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1. Introduction

Mollification or convolution with a smooth kernel is one of the main tools of analysis
that allow us to transfer results from spaces of smooth functions to more general function
spaces. However, for contact mappings, that is mappings that preserve a fixed distribution in
the tangent bundle, mollifications lead to an undesirable effect: the mollified mapping is not
contact anymore. In [1, 2| it is shown that at least for mappings between two-step Carnot
groups we can give estimates on the failure of the mollified mapping to be contact sufficient
to prove convergence of horizontal differential forms

(f)'w — ffw (1.1)

as € — 0 in L¥, here f# is a pull-back of the form with the Pansu differential d of the contact
mapping f, v is the Hausdorff dimension of Carnot group. The formula (1.1) in turn allows
to obtain a crucial fact of quasiconformal analysis

dffw = fFdw (1.2)
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in distributional sense. In the theory of mappings with bounded distortion developed by
Yu. G. Reshetnyak [3, 4] the commutativity of outer differential and superposition allows to
prove that the superposition v = v o f of n-harmonic function v on R"™ with the bounded
distortion mapping f is a weak solution of the quasilinear elliptic equation div .« (x, Vu) = 0.

For 2-step Carnot groups in [1, 2| a weaker statement is proved: if dw = 0 in weak sense,
then df#w = 0. In full the formula (1.2) is proved in [5] for mappings of 2-step Carnot groups
and in the recent preprint [6] for mappings of Carnot groups of arbitrary step. The proof
of (1.2) in [5] does not rely on the convergence of mollifiers (1.1) but relies essentially on
2-step structure of the group. In [6] the formula (1.2) is derived from (1.1).

In this paper we obtain for a contact mapping f on Engel group E (the simplest example
of 3-step Carnot group) estimates on convergence (or sometimes divergence) of components
of the “Jacobi matrix” of the mollified mapping f¢. However, in order to obtain meaningful
estimates we should compute this matrix not in the Euclidean basis but in the graded basis
of left invariant vector fields. Precisely, if X1,..., X4 is a graded basis of the algebra of left-
invariant vector fields of Engel group, we are interested in the behavior as ¢ — 0 of the

coefficients afj in the decomposition

4
Xife =df*(X;) = Zaijj, i=1,...,4.
=1

If we introduce the dual basis of 1-forms 1, ...,&s such that &(X;) = d6;;, 4,5 = 1,...,4, the
coefficients are af; = &; (X f¢). By a form of the weight | we mean 1-form dual to the vector
field of the degree [ (and thus having the homogeneous degree —I). The main result of the
paper is the following

Theorem 1.1. Let Q,Q CE, f: Q — Q' be weakly contact of class Wlif(ﬂ) If X is

a left-invariant vector field of the degree k, & is a left-invariant 1-form of the weight |, p > 1,
then on every compact K C ) we have

O(el="), >k,
E(Xf) = €df(X)) +0(1), L=k,
E=38 I <k,

as e — 0 in LP/Y(K).

Section 3 of this paper is dedicated to the proof of the theorem in Engel case. For Engel
group the result is new and may have independent interest, it also serves as an alternative
way to prove (1.1) and (1.2). The analogue of Theorem 1.1 for 2-step groups follows from
Lemma 2.1 and Lemma 3.3 in [2]. To prove Theorem 1.1 on Engel group we modify the
approach of 2] to obtain finer estimates on divergence of components of the mollified mapping,.

2. Carnot Groups

Recall that a stratified graded nilpotent group or a Carnot group (see e.g. [7-9])
is a connected simply connected Lie group G such that its algebra of left-invariant vector
fields g decomposes into the direct sum g =V; & Vo & - - - § Vis of vector spaces V;, satisfying
Vi, Vil = Ve, k=1,...,M — 1, and [Vi, V)] = {0}. Left-invariant vector field L € g is the
field of the degree k if L € Vj,. The subspace Vi, = HG is a horizontal space of g, its elements
are the horizontal vector fields.
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Elements g € G in some “privileged” coordinate system may be identified with elements

(z1,...,2p7) € REDVL 5o RAMVM — RN i a way that dilations &y : RV — RN X >0,
defined by 0y (z1, 22, ..., z0) = (A\x1, \222,...,AMx)/) are group automorphisms.
The homogeneous norm on G is a function || - || : G — R such that

1) o]l =0, [lgll > 0, when g # 0;
2) lloagll = Allgl| for all A >0, g € G;
3) there is @ > 1 such that ||gh| < Q(||g]| + ||2]|) for all g,h € G.
The homogeneous norm generates left-invariant homogeneous quasimetric d(g,h) =
|[h=tg]||. In constract to metric it satisfies only the generalized triangle inequality

d(glag?)) < Q(d(glagZ) + d(92793))7 91,92, 93 S Ga

where Q > 1 is a constant from the definition of the homogeneous norm.

