УДК 517.98 **DOI** 10.23671/VNC.2018.2.14715

DERIVATIONS ON BANACH *-IDEALS IN VON NEUMANN ALGEBRAS

A. F. Ber¹, V. I. Chilin², F. A. Sukochev³

¹ Institute of Mathematics of Republica of Uzbekistan; ² National University of Uzbekistan; ³ School of Mathematics and Statistics, University of New South Wales

Abstract. It is known that any derivation $\delta: \mathscr{M} \to \mathscr{M}$ on the von Neumann algebra \mathscr{M} is an inner, i.e. $\delta(x) := \delta_a(x) = [a,x] = ax - xa, \ x \in \mathscr{M}$, for some $a \in \mathscr{M}$. If H is a separable infinite-dimensional complex Hilbert space and $\mathscr{K}(H)$ is a C^* -subalgebra of compact operators in C^* -algebra $\mathscr{B}(H)$ of all bounded linear operators acting in H, then any derivation $\delta: \mathscr{K}(H) \to \mathscr{K}(H)$ is a spatial derivation, i.e. there exists an operator $a \in \mathscr{B}(H)$ such that $\delta(x) = [x,a]$ for all $x \in K(H)$. In addition, it has recently been established by Ber A. F., Chilin V. I., Levitina G. B. and Sukochev F. A. (JMAA, 2013) that any derivation $\delta: \mathscr{E} \to \mathscr{E}$ on Banach symmetric ideal of compact operators $\mathscr{E} \subseteq \mathscr{K}(H)$ is a spatial derivation. We show that the same result is also true for an arbitrary Banach *-ideal in every von Neumann algebra \mathscr{M} . More precisely: If \mathscr{M} is an arbitrary von Neumann algebra, \mathscr{E} be a Banach *-ideal in \mathscr{M} and $\delta: \mathscr{E} \to \mathscr{E}$ is a derivation on \mathscr{E} , then there exists an element $a \in \mathscr{M}$ such that $\delta(x) = [x,a]$ for all $x \in \mathscr{E}$, i.e. δ is a spatial derivation.

Key words: von Neumann algebra, Banach *-ideal, derivation, spatial derivation. Mathematical Subject Classification (2010): 46L57, 46L51, 46L52.

1. Introduction

It is well known [1, Lemma 4.1.3] that every derivation on a C^* -algebra A is norm continuous. In fact, this also easily follows from another well known fact [1, Corollary 4.1.7] that every derivation on A realized as a *-subalgebra in the algebra $\mathcal{B}(H)$ of all bounded linear operators on a Hilbert space H is given by a reduction of an inner derivation on a von Neumann algebra $\mathcal{M} = \overline{A}^{wo}$ (the closure of A in the weak operator topology on $\mathcal{B}(H)$). In the special setting when $A = \mathcal{K}(H)$ (the ideal of all compact operators on H) and $\mathcal{M} = \mathcal{B}(H)$, the latter result states that for every derivation δ on A there exists an operator $a \in \mathcal{B}(H)$ such that $\delta(x) = [a, x]$ for every $x \in \mathcal{K}(H)$. The ideal $\mathcal{K}(H)$ is a classical example of a Banach operator ideal in $\mathcal{B}(H)$ (see [2, 3, 4, 5]). Any such ideal $\mathcal{E} \neq \mathcal{K}(H)$ is a Banach *-algebra (albeit not a C^* -algebra) and a natural question immediately suggested by this discussion is as follows.

Question 1. Let $(\mathcal{E}, \|\cdot\|_{\mathscr{E}}) \subseteq \mathcal{K}(H)$ be a Banach ideal of compact operators on H and let $\delta \colon \mathscr{E} \to \mathscr{E}$ be a derivation on \mathscr{E} . Is δ continuous with respect to a norm $\|\cdot\|_{\mathscr{E}}$ on \mathscr{E} ? If this fact is true, then does there exist an operator $a \in \mathscr{B}(H)$ such that $\delta(x) = [a, x]$ for every $x \in \mathscr{E}$?

