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Abstract. The so called grand spaces nowadays are one of the main objects in the theory of function
spaces. Grand Lebesgue spaces were introduced by T. Iwaniec and C. Sbordone in the case of sets 2 with
finite measure |Q| < oo, and by the authors in the case |Q2] = co. The latter is based on introduction of the
notion of grandizer. The idea of “grandization” was also applied in the context of Morrey spaces. In this
paper we develop the idea of grandization to more general Morrey spaces LP?*(R™), known as Morrey
type spaces. We introduce grand Morrey type spaces, which include mixed and partial grand versions of
such spaces. The mixed grand space is defined by the norm
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with the use of two grandizers a and b. In the case of grand spaces, partial with respect to the exponent g,
we study the boundedness of some integral operators. The class of these operators contains, in particular,
multidimensional versions of Hardy type and Hilbert operators.
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1. Introduction

Last decades there were widely investigated the so called grand Lebesgue spaces,

introduced in [1]; see for instance, [2-5] and references therein, where such spaces and operators
on them were studied in the case of finite measure underlying set. An approach to grand
Lebesgue spaces on sets of infinite measure was suggested and developed in [6-10].
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That idea of “grandization” was also applied in the context of Morrey spaces defined by
the norm

e (N L) | 0

B(z,r) L°°(0, diam Q)

we refer for instance to [11-14], see also references therein.

Our goal is to extend the notion of grandization to the spaces LP®™(R™), with the
norm of the type (1), where L*-norm is replaced by Li-norm, 1 < ¢ < oo, see precise
definitions in Section 2. Such spaces are usually referred to as Morrey type spaces. These
spaces were introduced and studied in [15] and [16]. In the case w(r) = r=*, A > 0, these
space first appeared, though as an episode, in [17, p. 44|. For further studies of operators
on LP%*(R™)-spaces we refer, for instance, to [18, 19| and references therein, see also the
surveying papers |20, 21| and [22].

We study various approaches to the grandization of Morrey type spaces, with respect to
the exponents p and ¢. This includes partial grandization and mixed grandization. To this end,
we deal with “grandizers” a(y) and b(r) in the corresponding variables, see Definitions 3.1,
3.2, 3.3.

We find conditions on the grandizers a and b, which ensure embedding of Morrey type
spaces into the introduced grand Morrey type spaces.

In the case of partial grandization with respect the exponent ¢, we study, in grand
Morrey type spaces, the boundedness of a certain class of integral operators K with a kernel
homogeneous of degree —n. This class includes, in particular, multidimensional versions of
Hardy type and Hilbert operators. Within the frameworks of generalized Morrey spaces,
corresponding to the case ¢ = oo, a more general class of operators with homogeneous kernel
was studied in [23].

We first study such operators in Morrey type spaces (not grand ones) and obtain sufficient
conditions and also some necessary conditions for their boundedness. In fact, we obtain
a result stronger than just boundedness: we estimate the norms ||K f||zp.q.w®n) via similar
one-dimensional norms of spherical means of f. Then we apply the obtained results on the
boundedness to grand Morrey type spaces.

In application to the Hardy operators with power weights, the obtained conditions have
a form of criterion when w(r) = r=*, A > 0.

The paper is organized as follows. Section 2 contains necessary definitions. In Section 3.1
we discuss varions ways of grandization of Morrey type spaces LP2*(R™). In Section 3.2 we
provide conditions on grandizers ensuring embedding of Morrey type spaces into grand Morrey
type spaces. In Section 4.1 we study the operators K in the Morrey type spaces LP¢"(R"),

and in Section 4.2 in grand Morrey type spaces le)’q)’w(]R”), both with application to the
Hardy and Hilbert type operators.

