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Abstract. The objective of this paper is to obtain an upper bound (not sharp) to the third order Hankel
determinant for certain subclass of multivalent (p-valent) analytic functions, defined in the open unit
disc E. Using the Toeplitz determinants, we may estimate the Hankel determinant of third kind for the
normalized multivalent analytic functions belongng to this subclass. But, using the technique adopted by
Zaprawa [1], i. e., grouping the suitable terms in order to apply Lemmas due to Hayami [2], Livingston [3]
and Pommerenke [4], we observe that, the bound estimated by the method adopted by Zaprawa is more
refined than using upon applying the Toeplitz determinants.
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1. Introduction

Let A, (p is a fixed integer > 1) denotes the class of functions f of the form

f(z) =2P Z apn2", (1.1)
n=0

in the open unit disc E = {2z : |z| < 1} with p € N = {1,2,3,...}. Let S be the subclass of
Ay = A, consisting of univalent functions. In 1985, Louis de Branges de Bourcia proved the
Bieberbach conjecture also called as Coefficient conjecture, which states that for a univalent
function its n'"-Taylor’s coefficient is bounded by n (see [5]). The bounds for the coefficients
of these functions give information about their geometric properties. In particular, the growth
and distortion properties of a normalized univalent function are determined by the bound of
its second coefficient. The Hankel determinant of f given in (1.1) (when p = 1), for ¢,n € N
was defined by Pommerenke [6] as follows and has been extensively studied by many authors:

Qn an4+1 " Onyg-—1
_ | OGn+1 an+2 Gp+q
Ho(m)=) 770 77 T (1.2)
an+g—1 Qn+q " QAn42¢—2
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One can easily observe that the Fekete-Szego functional is Ha(1). In recent years, the research
on Hankel determinants has focused on the estimation of |H3(2)|, where

as as

Hy(2) = as

2
= a2a4 — a3,

known as the second Hankel determinant obtained for ¢ = 2 and n = 2 in (1.2). Many authors
obtained upper bound to the functional |azas — a3| for various subclasses of univalent and
multivalent analytic functions. The exact (sharp) estimates of |H2(2)| for the subclasses
of S namely, bounded turning, starlike and convex functions denoted by %, S* and &
respectively in the open unit disc F, that is, functions satisfying the conditions Re f'(z) > 0,
Re{z}cég)} > 0 and Re {1 + Z}C,/ES)} > 0 were proved by Janteng et al. |7, 8] and obtained
the bounds as 4/9, 1, and 1/8 respectively. For the class S*(¢) of Ma-Minda starlike functions,
the exact bound of the second Hankel determinant was obtained by Lee et al. [9]. Choosing
g=2and n = p+1in (1.2), we obtain the second Hankel determinant for the p-valent
function (see [10]), namely

Gp+1  Op42

H 1) =
2+ 1) Gp+2  Gp+3

— 2
= Op+10p+3 = Qpia-

The case ¢ = 3 appears to be much more difficult than the case ¢ = 2. Very few papers
have been devoted to the third Hankel determinant denoted by H3(1), obtained by choosing
g =3 and n = 1 in (1.2). Babalola [11] is the first one, who tried to estimate an upper
bound to |H3(1)| for the classes #, S* and . Following this paper, Raza and Malik [12]
obtained an upper bound for the third Hankel determinant for a class of analytic functions
related with lemniscate of Bernoulli. Sudharsan et al. [13| derived an upper bound to Hs(1)
for a subclass of analytic functions. Bansal et al. [14] modified the upper bound for |H3(1)| for
some of the classes estimated by Babalola [11] to some extent. Recently, Zaprawa [1] improved
the results obtained by Babalola [11]|. Further, Orhan and Zaprawa [15] obtained an upper
bound for third Hankel determinant for the classes S* and % functions of order alpha. Very
recently, Kowalczyk et al. [16] estimated sharp upper bound to |H3(1)| for the class of convex
functions %" and showed as |H3(1)| < 13z, which is far better than the bound obtained by
Zaprawa |1]. Lecko et al. [17] calculated sharp bound for Hankel determinant of the third kind
for starlike functions of order 1/2. For our discussion in this paper, we consider Hs(p) for the
values ¢ = 3 and n = p in (1.2), called as Hankel determinant of third order for the p-valent
function given in (1.1), namely

