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On two-dimensional recurrence

Carlos Gutierrez

1. Introduction.

We consider the question of the existence of smooth flows, on two-
-maniflds, whose fixed points are hyperbolic and which have nontrivial
recurrent trajectories. The problem is treated by smoothing continuous
flows. This paper continues the work begun in [1] and extended in [3].
As an application of the main result, we improve the example of nono-
rientable nontrivial recurrence constructed in [4].

1.1. Definition. Let M be a C* two-manifold and let ¢, y: R x M - M
be continuous flows on M. We say that ¢ and Y are topologically equi-
valent if there is a homeomorphism of M that takes trajectories of ¢ onto
trajectories of Y, preserving the natural orientation of the orbits.

1.2. Definition. A simple Cherry flow is a continuous flow on a compact
connected two-manifold M without boundary such that:

(a) ¢ has only finitely many fixed points which are either (topological)
saddle points or sources.

(b) Let py, p,, ..., p, be the source-fixed-points -of ¢ and let u,,u,,...,u,,
be their basins of repulsion (= their unstable manifolds). Then, each u;
constains a unique trajectory 6; connecting p; to a (unique) saddle point
q;€ 0u; (see Fig. 1).

(© | u is dense in M
i=1

(;

Fig. 1
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1.3. Definition. Let ¢: R x M - M be a continuous flow on a two-
-manifold M. A trajectory y of ¢ is said to be nonorientable nontrivial
recurrent if given pey, y — {p} has two connected components, y, and
¥,, and moreover, for any segment S passing through p and transversal
to ¢, there exists connected components ab < y; — Sand cd =y, — §
such that both ab U § and ¢d U S contain a onesided simple closed curve.

Now we state our theorems

Theorem A. Let ¢ be a simple Cherry flow on a compact connected two-
-manifold M without boundary. Then, there exists a smooth flow ¥, topo-
logically equivalent to ¢, such that:

(a) the fixed points of Y are hyperbolic

(b) the eigenvalues of the saddle points of Y can be chosen arbitrarily with
the following restriction: if X, denotes the smooth vector field induced by
Y and p is a saddle point, then the divergence of X, at p is < 0.

Theorem B. On any nonorientable two-manifold of genus >4, there
exist simple Cherry flows having nonorientable nontrivial recurrent trajec-
tories.

It will be proved that in general, simple Cherry flows have nontrivial
recurrent trajectories. Flows with this sort of trajectory are not always
stuoothable; for exe mple, Denjoy [2] constructed a C! flow on the torus
which is not topologically equivalent to any C? flow. His example does
not satisfy the condition (c) of the definition of simple Cherry flows.

Now we explain the motivation for Theorem B. We denote by x'(M),
r=12,...,00, the space of C"-vector fields (with the C’-topology) on a
compact connected, C* two-manifold M without boundary. Peixoto [8]
proved the following result:

If M is orientable, the Morse-Smale vector fields are precisely those
which are structurally stable. Moreover, they are dense in ¥"(M).

The obstacle to extending his proof to nonorientable two-manifolds
of genus > 4 consists in the existence of nonorientable nontrivial recurrence.
(See [4] and [5]). On the other hand, if X € X*(M) and v is a nontrivial
w-recurrent trajectory of X, by Denjoy-Schwartz’s theorem [6, pp. 185],
the w-limit set of y contains singularities of X. Therefore, the following
question arises: Does some generic condition on the eigenvalues of the
singularities of smooth vector fields prevent the existence of nonorientable
nontrivial recurrence? In this work, as a direct consequence of Theorems
A and B, we give a negative answer to this question.
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To simplify matters, we prove Theorem A only when the Cherry
flow (M, ¢) satisfies the following:

1.4. M is a compact connected two-manifold without boundary; ¢ is
a simple Cherry flows on M with precisely one source fixed point and there
is no trajectory connecting two saddle points.

At the end of the proof of Theorem A, we indicate how to deal with
the general case. The main tool in the proof of Theorem A is Lemma 2.4.
It will be seen that the proof of Theorem B follows easily from [4].

2. The Packing Lemma.

In this section, we give some preliminars and then we prove Lemmas
(2.3) and (2.4). Lemma (2.3) is used to prove Lemma (2.4) (the packing
Lemma).