The ball in this quasimetric with the centre g € G and the radius r denote by B,(g). The
topology given by d coincides with the Euclidean topology of RY. The Lebesgue measure dz
on RY is the bi-invariant Haar measure on G and d(dyx) = A dx, where v = Zj]vilj dim V;
is the homogeneous dimension of the group.

Let Q C G be open. The space LP(2), p > 1, consists of measurable functions u : Q@ — R
integrable in the p-th power. The norm on LP(f2) is defined by

lullp.o = ( / [u(g)? dg> g
Q

When Q = G, we write ||ul|, = [Ju|lpc.

Let left invariant vector fields X7, ..., X,, be the basis of the horizontal space HG. The
Sobolev space W1P(Q), p > 1, is a space of functions v € LP(2) that have distributional
derivatives X;u € LP(Q) along the vector fields X, j = 1,...,n, that is such functions g,
that

[ @@ ds = [u@)Xyela s, j=1.....n,

Q Q
for all ¢ € C§°(Q). The norm on W' is [lu | WP(Q)|| = |ullp + || [Vrul]],, o, where
Viau = (Xiu, ..., Xpu). We say that u € LY (Q) and v € Wli)’f(Q), when u € LP(K) and

v € WIP(K) for each compact K C Q. A mapping f: Q — G f = (f1,..., fn) is in class
WLP(Q) or T/Vlif(Q) if all its components f; are in the corresponding class.

A mapping f : Q@ — G of class T/Vlicl(Q) is (weakly) contact if X;f(r) € HpnG,
j=1,...,n, for a.e. ¥ € Q. The formal horizontal differential dpf(x) : H:G — Hy»G
of a contact mapping f is a linear mapping such that dy f(x)(X;) = X;f(x). It is proved
in [10, 11] that the horizontal differential extends to the contact homomorphism of Lie algebras
df (z) : T:G — T} (,)G that we call the formal Pansu differential (&-differential) of f at =.

The convolution of measurable functions u,v on Carnot group G is defined as

wev) = [ul oty = [ty o)y, w e,
G G

if the integral converges.

Lemma 2.1 (Convolution Properties [8]). 1. Let p,q € [1,4+00], u € LP(G), v € LI(G).
Then uxv € L"(G), where % + % = % + 1, and the following Young inequality holds

[ vl < flullpllvflg-
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2. If L is a left invariant vector field on G, u, v are smooth compactly supported functions,
then ~
L(uxv) =ux(Lv), (Lu)*v=ux(Lv),
where L is the right-invariant vector field agreeing with L at the origin.
For ¢ : G — R and € > 0 define

1
ve(z) = 6—,,@051/5(35)7 rz €@,

where v is the homogeneous dimension of G. If ¢ € LY(G), then [;; ¢.(z)dx = [; () dx.

Lemma 2.2. For every ¢ € C°(G), left-invariant field L of the degree k and right-in-
variant field L such that L(0) = L(0) we have

1 ~ 1 ~
Lo, = 6_k(L(P)57 Lo, = 6_k(L(‘0)5'

< Since dilation dy is an automorphism of G, that is 0)(z - y) = dyx - Sy, for the left
translation £, (y) = z -y we have 6y o £, = £5,, 0 dx. If L(0) € Vi(0), then DSy L(0) = A*L(0).
Therefore, for left-invariant L € Vj,

DS (L(z)) = D&y o DL,(L(0)) = Dls, , o DS\(L(0)) = \*L(5x).

Thus,
Loe() = L0 0 01/2)(0) = = - S (Lp)(61/e2) = (L) (a).

Obviously, the same argument holds for the right translation r,(y) =y - x. >
Lemma 2.3 (Properties of Mollifications [8]). Let ¢ € C§°(G) and [ ¢(x)dx = a. Then
1. Ifu e LL (G) then u* p. — au a.e. as e — 0.

loc
2. Ifue LP(G), p € [1,400), then ||u* ¢, —aul, — 0 as e — 0.
3. If u is bounded on G and is continuous on open set {2 C G then u * . — au uniformly
on compact subsets of {2 as e — 0.

3. Mollifications on Engel Group

Engel group E is a 4-dimensional 3-step Carnot group i.e. E = (R*, ), and g(E) = V; ©
Vo Vs, dimVy = 2, dimV, = dim V3 = 1. Such a group is unique up to an isomorphism.
For convenience we use coordinate system (z,y, z,t) such that the group operation has the

form
2.1

(%%awuﬂwd¢@=(mﬂ%y+yw+%+xy¢+ﬂ+w/+xf>-

Thus, the dilation is
ox(z,y, 2, 1) = Az, Ay, A2z, A3t),

algebra of left-invariant vector fields is spanned by the graded basis
1
X=0, Y=0,+x0,+ §x28t, Z=[X,Y]=0.420;, T=I[X, 2]=0,

and algebra of right-invariant vector fields — by the basis

X=0,+yd.+20, Y=9, Z=-[X,Y]=09., T=-[X,Z]=0. (3.1)
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Further, we fix on Engel group infinitely smooth nonnegative function v : E — R
supported in the unit ball such that [z (g)dg = 1.