The positive answer to Question 1 was obtained in the paper [6] (see also [7]).

^{© 2018} Ber A. F., Chilin V. I., Sukochev F. A.

Let now \mathscr{M} be an arbitrary von Neumann algebra. An *-ideal \mathscr{E} of \mathscr{M} is called a Banach *-ideal, if \mathscr{E} is equipped with a Banach norm $\|\cdot\|_{\mathscr{E}}$, such that

$$||axb||_{\mathscr{E}} \leqslant ||a||_{\mathscr{M}} \cdot ||x||_{\mathscr{E}} \cdot ||b||_{\mathscr{M}}$$

for all $x \in \mathscr{E}$ and $a, b \in \mathscr{M}$.

It is natural to pose the following variant of question 1.

Question 2. Let \mathscr{M} be an arbitrary von Neumann algebra and let $(\mathscr{E}, \|\cdot\|_{\mathscr{E}})$ be a Banach *-ideal of \mathscr{M} . Let $\delta \colon \mathscr{E} \to \mathscr{E}$ be a derivation on \mathscr{E} . Is δ continuous with respect to a norm $\|\cdot\|_{\mathscr{E}}$ on \mathscr{E} ? If this fact is true, then does there exist an operator $a \in \mathscr{M}$ such that $\delta(x) = [a, x]$ for every $x \in \mathscr{E}$?

The following theorem, the main result of this paper, gives a positive answer to Question 2.

Theorem 1. Let $(\mathscr{E}, \|\cdot\|_{\mathscr{E}})$ be a Banach *-ideal of the von Neumann algebra \mathscr{M} and let $\delta \colon \mathscr{E} \to \mathscr{E}$ be a derivation on \mathscr{E} . Then there exists an element $a \in \overline{\mathscr{E}}^{wo}$ such that $\delta(x) = [a, x]$ for all $x \in \mathscr{E}$. Moreover, we can choose such an element a as follows: $\|a\|_{\mathscr{M}} \leqslant \|\delta\|_{\mathscr{E} \to \mathscr{E}}$.

2. Preliminaries

For details on the von Neumann algebra theory, the reader is referred to e.g. [1, 8, 9].

Let H be a Hilbert space over the field \mathbb{C} of complex numbers, let $\mathcal{B}(H)$ be the *-algebra of all bounded linear operators on H, let \mathcal{M} be a von Neumann subalgebra in $\mathcal{B}(H)$ and let $\mathcal{P}(\mathcal{M}) = \{p \in \mathcal{M} : p^2 = p = p^*\}$ be the lattice of all projections in \mathcal{M} . The center of a von Neumann algebra \mathcal{M} will be denoted by $\mathcal{Z}(\mathcal{M})$.

Let A be an arbitrary subalgebra in \mathscr{M} . A linear mapping $\delta \colon A \to \mathscr{M}$ is called derivation on A with values in \mathscr{M} if the equality $\delta(xy) = \delta(x)y + x\delta(y)$ holds for all $x, y \in A$. It is not difficult to verify that for every $a \in A$ the mapping $\delta_a(x) = [a, x] = ax - xa$, $x \in A$, defines a derivation on A, in addition $\delta_a(A) \subseteq A$. Such derivations δ_a are called *inner derivations* on A.

If A is a *-subalgebra in \mathscr{M} then a derivation $\delta \colon A \to \mathscr{M}$ is said to be a *-derivation if $\delta(x^*) = \delta(x)^*$ for all $x \in A$. For every derivation $\delta \colon A \to \mathscr{M}$ of a *-algebra A into \mathscr{M} we define mappings

$$\delta_{\mathrm{Re}(x)} := \frac{\delta(x) + \delta(x^*)^*}{2}, \qquad \delta_{\mathrm{Im}}(x) := \frac{\delta(x) - \delta(x^*)^*}{2i}, \quad x \in A.$$

It is easy to see that δ_{Re} and δ_{Im} are *-derivations on A, moreover $\delta = \delta_{\text{Re}} + i\delta_{\text{Im}}$.