2. Preliminaries

Following the known definitions, we introduce the spaces LP>¢"(R™), defined by the norm

Q=

r ' dr
HfHLp,q,w(Rn) = igg O/U)(T)q / ffdy | — | (2)

r
lz—yl<r
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where E is an arbitrary set in R", ECR", 1 <p < o0, 1< ¢ <oo, we QRy),

i q
Q(Ry):= {w : w is a weight and /@

dr < oo for some t > 0}.
t

In the cases E = {0} and £ = R™ we have the local and global Morrey type spaces,
respectively. We do not indicate dependence of the space on the choice of the set E, since it
is unessential for our consideration. Only in Section 4 we choose E = {0}.

In the special case w(r) = r~*, A > 0, we also use the notation

K 7A L bh- 5
LPOAR™):= LPOY(R™)|

without danger of confusion of notation.
For a function w(r) defined on Ry, we will use the notation

t
w*(t) ;== sup witr)
reRy w(/r)
Observe that w, (1) = w%(t) Obviously w*(r) = w,(r) = w(r), when w(r) = r=*, A € R.
However, in the case of piece-wise power function

t
and wy(t) ;= inf wl r)’ t>0.

zeRy w(r)

7“*’\, r <1,

_ A A=y
wa~(r)=r""(1+r ~
where A,y € R, we have a gap between w* and w,:

. rfmax{/\,'y}’ r< 17 Tfrnin{/\,'y}7 r< 1’
w,\,»y(T) = {7“ min{)\,w}’ r>1, and (wkﬁ)*(r) = — max{)\ﬁ}7 r>1, (3)

see e. g. |24, p. 715 |.

3. Grand Morrey Type Spaces

3.1. Grandization of Morrey type spaces. Everywhere in the sequel, a = a(y) and
b = b(r) are weights on R™ and R, respectively.

DEFINITION 3.1. Let
l<p<oo, 1<g<oo, weQRy) (4)

and
p e L>®(Ry,,), ¢(e,0) >0 for (¢,0) € Ry, and lim  p(e,0) =0,
(e,6)—(0,0)
where R, :={(,0) eR2 : 0<e<p—-1,0<d<q—1}.

We define the mixed grand Morrey type space L’;?l’f)’w(R”) as the space of functions with
the finite norm

q
o] p—

[ — =
HfHLP)I;‘”’w(Rn)::( (Ss)u% ©(e,9) Sug /w(r)q5b(r)q /|f(y)|p “a(y)rdy —
@ £,0)ERp 4 re
|lz—y|<r

We also say that Lg)éq)’w(R”) is the mized gandization of the space LP¢"(R™).
Note that mixed coordinate-wise grandization of mixed Lebesgue spaces was studied
in [25].
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DEFINITION 3.2. We define partial grandizations Lg)’q’w(R”), l<p<oo 1<qg< o,

and Li’Q)’w(Rn), 1<p<oo, 1< q< oo, of the space LP¢™(R™) as the spaces of functions
with the finite norm

q 1
q

%) p—e
_ e d
Igeyi= e e mp | [t | [ @l awrar | S
0 lz—y|<r

where ¢ € L>(0,p — 1), ¢(e) > 0 and lim._,¢ ¢(e) = 0, and

0 p

_ L)
17 gmon gy = | 50 0(0) sup [ty | /| fwlay|
r—y|<r

where ¢ € L*>(0,q — 1), ¢(6) > 0 and lims_,¢ ¢(d) = 0, respectively.
Definitions 3.1 and 3.2 may be generalized in the following direction. Let U C R, , be an
arbitrary measurable set of points in R, 4, such that (0,0) is a limiting point for U.
DEFINITION 3.3. Let 1 < p < 00,1 < ¢ < o0, p € L®(U), p(e,0) > 0 for (¢,0) € U and
limgrs(c,6)(0,0) P(€,0) = 0. We define the U-grandization ULZ?I’)q)’w(R”) of the Morrey type
space as the space of functions with finite norm

q—394
00 p—e

HfHULP)’Q)vw(Rn) = Sup 90(6’6)Sup /w(r)q6b(r)
“P (e.0)eU 2€E

q—9o

/ ) )iy | <

r

Q[

|lz—y|<r

Under the choice U = R, , we have the mixed grand Morrey type space introduced in
Definition 3.1. Partial grandization from Definition 3.2 formally correspond to the case where
U={(,0):0<e<p—-1,0=0}and U ={(¢,9) :e=0,0< 6 < qg—1}.