For Q C E and u € Llloc(Q) define mollification u®* = u * 1., where @ is u extended on
E\ Q by zero.

Lemma 3.1. There are functions x;; € C5°(B1(0)), i,j = 1,2, such that
/Xij(g) dg = by, 4,5 =12, (3.2)
E

where 0;; is the Kronecker delta, and such that for every u € VVlif(Q), compact K C Q,g € K
and 0 < e < dist(K, 00Q)

Xu® = (Xu) * x11 + (Yu) * X122, Yu® = (Xu)* x21 + (Yu) * x22.. (3.3)
< We find functions x;;, 4,j = 1,2, from the equations
Xop =Xy + Yy, Yv=Xxa+ Yy
Using the expressions of the right-invariant vector fields (3.1) we obtain
Xop = Xop = yZnp = 2T = Xop = Z(yyp) — T(20))
= X —YX(yp) + XY (y)) + XY X (2¢0) — XXV (2¢)) — Y X X (2¢)) + XY X (21))
= X[y + V() - VX (20) + 2V X (20)| = V| X () + XX (20)]
~ ~ 2 _ _ /2
Yo=Y+ aZy+ %qu =Y+ Z(z) + T<%¢>
L e 2 e 2 e 2 2
:Yw—l—YX(gmp)—XY(m/J)—i-YXX<7¢> —XYX<71/}> -XYX (71#) +XXY<71/}>
_ _ /2 T 2 /2
= Y[?,Z) + X(z¢) + XX<7¢>] - X [Y(m,b) + 2YX<71/)> — XY<71’Z)>] .

The expressions in square brackets are the desired functions yx;j, ¢, = 1,2, for instance,
x12 = =X (yy) — XX (2¢). On the one hand, the functions are of the form

Xij = i + )N(al-j + f/bij, i,7=1,2,

where §;; is the Kronecker delta, a;j,b;; € C§°(B1(0)). Since integrating by parts yields
Jz Xai;(g)dg = [z Ybij(g) dg = 0, the statement (3.2) of Lemma follows. On the other hand,
from the expressions of x;; and Lemma 2.2 it follows

1 1, 1 - . -
Xpe = < (X)), = —(Xn). + - (Yxaz). = Xxae + Yxaze,

and in the same way Y. = )NCXQLE + }7)(22,5. This together with Lemma 2.1 leads to the
statement (3.3) of Lemma. >

Lemma 3.2. Let u € VVlif(Q), p>=1, K C Q be a compact, X1, Xo, X3 be horizontal
left-invariant vector fields. Then Xju® — Xju a.e. on K and

1 1
HX1u5 _ X1qu7K =o(1), HX2X1uer,K = 0(2)’ HX3X2X1U6Hp,K _ 0<6_2>’

ase — 0.
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<1 Any horizontal left-invariant vector field is a linear combination of basic vector fields,
e.g. X1 = aX + bY. For simplicity assume X; = X, the argument for X; = Y is the
same and the general case is a linear combination of the two. By Lemma 3.1 we have Xu® =
(Xu)*x11,e + (Yu)*x12, and fE x11 = 1, fE x12 = 0. By properties of mollifications Xu® — Xu
as € — 0 a.e. and in LP(K). Next,

1 1
Xo(&u®) = (Xu) * Xa(xa1e) + (Yu) * X2(x12,6) = —(Xu) * (X2xa1)e + — (Yu) * (Xaxaz)e.
By properties of mollifications, e.g., (Xu) * (X2x11)e — 0 as ¢ — 0 in LP(K). Analogously,

1 1
X3X2(Xu8) = g—z(Xu) * (X3X2X11)5 + E—Q(Yu) * (X3X2X12)5,

where each expression after the % term vanishes in LP(K) as & — 0. 1>
In the next proof we use the followmg pointwise estimate for Sobolev functions:

Proposition 3.1 (see [12-14]). Let K C  be a compact. For every u € WP () there is
0 < g€ LP(K), such that

lu(y) — u(z)| < d(y, 2)(g9(y) + 9(2))

for a.e. y,z € V and ||g|lp.x < C|Vau|p,a. Moreover, the constant C' is independent of u.

Lemma 3.3. Let u € W1P(Q), v € LP(Q2), X1, Xy be horizontal left invariant vector
fields, p € C3°(B(0,1)), and K C €2 be a compact.