Let u be the usual Borel measure of R (that is, if (a, b) is an interval
of R, then u((a, b)) = b-a). Let E and F be intervals of R; we say that E < F
if Ve€E, VfeF, e <f N will denote the set of positive integers.

We need the following:
2.1. Let x,, x, ..., xg be fixed elements of [0, 1] satisfying 0 = x, < x,

LRI <xK =1. Let &B€(0,1), p be a posmve integer and

{a; },EN be a sequence of different elements of U (X Xx4,) such that:

(@) VieN, Vje{0,1,...,K — 1}, we have that
{apa;4y, ---,ai+p}ﬁ (xj xj41) # ¢.
(b) 326pK < min  |x;,, — x,

jef{0,--,K—-1} Jl
(c) e < B.
We also consider

Let g: [0,1] — [B, 1] be an orientation preserving homeomorphism
such that (See Fig. 2):

@ gds €%in [0, 1) - Lo Xio o5 Bx)

(b) Vxe[0,1] = {xg,xy,..., %g}, g'(x) <1 and moreover g'(x) =1 if
K

and only if xe(0,1) — | (x; — &, x; + ).
i=0
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(c) Vje{0,1,...,K}, ¢ is decreasing in (x; — & x;) U [0, 1] and increa-
sing in (xj,x; + )N [0,1].

(0, 1)

%

3

N

(0,0)

€ X1 X3 X3
graph of g when K = 3

Fig. 2

Lemma 2.3. Assume (2.1) and (2.2). Given pe N, we can construct a finite
sequence of open non-empty pairwise disjoint intervals B, = A 1p B2 = Ay,
...»B, = A,, contained in [0,1] and such that:
(1) u(By) =B
(i) {By, B, ..., B,} isordered by {a,, a,, ...,a,} and {xo, X, ..., xg}. That is
(i) If a;€(x;, x;,,), for someie{l,2, ..., p}andje {0,1,....K — 1},
then B; < (x; x;,,); and
(i1.2) If a; < a,, when i, te{l,2,...,p}, then B; < B,.
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(iii) {By, B, ..., B,} is modelled by g. That is,
Vie{2,3,....p}, WpBy = wg(B;_,)

() -{BysBi; .35 B} i piled up. %o, X6 ssiich:
That is:

. . v
(iv.1) Ul B, is the finite union of pairwise disjoint sets I, I, ..., 1.
=

such that Vie{0,1,...,K}, 1. is either the empty set or a
closed interval containing Xx;.

(iv.2) Givenje{1,2,..., K}, let {B;;, Bj,, ..., By } ={B;/i€ {1,2,..., p}
and B; c (x;_4, %))}

If BjyuBjv...uBy, # [%18%0 £ g]u [x,- — &, x;], then any ele-
ment of {B;,, Bj,, ..., Bj,,}, with the possible exception of one, is contained
in' [xj@ieg y welulx; —ex);

Proof. Let us denote by %; = 2pj, j =0, 1,..., K, and define an auxiliary
map G:[0,2pK] — [B,2pK] satisfying

(1) Vje{0,1,...,K}, G restricted to (%;—¢,X;+ ¢)n [0,2pK]

is, modulo a translation (rigid movement) in its domain and image, equal
to g restricted to (x; — ¢ x; + )N [0, 1]. Moreover,
K

Vxe[0,2pK] - | (X, — & x; + &), G(x) = 1.

ji=0
We recall that,

Vxe[0,1] — .OO I B & rkc8) g (6), = 1.

Certainly, the map G:[0,2pK]— [B,2pK], defined as follows,
satisfies (1).

glx;+ (x— X))+ %;,— x;, if xe[%;—e¢, X;+¢] U[0,2pK]
for some je{0,1,...,K}.