In the sequel we use the notation

o] p—e

i 0)= /w(r)q—%(r)% / W al)rdy |
0 |z—y|<r

for brevity, assuming that p, ¢, w, a and b are fixed. In case of partial grandization we have
N(f;e,0) and N(f;0,0) for b =1 and a = 1, respectively.

Lemma 3.1. 1. Let (9,00) € Usys, = {(£,6) €U : 0 <& < 0,0 <8 <}, a € LL(RY)
andbe L! (RJ” %), then

sup p(g,0)N(f;6,0) <C  sup  o(g,6) N(f;¢,9),

(e,0)eU (,0)€U¢q,59

where C' = C(eo, b, ||all 1 &n), \|b\|L1(R+,%))-

II. In the case of partial grandization with respect to the variable r, similarly

sup  ©(0) N(f;0,8) < C sup ¢(6)N(f;0,9),

0<d<g—1 0<6<do

where C' = C(dp, ”b”Ll(R+,%))~
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<1 We have to estimate

sup o(g,0) N(f;e,0) = max {51,512,52},

(Evé)eU\UEO,éo
where
Sl = Sup SO(&‘,(S) m(f,g,(;), SQ = Sllp 90(656) m(fas)é))
(e,6)€tn (g,0)€U2
Sip:= sup (c,0)N(f;,8), Up:={(,0) €U:¢e<ep, 6>0d},
(E,5)€U12

Up:={(e,0) €U :e>e0,6 <}, Ua:={(,6) €U :¢e>e9,0>6}
For 512, we apply the Holder 1nequahtleb in the variables y and r with the expends Z==2

p—¢€

S1o < sup (e, 0)|a HLl(ER"p i Hb” qdio)
(€,0)€U12
} F\TS
o| [t / sl o ay| &
0 lz—yl<r
1
e p—eo =5
oo D) el ®) HbHLl(R ar)
< sup @(875) m(€75)'
sup (g, 9) (£,6)€Us4.5,
(E,é)eUao,éo

Estimation of S; and S5 is easier via similar use of the Holder inequality in one variable
only. We omit details. >

3.2. Embedding of Morrey type spaces into grand Morrey type spaces.
Lemma 3.2. If

g 41
Co:= sup ¢(g,0) sup/b(r)A(x,r)p el — < oo, (5)
(e,0)eU zeE
0
where A(xz,r) := f\xnyT a(y)dy, then
LPOP(RY) < ULz?éq),w(Rn) and HfHULp)I,)q),w(Rn) < Coll fll zoaiw mny.- (6)

< It suffices to apply the Holder inequalities with the exponents —£- p
and outer integrals in the definition of the norm in Definition 3.3. >

Theorem 3.1. The conditions a € L'(R") and b € L'(Ry, %) are sufficient for the
embedding (6) for any choice of the set U. The condition b € L'(Ry, %) is sufficient for
embedding of LP*%*(R™) into the partial grand space Lg’Q)’w(R").

< It is easy to see that the change of a(y) by Aa(y), A = const > 0, keeps the grand
space (up to equivalents of norms). Consequently, we may assume that [la[/z1gny = 1. Then
A(r) < 1 and the statement follows from (5).

The embedding into the partial grand space follows from Lemma 3.1. >

and —% in the inner
€ q—0
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REMARK 3.1. Note that the condition (5) does not assume that a€ L'(R"), be L (R, &)
In particular, in the case of “partial” grandization in the direction § = ¢, the embedding (6)
holds, if b(r)A(r)4/? € L' (R, &)

By AC)oc(Ry) we denote the class of functions ¢ : Ry — R, absolutely continuous on
every interval [0, N], N > 0.

