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Characterization of a differentiable structure
by its group of diffeomorphisms

Floris Takens
1. Introduction.

A differentiable structure on a topological n-manifold M, ie. on a
metrizable topological space M which is locally homeomorphic to R,
is a linear subspace F = C(M), C(M) is the vectorspace of continuous real
functions on M, the elements of F are called smooth functions, such that:

(1) foreachset of nelementsf,,....f, € Fand each C* functionf : R" —» R,
TS FreEF

(i) if g:M — R is continuous and if for each x € M there is an f € F such
that, on some neighbourhood of x, f/ and g coincide, then ge F;

(i) for each x € M, there is a neighbourhood U of x in M and a set of n
clements fy,....,f,€ F such that, for each f'e F, there is a C* function
FoRVSR with £l U=f(f, )| U °

See, e.g. Helgason [2]. Such a differentiable structure determines a group
of diffeomorphisms Diff (M) = {¢: M — M | ¢ is a homeomorphism and
for each f: M — R, fe F iff fp € F}. It has been argued, notably in [5],
that geometric structures, including “diffenrentiable structures”, should
be studied by analyzing the transformation group of “structure preserving”
bijections, in the case of differentiable structures: the group of diffeomor-
phisms. From this point of view it is important to know whether the group
of diffeomorphisms actually determines the differentiable structure (or
that one transformation group may be the group of diffeomorphisms
of different differentiable structures). The purpose of this paper is to show
that indeed the group of diffeomorphisms determines the differentiable
structure:

Theorem 1. Let®: M, — M, be a bijection between two smooth n-manifolds
such that 4: M, — M, is a diffeomorphism iff ® ' « A @ is a diffeomorphism.
Then @ is a diffeomorphism.

(*) Recebido em 24/11/78
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An equivalent formulation of this result is: if M be a smooth mapifold,
Diff (M) is equal to its normalizer in the group of all bijections of M to
itself, i.e., if h:M — M is a bijection such that h~ 1. Diff (M)- h = Diff (M),
then h e Diff (M).

It should be mentioned that for some other geometric structures
the corresponding automorphism groups are not equal to their normalizer.
For example the normalizer of the Euclidean group, in dimensions > 1,
consists of all similarity transformations (this normalizer has one more
dimension than the Euclidean group; this is related with the fact that, if
one wants to specify an Euclidean structure without giving the group,
one has to specify one unit (of length)). Also the normalizer of the group
of all volume preserving, or special, affine automorphisms of R", n > 1,
is the full affine group (again the difference in dimension is one and one
unit, of volume, is involved). I don’t know any reference for these state-
ments; the proofs are not very hard, see the appendix of this paper. Also
it seems to be so that if a physical theory is invariant under a transforma-
tion group G, the minimal number of “independent physical units” (like
the unit of time, length.....) is equal to the difference of the dimension of
the normalizer of G and the dimension of G, if there are no “dimension
constants™; for more confusion on this point see [1] Ch. IV, V.

The problem, treated in this paper, occured to me when reading
Sourian’s definition in [7] of a differentiable structure as the pseudo-group
ofits local diffeomorphisms; for details see definition (19.6) in this reference.

In this paper “smooth” or differentiable” will always refer to “C®”;
for M an orientable differentiable manifold, Diff* (M) denotes the group
of orientation preserving diffcomorphisms of M to itself,

2. Reduction to R"

In this section we show that our main theorem follows from

Theorem 2. Let ®: R" — R" be a bijection such that A: R* - R" belongs
to Diff " (R") iff @' A® e Diff * (R"). Then ® is a diffeomorphism.

The proof of theorem 2 occupies the sections 3 and 4. Before proving
theorem 1, assuming theorem 2, we have to introduce some general notions.

Definition 2.1. Let X be a set and G be a group of bijections of X to
itself. G induces a topology Tg on X : Ty is generated by the sets X > U =
={xeX l g(x) # x}, g€ G. Clearly, the elements of G are homeomor-
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phisms of (X, Tg). From G and T; one obtains a pseudo-group G, the
elements of which are homeomorphisms ¢: U — V¥, U and V open in
(X, Tg), such that for each x € U, there is a g, € G such that ¢ and g, coincide
in some neighbourhood of x. If W is an open subset of (X, T) then the
restriction of G to W consists of those ¢: U — Vin G with U, V< W:
this restiction is denoted by G| W. The restriction of G to W consists of
the elements of G | W whose domain and range are both equal to W; it
is denoted by G| W.