1. Ifp > 2, then for Fo(a) = (u0) * p.(x) — u(2)(v * 9.)(x) we have

1
[ F:llpse,x = O(e), [ X1Fellpje,x = o(1), | XoX1Fe|lp/2,x = 0<g>, (3.4)

ase— 0.
2. If p > 3, then for G.(z) = (u?v) * pe(x) — 2u® (x)(uv) * Y- () + (uf)?(x) (v * - )(x) we
have
IGellpss e = O(e?), 1 X1Gellpsa e = O(e), I X2X1Gellpys, = o(1), (3.5)
ase — 0.

dLetz e K,0<e<egy= %dis‘c (x,00), and K be an go-neighborhood of K. For the
summands in the expression of F(x) we have

() pu(o) = [ w0y ds = [ ulo(e)inly e ) dydz,
K KxK
u ()0 pe)(a) =[] ul)opely™ v)ee=a) dydz.
KxK

Thus,

(u0) # pe(w) —u (@) (v x ) (@) = [ (uly) = u(2)v(2)e (v 2)po (=" ) dy d.

KxK

By Proposition 3.1 there is g € LP(K), such that

u(y) — u(z) < d(y, 2)(g(y) + 9(z))
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and ||ng 7 < C||Vhullpq. Since the term under the integral is nonzero only when d(z,y) < ¢
and d(z,z) < € we get

() 5 o) = (@) (0 5 92) (@ >|
<2Qe [ (90) +9(2)) Io(2)| Y=ly ™ 0) [pe(c M)l dy dz

KxK

= 2Qe (g7 (2)(Jv] * |¢e]) () + (glv]) * || (2)),

where @ is the constant from the generalized triangle inequality. Next, using Holder and
Young inequalities we derive

[(wv) * g —u(v* @e)||, i < 4QeNgIL, IV, 7llellt < c(4QClel) I Varulpellvlpo-

Since for the horizontal vector field X; we have Xi¢. = %(Xlgo)e, it follows

X1 ((uv) % o — u® (v * ) (2)
:é JJ (u) —u@)ee ()= 2 =)

KxK

+ %(yilx)(Xl(p)g(z*lx)) dy dz,

and from that

|X1((uv) * e — u” (v * gpe))( )‘
<20 [[ (o) + 9 (|(Xr)ely2)] e a)

KxK
+ ey ') \(Xlso)e<z*1x>\) dydz
2Q<g*l(X11/f)e! |vl*lpe| + (gloD*lee| - [[(X19)ell
+ o - ol (Xa9)e ] + glolsl(Xip)el ) (@),
Again, by the Holder and the Young inequalities we derive
[| X1 ((uv) * e —u® (v * @) Hp/2,K

< 4Qlgl, zllell, 2 (Xiw)e i lpel + 4QNgl, 2wl el (Xl
<4QIX1wlhlielh + 11X ol ) IVl vl

The argument can be repeated for second derivatives giving

(| X2 X1 ((wv) * oo — u® (v @) Hp/Z,K

)
<HX2X1¢|| el + 1IXa9l1 | X2ell + [ Xa[l1 [ Xaell

+ [l 1% Xl ) [ Vaulpellolp.o.
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Thus, we obtain estimates uniform in e € (0, &¢)
X1 Fellp/2,r0 = [|[ X1 ((uv) % e = u (v o)) |, )5 1 < ClVEUlp2]Y]p0,
[eXo X1 Fe|, o o = [leXa X1 ((uv) * g — u(v* @e)) ||, jp 1 < ClIVEUlp2IV]p0.
Note that for smooth functions u, v we have
X, ((uv) * e — u (v * goe)) —0, eX2Xy ((uv) * e — u (v * gpe)) -0

in LP/2(K) as € — 0. Since smooth functions are dense in LP(K) and W?(K) we can choose
sequences of smooth u, — u in WHP(K) and v, — v in LP(K) as n — oo. The operator
X1F. = X F.(u,v) is linear in both v and v, which implies

| X1 Fe (u, U)Hp/Q,K <X Fe(u — ug, U)Hp/z,K‘}'HXlFs(una v = Un)“p/z,K“'HXlFE(una Un)”p/Q,K
< C/HVH(U - un)”p,ﬂ + C/”U - Uanﬂ + | X1 Fe (up, Un)”p/2,K-

Therefore,

T (X3 Fe (u,0) |2, < [V (u = un)llp.o + C'llv = vnllp.0 = 0,

as n — 0o. Analogously, eXy X1 F. — 0 in LP/?(K) as € — 0. The estimates (3.4) follow.
The estimates (3.5) are obtained in a similar way. For the terms in the expression of G.

