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A Kneser-Type Theorem for the Equation
™ = f(t,x)
in Locally Convex Spaces

A. Szukala

Abstract. We shall give sufficient conditions for the existence of solutions of the Cauchy
problem for the equation z(™ = f(t,z). We also prove that the set of these solutions is a
continuum.
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Let E be a quasicomplete locally convex topological vector space, and let P be a family
of continuous seminorms generating the topology of E. Assume that I = [0,a] and
B={x€eFE:pij(x)<b (i=1,...,k)}, where py1,...,px € P.

In this paper we investigate the existence of solutions and the structure of the set
of solutions of the Cauchy problem

=™ = f(t,z) )
z(0) =0
g0)=m (1)
m(m_l)(o) =Nm-1 )
where m is a positive integer, n1,72,...,0m—1 € E and f is a bounded continuous

function from I x B into E. Our considerations are a continuation of Szufla’s paper [8].
For other results concerning differential equations in locally convex spaces see [4].

Put
M:sup{pi(f(t,x)):tEI,xEB,izl,...,k}.

Choose a positive number d such that d < a and

Pi(ﬂj)f+Mﬁéb (1=1,...,k). (2)
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Let J = [0,d]. Denote by C = C(J, E) the space of all continuous functions from J into
FE endowed with the topology of uniform convergence.

For any bounded subset A of E and p € P we denote by (,(A) the infimum of
all € > 0 for which there exists a finite subset {x1,%2,...,z,} of E such that A C
{z1,29,...,2n} + Bp(e), where By(e) = {z € E : p(z) < e}. The family (8,(A))pep is
called the measure of non-compactness of A. It is known [6] that:

1° X is relatively compact in E <= (,(X) = 0 for every p € P.
2° X CY = [p(X) < Bp(Y).
3° Bp(XUY) =max{B,(X),5,(Y)}.
4° Bp(X +Y) < Bp(X) + Bp(Y).
5° Bp(AX) = |A[Bp(X) (X €R).
6° Bp(X) = Bp(X).
7° Bp(conv X) = Bp(X).
8% Bp(UocacnAX) = hf3p(X).
The following lemma is given in [8].

Lemma 1. Let H be a bounded countable subset of C. For each t € J put H(t) =
{u(t) : w € H}. If the space E is separable, then for each p € P the function t —
Bp(H(t)) is integrable and

Bp ({/Ju(s) ds : UEH}> S/Jﬂp(H(s))ds.

Moreover, let us recall the following lemma from [9].
Lemma 2. Let w : [0,2b] — R4 be a continuous non-decreasing function and let
g :[0,¢) — [0,2b] be a C™-function satisfying the inequalities
0 (j=0,1,...,m)
g9 (0)=0 (j=0,1,...,m—1)
w(g(t))  (t€0,c)).

If w(0) =0, w(r) >0 forr >0 and f0+ (rm_lw(r))_%dr = 00, then g = 0.
We can now formulate our main result.

Theorem. Suppose that for each p € P there exists a continuous non-decreasing
function wy, : Ry — Ry such that wy(0) =0, wy(r) > 0 for > 0 and

00. (3)

If
Bp(f(t, X)) < wy(Bp(X)) (4)
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forp e P, t €1 and bounded subsets X of E, then the set S of all solutions of problem
(1) defined on J is non-empty, compact and connected in C(J, E).

Proof. 1° Put
{m for x € B
r(x) =

®@ forx € E\ B

and g(t,z) = f(t,r(x)) for (t,z) € J x E, where K is the Minkowski functional of B.

As B is a closed, balanced and convex neighbourhood of 0, from known properties of
the Minkowski functional it follows that r is a continuous function from E into B and

r(X) C U AX for any subset X of E.
0<A<1

Thus S, (r(X)) < Bp(X) for any p € P and any bounded subset X of E. Consequently,
g is a bounded continuous function from J x E into E such that

Bp(g(t; X)) < wp(Bp(X)) (4)’
for p € P, t € J and bounded subsets X of E and
pi(g(t,z)) <M (i=1,....,k;te Jx € E). (5)

We introduce a mapping F' defined by

1 t

F@O =a) + oy | 6= 9" lglsa(s)ds (€ Jae)

(m —=1)!' Jo

where ¢(t) = Z;nz_ll nj%. It is known (cf. [2]) that F is a continuous mapping C — C
and the set F'(C) is bounded and equicontinuous. It is clear from (1) and (5) that if
xz = F(x), then

it di 1 /
pi(z(®) < Y pin) S + / (t— )™M ds
, gt (m—1)!
J=1 0
m—1
di dm (i=1,...,k)
< 2 pilng) oy + My
=1 J '
<b

so z(t) € B for t € J. Therefore, a function x € C is a solution of problem (1) if and
only if z = F(z).