G(x) = g(xj+8)+ x—(xj+8), if xe[ij-!-ﬁ, jj_H—g] for some

gL, .. & = 1,

Now, let H: [0,1] — [0,2pK] be a homeomorphism such that,
Vje{0,1,...,K}, H(x;) =X, Let us write, a, = H(a), VieN. We
claim that:

(2) There exists a finite sequence of open non-empty, pairwise, disjoint
intervals B,, B,, ..., B, contained in [0, 2pK ] and such that (See the state-
ment of this Lemma).
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(') uB) =8 _
(ii') {By, By, ..., B,} is ordered by {d,,d,, ...,d,} and {%g, %, ..., Xg}.
(iii) {By, B,, ..., B,} is modelled by G.
(iv’) {§1,§2,...,§p} i5 piled up on (X, %, ..., B¢},

In fact, since, Vje{0,1,...,K—1}, p((X,%,,)=2p, we may
construct a set {B), B), ..., B,} of open, non-empty pairwise disjoint

K
intervals of [0,2pK] — () [X;—e, %;+¢], ordered by {&1,...,&p} and
j=0
{Xos ., Xx}, and such that, Vie{1,2,...,p}, u(B) = B. Notice that the
K

set {B),B,,...,B,} is modelled by G because Vxe [02pK] - |

Jj=0
[X; — & X;+ ], G(x) = 1. For each je{1,2,...,K}, let {B),, B,,, ...,
B} = {B}| B; = (x;_ 1, X)) and i€{1,2,...,p}} and assume that ¥;_, <
<By<B;<..% Bj, < X;. Now, we move B,, towards Xo (in a
continuous way) so that the resulting new sequence, which we still denote
by {B),B),...,B,}, satisfies (i) — (iii). Certainly B, =B, for some
o€ {1, 2:05pR and so when B; is being moved towards %,, the measures
of the intevals B, , B, ,,, .., B, are being readjusted (in a continuous
way). We stop moving B}, when B, = (Xo, Xo + B). Next, we move

~

By, towards B}, in such a way that, at any stage of the process,
{B}, B,, ..., B} satisfies (i) — (iii). We stop moving B}, when B, = (%,, 2)
and B}, = (z,v), for some zve (Xo, X). Notice that z < X, + B because,
Vxe[0,2pK] — (%, %y, ... B} G(X) < 1. Let B, = B, and B, =B,,,
with ¢,,0,€{1,2,...,p}; it may happen that 6, <o, and so we may
hal/e z < Xo + . Observe that (2.1), item (c), tell us that u(ﬁ’“) (resp.
u(Bj,)) varies in a monotonic nonincreasing way when we move either
By, or Bj,. Since the sequence {B,, B,, .., B,} is finite, by continuing
in this manner, we will find the intervals {B,, B,, ..., B,} satisfying (2).
Now, we will prove that

3 Vie{o,1,...K-1}, u( B) < u([x; x;, ).

Bic(xj,xj+1)

Certainly (1) — (3) will imply the existence of the Bs,i=1,2,..,p,
satisfying the required conditions in this Lemma.
In order to prove (3), we first claim that

C~

K
@) B, $ .yo ([%;—¢ %+ ¢]n [0,2pK]).

i=1
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K
Otherwise, since G is an isometry in [0,2pK] — .UO ([x;—s
e

%;+ ¢]n [0,2pK]) and G([0, 2pK]) = [B, 2pK]) = [B, 2pK], we have that

o () ({18) s

therefore
Y uB) = u(U B) = (G (U B)) + u(By) = (by 5)
i=1 = i=

= f 1(B) + u(G(B,) (by (2), (iii").
i=1
This implies that u(G(B,)) = 0 and, since {B,, ..., B,} is modelled by G;
that u(B,) = 0 which is a contradiction. This proves (4).
It follows from (4) that there exists me {0, 1, ..., K — 1} such that

(6) U Bi ? [im’im + 8] v [im+l xS 8’2m+1]'

g
Bi=(Xm, Xm+ 1)

Now, we prove (3). Let je{0,1,...,K—1} and £ ={ie{l, 2, ,p}/
/B; < (X, %;,,)}. Let 8, = min {reX}. Let us suppose that the positive

s p
integers 6,,0,, ...,0, have been defined. If £ — | O(Bj + i) # ¢, we
j=1

i=

proceed inductively to define
s P
6,,, = min {tlzeZ— U U(0,+i%.
L

Certainly, there exist positive integers 0,0,,0,,...,0, such that

2 U6 +i=9.

i=

By (6), because {Bj, ..., B,} is piled up on {X(,X,, ..., Xx} ((2), item
(iv")), by ((2.1), (a)) and ((2.2), (b)), we have that given 0, i€ {1,2,...,0},
there exists t;€ {0, 1,..., p} such that

l‘(ﬁoi) T ”(§0j+1) B #(§0i+‘i)’ but
‘7’ WBoss1) > WBosiis)

this implies that

K
(8) By, = U [%—2¢ %, + 2e] [0,2pK].
i=0
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Therefore
p

BC U B)= Zu(Bo+s)<

Bic(xj,xj+1)

H II

o)
<2 ; 1 (By...) < (See(7), ((2), (item (iii)) and

notice that, Wxe[0,1] — {%,, X, ..., Xk}; G(x) < 1)

K
<2 i;O p([X; — 2, %+ 2e]n [0,2pK]) < (See (8))

< 16pKe < %u([xj, X ) . o (Ree (2.1)

this proves (3) and therefore the Lemma.

