A Kneser-Type Theorem for the Equation $x^{(m)} = f(t,x)$ in Locally Convex Spaces

A. Szukała

Abstract. We shall give sufficient conditions for the existence of solutions of the Cauchy problem for the equation $x^{(m)} = f(t, x)$. We also prove that the set of these solutions is a continuum.

Keywords: Differential equations, set of solutions, measures of non-compactness

AMS subject classification: 34 G 20

Let E be a quasicomplete locally convex topological vector space, and let P be a family of continuous seminorms generating the topology of E. Assume that I = [0, a] and $B = \{x \in E : p_i(x) \leq b \mid (i = 1, ..., k)\}$, where $p_1, ..., p_k \in P$.

In this paper we investigate the existence of solutions and the structure of the set of solutions of the Cauchy problem

$$x^{(m)} = f(t, x)$$

$$x(0) = 0$$

$$x'(0) = \eta_{1}$$

$$\vdots$$

$$x^{(m-1)}(0) = \eta_{m-1}$$

$$(1)$$

where m is a positive integer, $\eta_1, \eta_2, \ldots, \eta_{m-1} \in E$ and f is a bounded continuous function from $I \times B$ into E. Our considerations are a continuation of Szufla's paper [8]. For other results concerning differential equations in locally convex spaces see [4].

Put

$$M = \sup \{ p_i(f(t,x)) : t \in I, x \in B, i = 1, \dots, k \}.$$

Choose a positive number d such that $d \leq a$ and

$$\sum_{j=1}^{m-1} p_i(\eta_j) \frac{d^j}{j!} + M \frac{d^m}{m!} \le b \qquad (i = 1, \dots, k).$$
 (2)

A. Szukała: A. Mickiewicz Univ., Fac. Math. & Comp. Sci., J. Matejki 48/49, 60 - 769 Poznań, Poland

Let J = [0, d]. Denote by C = C(J, E) the space of all continuous functions from J into E endowed with the topology of uniform convergence.

For any bounded subset A of E and $p \in P$ we denote by $\beta_p(A)$ the infimum of all $\varepsilon > 0$ for which there exists a finite subset $\{x_1, x_2, \ldots, x_n\}$ of E such that $A \subset \{x_1, x_2, \ldots, x_n\} + B_p(\varepsilon)$, where $B_p(\varepsilon) = \{x \in E : p(x) \le \varepsilon\}$. The family $(\beta_p(A))_{p \in P}$ is called the *measure of non-compactness* of A. It is known [6] that:

1° X is relatively compact in $E \iff \beta_p(X) = 0$ for every $p \in P$.

$$2^{\circ} \ X \subset Y \implies \beta_p(X) \le \beta_p(Y).$$

$$3^{\circ} \quad \beta_p(X \cup Y) = \max\{\beta_p(X), \beta_p(Y)\}.$$

$$4^{\circ} \beta_p(X+Y) \leq \beta_p(X) + \beta_p(Y).$$

$$5^{\circ} \quad \beta_p(\lambda X) = |\lambda| \beta_p(X) \quad (\lambda \in \mathbb{R}).$$

$$6^{\circ}$$
 $\beta_p(\bar{X}) = \beta_p(X).$

$$7^{\circ} \quad \beta_p(\operatorname{conv} X) = \beta_p(X).$$

$$8^{\circ}$$
 $\beta_p(\bigcup_{0 \le \lambda \le h} \lambda X) = h\beta_p(X).$

The following lemma is given in [8].

Lemma 1. Let H be a bounded countable subset of C. For each $t \in J$ put $H(t) = \{u(t) : u \in H\}$. If the space E is separable, then for each $p \in P$ the function $t \mapsto \beta_p(H(t))$ is integrable and

$$eta_p\left(\left\{\int_J u(s)\,ds:\,u\in H
ight\}
ight)\leq \int_J eta_p(H(s))ds.$$

Moreover, let us recall the following lemma from [9].