Let \mathscr{E} be a two-sided ideal in \mathscr{M} . Then \mathscr{E} is an *-ideal in \mathscr{M} and the conditions $x \in \mathscr{M}$, $y \in \mathscr{E}$, $|x| \leq |y|$ imply that $x \in \mathscr{E}$.

We need the following property of two-sided ideals in von Neumann algebras.

Proposition 1 [10, Proposition 2.4.22]. If $\mathscr E$ is wo-closed two-sided ideal in a von Neumann algebra $\mathscr M$ then there exists a central projection $z \in \mathscr Z(\mathscr M)$) such that $\mathscr E = z \cdot \mathscr M$.

A non-zero two-sided ideal $\mathscr E$ of $\mathscr M$, equipped with a Banach norm $\|\cdot\|_{\mathscr E}$, is called a Banach *-ideal, if

$$||axb||_{\mathscr{E}} \leqslant ||a||_{\mathscr{M}} \cdot ||b||_{\mathscr{M}} \cdot ||x||_{\mathscr{E}}$$

whenever $x \in \mathcal{E}$ and $a, b \in \mathcal{M}$.

It should be observed that any a Banach *-ideal $(\mathscr{E}, \|\cdot\|_{\mathscr{E}})$ is *-closed and that $x \in \mathscr{M}, y \in \mathscr{E}$ and $|x| \leq |y|$ imply that $x \in \mathscr{E}$ and $|x|_{\mathscr{E}} \leq |y|_{\mathscr{E}}$.

Let A be a C^* -subalgebra in the C^* -algebra $\mathscr{B}(H)$. By [1, Lemma 4.1.3] every derivation $\delta \colon A \to A$ is a $\|\cdot\|_{\mathscr{B}(H)}$ -continuous. The following Theorem gives an extension of the derivation δ to the von Neumann algebra \overline{A}^{wo} , where \overline{A}^{wo} is a wo-closure of C^* -subalgebra A in $\mathscr{B}(H)$.

Theorem 2 [10, Proposition 3.2.24], [1, Theorem 4.1.6, Corollary 4.1.7], [11, Theorem 2]. Let A be a C^* -subalgebra in the C^* -algebra $\mathcal{B}(H)$ and let $\delta \colon A \to A$ be a derivation on A. Then there exists an element a in $\overline{A}^{wo} = \mathcal{N}$ such that $\delta(x) = \delta_a(x) = [a, x]$ for all $x \in A$ and $\|\delta\|_{A\to A} = \|\delta_a\|_{\mathcal{N}\to\mathcal{N}}$. Moreover we can choose such an element $a \in \mathcal{N}$ as follows: $\|a\|_{\mathcal{N}} \leqslant \frac{1}{2} \cdot \|\delta_a\|_{\mathcal{N}\to\mathcal{N}}$.

3. Main Results

Throughout this section \mathcal{M} is an arbitrary von Neumann algebra. We recall that a projection $p \in \mathcal{P}(\mathcal{M})$ is called an atom if $0 \neq q \in \mathcal{P}(\mathcal{M})$, $q \leqslant p$ imply that q = p. If q is an atom then $q \cdot \mathcal{M} \cdot q = q \cdot \mathbb{C}$.

Proposition 2. Let $(\mathcal{E}, \|\cdot\|_{\mathscr{E}})$ be a Banach *-ideal in the von Neumann algebra \mathscr{M} and let $\delta \colon \mathscr{E} \to \mathscr{E}$ be a derivation on \mathscr{E} . Then δ is a continuous mapping on $(\mathcal{E}, \|\cdot\|_{\mathscr{E}})$.