Lemma 2.4. (Packing Lemma). Assume (2.1) and (2.2). There exists a
sequence {A;};.n of open, non-empty, pairwise disjoint subintervals of [0, 1]
(l) WA, =p
(i) If a;€(xjxjsy), for some ieN and je{0,1,..,K—1}, then
A; € (xj,Xj4,). Moreover, if a; < a,, for s, teN, then A; < A,.
(i) VieN, p(A;,,) = pg(4))
(iv) The connected components of U A; are K + 1 closed intervals W,

Wesooos Wer_\» Wi, containing [xo, xo + €], [x; — & x; + ¢],

X0?

[xk-1 — &xx_y + &] and [xg — &, xk], respectively

) u(f) A.-) = 3 uap

Proof. For each pe N, let 4, = {u},v}},i=1,2,...,p, be as in Lemma 1.
Certainly, there is a sequence {a;};.n Of natural numbers such that
lim uj, and lim v} exist. Assume that we have chosen sequences {a;};cn
j=1,2,....,k, and proceed inductively to select {dig+1)}ien as being a
subsequence of {ay};cn» and such that lim u,, @+1) and lim of5Y, | exist.
Denote, VneNand VieN, a, =a,, lim u;, =u; and lim v =v, Under
these conditions it follows easily from Lemma (2 3) that the open intervals of
the sequence {A; = (u, v;)};.n are pairwise disjoint, satisfy propertiés (i),
(ii) and (iii), and consequently, they are non-empty (We do not know if
they satisfy properties (iv) and (v) as well).
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Now we claim that
K
(1) u(U[x,-—a,xi+a]n [0,1] — UA))
i=0 4
In fact, let £ =[0,1] — D A;. Because ¢([0,1]) = [B,1] and (iii),
i=1

we have that
o
1 =puZ) + __Zl Ay

and that

L=+ ug®) + 3, W) = o) + ¥ uA)

1=

Therefore u(X) = u(g(Z)). This together with the fact that,
K
Vxe | (xi—&x;+e)n Z), gx) < 1,
i=0
imply that (1) is true.
As a consequence of (1) and because g is an isometry in

K
[0,1] = | (x;— & x; + &), we only need to pile up the intervals of {4} N
i=0

K-
which are contained in [0,1] — () (x;— &, x;+¢) in order to get that
i=1

{A,};.n satisfy not only (i), (i) and (iii), but also (iv) and (v).

3. Smoothability of simple Cherry flows.

We shall need same terminology and notation. Let ¢:Rx M - M
be a continuous flow on a two-manifold M. The positive (negative) semi-
trajectory of xe M is the set

= {o(t,x)/t e [0, 0)} (vx = {@(t, x)/t € (= 0,0]}).

The trajectory of x € M is the set y, =y, Uy;. A point ye M is an
o-limit point (a-limit point) of x € M, if there is a sequence of real numbers
t, = oo (t, » — o) such that @(t, x) = y. The set of w-limit points
(a-limit points) of x is denoted w(x) (x(x)).

We say that either x € M or v, is non-trivial w-recurrent (o-recurrent)
if x € w(x) (x € a(x)) but y, is neither a fixed point nor a closed orbit.
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Lemma 3.1 (Peixoto). If Y is a Sflow on a compact two-manifold M, ha-
ving only finitely many fixed points which are saddle points and I is a seg-
ment (circle) transverse to \, then the domain of definition of the Poincaré
map T:I" > T induced by  is the finite union of intervals (x, y). The endpoint x
(resp. y) lies on a trajectory tending to a saddle point, as t — o, and/or is
an endpoint of T.

Proof. (See [8, Lemma 3, pp. 106] or [7, pp. 157]).