Lemma 2. Let $w:[0,2b] \mapsto \mathbb{R}_+$ be a continuous non-decreasing function and let $g:[0,c) \mapsto [0,2b]$ be a C^m -function satisfying the inequalities

$$g^{(j)}(t) \ge 0$$
 $(j = 0, 1, ..., m)$
 $g^{(j)}(0) = 0$ $(j = 0, 1, ..., m - 1)$
 $g^{(m)}(t) \le w(g(t))$ $(t \in [0, c)).$

If w(0) = 0, w(r) > 0 for r > 0 and $\int_{0+}^{\infty} \left(r^{m-1}w(r)\right)^{-\frac{1}{m}} dr = \infty$, then g = 0.

We can now formulate our main result.

Theorem. Suppose that for each $p \in P$ there exists a continuous non-decreasing function $w_p : \mathbb{R}_+ \to \mathbb{R}_+$ such that $w_p(0) = 0$, $w_p(r) > 0$ for r > 0 and

$$\int_{0+} \frac{dr}{\sqrt[m]{r^{m-1}w_p(r)}} = \infty. \tag{3}$$

If

$$\beta_p(f(t,X)) \le w_p(\beta_p(X)) \tag{4}$$

for $p \in P$, $t \in I$ and bounded subsets X of E, then the set S of all solutions of problem (1) defined on J is non-empty, compact and connected in C(J, E).

Proof. 1° Put

$$r(x) = \begin{cases} x & \text{for } x \in B \\ \frac{x}{K(x)} & \text{for } x \in E \setminus B \end{cases}$$

and g(t,x) = f(t,r(x)) for $(t,x) \in J \times E$, where K is the Minkowski functional of B. As B is a closed, balanced and convex neighbourhood of 0, from known properties of the Minkowski functional it follows that r is a continuous function from E into B and

$$r(X) \subset \bigcup_{0 < \lambda < 1} \lambda X$$
 for any subset X of E .

Thus $\beta_p(r(X)) \leq \beta_p(X)$ for any $p \in P$ and any bounded subset X of E. Consequently, g is a bounded continuous function from $J \times E$ into E such that

$$\beta_p(g(t,X)) \le w_p(\beta_p(X)) \tag{4}$$

for $p \in P$, $t \in J$ and bounded subsets X of E and

$$p_i(g(t,x)) \le M \qquad (i=1,\ldots,k; t \in J, x \in E). \tag{5}$$

We introduce a mapping F defined by

$$F(x)(t) = q(t) + \frac{1}{(m-1)!} \int_0^t (t-s)^{m-1} g(s, x(s)) ds \qquad (t \in J, x \in C)$$

where $q(t) = \sum_{j=1}^{m-1} \eta_j \frac{t^j}{j!}$. It is known (cf. [2]) that F is a continuous mapping $C \mapsto C$ and the set F(C) is bounded and equicontinuous. It is clear from (1) and (5) that if x = F(x), then

$$p_{i}(x(t)) \leq \sum_{j=1}^{m-1} p_{i}(\eta_{j}) \frac{d^{j}}{j!} + \frac{1}{(m-1)!} \int_{0}^{t} (t-s)^{m-1} M \, ds$$

$$\leq \sum_{j=1}^{m-1} p_{i}(\eta_{j}) \frac{d^{j}}{j!} + M \frac{d^{m}}{m!}$$

$$\leq b$$

$$(i = 1, \dots, k)$$

so $x(t) \in B$ for $t \in J$. Therefore, a function $x \in C$ is a solution of problem (1) if and only if x = F(x).

 2° For any $n \in \mathbb{N}$ put

$$u_n(t) = \begin{cases} 0 & \text{if } 0 \le t \le \frac{d}{n} \\ q(t - \frac{d}{n}) + \frac{1}{(m-1)!} \int_0^{t - \frac{d}{n}} (t - s)^{m-1} g(s, u_n(s)) ds & \text{if } \frac{d}{n} \le t \le d. \end{cases}$$

