||6(x)|.s — &, ||6(2)]|.#]. Using Gelfand—
Naimark theorem, one can obtain that p, # 0.

We have that 0 < (]|0(2)|l.z — €)pz < |0(x)|pz. Then p, € & and

[6(2)[pe = (Po|6(2)p2)"/? = (P26 ()*6(x)ps)"* = |6(2)pal.

Since the norm || - || ¢ is monotone, we obtain that

0@l = &)llpzllse < [6(@)pzlls = [16(zpa) = 26(pa)lle < [0(zpa)lles + ll20(p2)lle
< 16@pe)lls + 12w l6(pa)lle < 5lllzpelle + lzl.zlld]l Pzl
< ollllzlla llpzlle + llzll.a01pzlls = 2181zl lpzlle,

that is
(16(2)]l.r = )llpzlle < 211011zl P2l

Dividing by ||p»||¢# and using arbitrariness of e, we infer that

16() |l < 2[l6]l|x]]. -

Thus the operator 6 is bounded with respect to the norm || - ||z, in addition, [|d||ec < 2|[0]|. >
Now we give a proof of Theorem 1.

<1 PROOF OF THEOREM 1. Denote by & and & the closure of the ideal & with respect to
the uniform and weak operator topology, respectively. Then & C & C &. 1t is clear that & is
a C*-subalgebra in .# and the derivation ¢ extends by continuity (see Proposition 3) up to
a derivation 6 : & — &, in addition [|0]|ec = [|6]/cc.
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Since & is a wo-closed two-sided in .7, it follows, by Proposition 1, that & = 2z for some
central projection z in .#. Then & is a W*-subalgebra with the identity 2. By Theorem 2,
the derivation ¢ extends up to a derivation 5.6 — & , in addition, there exists an element
a € & such that §(z) = 6,(z) = [a,z] for all z € & and ||a]|./ < 1[|0alloo = 3/|6]lcc < ||0]. >

Corollary 1 (cf. |6, Theorem 3.2|). Let (&,]|-||s) be a Banach ideal of compact operators
in B(H) and let §: & — & be a derivation on &. Then there exists an operator a € %(H)
such that §(z) = [a,x] for all x € &. Moreover, we can choose such an element a as follows:

lall.z < ll6lls—e-

Corollary 2 (cf. [12, Theorem 5.2|). Let .# be a commutative von Neumann algebra
and let (&,] - ||¢) be a Banach *-ideal in .# . Then any derivation 6 on & vanishes.

A detailed study of derivations on the ideals in commutative AW *-algebras is given in
the paper [12]. In particular, it is shown here that if the Boolean algebra Z(.#) of all
projections in the commutative AW *-algebra .# is not o-distributive then there exists a non-
zero derivation on ideals in .# with values in a commutative x-algebra Coo(Q) @i - Coo(Q),
where @) is a Stone compactum corresponding to the Boolean algebra &?(.#). An analogous
result for derivations on an algebra Co(Q,C) was earlier obtained by A. G. Kusraev [13] for
a general Stone compactum.
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JNOPEPEHIIMPOBAHUA B BAHAXOBBIX
*MJIEAJIAX AJITEBP ®OH HEIIMAHA

Bep A. ®., Yunmn B. U., Cykoues @. A.

Awnnoramusi. 3Bectno, uro moboe muddepenmmposanne § : M — M na amrebpe don Heiimama 4
SABJSETCA BHyTPEHHHM, T. €. 0(x) := do(2) = [a,2] = ax — za, ¢ € .#, nna mexoroporo a € . Ecrm H
cenapabesibHoe GECKOHEIHOMEPHOE THIbOEePTOBO mpocTpancTso u % (H) ectp C*-nomanre6pa KOMIIAKT-
HBIX onepaTopos B C*-anrebGpe J(H) Bcex orpaHNYeHHBIX JIMHEAHBIX OIEPATOPOB, AeiicTByOmMUX B H, TO
kaxgoe muddepennuposanne § : H (H) — ¢ (H) ectb cnermanbuoe muddepeHnmpoBanue, T. €. CyIie-
cTByeT Takoi oneparop a € Z(H), aro §(z) = [z, a] mna Bcex x € K(H). B nenasueii pabore A. @. Bepa,
B. U. Yunwmna, [. B. Jleurunoii, @. A. Cykouesa (JMAA, 2013) ycranosneno, ato kaxaoe muddepen-
muposanme §: & — & Ha mo00M 6aHAXOBOM CHMMETPHYTHOM HJI€asIe KOMIIAKTHBIX onepaTopos & C 2 (H)
TaK»Ke SBJISETCS TPOCTPAHCTBEHHBIM. MBI TIOKA3bIBA€M, 9TO AHAJIOTUYIHBINA PE3y/TbTAT BEPEH W JJTs TIPO-
M3BOJIbHBIX OAHAXOBBIX *-UIEAJIOB B JII000# asredbpe dpou Heiimana .#. Bonee Touno: Ecim 4 niobas
anrebpa dou Helimana, & Ganaxobiii *-ugean B 4 u §: & — & ecrb nuddepennupoBanve Ha &, TO
CYNIECTBYET TakKOW 31emeHT a € /4, uaro 0(x) = [x,a] ana Bcex € &, T. €. § €CTh MPOCTPAHCTBEHHOE
nud depeHImpoBaHme.

KuaroueBsbie ciioBa: anrebpa ¢don Helimana, 6anaxos x-umpeas, quddepeHimpoBaine, IpoCTPAHCTBEHHOE
nud depeHImpoBanme.