Lemma 3.2. Let (M, ¢) be a simple Cherry flow which satisfies (1.4). Then
@ posseses a non-trivial w-recurrent trajectory.

Proof. Let p be the source-fixed-point of ¢. We first prove that ¢ has
no closed trajectory. Assume that 6 is a closed trajectory of ¢; since W*(p)
is dense in M, 0 is a sink. Let W4(6) denote the basin of attraction of
(= its stable manifold) and I'; (resp. I',) be a circle transverse to ® con-
tained in W*(p) (resp W*¥(0)). By the same proof as that of Lemma (3.1),
since W*(p) = M and because there is a unique saddle point connected
to p by a trajectory (Def. (1.2)), we have that both the Poincaré map
T,,:T; » T, induced by ¢ and its inverse T, are defined everywhere
except at one point (which belongs to a saddle separatrix). However,

this is impossible because ¢ has no trajectory connecting two saddle
points (See (1.4)).

- Fig. 3
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Now, assume that ¢ does not have any nontrivial w-recurrent tra-
jectory. Let x € W*(p) — {p} such that w(x) is not a fixed point (See Defi-
nition (1.2)). By [8, proof of Lemma 3] or [7, propositior'l 2.3, pp. lffl],
(x) is either a closed orbit or a graph made up of fixed pomts‘and trajec-
ries connecting them. This is a contradiction because ¢ has neither closed
orbits nor trajectories conecting saddle points.

In the remainder of this section, (M, ¢) will denote a simple Cherry
flow which verifies (1.4). Let p be the sourcefixed-point and ¢ be a non-
-trivial w-recurrent point of ¢. There exists a circle C transverse to ¢ and
passing through g (See [5, Lemma 2] or [9, Proposithn 7.1, pp. 6§]).
Certainly, the sets B; = {x € C/there exists a (positive) trajecto.ry y leaving
the source p such that y crosses C exactly i — 1 times before passmg't”hrough
x}, i=1,2,...,n,... are open, non-empty, pairwise disjoint subintervals
of C (See fig. 3).

Lemma 3.3. Let T:C — C be the Poincaré map induced by ¢. T'is defined
everywhere except possibly at finitely many points which belong to stable
separatrices of saddle points of ¢. We denote x,=x, and assume that
(X3 X;41) 1 =0, 1,..., K—1, are the connected components of the domain
ofad. .

Proof. This foiiows at once from Lemma (3.1) and from the fact that W*(p)
is dense in C.

Lemma 34. LetB,i=1,2,...,n,..., and xq,%x,,....,Xx_, be as above.
Fix a,e B, i = 1,2,...,n,.... There exists a positive integer p such that
VieN, Vje{0,1,...,K— 1}, we have that

{a,-, i1, ---,ai+p}m (x.i’ xj+1) ¥ ¢

Proof. Suppose that C = R/Z and identify R/Z with [0, 1) in the canonical
way. Let “<” denote the usual linear order of [0, 1) = R/Z and assume that

0=x0<X, <..<Xxg_1<1l=1=x; (See Lemma (3.3)).

Let g, be the saddle point connected to p by a trajectory. By (1.4)
(¢ has no trajectory connecting saddle points) and by Lémma (3.1), we
have that, V' ie N, if s is an endpoint of B;, then s belongs to an.unstable
separatrix A, of ¢, and moreover (See definition of the B;'s) 4, intersects
positively C precisely i — 1 times before reaching s. ﬁence
(1) The closed intervals of {B;};.n are pairwise disjoint.
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'By Lemma (3.3),if s € C is not in a stable separatrix of ¢, then, WneN,
T" is defined in s. Now, we prove that

(2) VseC - yl B,, either s belongs to a stable separatrix of ¢ or

{T"(s\/ne N} is dense in C — () B,.
i=1

B . 2
Otherwise, there exists se C — (U B; and an open interval (x, yecC
A

4

which contains a point of C — (J B; and is disjoint from the closure
i=1

of {T"(s)/ne N}. Under these conditions, since O B, is dense C and
i=1
by (1) it follows easily that

(3) There are infinitely many Bis contained in (x, y)