Then u_n is a continuous function $J \mapsto B$ and

$$\lim_{n \to \infty} \left(u_n(t) - F(u_n)(t) \right) = 0 \tag{6}$$

uniformly for $t \in J$. Let $V = \{u_n : n \in \mathbb{N}\}$. From (6) it follows that the set $\{u_n - F(u_n) : n \in \mathbb{N}\}$ is relatively compact in C. Since

$$V \subset \{u_n - F(u_n) : n \in \mathbb{N}\} + F(V) \tag{7}$$

and the set F(V) is bounded and equicontinuous, we conclude that the set V is also bounded and equicontinuous. Hence for each $p \in P$ the function $t \mapsto \beta_p(V(t))$ is continuous on J. Denote by H a closed separable subspace of E such that

$$g(s, u_n(s)) \in H$$
 $(s \in J, n \in \mathbb{N}).$

Let $(\beta_p^H)_{p\in P}$ be the measure of non-compactness in H. Fix $t\in J$ and $p\in P$. From (4)' we have

$$\beta_p^H(g(s, V(s))) \le 2\beta_p(g(s, V(s))) \le 2w_p(\beta_p(V(s))) \qquad (s \in [0, t]).$$

By Lemma 1, we get

$$\beta_{p}(F(V)(t)) = \beta_{p} \left\{ \left\{ \frac{1}{(m-1)!} \int_{0}^{t} (t-s)^{m-1} g(s, u_{n}(s)) ds : n \in \mathbb{N} \right\} \right\}$$

$$\leq \beta_{p}^{H} \left\{ \left\{ \frac{1}{(m-1)!} \int_{0}^{t} (t-s)^{m-1} g(s, u_{n}(s)) ds : n \in \mathbb{N} \right\} \right\}$$

$$\leq \frac{1}{(m-1)!} \int_{0}^{t} \beta_{p}^{H} \left(\left\{ (t-s)^{m-1} g(s, u_{n}(s)) : n \in \mathbb{N} \right\} \right) ds$$

$$= \frac{1}{(m-1)!} \int_{0}^{t} (t-s)^{m-1} \beta_{p}^{H} (g(s, V(s))) ds$$

$$\leq \frac{2}{(m-1)!} \int_{0}^{t} (t-s)^{m-1} w_{p}(\beta_{p}(V(s))) ds.$$

On the other hand, from (6) and (7) we obtain

$$\beta_p(V(t)) \le \beta_p(F(V)(t)).$$

Hence

$$\beta_p(V(t)) \le \frac{2}{(m-1)!} \int_0^t (t-s)^{m-1} w_p(\beta_p(V(s))) ds \qquad (t \in J, p \in P).$$

1105

Putting

$$g(t) = \frac{2}{(m-1)!} \int_{0}^{t} (t-s)^{m-1} w_p(\beta_p(V(s))) ds$$

we see that

$$g \in C^m$$

$$\beta_p(V(t)) \le g(t)$$

$$g^{(j)}(t) \ge 0 \text{ for } j = 0, 1, \dots, m$$

$$g^{(j)}(0) = 0 \text{ for } j = 0, 1, \dots, m-1$$

$$g^{(m)}(t) = 2w_p(\beta_p(V(t))) \le 2w_p(g(t)) \text{ for } t \in J.$$

Moreover, by (3),

$$\int_{0+} \frac{dr}{\sqrt[m]{r^{m-1}2w_p(r)}} = \infty.$$

By Lemma 2 from this we deduce that g(t) = 0 for $t \in J$. Thus $\beta_p(V(t)) = 0$ for $t \in J$ and $p \in P$. Therefore for each $t \in J$ the set V(t) is relatively compact in E. As the set V is equicontinuous, Ascoli's theorem proves that V is relatively compact in E. Hence the sequence (u_n) has a limit point E. As E is continuous from E0 we conclude that E1 is a solution of problem (1). This proves that the set E2 is non-empty.

3° Let us first remark that the set S is compact in C. Indeed, as $(I - F)(S) = \{0\}$, in the same way as in Step 2°, we can prove that S is relatively compact in C. Moreover, from the continuity of F it follows that S is closed in C. Suppose that S is not connected. Thus there exist non-empty closed sets S_0 and S_1 such that $S = S_0 \cup S_1$ and $S_0 \cap S_1 = \emptyset$. As S_0 and S_1 are compact subsets of C and C is a Tichonov space, this implies (see [3: §41, II, Remark 3]) the existence of a continuous function $v: C \mapsto [0,1]$ such that v(x) = 0 for $x \in S_0$ and v(x) = 1 for $x \in S_1$. Further, for any $n \in \mathbb{N}$ we define a mapping F_n by

$$F_n(x)(t) = F(x)(r_n(t)) \qquad (x \in C, t \in J)$$

where

$$r_n(t) = \begin{cases} 0 & \text{for } 0 \le t \le \frac{d}{n} \\ t - \frac{d}{n} & \text{for } \frac{d}{n} \le t \le d. \end{cases}$$