 \lhd Without loss of generality, we may assume that δ is a *-derivation. Since $(\mathscr{E}, \|\cdot\|_{\mathscr{E}})$ is a Banach space, it is sufficient to prove that the graph of δ is closed. Suppose a contrary. Then there exist a sequence $\{a_n\}_{n=1}^{\infty} \subset \mathscr{E}$ and an element $0 \neq a \in \mathscr{E}$ such that $a = a^*$, $\|a_n\|_{\mathscr{E}} \to 0$ and $\|\delta(a_n) - a\|_{\mathscr{E}} \to 0$ as $n \to \infty$.

Let $a=a_+-a_-$ be an orthogonal decomposition of a, that is $a_+,a_- \in \mathscr{E}$, $a_+,a_- \geqslant 0$, and $a_+a_-=0$. Without loss of generality, we may assume that $a_+ \neq 0$, otherwise we consider the sequence $\{-a_n\}_{n=1}^{\infty}$. Since $a \in \mathscr{E}$, there exists a projection $p \in \mathscr{M}$ such that $pap \geqslant \lambda p$ for some $\lambda > 0$. Replacing a_n with $\frac{a_n}{\lambda}$ we may assume $pap \geqslant p$. Hence, for some operator $c \in \mathscr{M}$, we have $p=c^*papc \in \mathscr{E}$.

There are two possible cases:

- (i) There exists an atom $0 \neq q \in \mathscr{P}(\mathscr{M})$ such that $q \leqslant p$;
- (ii) The lattice $\mathscr{P}(\mathscr{M})$ does not contain atoms $q \neq 0$ such that $q \leq p$.

In the case (i), we have $q \in \mathscr{E}$ and $q \leqslant qaq$. Since q is an atom, it follows $qa_nq = \lambda_nq$, $\lambda_n \in \mathbb{C}$, and we immediately deduce that $\lim_{n\to\infty} \lambda_n = 0$ from the assumption $||a_n||_{\mathscr{E}} \to 0$. Since

$$\delta(qa_nq) = \delta(q)a_nq + q\delta(a_nq) = \delta(q)a_nq + q\delta(a_n)q + qa_n\delta(q)$$

it follows that

$$\|\delta(qa_nq) - q\delta(a_n)q\|_{\mathscr{E}} \leqslant 2\|\delta(q)\|_{\mathscr{M}} \|a_n\|_{\mathscr{E}} \to 0$$
, as $n \to \infty$,

and

$$q\leqslant qaq=\|\cdot\|_{\mathscr{E}}-\lim_{n\to\infty}\delta(qa_nq)=\|\cdot\|_{\mathscr{E}}-\lim_{n\to\infty}\delta(\lambda_nq)=\delta(q)\lim_{n\to\infty}\lambda_n=0.$$

This contradicts with the assumption that $q \neq 0$.

In the case (ii), there exists a pairwise orthogonal sequence $\{e_n\}_{n=1}^{\infty} \subset \mathscr{P}(\mathscr{M})$ such that $0 \neq e_n \leqslant p$ for all $n \geqslant 1$. Clearly, we have $\{e_n\}_{n=1}^{\infty} \subset \mathscr{E}$ and $e_n a e_n \geqslant e_n$ for any natural number $n \in \mathbb{N}$. Let $\{m_n\}_{n=1}^{\infty}$ be any sequence of positive integers such that

$$m_n > (2n+1)/||e_n||_{\mathscr{E}}, \quad n \geqslant 1.$$

Passing to a subsequence if necessary, we may assume without loss of generality that

$$||a_n||_{\mathscr{E}} < m_n^{-1} 2^{-n}, \quad ||\delta(a_n) - a||_{\mathscr{E}} < m_n^{-1}$$

and that

$$||a_n||_{\mathscr{E}} < 2^{-1} n m_n^{-1} ||\delta(e_n)||_{\mathscr{M}}^{-1}$$

whenever $n \ge 1$ is such that $\delta(e_n) \ne 0$. Let us define an element

$$c := \sum_{n=1}^{\infty} m_n e_n a_n e_n \in \mathscr{E}$$

where the series converges in the norm $\|\cdot\|_{\mathscr{E}}$, since we have $\|m_n e_n a_n e_n\|_{\mathscr{E}} < 2^{-n}$. We intend to obtain a contradiction by showing that the norm $\|\delta(c)\|_{\mathscr{E}}$ is larger than any positive integer n.