2° For any n € N put

. 0 fo<t< 4
O gt - 2 + g o = 9™ (s un(e)) ds L <e<d
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Then u,, is a continuous function J +— B and

lim (un(t) — F(ug)(t)) = 0 (6)

n—00

uniformly for ¢ € J. Let V = {u,, : n € N}. From (6) it follows that the set {u, —F(uy,) :
n € N} is relatively compact in C. Since

V c{u, — F(u,) :n € N} + F(V) (7)

and the set F(V) is bounded and equicontinuous, we conclude that the set V is also
bounded and equicontinuous. Hence for each p € P the function ¢t — B,(V(t)) is
continuous on J. Denote by H a closed separable subspace of E such that

9(s,un(s)) € H (s e J,neN).

Let (8F)pep be the measure of non-compactness in H. Fix t € J and p € P. From (4)’
we have

By (9(s,V(5))) < 2Bp(9(s,V(s)) < 2wp(Bp(V(5))) (s €[0,1]).

By Lemma 1, we get

Br(F(V)(®) = 5, ({ gy [ = (s (s ds e N})

< ﬁf ({(mll)‘ /(t —8)™ Lg(s,u,(s))ds:n € N})

By ({(t =)™ ""g(s,un(s)) : n € N} ) ds

/
- # /t(t — )" B (g(s,V(s)) ds
/t(t — 8)™ wy (Bp(V (s)) ds.

On the other hand, from (6) and (7) we obtain
Bp(V (1)) < Bp(F(V)(1)).

Hence

BV < oy [ 9" (B (V(s)ds (b€ LpeP)
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Putting
¢
_ 2 m—1
00) = Gy [ (6= 9" BV (5) ds
0
we see that
gegcm™

Br(V (1)) < g(t)

g(j)(t) >0forj=0,1,...,m

g(j)(()) =0forj=0,1,....m—1

9 (1) = 2, (B, (V (1)) < 20, (9(1)) for t € J.

Moreover, by (3),

| =

0+

By Lemma, 2 from this we deduce that g(t) =0 for ¢t € J. Thus ,(V(t)) =0fort € J
and p € P. Therefore for each ¢ € J the set V(t) is relatively compact in E. As the set
V' is equicontinuous, Ascoli’s theorem proves that V' is relatively compact in C. Hence
the sequence (uy) has a limit point u. As F is continuous from (6) we conclude that
u = F(u), i.e. u is a solution of problem (1). This proves that the set S is non-empty.

3° Let us first remark that the set S is compact in C. Indeed, as (I — F')(S) = {0},
in the same way as in Step 2°, we can prove that S is relatively compact in C'. Moreover,
from the continuity of F' it follows that S is closed in C. Suppose that S is not connected.
Thus there exist non-empty closed sets S and S; such that S = SoUS; and SoNS; = 0.
As Sp and Sy are compact subsets of C and C is a Tichonov space, this implies (see
[3: §41, II, Remark 3]) the existence of a continuous function v : C' — [0, 1] such that
v(z) = 0 for z € Sy and v(z) = 1 for x € S;. Further, for any n € N we define a
mapping F;,, by

Fo(z)(t) = F(z)(ra(t))  (ze€CitelJ)

where

It can be easily verified (cf. [10]) that:

(i) F,, is a continuous mapping C — C.
(ii) limy, 00 Fin(z) = F(z) uniformly for z € C.
(iii) I — F, is a homeomorphism C +— C (I - identity mapping).

Fix ug € Sy, u1 € S1 and n € N. Put
en(A) = AMug — Fr(u1)) + (1 — A)(uo — Fr(uo)) (0<A<).

Let upx = (I — Fy) " Yen(N)). As en(A) depends continuosly on XA and I — F,, is a
homeomorphism, we see that the mapping A — v(uyy) is continuous on [0, 1]. Moreover,
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Uno = U and uny; = uy, so that v(uye) = 0 and v(uy1) = 1. Thus there exists A, € [0, 1]
such that

Wt ) = % (8)

For simplicity put v, = u,), and V = {v,, : n > 1}. Since lim,,_, €, (A) = 0 uniformly
for A € [0, 1], we get

nli_{go(”n — F(vn)) = nligglo(en()\) + Fn(vn) — F(vg)) =0 (9)
and therefore the set (I—F)(V) is relatively compact in C. Using now a similar argument
as in Step 2°, we can prove that the set V is relatively compact in C. Consequently, the
sequence (v,) has a limit point z. In view of (9) and the continuity of F', we infer that
z € 5,50 v(z) =0 or v(z) = 1. On the other hand, from (8) it is clear that v(z) = 1,
which yields a contradiction. Thus S is connected B
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