we have
(o) spe@) = [ wPEoelur )=y 2)pe (= 0) dyrdys d,
KxKxK
u (o) (wo) e pe(e) =[] wln)ulo)o(e)be(ur )belyy )o=(e ) dyn dya de,
KxKxK
(W) @) re)@) = [[f  uloulm)o) el o)els; a)ee (=) dys dyo d,
KxKxK
thus
= JJJ () —un) (u(e) — uly2)) ol (o7 ety @)oo= ) dy dy de.
KxKxK

Similar to what is already proved one can obtain the bounds

IGellpss. i < C%Vaullzollvlpe;
1X1Gellpss, i < CelVarullz allvllp.e.
X2 X1 Gellps, i < ClIVaUlp 0llv]po-

Moreover, since for smooth functions u, v we have X9 X1G. — 0 as € — 0 in Lp/g(K), using
for threelinear operator G.(u, u,v) arguments analogous to the ones given for F.(u,v) one can
prove that || X2 X1G||,/3 xk — 0 as € — 0. This concludes the proof of the estimates (3.5). >

The dual basis of 1-forms to the basis of left-invariant vector fields X, Y, Z, T is

1
de, dy, ¢=dz—zdy, T:dt—mdz+§x2dy,
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and satisfies the dual relations
d¢ = —dx Ndy, dr=—dxANC(.

Lemma 3.4. Let f € VV&)({’(Q), p = 2, be a contact mapping. Then on any compact
K cQ ~
IC(XF M p2.c = O(e),  C{Zf°) — ¢(df(Z)),

I e = 06, (T yasc = o )
ase — 0 in LP/2(K).
<1 Since f is contact, we have
=((Xf) =Xfs = i Xfo, 0=CYf)=Yfs—fiY[o,
It follows Xf3 = fi Xfa, Yfs = f1 Yfo. Next, for the mollification f¢ by Lemma 3.1
C(XFT) = XF5 — f X

= (Xf3) * x11,e + (Yf3) * x12,c — [T (Xf2) * x11.6 — [T1(Yf2) * X126 (3.6)
= [(1iXf2) * x11.c — [T (Xf2) * x11.¢] + [([1Y[2) * X12,e — [T (Yf2) * X12,¢] -

From Lemma 3.3 we have |[((Xf€)|l,/2,x = O(g) and similarly [|C(Yf®)|[,/2,x = O(e). Next,
by the Cartan identity (see e.g. [15])

(Zf7) = (([X,Y]f?) = XYFF) = Y(XF) — dO(X [, YT9),
C(df(2)) = C([XF, Yf]) = —dC(XF, YF).

From the representation (3.6) and Lemma 3.3 it follows that the first two terms in (3.7) vanish
as € — 0 in LP/?(K). Since d¢ = —dz A dy, by Hélder inequality

dC(X[f5,Y[%) = X[5 YT = Y3 Xfi = Xfo Y1 = Yo Xfi = dC(X[,Yf)
as € — 0 in LP/2(K). Finally,
CTf7) = X, 21f°) = X2 f°) = Z2¢(X[f7) — dC{Xf*, Zf%)
X(¢

= X(XQ(Yf*) = Y(X[f?) = dC(Xf*, Y[%)) = Z{(Xf7) — dC(X[*, Z f7)
= XXQY[f?) = 2XY ((Xf°) + Y XC(X[®) — XdC(X[*,Y[%) — dC(Xf*, Z 7).

(3.7)

From (3.6) and Lemma 3.3 it follows that the first three terms are o(1) as ¢ — 0 in P (K).
By Lemma 3.2 and the Holder inequality the last two terms are also 0(;) ase — 0in LP/?(K).
The lemma is proved. >

Lemma 3.5. Let f € VV&)’?(Q), p = 3, be a contact mapping. Then on any compact
K cQ )
1T (Xf M sz = OE),  IT(Zf*) 3,10 = Ofe),
I (Y s = O(®),  7(TfF) = m(df(T))
as e — 0 in LP/3(K).

< Since f is contact, we have

= C(Xf) = Xfs — fi Xfor 0=7(XF) = Xfa— s Xfs + 5 1 X,
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It follows Xf3 = f1 Xfo and Xf; = %flz Xfs. Next, for the mollification f¢ by Lemma 3.1
P{XF7) = XfF — S XFT 5 () Xf5 = Xfaexinc + Vo

— [T (Xf3xx11,c + Y3kx12,) + %(ff)Q(sz*Xn,e + Yforx12,e)

= [(% 12Xf2> * x11,e — ST (f1Xf2) * X116 + %(ff)Qsz * X11,5:|

+ K%ffyj‘é) * x12.e — [ (/1Y[2) * Xx12, + %(ff)zyfz * X12,5] :

Be Lemma 3.3 we have ||7(Xf*)[|,,/3 x = O(£?) and similarly ||7(Y <) ,/3,x = O(e?) as e — 0.
Next, by the Cartan identity (see e.g. [15]) we have