In Theorem 3.2 we impose the condition

0
on the grandizer b

Lemma 3.3. Let ¢(d) < ¢0'/9. Grandizer b of the form

b ",
(r) - (1 + T)V T,O’(r)7
where .
In"—, r<l1,
Uro(r) = r

n%r, r>=1,
satisfies the condition (7) if 0 < p < v < oo and 7,0 € R

< Let first 7 = 0 = 0. We have

T

Wi T T ()
/ O/l—i-r F F

1 c
~ & 8)
vd ’ (
r(2) 0
so that (7) is satisfied
In the case of the presence of the logarithmic factor ¢, ,(r), it suffices to observe that
l: »(r) is dominated by a +r)”2 with arbitrarily small exponents 71 > 75 > 0 and the estimate
by 5 in (8) does not depend on p and v, provided 0 < p < v. >
Theorem 3.2. Let 1 <
assumptions:

p < oo and 1 < g < oo. Let the grandizer b satisfy the conditi-
(7). The embedding LP*%*(R™) C L}’ D “(R™) is strict if w(r) satisfies one of the following
i) w is decreasing, lim,_,ow(r)

00 and = € ACioc(Ry)
ii) there exist numbers vy and v5, 0 < vy < 11 < 00, such that w(r)r*! is almost increasing
and w(r)r? is almost decreasing

The corresponding counterexample is f(x)

2) = fol|]), where

1—n d 1 %
0= (7 5 o)
for the case i) and

n
in the case ii).
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T

/|f0(|y|)|”dy=0/d%[ . }dp,

w(p)?
ly|<r 0
By the absolute continuity of % we obtain that

c=]5""Y.

3=

/\hmm%w ek

ly|<r
Therefore,

(0.0 = v | [
0

from which it follows that f € L™ (R"), but f ¢ LPow(R™),
The case ii). In this case we have

by —c [ o
/\ﬂwMM—C!?Mmﬁ
y|<r

From the assumptions in 4i) it is easy to obtain that

r
C1

</ dp_ o @
w(r)pr =

pw(p)P = w(r)?:
0

From the equivalence (9) we obtain that

1

q—398
dr

Qe

r

(0.0~ | 12
0

)

which completes the proof. >

4. Operators with Homogenous Kernel

In this section we choose E = {0} in the definition of the space L\ (R").
We consider integral operators

Kﬂ@z/%WMWﬂww
J

where the kernel is homogeneous of degree —n, i. e.

H (el tlyl) = 7" (|2l [yl)-
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4.1. Operator K in Morrey type spaces. In the sequel we use the notation
ILf(z) :== f(tx), ze€R" t>0.

It is not hard to check that

1 *

Wy (7 w

*gt) [ flzpaw@ny < T f | Lowaiw @ny <

tr t

If w(r) = r=*, then w*(t) = w.(t) =t~ and ||IL]| p.g.0 gn) = tA=n/p,
In the theorem below we also use the notation

*(n):=|S" s:’ s)| w* —1 s
) |S 1|O/ 1‘%(1, )‘ (S>d
= |S" Oos;’ S)| wy —1 ds
) |S 1‘0/ 1|%(1, )‘ (s)

where |S"~!| should be replaced by 1 in the one-dimensional case of R .

The following one-dimensional theorem is an immediate consequence of (10).

Theorem 4.1. Let 1 <p < 00,1 < g < oo and w € Q4(Ry). The condition »*(1) < oo
is sufficient for the boundedness of the operator

—~

=

)

£l Loae (m)- (10)

3|3

and

/Ji/xy y)dy, xRy,

where J (tx,ty) =t~ 1 (z,y), t > 0, in the space LP%*(R,) and
|K fllpawmy) < 2" (D[ fllzraw ®,)- (11)
<1 We have

T) = /%(1,y)f(wy) dy.