Indeed, fixing such $n \ge 1$, we have $\|\delta(c)\|_{\mathscr{E}} \ge \|e_n \delta(c) e_n\|_{\mathscr{E}}$ and

$$\begin{split} \|e_{n}\delta(c)e_{n}\|_{\mathscr{E}} &= \|\delta(e_{n}c)e_{n} - \delta(e_{n})ce_{n}\|_{\mathscr{E}} = m_{n}\|\delta(e_{n}a_{n}e_{n})e_{n} - \delta(e_{n})e_{n}a_{n}e_{n}\|_{\mathscr{E}} \\ &= m_{n}\|e_{n}\delta(e_{n}a_{n}e_{n})e_{n}\|_{\mathscr{E}} = m_{n}\|e_{n}\delta(a_{n})e_{n} + e_{n}\delta(e_{n})a_{n}e_{n} + e_{n}a_{n}\delta(e_{n})e_{n}\|_{\mathscr{E}} \\ &\geqslant m_{n}\|e_{n}(\delta(a_{n}) - a)e_{n} + e_{n}ae_{n}\|_{\mathscr{E}} - m_{n}\|e_{n}\delta(e_{n})a_{n}e_{n}\|_{\mathscr{E}} - m_{n}\|e_{n}a_{n}\delta(e_{n})e_{n}\|_{\mathscr{E}} \\ &\geqslant m_{n}(\|e_{n}ae_{n}\|_{\mathscr{E}} - \|e_{n}(\delta(a_{n}) - a)e_{n}\|_{\mathscr{E}}) - 2m_{n}\|a_{n}\|_{\mathscr{E}}\|\delta(e_{n})\|_{\mathscr{M}} \\ &\geqslant m_{n}(\|e_{n}ae_{n}\|_{\mathscr{E}} - \|\delta(a_{n}) - a\|_{\mathscr{E}}) - n > m_{n}\|e_{n}ae_{n}\|_{\mathscr{E}} - 1 - n \geqslant m_{n}\|e_{n}\|_{\mathscr{E}} - 1 - n > n. \end{split}$$

This shows that δ is a continuous mapping on $(\mathcal{E}, \|\cdot\|_{\mathcal{E}})$. \triangleright

Proposition 3. Let $(\mathscr{E}, \|\cdot\|_{\mathscr{E}})$ be a Banach *-ideal in the von Neumann algebra \mathscr{M} and let δ be a derivation on \mathscr{E} . Then δ is a continuous mapping on $(\mathscr{E}, \|\cdot\|_{\mathscr{M}})$ and $\|\delta\|_{\infty} := \|\delta\|_{(\mathscr{E}, \|\cdot\|_{\mathscr{M}}) \to (\mathscr{E}, \|\cdot\|_{\mathscr{M}})} \leq 2\|\delta\|$, where $\|\delta\| = \|\delta\|_{(\mathscr{E}, \|\cdot\|_{\mathscr{E}}) \to (\mathscr{E}, \|\cdot\|_{\mathscr{E}})}$.

 \triangleleft By Proposition 2, a derivation $\delta \colon \mathscr{E} \to \mathscr{E}$ is a continuous on $(\mathscr{E}, \|\cdot\|_{\mathscr{E}})$, in particular, $\|\delta\| := \|\delta\|_{\mathscr{E} \to \mathscr{E}} < \infty$.