Remark 2.2. If we apply the previous definitions to the case where X
is a smooth n-manifold and G is its group of diffeomorphisms, we see
that Tg is the usual topology. If we take W < X to be diffeomorphic
with R", then G| W consists either of all diffeomorphisms of W or of all
orientation preserving difffomorphisms of W. The first case occures if
S is non-orientable or if X admits an orientation reversing diffeomor-
phism; the second case occures if X is orientable but admits no orientation
reversing diffeomorphism, see [3, exercise 15, pag. 140].

Proof of theorem 1. Let ® be as in the assumption of theorem 1. By the
above remark, ® is a homeomorphism. We want to prove that ® is a
diffemorphism; it is enough to do this locally. Let W, = M,, i = 1,2 be
open subsets such that ®(W,) = W, and such that W, is diffeomorphic
with R". Denote ® | W, : W, — W, by ®,,. Then it follows from the above
remark and definitions that A: W, - W, belongs to Diff (M,)| W, iff
@' A®y, belongs to Diff (M,)| W, . Since ® is a homeomorphism, it trans-
forms orientation preserving difffomorphisms A to orientation preserving
ones. So if we would know that W, , with the differentiable structure of M, ,
is diffeomorphic with R" the differentiability of ®, would follow from
theorem 2. W, is of course homeomorphic with W, and hence with R",
but, e.g. for n =4, I don’t know of a proof that this implies that W, is
diffeomorphic with R". Using the special properties of @, we can prove
W, to be diffeomorphic with R": take a smooth closed n-disc D, in W,,
D, = ®;' (D,), and take ¢ eDiff(M,)| W, such that D, c int(¢(D,))
and W, = U ¢'(D,). Then @y, ¢ ®;,' = @ is an element of Diff(M,) | W,

i20

such that D, c int ((D,)) and W, = U §'(D,). Since each @'(D,) is
iz0

diffeomorphic with D,, a smooth closed n-disc, @'(D,) int ('~ *(D,))

is diffeomorphic with $"~! x[0, 1]. Hence W, is diffeomorphic with R"

and the proof is complete.
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3. The one-dimensional case.
In this section we prove theorem 2 for the case n = 1.

Lemma 3.1. Let ®: R—> R be g bijection such that 1: R —» R belongs
to Diff * (R) iff ®~'A® e Diff * (R). Then ® and ®~' have a non-zero first
derivative in each point of R.

Proof. From the previous section we know that ® is a homeomorphism.
Hence, as a real function, ® is monotone so by the theorem of Lebesque
[6], ® has almost everywhere a first derivative; the same holds for ®~!.

From the assumtions it follows that, for each orientation preserving
diffeomorphism A: R — R and each y€ R, the following limit exists and
18 positive:

i O 1AB(y+ h) — D1 LD(y) L5, (I)“‘(/l(l>(y+'h)—(b‘l(l(l>(y))
im — = lim
h=0 h h—0 AD(y + h) — 2d(y)

APy +h) — A0(y) B(y+h) — D(y)
3 I
Dy + h) — D)) h n order to analyse the above

product and its possible limits, we introduce:

i = 27000 + B) — ©-1(10()
¥ AD(y + h) — 10(y) i
_ AD(y + k) — AD(y)
0= "oy n=o00) -
Sty = 2LER-00) |

We know that lim f, () exists and is positive. Choose y so that ® has a
h—0 f

first derivative, and hence so that lim S3(h) = @'(y) exists. If ®'(y) is zero
h-0
then lim f,(h) = + o0 and hence ®~! has no first derivative in 1®(y)
h-0

(for all 4 € Diff* (R)); this means that ® ! is nowhere differentiable which
contradicts the theorem of Lebesque. So @ (v) is different from zero. From
this it follows that @~ ! has a non-zero first derivative in A®(y) (for all A)
and hence has a non-zero first derivative everywhere. By reversing the
argument we find that ® everywhere has a non-zero first derivative.
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Lemma 3.2. Let 4,, 4,: R — R be two orientation preserving diffeomor-
phisms and ®: R — R a homeomorphism, satisfying:

(i) 4,(0) = 0;

@) 4;0) < 1; .
(iii) for each te R, A4(t) > 0 for k > + o ; : .
(iv) ® and ® ! have a first derivative in each point of R ;

Me L 01,

Then ® is a C* diffeomorphism.

Proof. Without loss of generality we may assume that ®(0) = 0. Then also
4,(0) =0, 15(0) < 1 and for each reR, A5(t) >0 as k- + oo_.lBy [8]
there are diffeomorphisms ¢,, @,: (R,0) = (R,0) such that ¢; " 4,9, is
linear.