Then by the Minkowsky inequality we obtain

o0
1K fll ooz, ) < / K(L )|y | nae e, ) dy,
0

whence (11) follows by (10). >

For the multi-dimensional case, in the next theorem we provide a statement stronger
than just the boundedness in the space LP¢"(R™). More precisely, we estimate the norm
| K f |l p.aw (mny Via one-dimensional norms of spherical means of f.

Theorem 4.2. Let 1 <p < 00,1 < g <ooandw € Qy(Ry). If 2*(n) < oo, n > 1, then

q
00 T P q

1K sy < |57 o) | [ 22 fonpopar ) ar| o a2)

0 0
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where

@(t):ﬁ / f(to) do
Snfl

<1 Note that K f is a radial function for any f. It is easily seen that for any radial function
g(x) = G(|x|) one has

l9llzeseqer) = 15" Goll oo, (13)

where G, (p) = p"=D/PG(p).
Furthermore, passing to polar coordinates we have

=[S 1\/75 7 (|z], ) @,(t) dt,

where

Q,(t) = % / f(to) do.

Then by (13) we have

1K Fllrageny = 5" 7 [ Ea®y ] o

where

n=1 n-1
:/Jiﬁ(p,t)@p(t) dt, Hi(p,t)=p 7 t 7 H(pt).

The kernel Ki(p,t) is homogeneous of degree —1, i. e. Ki(sp,st) = s 'Ki(p,t), s > 0.
Therefore, we can apply Theorem 4.1 and obtain (12) after easy calculation. >

REMARK 4.1. The estimate (12) is stronger than the boundedness in LP%*(R™). Indeed,

g

00 T P q

/@ /t“\cb(t)\pdt dr <|5"71|7%HfHLP»w(R") (14)

0 0

by Jensen inequality

p
1 1
51| / f(po)do <W / | f(po)|? do.
Snfl Snfl

Clearly, the left-hand side in (14) may be finite when the right-hand side is infinite (e. g. when
f(.’L') = fl(p)fQ(J)v T = po, ’J’ =1, with f2 € Ll(Snil% but f2 ¢ Lp(Snil))'

In the necessity part of Theorem 4.3 we shall use the following minimizing sequence

£
1
folwy = ) e w):{“ r<boso

|z w(lz]) e, >l
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Lemma 4.1. Let w satisfy the condition that r°w(r) is almost decreasing for some § > 0.
Then

for all € € [0,ep], where 0 < g9 < § and ¢ = ¢(gg) does not depend on «.
<1 The proof is straightforward. >
Theorem 4.3. Let 1 <p < o0, 1 < ¢ < oo and w € Qu(Ry). If *(n) < oo, then

1K fll Loy < 3" ()| f || Losaw (my-

If #(|z], ly]) > 0 and w satisfies the assumption of Lemma 4.1, then the condition s, (n) < co
is necessary for such a boundedness; in particular, when w(r) = 7=, X\ > 0, the operator K
is bounded if and only if

o
/tﬁ“‘le(l,t) dt < co.
0
< Sufficiency of the condition s*(n) < oo follows from Theorem 4.2 by Remark 4.1.
To prove the necessity, we choose f(x) = f-(z). By using Lemma 4.1, it is easy to check
that f.(z) € LP2*(R™) for all € € (0,&p).
We have

pe (|| - |yl) dy

1 / A (1, ]yl)

7 . lyl7w(l2] - y])

Kf.(x) = / H (L)) £-(lely) dy =
RTL

R

wi([y|)pe (2] - [y]) dy.

1 /Ji/(l, lyl)
[P w((zl) S lyl7

It is easy to check that pc(rp) = pe(r)pe(p), so that

K fe(x) 2 si(n,e) fe(),

where
#(1,
stm,e) = [ 0wy (o
FAN e
/ 1 7 1
= |51 /ﬂﬁﬂ_l%(l,p)w* <—> dp + /pﬁ_e_lﬂ/(l,p)w* (—> dp
0 P 1 P
Hence

K| = 2.(n, ).

