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Abstract. The block graph of a graph G, written B(G), is the graph whose vertices are the blocks of G
and in which two vertices are adjacent whenever the corresponding blocks have a cut-vertex in common.
We study the properties of B(G) and present the characterization of graphs whose B(G) are planar,
outerplanar, maximal outerplanar, minimally non-outerplanar, Eulerian, and Hamiltonian. A necessary
and sufficient condition for B(G) to have crossing number one is also presented.
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1. Introduction

Notations and definitions not introduced here can be found in [1]. There are many
graph operators (or graph valued functions) with which one can construct a new graph
from a given graph, such as the line graph, the total graph, and their generalizations. One
such generalization is the block graph concept whose properties and characterizations were
considered in [2]|. It is the object of this paper to study some of the structural properties
of the block graph such as the planarity, outer planarity, etc.

We need some concepts and notations on graphs. A graph G = (V| E) is a pair, consisting
of some set V', the so-called vertezr set, and some subset E of the set of all 2-element subsets
of V', the edge set. We write = = (p, q) and say that p and ¢ are adjacent vertices (sometimes
denoted p adj q).

A graph G is connected if between any two distinct vertices there is a path. A mazimal
connected subgraph of G is called a component of G. A cut-vertex of a graph is one whose
removal increases the number of components. A non-separable graph is connected, nontrivial,
and has no cut-vertices. A block of a graph is a maximal non-separable subgraph. If two distinct
blocks B; and Bs are incident with a common cut-vertex, then they are called adjacent blocks.
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A graph G is planar if it has a drawing without crossings. For a planar graph G, the inner
vertex number i(G) is the minimum number of vertices not belonging to the boundary of the
exterior region in any embedding of G in the plane.

If a planar graph G is embeddable in the plane so that all the vertices are on the boundary
of the exterior region, then G is said to be outerplanar. An outerplanar graph G is mazimal
outerplanar if no edge can be added without losing outerplanarity. A grap G is said to be
minimally non-outerplanar if i(G) = 1 [3]. The least number of edge crossings of a graph G,

among all planar embeddings of G, is called the crossing number of G and is denoted by cr(G).

A star graph K, ,, (n > 3), is the complete bipartite graph. The dutch windmill graph D:gm),

also called a friendship graph, is the graph obtained by taking m copies of the cycle graph Cs
with a vertex in common and therefore corresponds to the usual windmill graph Dém). It is

therefore natural to extend the definition to Dﬁlm), consisting of m copies of C),.

DEFINITION 1.1. The line graph of a graph G, written L(G), is the graph whose vertices
are the edges of G, with two vertices of L(G) adjacent whenever the corresponding edges of G
have a common vertex.

DEFINITION 1.2. The block graph of a graph G, written B(G), is the graph whose vertices
are the blocks of G and in which two vertices are adjacent whenever the corresponding blocks
have a cut-vertex in common.

Note that B(G) is defined only for graphs which have at least one cut-vertex or (at least
two blocks). In Fig. 1, a graph G and its B(G) are shown.

B:

Bz o« B3

B1 B> Bz Ba B B> Bz Ba

Fig. 1.

2. Properties of Block Graphs

In this section we present some of the basic properties of B(G).
Property 2.1. If G is a tree of order n (n > 3), then L(G) = B(G).
Property 2.2. There is no non-trivial graph G which is isomorphic to its B(G).

Property 2.3. The block graph B(G) of a graph G is a block if G contains exactly one
cut-vertex.

Property 2.4. If the number of cut-vertices of a path P, (n > 3) is «, then number
of cut-vertices of the corresponding B(P,) is a — 1. Clearly, the number of cut-vertices of
B(K ) is zero.

Property 2.5. If G is a path P, (n > 2), then the size of B(FP,) equals %2?21 d?—n+1,
where d; is the degree of the vertices of F,.

Property 2.6. If G is a star graph K, (n > 3), then the size of B(K; ;) = n(”T_l)



76 Kelkar, A., Jaysurya, K. and Nagesh, H. M.

3. Characterization of B(G)

We now characterize the graphs whose B(G) are planar.

Theorem 3.1. The block graph B(G) of a graph G is planar if and only if G is either
a star graph Ki, (2 < n < 4) or a dutch windmill graph Dq(lm) (2<m<4).

< Suppose that B(G) is planar. Assume that G = K, (n > 5). If G = K5, then
B(G) = K35, which is non-planar, a contradiction. Assume now that G = D™ (m > b).
IfG= fo), then B(G) = K3, again a contradiction.

Conversely, suppose that G is either a star graph K, (2 < n < 4) or a dutch windmill
graph Dﬁlm) (2 < m < 4). We consider the following cases.

Case 1: If G = K 5, then B(G) = K>, which is planar.

Case 2: If G = K 3, then B(G) = K3, which is planar.

Case 3: If G = K 4, then B(G) = K4, which is planar.

Case 4: If G = DY, then B(G) = K.

Case 5: If G = DY, then B(G) = K3, which is planar.

Case 6: If G = D£L4), then B(G) = K4, which is planar.

Therefore, by all the cases above, B(G) is planar. This completes the proof. >

2, which is planar.

We now establish a characterization of graphs whose B(G) are outerplanar; maximal
outerplanar; and minimally non-outerplanar.

Theorem 3.2. The block graph B(G) of a graph G is outerplanar if and only if G is
either K13 or DS’).

< Suppose that B(G) is outerplanar. Assume that G is either Ky, (n > 4) or D™
(m > 4). If G = Kj 4, then B(G) = Kj. Clearly the inner vertex number of B( ) is one,
i.e., i(B(G)) = 1, a contradiction. Assume now that G = D™ (m>4).IfG = D7(14), then
B(G) = K4, again a contradiction.