It can be easily verified (cf. [10]) that:

- (i) F_n is a continuous mapping $C \mapsto C$.
- (ii) $\lim_{n\to\infty} F_n(x) = F(x)$ uniformly for $x \in C$.
- (iii) $I F_n$ is a homeomorphism $C \mapsto C$ (I identity mapping).

Fix $u_0 \in S_0$, $u_1 \in S_1$ and $n \in \mathbb{N}$. Put

$$e_n(\lambda) = \lambda(u_1 - F_n(u_1)) + (1 - \lambda)(u_0 - F_n(u_0))$$
 $(0 \le \lambda \le 1).$

Let $u_{n\lambda} = (I - F_n)^{-1}(e_n(\lambda))$. As $e_n(\lambda)$ depends continuously on λ and $I - F_n$ is a homeomorphism, we see that the mapping $\lambda \mapsto v(u_{n\lambda})$ is continuous on [0, 1]. Moreover,

 $u_{n0} = u_0$ and $u_{n1} = u_1$, so that $v(u_{n0}) = 0$ and $v(u_{n1}) = 1$. Thus there exists $\lambda_n \in [0, 1]$ such that

$$v(u_{n\lambda_n}) = \frac{1}{2}. (8)$$

For simplicity put $v_n = u_{n\lambda_n}$ and $V = \{v_n : n \ge 1\}$. Since $\lim_{n\to\infty} e_n(\lambda) = 0$ uniformly for $\lambda \in [0,1]$, we get

$$\lim_{n \to \infty} (v_n - F(v_n)) = \lim_{n \to \infty} (e_n(\lambda) + F_n(v_n) - F(v_n)) = 0$$
(9)

and therefore the set (I-F)(V) is relatively compact in C. Using now a similar argument as in Step 2°, we can prove that the set V is relatively compact in C. Consequently, the sequence (v_n) has a limit point z. In view of (9) and the continuity of F, we infer that $z \in S$, so v(z) = 0 or v(z) = 1. On the other hand, from (8) it is clear that $v(z) = \frac{1}{2}$, which yields a contradiction. Thus S is connected

References

- [1] Hukuhara, M.: Théorems fondamentaux de la théorie des équations différentielles ordinaires dans l'espace vectorial topologique. J. Fac. Sci. Univ. Tokyo (sec. I) 8 (1956), 111 138.
- [2] Januszewski, J. and S. Szufla: On the Urysohn integral equation in locally convex spaces. Publ. Inst. Math. 51 (1992), 77 80.
- [3] Kuratowski, K.: Topologie, Vol. II. New York London Warszawa 1968.
- [4] Lobanov, C. G. and O. G. Smolianov: Ordinary differential equations in locally convex spaces. Uspekh. Mat. Nauk 49 (1991), 3(297), 93 168.
- [5] Millionschikov, V.: A contribution to the theory of differential equations dx/dt = f(x,t) in locally convex space. Dokl. Akad. Nauk SSSR 131 (1960), 510 513.
- [6] Sadowskii, B. N.: Limit-compact and condensing mappings. Russian Math. Surveys 27 (1972), 85 155.
- [7] Schaefer, H.: Topological Vector Spaces. New York London: The Macmillan Company 1966.
- [8] Szufla, S.: On the equation x' = f(t, x) in locally convex spaces. Math. Nachr. 118 (1984), 179 185.
- [9] Szufla, S.: On the differential equation $x^{(m)} = f(t, x)$ in Banach spaces. Funkcial. Ekvac. 41 (1998), 101 105.
- [10] Vidossich, G.: A fixed point theorem for function spaces. J. Math. Anal. Appl. 36 (1971), 581 587.

Received 28.10.1998