T<Zf€> = T<[X, Y]f6> = XT<Yf6> — YT<Xf6> — dT<XfE, Yf€>. (3.9)

From the representation (3.8) and Lemma 3.3 it follows that the first two terms are O(¢) in
LP/3(K), as € — 0. Next, since dr = —dx A ¢, we have

dr(Xfe,Y ) = = X[f; ((Yf*) + Y[ C(X[*). (3.10)

Applying Lemmas 3.2, 3.4 and the Holder inequality we obtain ||d7(Xf®,Yf®)||, /3 x = O(e),
as € — 0. Next,

T<Tf€> = T<[X, Z]f€> = XT<Zf€> — ZT<Xf€> — dT<Xf€, Zf€>.
Let us estimate each term. From (3.9) and (3.10) we have
X7(Zf) = XX7(Yf?) — XY 7(Xf°)
+XX[TCYS) + XfT XYS?) = XY [T ((Xf°) = YT XC(X[9).

From (3.8) and Lemma 3.3 it follows that the first two summands in (3.11) and also Z7(Xf¢)
vanish in LP/ 3(K). Applying Lemmas 3.2, 3.4 and the Holder inequality we can conclude that
the last four summands, in (3.11) also vanish in L?/3(K). Finally, using Lemmas 3.2, 3.4 and
the Holder inequality we conclude

—dr(Xf*, Zf) = du N (X[, Zf°) = Xf5 ((Z1°) = 215 ((Xf°) = Xf1 ¢(df(Z)) =0

as € — 0 in LP/3(K). The only thing left to note is that

(3.11)

T<Jf<T>> - T< [Xf, Jf<z>]> - —d7-<Xf, Ef<z>> — dz A <<Xf, Jf<z>> — X, <<Jf<z>>.

Thus, 7(Tf¢) — T<C/i\f<T>>, as € — 0 in LP/3(K). The lemma is proved. >

Define homogeneous weight of the basic left-invariant 1-form by
o(dr)=0o(dy) =1, o(()=2, o(r)=3.

< PROOF OF THEOREM 1.1. For the forms of the weight 1 (i.e. looking like a dz + bdy,
a,b € R) the statement of the Theorem immediately follows from Lemma 3.2, for the forms
of the weight 2 (c(, ¢ € R) it follows from Lemma 3.4, and for the forms of the weight 3 (cT,
¢ € R) from Lemma 3.5. >
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4. Applications

Let Q,Q C E be open, f: Q — € be a contact mapping of the class Wﬁ)g(Q), and w be
a k-form on V. Define the pull-back f#w as

FHo@)(En - &) = w(F(9) (AF ()6, dF (9)(0)).

g€ &,...,& € T,E. Note that f# (w1 Awa) = fFwi A f#wsy, and for basic left-invariant
forms R

ffde = Xfide +Yfidy, [7¢=df{Z)¢,

Py = Xfoda + Yy dy, f#r=df(T)T.

The notion of the homogeneous weight can be extended on k-forms by the rule o(w; A wy) =
o(wr) - o(w2). Next, we consider differential forms with terms of the maximal homogeneous
weight. On Engel group such forms are

w'(g) = alg) T,

w?(g) = alg) (AT (4.1)
w’(g) = (a1(g) dz + a2( )dy) ACAT,

w(g) = a(g)dz ANdy ANC AT,

and have the weights o(w1) = 3, o(w2) =5, o(w3) =6, o(ws) = T7.
An analogue of the next theorem was proved for 2-step the Carnot groups in |2,
Theorem 3.5| and for arbitrary the Carnot groups in |6, Theorem 4.3|.

Theorem 4.1. Let Q2,9 C E be open, w be a k-form on Q' of the form (4.1) with the
coefficents of the class C(QX)NL>(QY), k =1,...,4, and f : Q — ' be a contact mapping
of the class VV&)’?(Q), p = o(w). Then

(f)'w— ffw,

ase — 0 in Lp/a(w)(Q)

loc
< It suffices to prove the theorem for the forms w(y) = a(y)&(y), where a € C(Q)NL>(Y),
and £ is a basic k-form. For basic 1-forms we have

(f)de =dff = Xfide +Yfidy+ Zff C+Tfi 7
(f)dy=dfs = Xf5de +Yf5dy+ Zf5 ¢+ Tf5 7
(F9)"¢ = (X[ da + (Y ) dy + ((Zf°) ¢ + ¢(Tf) 7,
(f)'r = 7(Xf) dw + T(Y[®) dy + 7(Zf*) ¢ + 7(Tf*) 7.