Let $x \in \mathscr{E}$ and $\delta(x) \neq 0$. Let $0 < \varepsilon < \|\delta(x)\|_{\mathscr{M}}$ and denote by p_x the spectral projection of the operator $|\delta(x)|$ corresponding to the segment $[\|\delta(x)\|_{\mathscr{M}} - \varepsilon, \|\delta(x)\|_{\mathscr{M}}]$. Using Gelfand–Naimark theorem, one can obtain that $p_x \neq 0$.

We have that $0 < (\|\delta(x)\|_{\mathscr{M}} - \varepsilon)p_x \leq |\delta(x)|p_x$. Then $p_x \in \mathscr{E}$ and

$$|\delta(x)|p_x = (p_x|\delta(x)|^2p_x)^{1/2} = (p_x\delta(x)^*\delta(x)p_x)^{1/2} = |\delta(x)p_x|.$$

Since the norm $\|\cdot\|_{\mathscr{E}}$ is monotone, we obtain that

$$(\|\delta(x)\|_{\mathscr{M}} - \varepsilon)\|p_x\|_{\mathscr{E}} \leqslant \|\delta(x)p_x\|_{\mathscr{E}} = \|\delta(xp_x) - x\delta(p_x)\|_{\mathscr{E}} \leqslant \|\delta(xp_x)\|_{\mathscr{E}} + \|x\delta(p_x)\|_{\mathscr{E}}$$

$$\leqslant \|\delta(xp_x)\|_{\mathscr{E}} + \|x\|_{\mathscr{M}} \|\delta(p_x)\|_{\mathscr{E}} \leqslant \|\delta\|\|xp_x\|_{\mathscr{E}} + \|x\|_{\mathscr{M}} \|\delta\|\|p_x\|_{\mathscr{E}}$$

$$\leqslant \|\delta\|\|x\|_{\mathscr{M}} \|p_x\|_{\mathscr{E}} + \|x\|_{\mathscr{M}} \|\delta\|\|p_x\|_{\mathscr{E}} = 2\|\delta\|\|x\|_{\mathscr{M}} \|p_x\|_{\mathscr{E}},$$

that is

$$(\|\delta(x)\|_{\mathscr{M}} - \varepsilon)\|p_x\|_{\mathscr{E}} \leqslant 2\|\delta\|\|x\|_{\mathscr{M}}\|p_x\|_{\mathscr{E}}.$$

Dividing by $||p_x||_{\mathscr{E}}$ and using arbitrariness of ε , we infer that

$$\|\delta(x)\|_{\mathscr{M}} \leqslant 2\|\delta\| \|x\|_{\mathscr{M}}.$$

Thus the operator δ is bounded with respect to the norm $\|\cdot\|_{\mathscr{M}}$, in addition, $\|\delta\|_{\infty} \leq 2\|\delta\|$. \triangleright Now we give a proof of Theorem 1.

 \lhd PROOF OF THEOREM 1. Denote by $\widetilde{\mathscr{E}}$ and $\widehat{\mathscr{E}}$ the closure of the ideal \mathscr{E} with respect to the uniform and weak operator topology, respectively. Then $\mathscr{E} \subset \widetilde{\mathscr{E}} \subset \widehat{\mathscr{E}}$. It is clear that $\widetilde{\mathscr{E}}$ is a C^* -subalgebra in \mathscr{M} and the derivation δ extends by continuity (see Proposition 3) up to a derivation $\widetilde{\delta}: \widetilde{\mathscr{E}} \to \widetilde{\mathscr{E}}$, in addition $\|\widetilde{\delta}\|_{\infty} = \|\delta\|_{\infty}$.