Conversely, suppose that G is either K 3 or Dq(lg). If G = K, 3, then B(G) = K3. Clearly
the inner vertex number of B(G) is zero, i.e., i(B(G)) = 0. If G = D7(13), then B(G) = K3,
and thus i(B(G)) = 0. Therefore, B(G) is outerplanar. This completes the proof. >

Theorem 3.3. The block graph B(G) of a graph G is maximal outerplanar if and only if
G is either K13 or a path Ps.

< Suppose that B(G) is maximal outerplanar. Assume that G'is Ky, (n > 4). If G = Ky 4,
then B(G) = K4, which is non-outerplanar, a contradiction. Assume now that G is a path P,
of order n (n > 4). By definition, B(G) is a path of order n — 1. Clearly, i(B(G)) = 0, and
the addition of an edge does not change the inner vertex number of B(G). Clearly, B(G) is
not maximal outerplanar, again a contradiction.

Conversely, suppose that G is either K3 or a path P5. If G = K3, then B(G) = K3,
which is maximal outerplanar. If G = Ps3, then B(G) = P, which is also maximal outerplanar.
This completes the proof. >

Theorem 3.4. The block graph B(G) is minimally non-outerplanar if and only if G is
: (4)
either K14 or Dy’
< Suppose B(G) is minimally non-outerplanar. Assume that G = K;5. By definition,

B(G) = Kj, which is non-planar, a contradiction. On the other hand, if G = Dq({r)), then
B(G) = K3, again a contradiction.
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Conversely, suppose that G is either Kj 4 or D,(14). By definition, B(G) = Kj. Clearly,
i(B(G)) = 1. Hence B(G) is minimally non-outerplanar. This completes the proof. >

Theorem 3.5. The block graph B(G) of a graph G has crossing number one if and only
if G is either K15 or DY,

< Suppose G has crossing number one. Assume that G = K, (n > 6). If G = K; 6, then
B(G) = Kg. Clearly, cr(B(G)) > 1, a contradiction. On the other hand, if G = D, then
B(G) = Kg, a contradiction.

Conversely, suppose that G is either K 5 or D,(f). By definition, B(G) = K. Since the
crossing number of Kj is exactly one, ¢r(B(G)) = 1. This completes the proof. >

DEFINITION 3.1. An FEulerian cycle in an undirected graph is a cycle that uses each edge
exactly once. If such a cycle exists, then the graph is called Fulerian.

Theorem 3.6 (Harary [1]). A connected graph G is said to be Eulerian if and only if the
degree of each vertex of GG is even.

Theorem 3.7. The block graph B(G) of a graph G is Eulerian if and only if G is
either K op11 or ngﬂ) (k>1).

< Suppose B(G) is Eulerian. Assume that G = K 9 (k > 1). By definition, B(G) = Koy,
in which degree of each vertex is 2k — 1, which is odd. Since the degree of each vertex of B(G)
is odd, Theorem 3.6 implies that B(G) is non-Eulerian, a contradiction. On the other hand,
it G = fok), then B(G) = Ky, again a contradiction.

Conversely, suppose that G is either Kj g1 or Dﬁlzkﬂ) (k > 1). By definition, B(G) =
K11, in which the degree of each vertex of B(G) is 2k, which is even for every k > 1. Since
the degree of each vertex of B(G) is even, Theorem 3.6 implies that B(G) is Eulerian. This
completes the proof. >

DEFINITION 3.2. A Hamiltonian path is a path that visits each vertex of the graph exactly
one. A graph is Hamiltonian if for every pair of vertices there is a Hamiltonian path between
the two vertices.

Theorem 3.8. The block graph B(G) of K1, (n > 3) or D™ (m > 3) is Hamiltonian.

< Suppose that G is either K ,, (n > 3) or D™ (m > 3). By definition, B(G) is a complete
graph of order n or m. Since every complete graph is Hamiltonian, B(G) is Hamiltonian. This
completes the proof. >

4. Open problems

4.1. One can naturally extend these concepts to the directed graph version. What can one
say about the properties of the directed version?

4.2. If the number of cut-vertices of the graph G is 3, then what is the number of cut-
vertices of the corresponding B(G)?
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Ansoranms. I'pad 6mokor B(G) rpada G — rpad, BepummHaMu KOTOPOro siBjsiiorcst 61oku rpada G u
B KOTOPOM JIBE BEPIIMHBI CMEXKHBI TOTZA U TOJIHKO TOT/IA, KOT/Ia COOTBETCTBYIONIME MM OJIOKM MMEIOT OONLyIO
TOYKY couleHeHus. VI3ydarorcst pa3nmuHsle ceoiicTBa rpada 6iokoe B(G), B 9aCTHOCTH, JaHBI XapaKTepHU-
cruku rpados, y koropsrx rpadst 610kos B(G) aBasiiorcs mwiockuMu (IJIaHAPHBIMHT), BHENIHEIJIAHAPHBIMH,
MAKCUMAaJIbHBIMU BHEITHEIIJIAHAPHBIMA, MUHAMAJIHHBIMA HEBHENTHEILTAHAPHBIMHE, SHIEPOBbIMA W FaMHJILTOHO-
BbIMH. TakiKe IIPeCTABICHO HEOOXOMMMOe U JOCTATOYHOE YCIOBHE, ITOOLI THCIIO mepecedeHus rpada 6I10KoB
B(G) paBHsLIOCH eAMHUAILIE.
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