From now on, assume that x (resp y) is an endpoint of some B,. Thus

Lemma (3.1), (3) and the fact that (J B, > (x, ) imply that .
i=1

(4) There exist, a,,0,, 0, 1 E(Y) X=0p<0,<..< Cp1 <0, =Yy

such that f9r pe(x,y), pe{oy,...,0,_,} if and only if 7, goes to th':e set

{sachirle points of ¢} U {x} U {y} before reintersecting (x, y) (recall that

p€7,). Moreover, the Poincaré map S: (x, y) = (x, y) induced by ¢ is de-

fined mn (6, 0,,,), Vie{0,1,....n~ 1§, (Notice that in general S # 7).
Therefore

(SZ Vie{0,1,...,n— 1}, there exists ;€N such that, VWse{1,2, souy Od,
T(0401,))0 (%)) = 6, but T*! (5, 5,, ) < (x, y). And :
(6) There exists £, N such that

(U B,-)n (x3) = 9.

but B,,"H = (B \p)s
Denote

On D i
aQ = iL=J1 Bi and a, = IL)O &)O(Ts«o_i’ 0i+1))-

By uﬁng (4) — (6) we obtain that, V't e N, B, ,1+: = a,. Hence (notice
that Ul B; = C), we find that.

(N a,0a, =C.
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Now we observe that if T™(s) belong to a,, for some me N, it will
exist me N, m > m, such that T™(s)e(x,y) which is contradiction. So,

(8) {T"(s)/neN} = C — (a, U a,).

Because a, U a, is formed by finitely many intervals whose endpoints
are contained in saddle separatrices and by (7), it is seen that s belongs
to a saddle paint separatrix and {T"(s)/n € N} is finite (recall that, Vne N,
T" is defined in s). This contradiction proves (2).

Given se C and a neighborhood V(s) of s in C we denote:

V(s) = V(s)—s, if s belongs to a stable separatrix of ¢.
= Yvis) otherwise

Since () B, is dense in C, by (1) and by (2). it can be easily seen that,
i=1

Vs e C, there exists a positive integer p = p(s) and a neighborhood V(s)
of s in C such that, VyeV*is) and Vje{0,1,...,K — 1}, we have that
{0 TW), ..., T’(y)} U (x;, x4 1) # ¢. The proof of Lemma (3.4) follows
easily from this and from the compactness of C.

3.5. Proof of Theorem A when (M, ¢) satisfies (1.4).

Let C, T:C - C and B,, B,, ..., B; be as after (3.2). Let x4, x4, ..., X
be as in Lemma (3.3).

Denote by e the canonical positive orientation of C = R/Z. Let
a,be C, a # b, we define the interval (a,b) = {z€ C — {a}/if “<” denotes
the linear order induced by the orientation e in C — {a}, then z < b}.
Observe that (a, b)) (b, a) = ¢ and (a, b) U (b,a) = C — {a, b}. The nota-
tion a < ¢ < b will mean that ce(a,b).

Choose, VieN, a,e B;. By Lemma (3.4) the sequence {a;};.n, Of

K-1
elements of () (x; x;,,), satisfies (a) of (2.1). Certainly, we can find
i=0

B > 0 verifying (b) of (2.1), g:[0,1] — [B,1] as in (2.2), and then {4}, .y
and W,, = [c,d;), i€{0,1,...,K} as in Lemma (2.4).
K

Eeieya=v) w(W,..). We define the following local isometry bijective
functions  =°

K K
F: <k=JO [Ci’ d:)) = [0’ O') and L: <£)0 g([Ci’ d:))) A [Bs 6)
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d=1
as follows: F(s) =s—c;+ Y u(c, d)), if se [c; d) and L(s) =
i=0

g=1
=B +s—glc)+ ¥ mo(c,d)), if seg((cyd)). Let j=LogoF~!:
i=0
[0,0) - [B,0). It is clear that
(1) g is a homeomorphism which is C® everywhere except possibly at
points of {F(x,), F(x,), ..., F(xx)}. Moreover, given W, ,i=0,1,...,K,
there exist translations S; and R; of R (rigid movements) such that
S;og =goR, in W,,

Q0

) ) <A, w( 0] Fa) = £ ki) = o, ang

Q F(4) = [0, 6].
(iii) g induz a map g: R/,z = R/,,.
(1) To simplify matters, let us suppose ¢ =1 and therefore, §j = g,
F(4) = 4, (VieN), .-i MA) =1 and F(x) = x, (Vie{o,1,... K}).