@
- R
3, 3,11

2

?, ®,

R ¥ — R

We define ¥ by ¢, ®o;' =y -y and y ! are differentiable in zero.
Let A; = 2}(0),lety(1) = aand y(b) = cforsomeb e (A,, 1). Theny(A%) =
= Ak.qa and Y (A4h) = Alc.

EY 1. Ak
¥'(0) = lim L e, s lim a. —i hence A, < A,

k— o0 3 2

o8 YA -y 1 A _

@ YO) = klirg lA'{-a = lim AR hence A, <A,
_ YbA)—YO) . c A o1

Also ¢'(0) =:1:1; i bz-l\g = lim 7.A_§’ so A, =A, and

a= % or Y(b) = b-y(l).
This means that ¥ is linear and hence @ is a diffcomorphism.

Prodf of theorem 2 with n = 1. ®, as in the assumptions of theorem 2 sa-
tisfies the assumptions of lemma (3. 1); hence both ® and ® ! have every-
where a first derivative. Take now 4, : R - R with 4,(¢) = 1 /_2 tand 4, =
=@ !}, ®; then the assumptions in lemma (3.2) are satisfied. Hence
® is a diffeomorphism.
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4. Global coordinates and the proof of theorem 2.

Definition 4.1. A map f: R" - R is called a global coordinate if there

is a bijection ®: R" — R" such that 1: R" — R" is a diffeomorphism if

and only if ! Ad is a diffeormorphism and such that f =&, - D, where

¢, : R" > R! is the function assigning to each x e R" its first coordinate.
The main result of this section is

Proposition 4.2. Each global coordinate f:R" > R is smooth.

Theorem 2 clearly follows from proposition (4.2).

More precisely: proposition (4.2) is equivalent with theorem 2. We know
that theorem 2, and hence proposition (4.2) hold in dimension 1. Hence
we may, and do, assume that n > 1 and that theorem 2 holds in all di-
mensions smaller than n. In the rest of this section, f: R" —» R is a fixed
global coordinate, ®: R" - R" is a fixed bijection such that f = PRX
and such that 1 : R" > R" js a diffeomorphism if and only if ®~! 1 is
a diffeomorphism.

Lemma 4.3. f is continuous.

Proof. For each open U < R, there is a diffeomorphism x : R" — R" such
that x(x) # x if and only if xe &7 ' (U). Hence ®x ! is a diffeomorphism
of R” which moves points only if they are in (¢, ®)~!(U) = £ ~!(U). Hence
S~ U(U) is open; this proves continuity.

Lemma 44. f-1(0) is a smooth co-dimension 1 manifold.

Proof. Letk : R" — R" be the diffeomorphism such that &~ ! k®(xy,...,x,) =
= (£x,, X25--+,X,). Then the fixed point set Fix(x) of x equals F i
we want to show that it is a normally hyperbolic invariant submanifold
for k. Then by [4] the lemma follows,

Choose pef~1(0); we want to analyse (dx),. Let A T,(R") be
the linear subspace of those ve T »(R") such that ((dx), — id)v = 0. The
dimension m of A is either n or n — 1, otherwise £ ~1(0) = Fix (x) would,
near p, be contained in a submanifold of co-dimension greater then one,
in which case f~!(0) would not be able to separate f~!(— 00,0) and
S 710, + ). In order to prove the lemma, we only have to show that
(dx), has one eigenvalue with norm different from zero. This will be done
by contradiction; so we assume all eigenvalues of (dx), to be one and
derive a contradiction.
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We have || fi*(p + h) — fx*(p) || = zl—k lf(p+ h) — f(p)]|. Choose a com-

pact neighbourhood K of p in R"; the sequence {¢;} is determined by

& = max {0 |foreach h, || h|| <5, k '(p+ h)eK forall 0 < j < i}.

Foreacha > 1,a'¢; — o0 asi — oo (thisisa consequence of the assumption
on the eigenvalues of (dk),. If now || k| <, then

‘ f+h—f@) | _ 1 diam(f(K)

Dl B et RIS C TN
|| A ] 2 [l

The righthand-side goes to zero for i - oo, || h|| - 0, so (df), exists and
is zero. We prove that from this we may conclude that (df,) = 0 for all
q:LetT:R"> R"and T:R -» R be translations~such thath1 «T=T¢,.
Then [« (@' T®) = ¢, (@' TD) = ¢ T® = T¢, ® = T- f. Hence also
(df) is zero in (@~ ! T®)(p); this implies df to be zero everywhere, but
then f would be constant: the contradiction !