Therefore, by Theorem 1.1 on each compact K C €2, as ¢ — 0 we have
(f$)'dx = f#dx + o(1) dz + o(1 )dy—l—o( >C—|—o< ) in LP(K),
(f5)*dy = f#dy + o(1) dz + o(1 )dy—i—o( )C—i—o( > in LP(K),

()76 = ¥+ 0(E) e+ 0E) dy +o() ¢ +o( 1) 7 in 122(0)
(f)r=ffr+0(?) dz + O(e?) dy + O(e)  +o(1) T in LP3(K).
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Thus, as e — 0
(f)'r = fFr in LPR(K),
(f)CAT) = fHECAT) in DPP(K),
(f (dz ACAT) = fF(de ACAT) in LP/O(K),
(f) (dy ACAT) = fF(dy ACAT) in LPO(K),
(f) (dz Ady ACAT) = fF(de Ady ACAT) in LP/T(K).

From that for the basic k-form ¢ of the weight o(£) = o(w) we get (f)*¢ — f#£ in LP/7@)(K)
as € — 0. Sinse a(y) is continuous and bounded, the composition a o f¢ is uniformly bounded
and converges to a o f a.e. on K as ¢ — 0. Hence, by Lebesgue theorem (f¢)*w — f#w in
LPIe@(K) as e — 0. >

Horizontal vector field on 2 C E is a mapping V : Q — HE, V = v1 X + voY. Weak
(horizontal) divergence divygV of the horizontal vector field V € Li (Q) is a function
h € Li (), such that for every ¢ € C§°(Q)

loc
/ V(g)dg = — / h(g)e(g) dg.

Q Q

It follows that divgV = Xw; + Ywy pointwise for V. € C*(Q) and distributionally for
Ve VVé’f(Q) If to the vector field V = v1 X + v2Y we assign the dual 3-form

w=(vydy —vadz) NCAT, (4.2)

then
do=divgVdx ANdyAN{ AT =divgV dx Ady A dz A dt.

An analogue of the next theorem is proved for 2-step the Carnot groups in |5, Corollary
2.15] and for arbitrary the Carnot groups in [6, Theorem 4.24].

Theorem 4.2. Let Q2,9 C E be open, w be a horizontal 3-form on Q' of the form (4.2)
with the coefficents vi,vo € WH(Q). If f : Q — Q' is a contact mapping of the class
WT(Q), and f(Q) € Q, then

loc

fFdw = dffw
in the weak sense.
< Step 1. If w € CL(), then for each ¢ € C§°(Q2) we have

/(fa)*dw'SDZ/d(fE)*w-sD:(—1)’“+1/(f€)*wAdgo.
Q Q Q

By Theorem 4.1 as € — 0 we obtain
/f#dw Lo = (—1)kH /f#w Ndp = /d(f#w) Q.
Q Q Q

Step 2. Now let w = (vl dy — vo dm) A C AT be as in the conditions of the theorem. Define
Ve =0{X +v5Y and w® = (vf dy — v5dx) A AT. By step 1 for each ¢ € C§°(Q2) we have

/f#dwe Lo = (—1)kH /f#wE A dep. (4.3)
Q Q
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Since v; are continuous and bounded, compositions v;o f¢ are uniformly bounded and converge
to vj o f a.e. on Q). Therefore, be Lebesgue theorem

/f#waAd¢—>/f#wAdg0
Q

Q

as € — 0. On the other hand
fdw® = f#(divygVedz Ady ACAT) =divg Ve o f - detdf -dz Ady ACAT.
By the properties of convolutions divyVz(y) is bounded uniformly in € > 0 and
divy Va(y) = Xvi(y) + Yvi(y) = Xvi(y) + Yoi(y) = divaV(y)

as e = 0 for y € f(Q2) \ X, where ¥ is some null set. By the change of variables formula [11,
Theorem 5.4] detdf = 0 a.e. on f~(X). Therefore,

(Xv5 +Y5) o f(x) - detdf (z) — (Xvy + Yvy) o f(a) - det df ()

for a.e. z € Q). Hence, by Lebesgue theorem

/f#dwe-@z/ap(x)divHVE(f(x)) detc/i\f(x)dx%/f#dw-go
Q

Q Q

as ¢ — 0. All in all, we can go to the limit as € — 0 in both sides of the equation (4.3).
The theorem is proved. >

Theorem 4.2 extends on Engel group the theorems [5, Theorem 2.6, 2.14| proved for 2-step
case. In |5, Remark 2.19] it is noted the these are the only theorems in the paper that rely on
2-step structure of the Carnot group. Thus, results of the paper [5] can be translated on Engel
group without changes.

The mapping f: G 2 Q2 — G on a Carnot group G is the mapping with bounded distortion
if fe VVI}):(Q) and for some K >0

ldy f(z)|” < K detdf(z)

for a.e. x € Q. The least constant K is called the outer distortion coefficent and is
denoted Ko(f).