Given ie N, if Tl s; (T restricted to B)) is orientation reversing (resp.
preserving) we define T, = H o (—I) og(resp. T, = H og),where — I :R—> R
denotes the map x - — x and H denotes the unique translation of R
(rigid movement) satisfying Ho(—I)og(4,) = Aiyy (resp. Hog(A) =
= A1)

0 ~
We will prove that 2 (7}/;) extends to a smooth function
i=1 :

K1
defined in () (x;, x;,,) in such a way that; Yie{0,1,...K~1}, . T
i=0

restricted to (x;, x;,,) is either of the form H °og-or Ho(—I)og, where
H:R - R is a translation. We only consider the case in which i = 1 and
Tis orientation preserving in (%1, x;). Let A, = (u,, v,) and T y=H,og,
b= 1520, S, wls Certainly, we only have to prove that if 4,, Aycifxgxg),
then H, = H ;- Let us suppose that u; < v; <u <, Hence:

, Tj(uk) i 7}(01), e ,ng(“k) i ng(vj), =
=|g(w) — gv)| = (H ; is a translation)

= mg(vyu)) = (u is the canonical measure of R)
=ulg( U 4)=(Lemma (24), (v)

Ap< (v, ux)

= ) HgA)= Y ud,,,) (Lemma (24), (iid)).

Ap< (vj,ux) Ap<(vj, up)
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Recall that g; is a point of B;. Certainly, given a,aj,a,€(x,, x,),
with a; < a; < a,, we have that a,,, < @41 < a,4y. This implies that
Ay = (vjuy) if and only if 4,,, (vj41> U4 ,)- Therefore

Z MApiy) = ] Z MAg 1) =
Ap = (vj, ux) Ap +1S(Vj+ 1, U+ 1)
R '“k+1 Dy | = ' Tk(“k) e Tj(vj) |

That is, we have proved that
()] | Tw) — Tyw)| = | Tyw) — T,(v))|.

Since T'is to be orientation preserving in (x,, x,) and by (2), it can be
easily that

Tw) = Tiw), ie, Hlgw)) = Hy(g(u,)

which implies that H; = K,.

Now we claim that there exists a homeomorphism h :R/Z - R/Z
such that ho T= Toh (ie, Tand Tare topologically conjugated). In fact,
let hy :B; - A, be any orientation preserving homeomorphism. Let
us suppose that h,: B, — A, has been defined and proceed inductively
to define hiyy B,y — A,y by by = To Moo T~ 5 ... Notice that if
B; < B; < Byie, /' b;€B;, V b;eB;, V b,e B, b, < b, < b,) then 4, <
< A4; < A, (See Lemma (24), (ii)). Therefore, since {B,},_, and 'F -

20
are dense in C, the map () h; can be extended to a homeomorphism
i=1

h:R/Z - R/Z which conjugates T and T

Since T is. topologically conjugate to T and by using (M, ¢) as a
model, we can construct a manifold M containing R/Z and a C*® flow
(M, ¥) such that the Poincaré map R/Z — R/Z induced by ¢ is precisely T.
Actually, this construction can be made in such a way that ¥ is topolo-
gically equivalent to ¢ (See [3, Proposition 1]).

The map g has very few restrictions, so ¥ can be chosen to satisfy
all the properties in this theorem.

3.6. Sketch of the proof of Theorem A in the general case.

It is not difficult to extend the proof in (3.5) tp the case in which
the simple cherry flow has no trajectories connecting two saddle points
(See [3, section 3]). Under these conditions, the arguments of [3, section 5]
work to prove theorem A for any simple cherry flow.
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3.7. Proof of Theorem B.

Let M be a nonorientable two-manifold of genus > 4. By [4], there
exists a smooth flow ¢ defined on M having finitely many fixed points.
which are saddles and possessing a nonorientable nontrivial recurrent
trajectory y such that w(y) =M.

Now we blow up y; that is, we split open M along y and insert the
union of the unstable manifold of a source p, a saddle point g and its
separatrices 4, 4,, 43, 4,; the way is indicated in Fig. 4 before blowing
up 7, and in Fig. 5 after blowing up y (See [3, section 3]). Certainly, the
resulting flow is a continuous Cherry flow.

. i il

A

B i B /Aa
7 ¥ N ﬁr’—-

q p
G < C e
; : °§&—\
Fig. 4 Fig. 5
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