ap  Ap+1 Gp42
H3(p) =| apt1 apr2 apy3 (ap =1).
Ap+2 Ap+3  Aptd

Expanding the determinant, we have

H3(p) = [ap(ap+2ap+4 - a123+3)
+ api1(api2aps3 = Gp1apa) + appa(apiapss — apio)], (1.3)

equivalently
H3(p) = Ha(p + 2) + aps1Jpi1 + apraHa(p + 1),

where Jp11 = (apt2ap13 — apri1ap14) and Ha(p + 2) = (ap20p+a — ag+3).
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Motivated by the results obtained by different authors mentioned above and who are
working in this direction (see [18, 19]), in particular the result obtained by Zaprawa [1]
in finding an upper bound to the Hankel determinant of third kind for the subclass %
of S, consisting of functions whose derivative has a positive real part (also called as bounded
turning functions), introduced by Alexander in 1915 and a systematic study of properties
of these functions was conducted by MacGregor [20], who indeed referred to numerous earlier
investigations involving functions whose derivative has a positive real part. In the present
paper, we are making an attempt to obtain an upper bound to |Hs3(p)|, for the function f
given in (1.1), when it belongs to certain subclass of analytic functions, defined as follows.

DEFINITION 1.1. A function f € A, is said to be in the class I,(5) (5 is real) (see [21]),
if it satisfies the condition

f(2)

Re{(l -5 APYAC)

pzP~1

}>0, ze E—{0}. (1.4)

1. Choosing =1 and p = 1, we obtain [;(1) = Z.

2. Selecting B = 1, we get I,(1) = %), denotes the class of multivalent bounded turning
functions.

In proving our result, we require a few sharp estimates in the form of Lemmas valid for
functions with positive real part.

Let &2 denote the class of functions consisting of g, such that

[oe)
g(z) :1—|—clz—|—6222—|—c323+---= 1+ch2n, (1.5)
n=1

which are analytic in E and Reg(z) > 0 for z € E. Here g is called the Caratheodory
function [22].

Lemma 1.1 [2|. If g € &2, then the sharp estimate |cx — pckc,—k| < 2, holds for n, k € N,
with n > k and p € [0,1].

Lemma 1.2 [3|. If g € &, then the sharp estimate |cy — cxcp—k| < 2, holds for n,k € N,
where n > k.

Lemma 1.3 [4]. If g € & then |ck| < 2, for each k > 1 and the inequality is sharp for

the function g(z) = 1£2, z € E.

In order to obtain our result, we referred to the classical method devised by Libera and
Zlotkiewicz [23, 24|, used by several authors in the literature.

2. Main Result

Theorem 2.1. If f € I,(5) (8 > 1 is real) with p € N, then

4p? (6p° + 60p° B + 227p* B2 + 426p® 33 + 437p? 3* + 252pB° + 6843°)
(p+B)*(p+28)*(p+ 36)*(p + 48)

|H3(p)| <

< For the function f(z) = 2P + 2% . an2™ € Ip(B), by virtue of Definition 1.1, there
exists an analytic function g € & in the open unit disc E with g(0) = 1 and Re g(z) > 0 such

that ,
1), 0

2P pzP—1

(1-5) =9(2) & [(1 = B)pf(2) + Bf'(2) = pFg(2)]. (2.1)
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Replacing f’ and g with their series expressions in (2.1), upon simplification, we obtain

Pln
Upon = —— npeN, 2.2
Substituting the values of a,t1, apt2, apt3 and a,14 from (2.2) in the functional given in (1.3),
it simplifies to