Since $\widehat{\mathcal{E}}$ is a wo-closed two-sided in \mathscr{M} , it follows, by Proposition 1, that $\widehat{\mathcal{E}}=z\cdot\mathscr{M}$ for some central projection z in \mathscr{M} . Then $\widehat{\mathcal{E}}$ is a W^* -subalgebra with the identity z. By Theorem 2, the derivation $\widetilde{\delta}$ extends up to a derivation $\widehat{\delta}:\widehat{\mathcal{E}}\longrightarrow\widehat{\mathcal{E}}$, in addition, there exists an element $a\in\widehat{\mathcal{E}}$ such that $\delta(x)=\delta_a(x)=[a,x]$ for all $x\in\mathcal{E}$ and $\|a\|_{\mathscr{M}}\leqslant \frac{1}{2}\|\delta_a\|_{\infty}=\frac{1}{2}\|\delta\|_{\infty}\leqslant \|\delta\|$. \triangleright

Corollary 1 (cf. [6, Theorem 3.2]). Let $(\mathscr{E}, \|\cdot\|_{\mathscr{E}})$ be a Banach ideal of compact operators in $\mathscr{B}(H)$ and let $\delta \colon \mathscr{E} \to \mathscr{E}$ be a derivation on \mathscr{E} . Then there exists an operator $a \in \mathscr{B}(H)$ such that $\delta(x) = [a, x]$ for all $x \in \mathscr{E}$. Moreover, we can choose such an element a as follows: $\|a\|_{\mathscr{M}} \leqslant \|\delta\|_{\mathscr{E} \to \mathscr{E}}$.

Corollary 2 (cf. [12, Theorem 5.2]). Let \mathcal{M} be a commutative von Neumann algebra and let $(\mathcal{E}, \|\cdot\|_{\mathcal{E}})$ be a Banach *-ideal in \mathcal{M} . Then any derivation δ on \mathcal{E} vanishes.

A detailed study of derivations on the ideals in commutative AW^* -algebras is given in the paper [12]. In particular, it is shown here that if the Boolean algebra $\mathscr{P}(\mathscr{M})$ of all projections in the commutative AW^* -algebra \mathscr{M} is not σ -distributive then there exists a non-zero derivation on ideals in \mathscr{M} with values in a commutative *-algebra $C_{\infty}(Q) \oplus i \cdot C_{\infty}(Q)$, where Q is a Stone compactum corresponding to the Boolean algebra $\mathscr{P}(\mathscr{M})$. An analogous result for derivations on an algebra $C_{\infty}(Q,\mathbb{C})$ was earlier obtained by A. G. Kusraev [13] for a general Stone compactum.

References

- 1. Sakai S. C*-Algebras and W*-Algebras, Berlin, Springer-Verlag, 1971.
- Gohberg I., Krein M. Introduction to the Theory of Linear Nonselfadjoint Operators, Providence (R.I.), Amer. Math. Soc., 1969, Translat. of Math. Monogr., vol. 18.
- Kalton N., Sukochev F. Symmetric Norms and Spaces of Operators. J. Reine Angew. Math., 2008, vol. 621, pp. 81–121.
- 4. Schatten R. Norm Ideals of Completely Continuous Operators. Second printing, Ergebnisse der Mathematik und ihrer Grenzgebiete, band 27, Berlin, Springer-Verlag, 1970, 98 p.
- Simon B. Trace Ideals and Their Applications. Second edition, Math. Surveys and Monogr., vol. 120, Providence (R. I.): Amer. Math. Soc., 2005.
- Ber A. F., Chilin V. I., Levitina G. B. and Sukochev F. A. Derivations with Values in Quasi-Normed Bimodules of Locally Measurable Operators. J. Math. Anal. Appl., 2013, vol. 397, no. 2, pp. 628-643. DOI: 10.101610/j.jmaa.2012.07.068.
- 7. Ber A. F., Chilin V. I. and Levitina G. B. Derivations with Values in Quasi-Normed Bimodules of Locally Measurable Operators. Sib. Adv. Math., 2015, vol. 25, no. 3, pp. 169–178. DOI: 10.3103/S1055134415030025.
- 8. Strătilă S., Zsido L. Lectures on von Neumann Algebras, Bucharest, Editura Academiei, 1979.
- 9. Takesaki M. Theory of Operator Algebras I, Berlin etc., Springer-Verlag, 1979.
- Bratelli O., Robinson D. W. Operator Algebras and Quantum Statistical Mechanics 1, N. Y., Springer-Verlag, 1979.
- 11. Zsido L. The Norm of a Derivation in a W^* -Algebra. Proc. Amer. Math. Soc., 1973, vol. 38, no. 1, pp. 147–150.
- 12. Chilin V. I., Levitina G. B. Derivations on Ideals in Commutative AW^* -Algebras. Sib. Adv. Math., 2014, vol. 24, no. 1, pp. 26–42. DOI.10.3103/S1055134414010040.
- 13. Kusraev A. G. Automorphisms and Derivations on a Universally Complete Complex f-Algebra. Sib. Math. J., 2006, vol. 47, no. 1, pp. 77–85. DOI: 10.1007/s11202-006-0010-0.