It remains to apply Fatou theorem when passin to the limit as ¢ — 0. >
In the corollary below we consider the Hardy operators

@) = o [ %dy and A5 = o [ ,jffi)ﬁd

ly|<|z| ly[>|z|
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2) = / f(y) dy
=™ + [y
Rn
as examples of the operator K.

Corollary 4.1. The operators H® and 7 are bounded in the space LP4MR™),
1<p<oo, 1K q<oo A > 0, if and only if a < p, +Xand 8 > A\ — %, respectively,

Sn 1
and ||[H®| = m L and ||| = %jw,g.

The operator H is bounded in the space LP4MR"), 1 < ¢ < oo, A > 0, if and only if

1<p<y and
gl TN DY
= e (24 2)r(3-2).
n p n p n

<1 In the case of the operator H* we have

and the Hilbert type operator

t*, t<1,
H(1,t) =
0, t>1,
so that »*(n) = s.(n) = ﬂ‘ﬁ_n/:L Arguments for 7#° are similar.
P

For the operator H we have

% 4a-1

%*( ‘Sn 1‘/ 1—|—t" ’

where it remains to pass the Beta function via the change # —t. >

4.2. Operator K in grand Morrey type spaces.
Lemma 4.2. Let fo(r) = ——~+—r and K(|z|,|y|) = 0. Then

HREIE))

<1 We have
dy \S” 1’ . dp
Kf (.’IJ) = e%/(‘xlv ‘y’) T pp c%/(l’p)i
0 RZ ly|?w(|y|) ]w\ ) w(plz))
|Sn—1| 00 . | w(t)
—n p’ , f : .

Theorem 4.4. Let 1 <p <00, 1 < g <ooandw € Q(Ry). If

gm0 [ ol () (D] a0
0

for some &g € (0,q — 1), then the operator K is bounded in the grand space le)’q)’w(]R”).
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<1 By Lemma 3.1 we take

11l o ey = p(0) 1 Lra=s.05 mys
by (R?) (

sup
0<6<do
where ws(r) = w(r)[b(r)]*/9@=%) . By using Theorem 4.2 and Remark 4.1, we get

< —Sws (Y
HEF Nl o ey < 053560¢(5)C(5)Hf\|m 505 (R

where

c(6) = |9 7;5?‘1 |2 (1,1)| w} G) dt. >
0

Corollary 4.2. Let assumptions of Theorem 4.4 be satisfied and, b(r) = r*(1 + r)~",
0 < p < v. If there exists g > 0 such that

1 00
n_ o noy e 1
Key = /tp’ ol |2 (1,t)| w* G) dt+/tp’+€0 ! |2 (1,t)| w* <¥) dt < oo, (16)
0

1
then the operator K is bounded in the grand space ng’Q)'w(R") and

||KfHL§»Q),w(Rn) < ’if-:onHLg»Q)»w(Rn)-

< For b(r) =r#(1 4 r)~", by (3) we have

b* 1 — t_/J/’ t < 1’
13 R > 1.
Then it is easy to see that (16) implies (15). >
Theorem 4.5. The Hardy operators H* and P are bounded in the grand space

Lg’Q)”\(]R”), 1<p<oo,1<q<oo, A>0, with the grandizer b(r) = ﬁ, 0<p<v,

if o < z% +Xand 8 > A — %, respectively. If p(d) < ¢61/4, then these conditions are also
necessary for such a boundedness.

<1 For the operator H* we have
1
Koy = /t?“‘”ol dt,
0

which is finite under the choice gy € (0, z% + A — ). This ensures the boundedness of H* when
a< S+
Similarly, the sufficiency of the condition 8 > A — % for the boundedness of 77 is checked.