_ cacy pcs c2
[Hs(®)] = ” hp T (P ) Rl s Al P )
_ peica 2pcicacs ] (2.3)
(p+B)%p+48) (+B)+28)(p+36)]

On grouping the terms in (2.3), in order to apply Lemmas, we have

o[ pealea =) B 1 ed e 6pcica
|[Hs(p)| = p [(p+5)2(p+45) (p + 36)? 3{ ’ (p+5)(p+2ﬁ)}

peacs — ) 2p*cy(cs — c1c3)
(p+28)*  (p+B)(p+206)(p+3p)

N (p® + 6p°B3 + 3p* 3% — 30p3 B3 — 36p2B* 4 24pB> + 3656)CQC4] (2.4)
(p+B)2(p+28)3(p + 38)%(p + 4B)
Applying the triangle inequality in (2.4), we obtain
plcal |02 - C%‘ 6pcyco ‘
Hs(p)| < p? + c3||es —
B0l <7\ e ram Y e T T G ey o)
Jr10|02||C4—C%| 2p°|eal|ca — cres]
(p+26)%  (p+B)(p+28)(p+38)?
N (p8 + 6p°B + 3p* % — 30p3 33 — 36p>B* + 24pB° + 3639)|cal|c4] 25)
(p+ B)%(p +28)3(p + 38)%(p + 45) ' '
Upon using the Lemmas given in 1.2, 1.3 and 1.4 in the inequality (2.5), it reduces to
H <4 2 b
10| <9 )
1 p 2p
+ 2 + 3 + 2
(p+38)*  (p+26)°  (+B)(p+28)(p+33)
N (p° 4 6p°8 + 3p* B2 — 30p*5° — 36p*B* + 24p3° + 36°)cacy (26)
(p+B)*(p+28)*(p+ 3B)*(p + 48) S
Further simplification, we obtain
4p?(6p% + 60p° B + 227p* B2 4 426p3 B3 + 437p? 3% 4 252pB° + 6839)
[H3(p)| < 5 3 > .27
(p+B)*(p+28)*(p + 38)*(p + 4P)

This completes the proof of our Theorem. >
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REMARK 2.1. Choosing p = 1 and § = 1 in the inequality (2.7), it coincides with the result
obtained by Zaprawa [1].
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Ansoraums. Lesnbio aHHON CTATHU ABJSETCS MOJTydeHHe (HE TOYHONM) BEepXHEH TPAHMIBI JJIS Olpeie-
suresiss DaHKessl TPeThero mopsifika Jjisi HEKOTOPOTO MOJKJIACCa MHOTOBAJIEHTHBIX (p-BAJIEHTHBIX) aHAJIATUYIE-
CKUX (PyHKIWA, OIPe/IeIeHHbIX Ha OTKPBITOM equHuYIHOM gucke FE. Mcmonbsys onpenenurenn Ternma, Mbl
MOYKEM OIEHUTHL ONpeJeJuTe/ b [aHKe s TPeTbero poja Jjisi HOPMUPOBAHHBIX MHOTOBAJIEHTHBIX aHAJUTHYE-
ckux byHKIuUi, NprHa/IeKammx ToMy nojkaaccy. OmaHako, UCHonb3ys TexHuKy, npuaaTyo Canpasoii [1],
T. €. IPYIIIUPYsl HOAXOSAIINE WIEHBI JJisi IpUuMeHeHust jeMM Xasivu [2], Jlusurrcrona [3] u ITomepenke [4], Mbr
BUJIUM, 9TO OIeHKa MeTooM Camnpasbl TOUHee, YeM NP MPUMEHEHNH onpejennTesei Temmmma.

KiroueBble ciioBa: p-BaJieHTHasl aHAJUTHYECKast (DYHKIHSI, BEPXHsS I'DAHUIA, TPETH OIIPEIeINTeb
Tankesst, mosioKuUTEIbHAST BEIECTBEHHAsT (DyHKITUS.
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