Received March 21, 2018

ALEKSEY F. BER Institute of Mathematics of Republica of Uzbekistan, Mirzo Ulughbek Street, 81, Tashkent 100170, Uzbekistan E-mail: aber1960@mail.ru, Aleksey.Ber@micros.uz VLADIMIR I. CHILIN National University of Uzbekistan, Vuzgorodok, Tashkent 100174, Uzbekistan E-mail: vladimirchil@gmail.com, chilin@ucd.uz

FEDOR A. SUKOCHEV School of Mathematics and Statistics, University of New South Wales, Ms Marina Rambaldini, RC-3070, Sidney 2052, NSW, Australia E-mail: f.sukochev@unsw.edu.au

Владикавказский математический журнал 2018, Том 20, Выпуск 2, С. 23–28

ДИФФЕРЕНЦИРОВАНИЯ В БАНАХОВЫХ *-ИДЕАЛАХ АЛГЕБР ФОН НЕЙМАНА

Бер А. Ф., Чилин В. И., Сукочев Ф. А.

Аннотация. Известно, что любое дифференцирование $\delta: M \to M$ на алгебре фон Неймана \mathcal{M} является внутренним, т. е. $\delta(x) := \delta_a(x) = [a,x] = ax - xa, x \in \mathcal{M}$, для некоторого $a \in \mathcal{M}$. Если H сепарабельное бесконечномерное гильбертово пространство и $\mathcal{K}(H)$ есть C^* -подалгебра компактных операторов в C^* -алгебре $\mathcal{B}(H)$ всех ограниченных линейных операторов, действующих в H, то каждое дифференцирование $\delta: \mathcal{K}(H) \to \mathcal{K}(H)$ есть специальное дифференцирование, т. е. существует такой оператор $a \in \mathcal{B}(H)$, что $\delta(x) = [x,a]$ для всех $x \in K(H)$. В недавней работе А. Ф. Бера, В. И. Чилина, Г. Б. Левитиной, Ф. А. Сукочева (ЈМАА, 2013) установлено, что каждое дифференцирование $\delta: \mathcal{E} \to \mathcal{E}$ на любом банаховом симметричном идеале компактных операторов $\mathcal{E} \subseteq \mathcal{K}(H)$ также является пространственным. Мы показываем, что аналогичный результат верен и для произвольных банаховых *-идеалов в любой алгебре фон Неймана \mathcal{M} . Более точно: Если \mathcal{M} любая алгебра фон Неймана, \mathcal{E} банаховый *-идеал в \mathcal{M} и $\delta: \mathcal{E} \to \mathcal{E}$ есть дифференцирование на \mathcal{E} , то существует такой элемент $a \in \mathcal{M}$, что $\delta(x) = [x,a]$ для всех $x \in \mathcal{E}$, т. е. δ есть пространственное дифференцирование.

Ключевые слова: алгебра фон Неймана, банахов *-идеал, дифференцирование, пространственное дифференцирование.