To prove the necessary, we choose f = fo(z) =: W, so that

/ o) dy = exr®

ly|<r
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and then

) p 74;{16
us _wvs dt
HfOHLp,q),A(Rn) = sup ¢(0) /t a(14+t) ¢« —
b 0<d<g—1 / t

1

=

= sup ¢(d) [B (—Hé, —V6 — —Hé)} ! <c sup @(f) < o0.
0<d<q—1 q 4 q 0<6<q—1 §4q

Thus fy € ng’Q)’/\(R"). On the other hand, direct colculation shows that

Hafo(x) = cfo(ac)7 c= |Sn1|/t:’+’\a1 dt,
0

which implies that fooo /P A==l must be finite.
The case of the operator /#” is analogously treated. >
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I'PAH/I-ITPOCTPAHCTBA TUITA MOPPU

Camko C. "2, Ymapxaykues C. M.23

! Vaupepcurer Anrapso, Iopryramms, 8005-139, ®apo;
2 KOMILIEKCHEI HayTHO-HCCIIe0BaTeIbCKHiT mHCTUTYT nM. X. M6parnmosa PAH,
Poccusi, 364051, I'posubrii, CraporpoMbIC/ioOBCKoe Iiocce, 21 a;
3 Akanemus nayk Yegenckoit Pecry6muku, Pocenst, 364024, T'posuerit, np. um. M. DcambGaesa, 13

E-mail: ssamko@ualg.pt, umsalaudin®@gmail.com

AnnoTranms. Tak HasbIBaeMble I'DaH/I-IPOCTPAHCTBA B HACTOSIIEE BpeMsl sIBJIAIOTCS OJIHUM M3 OCHOBHBIX
00BeKTOB B Teopuu (PYHKIIMOHAILHBIX IIPOCTPaHCTB. ['pana-mpocTpancTia Jlebera ObLIM BBeJIeHBI B paboTax
T. Iwaniec u C. Sbordone B ciyuae muOXKeCTB §) KOHEIHOI Mephl || < 00, u aBrOopaMu B ciaydae |2 = oo.
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Ilocnennee ocHoBaHO Ha BBeIEHMU IOHATHS IpaHiu3aropa. nes «rpanamsannns Oblla TakKe NPUMEHEHA
B KOHTeKCTe npocrpancTB Moppu. B aToit crarbe MBI pasBuBaeM HJI€I0 MpaHaM3anMK 710 Oojee OOIUX IIPO-
crpancts Moppu LP*®%(R™), usBecTHBIX KaK MpocTpaHcTBa Tumia Moppu. Mbl BBOIUM TpaH-IPOCTPAHCTBA
Tura MoppH, 9TO BKJIIOYAET CMEIIaHHbIE M YaCTHbIE IPAH/| BEPCHH TaKUX IpocTpaHcTB. CMelanHoe IpaHi-
IIPOCTPAHCTBO OIIpeJe/IseTCsl HOPMOIt

oo p—e

supo(ed)sup | [wr)=ue)t | [ @l Cawiay | T
lz—y|<r

C HUCIOJIb30BAHUEM JBYX T'DAHAM3aTOPOB a u b. B ciydae rpanj-ipocTpaHCTB, YACTHBIX OTHOCHTEJIHLHO I0-
KasaTesisi ¢, Mbl M3y9aeM OMPAHUYEHHOCTh HEKOTOPBIX MHTErPAJBHBIX OmepaTopoB. Kiacc 3Tux omeparopos
COJIEPXKUT, B 9aCTHOCTH, MHOTOMEPHBIE BEPCUU OIIEPATOPOB THUIIA Xapu U oneparopoB ['mianbepra.

KioueBble cjioBa: npocTpaHcTBo THia MoppH, rpaH-IpoCTPaHCTBO, MPaH-IIPOCTPAHCTBO Thia Mop-
p¥, IpaHIn3aTOp, YaCTHAs IPaHIU3aIlsl, CMEIIaHHAsT TPAHU3AIMsI, OJJHOPO/IHOE sIJIPO, OIEPaTOp TUIIA XapIu,
oneparop ['mabbepra.
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