Lemma 4.5. f is smooth.

Proof. Since f ™! (0) is smooth, @ | ~1(0): f ~'(0) > £~ 1(0) is a diffeomor-
phism (apply theorem 1 in the dimension n — 1). Now we take a map
k: R"—> R" defined by &(x,,...,x,) =(xy, 4;%5,...,4,x,) with 0 <
< 43,...,4, < 1 independent over the rationals. Define k = ®~! . Ke®;
from the linearization theorem [4, 8, 9] which apply to x we conclude that

— Fix(x) is a smooth 1-manifold N which is mapped by f bijectively on R;

— the projection # : R" —» N, defined by n(x) = lim x‘(x) is smooth and
satisfied (f|N-7) = f; il :

— for each diffeomorphism ¢ : N — N thereisa diffeomorphism ¢ : R" — R"
such that

»=0|N;
QT =7T- (~p
From this in turn it follows that f | N satisfies the assumptions of theorem 1
(for n = 1) and hence f| N is smooth. Now f = (f| N)+ = is also smooth.

Appendix.

In this appendix we want to determine the normalizer of the Euclidean
group (i.e. the group of orientation and distance preserving affine trans-
formations of R"), the special affine group (i.e. the group of volume pre-
serving affine transformations of R") and the affine group.
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Lemma A.1. Letf: R — R be a bijection with f(0) = 0. Then f is linear
over Q (the rationals) iff for each translation @, :R — R (P (x) =x + a)
S~ Y, f is again a translation, (and hence is ol
Proof_ If fis linear over Q, then also f ™! is linear over Q and [ lof(x) =
=f"'(f(x) + a) = x + £~ (a); hence f ¢, f = iy T

On the other hand, if for each ae R, f 1@, f = ¢ 1 - 1> W€ have with

X=["1a) £ @r S) = @2(p) O fT(f(X) + f()) = x + y or
S&x) + () =flx +y);

hence f is additive, or linear over 0.

Lemma A.2. Letf: R — R be a bijection with f(1) = 1. Then f is mul-
tiplicative, i.e., f(x+y) = f(x)+f(y), iff for each scalar multiplication ¢, :
R-R, ¢,(x) =p-x, f “LYo, fis also a scalar multiplication (and hence
S Qr-14).

Proof. The same way as lemma (A.1).

Theorem A.3. The normalizer of the Euclidean or special affine group
of R' consists of all bijections of R' > R! which are affine over Q.
The normalizer of the affine group of R! is that affine group itself.

Remark A.4. For n > 2, the straight line through p, qeR", p # q can
be characterized terms of the Euclidean, the special affine, or the affine
group as follows:

(a) (Euclidean) the line through p, g is the set of all r € R” such that, whenever
¢,> ¢, are Euclidean transformations such that: )

?,(p) = p, @,(q) = q,
?,(r) = @,(r),
then ¢,(r) = @ (r) =r.
(b) ((Special) affine) the line through P, q is the set of all re R" such that
for any (special) affine transformation ©®pq:R"— R", such that
?pqP) =p and ¢,,(q) =q, ¢,,(r) =r.

Corolary A.5. Let n > 2. The normalizer of the Euclidean, the special
affine or the affine group of R" consists of mapsf:R" — R", mapping straight
lines to straight lines.

Proposition A.6. Any bijection f: R"—» R", n > 2, which maps straight
lines to straight lines, is an affine map.

Differentiable Structure and its group of diffeomorphisms 25

Proof. Clearly, f maps planes to planes; so it is sufficient to show that f,
restricted to a plane, is affine. This means that it is enough to show the
theorem for n =2.

In this case we may assume that £(0,0) = (0,0), £(0,1) = (0,1) and
f(1,0) = (1,0). Then there are bijections g,, g, : R = R such that £(t,0) =
= (g,(¢),0) and £ (0,t) = (0, g,(¢). Since f has to map parallel lines to parallel
lines, g,(t) = g,(t) = g(t) for all t, and f(¢,, t,) = (glt,), g(ty)).

Let 1, , be the line {(t;, At; + w)}.
The image of this line under fis {(g(t,), g(At; + w} = {(s;, g(A- g~ (s;) +
+ )} which has to be again a straight line (for all 4. p).
Hence, for each affine map ¢ : R — R, g ¢ g ! is affine; by (A.3) this implies
that ¢ is affine. This proves the proposition.

From the above results we immediately obtain

Theorem A.7. For n > 2 the normalizer of the Euclidean, resp. special
affine, affine group of R" is the group of similarity transformations, resp.
the affine group, resp. the affine group.
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