Corollary 4.1 [5, Theorem 4.10]. Let Q C E, f : Q — E be a mapping with bounded
distortion. Then

1) f is locally Hélder continuous;

2) f is Pansu differentiable a.e.;

3) f has Luzin A -property;

4) a certain change of variable formula holds: if D C Q) is a compact, |0D| = 0, and u is
a measurable function on E, then function u(y)u(y, f, D) is integrable on G iff isu(f(x))J(z, f)
integrable on D, moreover

[utr@)ste e = [u@nty.7.0)dy

D G
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Next, let

Glay = (Aot dF@)* (dinf ()T dig f() ™" if detdf(x) >0,
1d, otherwise.

The matrix G(z) is symmetric and characterizes the local deviation of f from a conformal
mapping. The matrix G(z) defines the mapping

o (2,6) = (G@)E,€) T G)e, w€Q, €€ HE,

satisfying the conditions

1

v v—1|¢|v
o < (0. < CKo(f) el

where C), is a constant independent of f.

Corollary 4.2 [5, Corollary 4.8]. Let @ C E, f : Q@ — E be a mapping with bounded
distortion. If w is a I/Vli’coo—solution to the equation

~divy (|Viw| Viw) =0

in an open domain W C [E, then v = w o f is a weak solution to the equation

—divg e (z,Vgv) =0

on f~Y{W)n Q.

10.

11.
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YCPEAHEHNST KOMITAKTHBIX OTOBPAKEHUI I'PYIIIILI SHIEJIS

Bacasaes C. T

! HoBocubupcKmii rocyIapCTBEHHBI YHIBEPCHTET,
Poccus, 630090, HoBocubupck, ya. Iluporosa, 1

E-mail: s.basalaev@g.nsu.ru

Awnnoranusi. Ha rpynnmne Durens, cHabKeHHON JIEBOMHBAPUAHTHON CyOPUMAHOBON METPHKOI, HCCiie-
JIYIOTCsSI KOHTaKTHBIE OTOOpaXKeHwusl, IpuHaIexalme MerpudeckuM kiaccam CobosieBa. B eBkimgoBoM mpo-
CTPAHCTBE OJIHAM W3 OCHOBHBIX METOJIOB PabOThI C HErJIAJKUMU OTODPArXKEHUSIMU SBJISAETCS CLUIAYKUBAHUE —
CBEPTKA € TJIAJIKUM sijipoM. JlomosiHuTe/IbHAS TPYIHOCTD paboThl ¢ KOHTAKTHBIMU 0TOOpaxkeHusimu rpymn Kap-
HO COCTOUT B TOM, YTO CIJIaXKUBAHUE KOHTAKTHOIO OTOOparKeHUsI, KaK IPABUJIO, He KOHTAKTHO. TeM He MeHee,
B pacCMaTPUBAEMOM HAMU CJIydae BEJIUYUHY OTKJIOHEHUS OT KOHTAKTHOCTH OKAa3bIBAETCS BO3MOXKHBIM OIle-
HUTH B JIOCTATOYHOM Mepe, 4TOObI TOJYy9IUTh TOJE3HbIE Pe3yJbraThl. MbI MmojiyuaeM OIEHKU Ha CXOIUMOCTH
(MM B HEKOTODBIX CIIydasiX PACXOJUMOCTh) KOMIOHEHT juddepeHnnaa CriaeHHOro 0To0paXKeHusi K COOT-
BETCTBYIOIINM KOMITOHeHTaM Juddepennuaia [lamcio KoHTaKTHOTO OTOOpaXkKeHusi. B KadecTBe MPUIOKEHUS
9TOr0 pe3yJibraTa K KBa3nMKOH(MOPMHOMY AHAJU3Y HMPUBEIEHBI aJbTePHATUBHBIE JOKA3ATEIHCTBA CXOIUMOCTH
YCPEHEHHBIX TOPU30HTAIBHBIX BHEITHUX (DOPM U TIEPECTAHOBOYHOCTH MEPEHOCA BHEITHEN hpopMbl auddepen-
nuasiom Ilancio ¢ BaemunM puddepennuaaoM B ciaboM CMbICIE. DTU PE3YJILTATHI, B CBOIO 0YEPE/ib, TO3BO-
JIAIOT TIOJIy9IUTh TaKue 0A30BbIE€ CBOMCTBA OTOOPAYKEHUII C OrPAHUYEHHBIM HMCKAYKEHUEM, KaK HEIPEPBIBHOCTD
o [énbaepy, nuddepennupyemocts B cMmbicie [lancio mourn Beroay, 4 -cBoiictBo Jlysuna.

KuaroueBsie cioBa: rpymnmna Kapro, rpymnmna DHress, KBa3UKOH(MOPMHBIE 0TOOparXKeHMsI, OrPaHUIEHHOEe
HNCKazKeHue.
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